WO2001027356A1 - Procédé de métallisation d'un substrat isolant par voie électrochimique - Google Patents

Procédé de métallisation d'un substrat isolant par voie électrochimique Download PDF

Info

Publication number
WO2001027356A1
WO2001027356A1 PCT/FR2000/002757 FR0002757W WO0127356A1 WO 2001027356 A1 WO2001027356 A1 WO 2001027356A1 FR 0002757 W FR0002757 W FR 0002757W WO 0127356 A1 WO0127356 A1 WO 0127356A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
electrochemical cell
cathode
film
Prior art date
Application number
PCT/FR2000/002757
Other languages
English (en)
Inventor
Vincent Fleury
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to US10/110,126 priority Critical patent/US6764586B1/en
Priority to AT00966282T priority patent/ATE259006T1/de
Priority to JP2001529484A priority patent/JP4637429B2/ja
Priority to CA2387109A priority patent/CA2387109C/fr
Priority to EP00966282A priority patent/EP1228266B1/fr
Priority to DE60008134T priority patent/DE60008134T2/de
Priority to AU76729/00A priority patent/AU7672900A/en
Publication of WO2001027356A1 publication Critical patent/WO2001027356A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the present invention relates to a method of metallizing an insulating substrate by electrochemical means.
  • the oldest methods consist in bringing the insulating plate to be metallized in contact with a solution of a salt of the metal and of a reducing solution which causes precipitation.
  • the contacting can be done by watering or by immersion.
  • These processes require the use of a mixture of salts and optionally additives.
  • they do not make it possible to control either the deposition speed or the texture, that is to say the quality of the deposit obtained.
  • the substrate is then placed in a solution of a copper salt and it is connected to an anode constituted by copper and a cathode constituted by a gold film, the two electrodes being connected to a current generator.
  • the deposition on the surface of the insulating substrate is obtained by reduction of copper at the cathode.
  • the reduced metal begins by depositing at the cathode, then the deposit continues on the surface to be metallized covered with the thin film which does not conduct gold. But in this case also, one results in a dendritic growth which does not form a regular thin film completely covering. On the contrary, the structure of the deposit is extremely tree-like and tortuous.
  • the research carried out by the inventor has made it possible to show that, when an electrochemical process is implemented to grow powders along the surface of a substrate, by applying to the electrochemical cell a clearly current density higher than the current densities beyond which it was possible, according to the prior art, to obtain only three-dimensional powders, a deposit was obtained on the substrate in which the grains are arranged so as to form a uniform film covering and no longer dendrites.
  • the present invention relates to an electrochemical process for the deposition on an insulating substrate, of a continuous thin metallic film.
  • the method of metallizing an insulating substrate by depositing a uniform thin film of a metal M on said insulating substrate consists in placing said substrate in an electrochemical cell which contains as electrolyte a solution of a salt of metal M in a solvent and which comprises an anode constituted by the metal M and a cathode in direct contact with said insulating substrate, then in carrying out an electrolysis at constant current, said method being characterized in that: a conductive film is initially applied to one end of the substrate which will constitute the cathode; - The substrate is placed in the electrochemical cell so that the surface to be metallized is vertical, and the cathode located at the top; the current imposelectrochi ⁇ .i ⁇ ue is imposed on a current having an intensity such that it creates a current density of between 1 and 50 mA / cm 2 in the horizontal section of the electrochemical cell at the height of the growth front of the film which deposit.
  • the current can vary within the aforementioned interval. It is however preferable to operate in galvanostatic mode by imposing a constant current to improve the homogeneity of the deposited film.
  • the growth speed V of the film which is deposited on the substrate is proportional to the intensity of the electric field.
  • the powders formed are deposited on the surface of the substrate, forming a continuous film.
  • the deposit begins to form at the top of the substrate in contact with the thin conductive film deposited as a cathode, then the front of the deposit progresses uniformly and evenly downward along the surface of the substrate to be metallized, in the direction of the 'anode.
  • the method of the invention can be implemented for metallizing very varied insulating substrates, such as for example plates or glass fibers, plates or
  • Different metals M can be used for metallization. Mention may in particular be made of copper, silver, cobalt, iron and tin.
  • the metal M is introduced into the solvent in the form of a cation associated with an anion in a simple salt, which must have a solubility greater than 10 ⁇ 3 mol.l ⁇ 1 in the solvent.
  • the solvent for the electrolyte may or may not be aqueous. Aqueous solutions are particularly preferred for the simplicity of their implementation.
  • the salt concentration of the electrolyte is preferably between 0.02 and 0.05 mol.l -1 .
  • it is preferable to pretreat the surface of the substrate to be metallized by depositing a thin, non-percolating, and therefore non-conductive, film of an air-stable metal M ′ in the metallic form.
  • Such pretreatment can consist of depositing gold islands forming a non-continuous film having a thickness of the order of 10 to 30 ⁇ . It is also possible to pretreat the surface of the substrate to be metallized with a so-called activating solution containing palladium chloride which produces islets of palladium.
  • the anode consists of a sheet or wire of metal M, and serves as a source of metal M.
  • the cathode can be a thin film of metal M or of another metal, for example M '.
  • the metal forming the cathode is gold
  • a film of about 1000 ⁇ is suitable.
  • FIG. 1 represents a device for depositing a continuous layer of metal M on a substrate.
  • the device comprises an electrochemical cell 1 connected to a generator 2.
  • the cell 1 consists of two rectangular glass slides 3 and 4 placed vertically. Lely and parallel to each other, one of the sides (of length L) of the blades being placed horizontally.
  • the substrate to be metallized is the face of the strip 3 oriented towards the interior of the cell.
  • the blades 3 and 4 are kept spaced apart by a distance h by a separator 5.
  • the separator 5 can be a blade or a wire of the metal M or of another metal stable with respect to the electrolyte, it is ie a metal which has a standard oxidation potential greater than that of the metal M, so as to avoid deposition of the electroless type.
  • the distance h is preferably between approximately 50 ⁇ m and a few mm.
  • a cathode 6, located at the upper part of the blade 3, can be constituted by a simple metal paint (of the "silver lacquer" type) deposited on the upper edge of the blade 3.
  • An anode 7, located at the lower part of the blade 3, may consist of a wire or a sheet of metal M.
  • the separator 5 also serves as contact between the generator 2 and the electrode 6.
  • the anode 7 also serves as a separator. In this embodiment, the anode is connected directly to the substrate.
  • Metal islands M 'in a layer 8 sufficiently thin to be non-piercing, are deposited on the surface to be metallized of the blade 3.
  • the intensity of the current applied to the cell which makes it possible to obtain a uniform and covering metal film " M is between 100 and 2000 ⁇ A, when the salt concentration C of the metal M in the electrolyte is of the order of 0.05 mole / liter.
  • This current intensity applied to the electrochemical cell causes a current intensity between 2.5 and 50 mA per cm 2 of surface in the horizontal section of the cell at the growth front of the deposit.
  • e 2h x C / C M.
  • FIG. 2 shows another embodiment, in which the cell 1 ′ is constituted by a cylindrical tube 10 of radius R 2 bent in a U and placed vertically.
  • the substrate to be metallized is a wire 9 of radius R lr such as a glass fiber for example.
  • the wire 9 is very cleanly cleaned, possibly covered with a film of metal M ', for example a non-percolating gold film.
  • a metal M ' for example a non-percolating gold film.
  • the wire 9 is covered at one of its ends, with a metal deposit forming the cathode 6 ', which is connected to a generator not shown.
  • the other end of the wire 9 is introduced into one of the openings of the U-shaped tube which contains the electrolyte.
  • a metal wire M is introduced into the U-shaped tube through the other opening and forms a soluble anode 7 '.
  • the wire 9 is not directly connected to the anode. Its length could however be such that it meets the end of the wire serving as anode.
  • the metal deposit M begins to grow along the cathode, on the surface of the substrate to be metallized.
  • the thin film that forms gradually invades the surface to be metallized, as the growth front of the deposit moves away from the cathode. If the substrate is a glass plate, we obtain a mirror.
  • the electrochemical cell can be adapted in such a way that the deposition of the metal M takes place continuously.
  • the substrate is then pulled vertically upward through the cell, as the part immersed in the electrolyte is covered with metal.
  • Example 1 The metallization of one face of a glass plate was carried out using a device as shown in FIG. 1.
  • the length L was 1.6 cm and the distance h between plates 3 and 4 was 250 ⁇ m.
  • the intensity of the current applied to the cell was 600 ⁇ A.
  • the electrolyte was an aqueous 0.05 mol / liter silver nitrate solution.
  • a uniform covering film was thus obtained having a thickness of the order of 0.1 ⁇ m.
  • Example 2 The metallization of a glass fiber was carried out in a device as shown in FIG. 2.
  • the cell consists of a segment of capillary glass tube, with an internal diameter of 1 mm and a length of 3 cm, bent in a U shape, so that the two openings are located in the high position, to prevent the electrolyte from disperses by gravity.
  • the tube was filled with a solution silver nitrate.
  • the glass fiber which has a diameter 200 ⁇ m, was coated with a primer of silver lacquer and introduced vertically into one of the openings, until the cathode part serving as primer is immersed in the electrolyte to a depth of about 2 mm.
  • a silver wire serving as a counter electrode (anode) was introduced into the other opening.
  • the current was circulated through the tube by imposing a constant current of 100 ⁇ A between the primer on the fiber and the anode. There was thus obtained a uniform deposition of a metallic film on the fiber. The fiber was then removed by pulling it from the top, taking care not to scrape the metallized fiber from the edges of the glass tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Abstract

L'invention concerne un procédé de métallisation d'un substrat isolant par dépôt d'un film mince uniforme d'un métal. Un substrat isolant est placé dans une cellule électrochimique contenant une solution d'un sel d'un métal M et relié à une anode constituée par le métal M et à une cathode, puis on effectue une électrolyse à courant constant. Le procédé est caractérisé en ce qu'on applique initialement sur le substrat dans la partie en contact avec la cathode, un film mince conducteur; on place le substrat dans la cellule électrochimique de telle manière que la surface à métalliser soit verticale, la cathode étant à la partie supérieure; et on impose à la cellule électrochimique un courant ayant une intensité telle qu'elle crée une densité de courant comprise entre 1 et 50 mA/cm2 dans la section horizontale de la cellule électrochimique à la hauteur du front de croissance du film qui se dépose.

Description

Procédé de métallisation d'un substrat isolant par voie électrochimique.
La présente invention concerne un procédé de métallisation d'un substrat isolant par voie électrochimique.
On connaît différents procédés pour métalliser des substrats isolants, notamment en vue de la fabrication de miroirs par métallisation de plaques de verre.
Les procédés les plus anciens consistent à mettre la plaque isolante à métalliser en contact avec une solution d'un sel du métal et d'une solution réductrice qui provoque une précipitation. La mise en contact peut se faire par arro- sage ou par immersion. Ces procédés nécessitent l'utilisation d'un mélange de sels et éventuellement d'additifs. En outre, ils ne permettent de contrôler, ni la vitesse de dépôt, ni la texture, c'est-à-dire la qualité du dépôt obtenu.
Plus- récemment, des procédés de dépôt par évaporation sous vide ont été mis au point. Cette technique très simple dans son principe, nécessite au préalable l'établissement d'un vide dans une enceinte dans laquelle se fera l' évaporation du métal. Les films obtenus par évaporation sous vide sont en général de bonne qualité, mais le coût élevé du procédé en limite l'usage à des applications particulières telles que l'élaboration de miroirs de petites dimensions, par exemple les rétroviseurs pour véhicule automobile ou les miroirs pour l'optique.
Il est connu d'effectuer des dépôts métalliques sur des substrats 'métalliques par voie électrolytique . De nombreuses applications ont été mises au point avec de très bons résultats. Mais il est également connu, notamment par
J. Dini, [Electrodeposition, Noyés Publication, Par Ridge
NJ, USA (1992), p. 195], que la mise en œuvre du procédé avec des vitesses de croissance élevées provoque une croissance irrégulière, dendritique ou pulvérulents. De tels dépôts sont inutilisables pour des applications industrielles, car ils tombent en poudre. Une solution pour limiter ou supprimer la formation de dendrites lors du dépôt électrolytique d'un film métallique sur un substrat conducteur consiste à ajouter des additifs à 1 ' électrolyte . Il s'agit toutefois d'un procédé essentiellement empirique. De bons résultats peuvent être obtenus, mais ils sont difficilement reproductibles. En outre, une légère modification de la teneur en additif ou de sa nature peut provoquer des modifications considérables du film déposé.
Indépendamment, des essais ont été effectués pour transposer le procédé de dépôt sur un substrat métallique par voie électrolytique à la métallisation de substrats isolante, par exemple à la métallisation de plaques de verres. Par exemple, V. Fleury, ["Branched fractal patterns in non- equilibrium electrochemical déposition frorr. oscillatory nucleation and gro th", Nature, Vol. 390, nov. 1997, 145-148] décrit un procédé pour déposer un film de cuivre sur un substrat isolant par voie galvanique. La surface à métalliser du substrat isolant est recouverte d'un film r.ince d'or. Le substrat est ensuite placé dans une solution d'un sel de cuivre et il est relié à une anode constituée par du cuivre et une cathode constituée par un film d'or, les deux électrodes étant reliées à un générateur de courant. Le dépôt sur la surface du substrat isolant est obtenu par réduction du cuivre à la cathode. Le métal réduit commence par se dépo- ser au niveau de la cathode, puis le dépôt se poursuit sur la surface à métalliser recouverte du film mince non conducteur d'or. Mais dans ce cas également, on aboutit à une croissance dendritique qui ne forme pas un film mince régulier totalement couvrant. Au contraire, la structure du dépôt est extrêmement arborescente et tortueuse. Il était connu que, sur ces croissances arborescentes, le choix de la densité du courant imposé à la cellule électrochimique permettait de modifier la vitesse de formation du dépôt métallique, une augmentation de la densité de courant produisant une augmentation de la vitesse de dépôt. Mais l'on constatait qu'une augmentation de la densité du courant provoquait la formation de dépôts dendritiques pulvérulents. Ainsi, T. R. Bergstrasser et H. D. Merchant [Surface Morphology of Electrodeposits, pp. 115-168 m Dafect Structure, Morphology and Properties of Deposi ts , Proceedings cf the Materials Week Rose ont 1994, Publication of the Minerals-Mεtals-Materials Society, éd. by H. D. Merchant] montrent que plus l'intensité de courant utilisée est élevée par rapport à l'intensité du courant d'équilibre, plus les dépôts formés ont un caractère pulvérulent. Les poudres à trois dimensions ainsi obtenues n'ont pas d'intérêt industriel, leur seul avantage étant de permettre l'étude fondamentale de la croissance dendritique fractale (J. Dini ibid. p. 175) .
Les recherches effectuées par l'inventeur ont permis de montrer que, lorsqu'on met en œuvre un procédé électrochimique pour faire croître des poudres le long de la surface d'un substrat, en appliquant à la cellule électrochimique une den- site de courant nettement plus élevée que les densités de courant au-delà desquelles l'on ne pouvait, selon l'art antérieur, obtenir que des poudres tri-dimensionnelles, on obtenait sur le substrat un dépôt dans lequel les grains s'agencent de façon à former un film uniforme couvrant et non plus des dendrites .
C'est pourquoi la présente invention a pour objet un procédé électrochimique pour le dépôt sur un substrat isolant, d'un film métallique mince continu.
Le procédé de métallisation d'un substrat isolant par dépôt d'un film mince uniforme d'un métal M sur ledit substrat isolant consiste à placer ledit substrat dans une cellule électrochimique qui contient comme électrolyte une solution d'un sel du métal M dans un solvant et qui comprend une anode constituée par le métal M et une cathode en contact direct avec ledit substrat isolant, puis à effectuer une électrolyse à courant constant, ledit procédé étant caractérisé en ce que : on applique initialement sur une extrémité du substrat un film conducteur qui constituera la cathode ; - on place le substrat dans la cellule électrochimique de telle manière que la surface à métalliser soit verticale, et la cathode située à la partie supérieure ; on impose à la cellule έlectrochiπ.iσue un courant ayant une intensité telle qu'elle crée une densité de courant comprise entre 1 et 50 mA/cm2 dans la section horizontale de la cellule électrochimique à la hauteur du front de croissance du film qui se dépose. Pendant la mise en œuvre du procédé, le courant peut varier dans l'intervalle précité. Il est cependant préférable d'opérer en mode galvanostatique en imposant un courant constant pour améliorer l'homogénéité du film déposé. La vitesse de croissance V du film qui se dépose sur le substrat est proportionnelle à l'intensité du champ électrique. Dans une cellule parallélépipédique, le champ électrique, et par conséquent la vitesse de dépôt, sont directement proportionnels au courant appliqué I, selon la relation V=μa x I/σS, dans laquelle μa est la mobilité de l'anion du sel dans 1 ' électrolyte, σ est la conductivité de 1 ' électrolyte et S est la section de la cellule.
Pour déposer un métal M donné sous forme d'un film homogène couvrant sur un substrat dans une cellule électro- chimique donnée, pour laquelle l'on connaît par conséquent S, σ et μa, il suffit_ d'effectuer un essai, à la portée de l'homme de métier, en modifiant l'intensité du courant appliqué pour déterminer l'intensité minimale de courant qui crée la densité de courant suffisante pour former un film continu et non plus des dendrites. Lors de la mise en œuvre d'un dépôt électrochimique tel qu'évoqué précédemment, si l'on fait varier en continu l'intensité du courant d'une valeur faible vers des valeurs plus fortes, on constate à l'œil nu que la nature du dépôt change. Aux faibles intensités, le dépôt a une forme arborescente grossière, avec une dimension de grains nettement supérieure à 1 μm. Lorsque l'on augmente l'intensité, c'est-à-dire la densité de courant, et donc la vitesse de dépôt, on observe des arborescences de plus en plus fines, pour aboutir finalement à des poudres. De manière surprenante, et contrairement à ce qui est observé dans l'art antérieur, les poudres formées se déposent sur la surface du substrat en formant un film continu. Le dépôt commence à se former à la partie supérieure du substrat au contact du film mince conducteur déposé comme cathode, puis le front du dépôt progresse de manière uniforme et régulière vers le bas le long de la surface du substrat à métalliser, en direction de l'anode. Le procédé de l'invention peut être mis en œuvre pour métalliser des substrats isolants très variés, tels que par exemple des plaques ou des fibres de verre, des plaques ou
© des fils de Téflon , du papier filtre, ou des plaques de céramique.
Différents métaux M peuvent être utilisés pour la métallisation. On peut citer notamment le cuivre, l'argent, le cobalt, le fer et l'étain. Le métal M est introduit dans le solvant sous forme d'un cation associé à un anion dans un sel simple, qui doit avoir une solubilité supérieure à 10"3 mol.l"1 dans le solvant. A titre d'exemple, on peut citer le sulfate de cuivre, le chlorure de cuivre, le nitrate d'argent, le chlorure d'étain ou le chlorure de fer.
Le solvant de l' électrolyte peut être aqueux ou non. Les solutions aqueuses sont particulièrement préférées pour la simplicité de leur mise en œuvre. Pour une métallisation à partir d'une solution de sulfate de cuivre ou de nitrate d'argent, la concentration en sel de l' électrolyte est comprise de préférence entre 0,02 et 0,05 mol.l-1. Dans la plupart des cas, il est préférable de prétraiter la surface du substrat à métalliser par dépôt d'un film mince non percolant, et donc non conducteur, d'un métal M' stable à l'air sous la forme métallique. Un tel prétraitement peut consister en un dépôt d'îlots d'or formant un film non continu ayant une épaisseur de l'ordre de 10 à 30 Â. On peut également prétraiter la surface du substrat à métalliser par une solution dite activatrice contenant du chlorure de palladium qui produit des îlots de palladium.
L'anode est constituée par une feuille ou un fil du métal M, et sert de source de métal M. La cathode peut être un film mince du métal M ou d'un autre métal, par exemple M' .
Par exemple, si le métal formant la cathode est l'or, un film d'environ 1000 Â est approprié.
La figure 1 représente un dispositif pour déposer une couche continue de métal M sur un substrat.
Le dispositif comprend une cellule électrochimique 1 reliée à un générateur 2. La cellule 1 est constituée par deux lames de verres rectangulaires 3 et 4 placées vertica- lement et parallèlement l'une par rapport à l'autre, l'un des côtés (de longueur L) des lames étant placé à l'horizontale. Le substrat à métalliser est la face de la lame 3 orientée vers l'intérieur de la cellule. Les lames 3 et 4 sont main- tenues espacées d'une distance h par un séparateur 5. Le séparateur 5 peut être une lame ou un fil du métal M ou d'un autre métal stable par rapport à l' électrolyte, c'est-à-dire un métal qui a un potentiel d'oxydation standard supérieur à celui du métal M, de manière à éviter le dépôt de type electroless. La distance h est comprise de préférence entre environ 50 μm et quelques mm. Une cathode 6, située à la partie supérieure de la lame 3, peut être constituée par une simple peinture de métal (du type "laque d'argent") déposée sur le bord supérieur de la lame 3. Une anode 7, située à la partie inférieure de la lame 3, peut être constituée par un fil ou une feuille de métal M. Le séparateur 5 sert également de contact entre le générateur 2 et l'électrode 6. L'anode 7 sert également de séparateur. Dans ce mode de réalisation, l'anode est reliée directement au substrat. Des îlots de métal M' en couche 8 suffisamment mince pour être non per- colante, sont déposés sur la face à métalliser de la lame 3.
Dans une telle configuration de cellule, pour une longueur L de 1,6 cm et une distance h de 100 μm, l'intensité du courant appliqué à la cellule qui permet d'obtenir un film de métal "M uniforme et couvrant est comprise entre 100 et 2000 μA, lorsque la concentration C en sel du métal M dans 1' électrolyte est de l'ordre de 0,05 mole/litre. Cette intensité de courant appliquée à la cellule électrochimique, provoque une intensité de courant entre 2,5 et 50 mA par cm2 de surface dans la section horizontale de la cellule au niveau du front de croissance du dépôt.
Dans le cas d'une « cellule plate » telle que définie ci-dessus, l'épaisseur e du film métallique obtenu est déterminée simplement par la formule e = P x h x C /C:., dans laquelle h représente la distance entre les lames 3 et 4, c'est-à-dire la hauteur de 1 ' électrolyte, C est la concentration en cations de 1 ' électrolyte et Cκ est la concen- tration molaire du métal M, c'est-à-dire le nombre de moles par litre de métal M à l'état solide. P est un paramètre lié à la mobilité du cation et de l'anion du sel : P = 1 + (μca) , μc et μa étant respectivement la mobilité du cation et de l'anion. En règle générale, les cations et les anions d'un sel ont une mobilité très proches, et P est voisin de 2. La formule simplifiée pour la détermination de e peut donc s'écrire : e = 2h x C/CM. Par exemple, si l'on effectue la métallisation à l'aide d'une cellule dans laquelle h = 250 μm, avec comme électrolyte une solution de sel de cuivre ayant une concentration de 0,05 mole/1, la densité molaire CM du cuivre étant de 293 mole/1, l'épaisseur prévue pour le film de cuivre déposé est de l'ordre de 2 x 250 x 0,05 / 293 = 0,085 μm. Si l' électrolyte est une solution 0,05 molaire de sel d'argent, alors l'épaisseur du film d'argent déposé est de 2 x 250 x 0,05 / 223 = 0,11 μm.
La figure 2 représente un autre mode de réalisation, dans lequel la cellule 1 ' est constituée par un tube cylindrique 10 de rayon R2 courbé en U et placé verticale- ment. Le substrat à métalliser est un fil 9 de rayon Rl r tel qu'une fibre de verre par exemple. Le fil 9 est très proprement nettoyé, éventuellement recouvert d'un film du métal M', par exemple un film d'or non percolant . Pour les fils de faible diamètre (de l'ordre de 100 μm) , le traitement par un métal M' est inutile. Le fil 9 est recouvert à l'une de ses extrémités, d'un dépôt de métal formant la cathode 6', qui est reliée à un générateur non représenté. L'autre extrémité du fil 9 est introduite dans l'une des ouvertures du tube en U qui contient 1 ' électrolyte . Un fil de métal M est introduit dans le tube en U par l'autre ouverture et forme une anode soluble 7 ' . Dans le mode de réalisation représenté, le fil 9 n'est pas directement relié à l'anode. Sa longueur pourrait cependant être_ telle qu'elle rejoigne l'extrémité du fil servant d'anode. L'épaisseur e du dépôt métallique obtenu peut être déterminée par la formule e = [ (R2 2-R: 2) /Ri] x C/Cv, dans laquelle C et CM ont la signification donnée précédemment . Il apparaît ainsi que, dans une cellule électrochimique donnée contenant un substrat de forme donnée, et pour un métal M donné, on peut faire varier l'épaisseur e du film en modifiant la concentration en sel de métal M dans l' électrolyte .
Quelle que soit la forme de la cellule électrochimique utilisée, lorsqu'elle est mise sous tension, le dépôt de métal M commence à croître le long de la cathode, à la surface du substrat à métalliser. Le film mince qui se forme envahit progressivement la surface à métalliser, au fur et à mesure que le front de croissance du dépôt s'éloigne de la cathode. Si le substrat est une plaque de verre, on obtient un miroir.
La cellule électrochimique peut être adaptée de telle manière que le dépôt du métal M s'effectue en continu. On tire alors le substrat verticalement vers le haut à travers la cellule, à mesure que la partie immergée dans l' électrolyte est recouverte de métal.
Exemple 1 On a effectué la métallisation d'une face d'une plaquette de verre à l'aide d'un dispositif tel que représenté sur la figure 1.
La longueur L était de 1,6 cm et la distance h entre les plaquettes 3 et 4 était de 250 μm. L'intensité du courant appliqué à la cellule était de 600 μA. L ' électrolyte était une solution aqueuse de nitrate d'argent à 0,05 mole/litre.
On a ainsi obtenu un film uniforme couvrant ayant une épaisseur de l'ordre de 0,1 μm.
Exemple 2 On a effectué la métallisation d'une fibre de verre dans un dispositif tel que représenté sur la figure 2.
La cellule est constituée d'un segment de tube en verre capillaire, de diamètre intérieur 1 mm et de longueur 3 cm, recourbé en U, de façon à ce que les deux ouvertures soient situées en position haute, pour éviter que l' électrolyte ne se disperse par gravité. Le tube a été rempli d'une solution de nitrate d'argent. La fibre de verre, qui a un diamètre 200 μm, a été enduite d'une amorce de laque argent et introduite verticalement dans l'une des ouvertures, jusqu'à ce que la partie cathodique servant d'amorce soit immergée dans l' électrolyte sur une profondeur de environ 2 mm. Un fil d'argent servant de contre électrode (anode) a été introduit dans l'autre ouverture. On a fait circuler le courant à travers le tube en imposant un courant constant de 100 μA entre l'amorce sur la fibre et l'anode. On a ainsi obtenu un dépôt uniforme d'un film métallique sur la fibre. La fibre a ensuite été retirée en la tirant par le haut, en veillant à ne pas racler la fibre métallisée sur les bords du tube en verre .

Claims

Revendications
1. Procédé de métallisation d'un substrat isolant par dépôt d'un film mince uniforme d'un métal M sur ledit substrat isolant, consistant à placer ledit substrat isolant 5 dans une cellule électrochimique qui contient comme électrolyte une solution d'un sel du métal M dans un solvant et qui comprend une anode constituée par le métal M et une cathode en contact direct avec le substrat isolant, puis à effectuer une électrolyse à courant constant, ledit procédé 10 étant caractérisé en ce que : on applique initialement sur une extrémité du substrat un film conducteur qui constituera la cathode ; on place le substrat dans la cellule électrochimique de telle manière que la surface à métalliser 5 soit verticale, et la cathode située à la partie supérieure ; on impose à la cellule électrochimique un courant ayant une intensité telle qu'elle crée une densité de courant comprise entre 1 et 50 mA/cm2 dans la section horizontale de la cellule électrochimique à la hauteur du front de 0 croissance du film qui se dépose.
2. Procédé selon la revendication 1, caractérisé en ce que le substrat isolant est une plaque ou un fil de verre, une plaque ou un fil de Téflon , du papier filtre, ou une plaque de céramique. 5
3. 'Procédé selon la revendication 1, caractérisé en ce que le métal M est le cuivre, l'argent, le cobalt, le fer ou 1 'étain.
4. Procédé selon la revendication 1, caractérisé en ce que 1 ' électrolyte est une solution aqueuse de sulfate de2 cuivre, de chlorure de cuivre, de nitrate d'argent, de chlorure d' étain ou de chlorure de fer, ayant une concentration en sel supérieure à 10~3 mol.l"".
5. Procédé selon la revendication 4, caractérisé en ce que la concentration en sel est comprise entre 0,02 et 0,05Ξ mol.l"1.
6. Procédé selon la revendication 1, caractérisé en ce que l'on prétraite la surface du substrat à métalliser par dépôt d'un film métallique mince non percolant et donc non conducteur, d'un métal stable à l'air sous la forme métallique .
7. Procédé selon la revendication 6, caractérisé en ce que le film métallique mince non percolant est constitué par de 1 ' or ou du palladium.
8. Procédé selon la revendication 1, caractérisé en ce que l'intensité du courant appliqué à la cellule électrochimique est comprise entre 2,5 et 50 mA pour une section de cellule de 1 cm2.
9. Procédé selon la revendication 1, caractérisé en ce que le substrat est une plaque rectangulaire placée verticalement dans la cellule électrochimique, la partie supérieure de la plaque portant ledit film conducteur servant de cathode, la partie opposée de la plaque étant reliée à l'anode de métal M.
10. Procédé selon la revendication 1, caractérisé en ce que le substrat est un fil dont une extrémité est recouverte d'un film conducteur et constitue la cathode, l'autre extrémité étant soit libre, soit reliée directement à une anode de métal M.
PCT/FR2000/002757 1999-10-11 2000-10-04 Procédé de métallisation d'un substrat isolant par voie électrochimique WO2001027356A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/110,126 US6764586B1 (en) 1999-10-11 2000-10-04 Method for electrochemically metallizing an insulating substrate
AT00966282T ATE259006T1 (de) 1999-10-11 2000-10-04 Verfahren zur elektrochemischen metallisierung eines isolierenden substrats
JP2001529484A JP4637429B2 (ja) 1999-10-11 2000-10-04 絶縁基材の電気化学的メタライジング方法
CA2387109A CA2387109C (fr) 1999-10-11 2000-10-04 Procede de metallisation d'un substrat isolant par voie electrochimique
EP00966282A EP1228266B1 (fr) 1999-10-11 2000-10-04 Procede de metallisation d'un substrat isolant par voie electrochimique
DE60008134T DE60008134T2 (de) 1999-10-11 2000-10-04 Verfahren zur elektrochemischen metallisierung eines isolierenden substrats
AU76729/00A AU7672900A (en) 1999-10-11 2000-10-04 Method for electrochemically metallising an insulating substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9912644A FR2799475B1 (fr) 1999-10-11 1999-10-11 Procede de metallisation d'un substrat isolant par voie electrochimique
FR99/12644 1999-10-11

Publications (1)

Publication Number Publication Date
WO2001027356A1 true WO2001027356A1 (fr) 2001-04-19

Family

ID=9550779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002757 WO2001027356A1 (fr) 1999-10-11 2000-10-04 Procédé de métallisation d'un substrat isolant par voie électrochimique

Country Status (10)

Country Link
US (1) US6764586B1 (fr)
EP (1) EP1228266B1 (fr)
JP (1) JP4637429B2 (fr)
AT (1) ATE259006T1 (fr)
AU (1) AU7672900A (fr)
CA (1) CA2387109C (fr)
DE (1) DE60008134T2 (fr)
ES (1) ES2213047T3 (fr)
FR (1) FR2799475B1 (fr)
WO (1) WO2001027356A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812723B1 (fr) * 2000-08-01 2002-11-15 Centre Nat Rech Scient Capteur de molecules gazeuses reductrices
DE10240921B4 (de) * 2002-09-02 2007-12-13 Qimonda Ag Verfahren und Anordnung zum selektiven Metallisieren von 3-D-Strukturen
US20170105287A1 (en) * 2015-10-12 2017-04-13 Tyco Electronics Corporation Process of Producing Electronic Component and an Electronic Component
US10184189B2 (en) 2016-07-18 2019-01-22 ECSI Fibrotools, Inc. Apparatus and method of contact electroplating of isolated structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596515A (en) * 1946-03-14 1952-05-13 Libbey Owens Ford Glass Co Coating vitreous substances
FR2746116A1 (fr) * 1996-03-15 1997-09-19 Le Boulicaut Yannick Claude Je Galvanoplastie sous champ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829304B2 (ja) * 1992-11-05 1998-11-25 誠 河瀬 セラミック上へのZr合金めっき方法
FR2707673B1 (fr) * 1993-07-16 1995-08-18 Trefimetaux Procédé de métallisation de substrats non-conducteurs.
US6572743B2 (en) * 2001-08-23 2003-06-03 3M Innovative Properties Company Electroplating assembly for metal plated optical fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596515A (en) * 1946-03-14 1952-05-13 Libbey Owens Ford Glass Co Coating vitreous substances
FR2746116A1 (fr) * 1996-03-15 1997-09-19 Le Boulicaut Yannick Claude Je Galvanoplastie sous champ

Also Published As

Publication number Publication date
DE60008134D1 (de) 2004-03-11
EP1228266A1 (fr) 2002-08-07
FR2799475B1 (fr) 2002-02-01
AU7672900A (en) 2001-04-23
FR2799475A1 (fr) 2001-04-13
JP4637429B2 (ja) 2011-02-23
EP1228266B1 (fr) 2004-02-04
JP2003511564A (ja) 2003-03-25
CA2387109C (fr) 2011-05-24
CA2387109A1 (fr) 2001-04-19
ES2213047T3 (es) 2004-08-16
US6764586B1 (en) 2004-07-20
ATE259006T1 (de) 2004-02-15
DE60008134T2 (de) 2004-09-02

Similar Documents

Publication Publication Date Title
US20160017502A1 (en) Electrochemical Process for Producing Graphene, Graphene Oxide, Metal Composites, and Coated Substrates
EP1927129B1 (fr) Procede d'electrodeposition destine au revetement d'une surface d'un substrat par un metal
Michaelis et al. Electrodeposition of porous zinc oxide electrodes in the presence of sodium laurylsulfate
EP2898121B1 (fr) Electrolyte et procédé d'électrodéposition de cuivre sur une couche barrière
WO2007034116A2 (fr) Composition d'electrodeposition destinee au revetement d'une surface d'un substrat par un metal
El Abedin et al. Electrodeposition of nanocrystalline silver films and nanowires from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate
WO2010001054A2 (fr) Procede de preparation d'un film isolant electrique et application pour la metallisation de vias traversants
Mengoli et al. Enhanced Raman scattering from iron electrodes
FR2974818A1 (fr) Procede de depot de couches metalliques a base de nickel ou de cobalt sur un substrat solide semi-conducteur ; kit pour la mise en œuvre de ce procede
EP0124452B1 (fr) Procédé de métallisation de films souples électriquement isolants et articles obtenus
FR3061601A1 (fr) Soltion d'electrodeposition de cuivre et procede pour des motifs de facteur de forme eleve
EP1228266B1 (fr) Procede de metallisation d'un substrat isolant par voie electrochimique
CA2462295C (fr) Revetement par nanoparticules de silicium elementaire et procede associe
BE1008086A3 (fr) Procede de depot par electropolymerisation d'un film organique sur une surface conductrice de l'electricite.
Teller et al. Morphological study of branched Sn structure formed under selected electrochemical conditions
Duan et al. Electrochemical Studies of the Mechanism of the Formation of Metal‐TCNQ Charge‐Transfer Complex Film
Tiginyanu et al. Template assisted formation of metal nanotubes
Zhou et al. Kinetically controlled growth of fine gold nanofractals from Au (I) via indirect galvanic replacement reaction
Girel et al. Deposition of silver dendrites on porous silicon for fabrication of SERS-active substrates
Altube et al. Electrodeposition and optical properties of silver infiltrated photonic nanostructures
Muench et al. Impact of specifically adsorbing anions on the electroless growth of gold nanotubes
EP3214207A1 (fr) Procédé de production de nanofils d'antimoine
Dumitru et al. Electrochemical studies on the growth process of the zinc oxide films from nitrate solutions
Cooper et al. Bitrex: A new levelling agent for copper
PL219821B1 (pl) Sposób osadzania nanocząstek metalu na powierzchni

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000966282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110126

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 529484

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2387109

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000966282

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000966282

Country of ref document: EP