WO2001023557A1 - Polypeptides et genes les codant - Google Patents

Polypeptides et genes les codant Download PDF

Info

Publication number
WO2001023557A1
WO2001023557A1 PCT/JP2000/006804 JP0006804W WO0123557A1 WO 2001023557 A1 WO2001023557 A1 WO 2001023557A1 JP 0006804 W JP0006804 W JP 0006804W WO 0123557 A1 WO0123557 A1 WO 0123557A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
polypeptide
chmll
seq
amino acid
Prior art date
Application number
PCT/JP2000/006804
Other languages
English (en)
French (fr)
Inventor
Kei Yamana
Yukimi Takahashi
Hitoshi Wada
Yoshinori Kasahara
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP00963008A priority Critical patent/EP1219710B1/en
Priority to CA2386141A priority patent/CA2386141C/en
Priority to AU74508/00A priority patent/AU784054B2/en
Priority to KR1020027003927A priority patent/KR100934594B1/ko
Priority to DE60044138T priority patent/DE60044138D1/de
Priority to AT00963008T priority patent/ATE463510T1/de
Publication of WO2001023557A1 publication Critical patent/WO2001023557A1/ja
Priority to HK02109473.5A priority patent/HK1047958B/zh
Priority to US11/055,967 priority patent/US8030277B2/en
Priority to US11/196,618 priority patent/US7575922B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel human having homology to Chondromodulin-I (ChM-I) and an amino acid sequence, which is known to regulate chondrocyte proliferation / differentiation and have an angiogenesis inhibitory action
  • the present invention relates to mouse and rat polypeptides, and human, mouse and rat genes (hereinafter sometimes abbreviated as “ChMlL gene”) encoding the same.
  • ChM-1 Human ChM-1 is synthesized as a type II membrane protein consisting of 334 amino acid residues.After glycosylation, it is processed and the C-terminal part consisting of 120 amino acid residues is transformed into cells. It is secreted out (Hiraki et al, Eur. J. Biochem. 260, 869-878, 1999). ChM-1 not only promotes the growth of cultured chondrocytes, but also strongly promotes proteoglycan synthesis and colony formation of chondrocytes in agarose (Inoue et al, Biochem. Biophys. Res. Commun. ., 241, 395-400, 199 7) ChM-I also promotes osteoblast proliferation as well as cartilage (Mori et al, FEBS Letters, 406 310-314, 1997).
  • cartilage is not only avascular tissue but also exhibits resistance to vascular invasion.
  • Kai et al. Attempted to purify a growth inhibitory factor for vascular endothelial cells from a cartilage tissue extract and succeeded in purifying it completely. As a result, this was found to be ChM-I (Hiraki et al, FEBS Letter, 415, 321-324, 1997; Hiraki et al, J. Biol. Chem., 272, 32419-32426, 1997).
  • Cartilage tissue is usually characterized by being kept avascular, but replacement with bone tissue is thought to require vascular invasion into cartilage tissue.
  • ChM-1 Prior to vascular invasion in preparation for the formation of a primary ossification center, hyperplasia of chondrocytes and calcification of the cartilage matrix occur in the planned vascular invasion area.
  • ChM-1 is a region where hypertrophic cartilage and subsequent calcified cartilage appear, and its expression is dramatically reduced.
  • ChM-I gene expression is cartilage-specific, but is restricted to avascular cartilage that is resistant to vascular invasion.
  • ChM-1 not only promotes cartilage proliferation and differentiation and maturation, but may also suppress vascular invasion by inhibiting the growth of vascular endothelial cells.
  • ChM-I angiogenic ⁇ ⁇ llular space to have a large amount of accumulated but, ChM- 1 is by letting you surrounding the bFGF interterritorial space to present the child and the force s Akirararyoku, to (Hiraki et al, J. Biol. Chem., 272, 32419-32426, 1997) That is, in avascular cartilage, ChM-1 exists in a form that masks angiogenic factors, and ChM-I is angiogenic.
  • ChM-1 has been confirmed to inhibit vascular invasion into human tumor cells in vivo and suppress the growth of cancer cells (Hayami et al, FEBS Lette rs, 458, 436- 440, 1999).
  • Analysis of the expression of ChM-I mRNA in each of the mouse silkworm tissues revealed that ChM-1 was expressed in the eyes and thymus in addition to cartilage, but ChM-I was expressed in these tissues. The function is still unknown (Shukunami et al, Int. J. Dev. Biol. 43, 39-49, 1999).
  • ChM-I a factor that promotes the proliferation and differentiation of chondrocytes
  • ChM-1 having angiogenesis inhibitory activity is also expected to be applied as an antitumor agent (JP-A-7-138295).
  • ChM-1 is a molecule that controls the proliferation and differentiation of chondrocytes and also has an inhibitory effect on angiogenesis, and its function is expected to be applied to pharmaceuticals.
  • biotechnology has progressed rapidly, and a large number of new genes have been cloned in connection with the progress of the human genome project. It is said that there are about 100,000 human genes, in which a group of molecules having homology to the amino acid sequence may form a family.
  • As a group of molecules having homology to the amino acid sequence there are various gene families such as TNF family, TNF receptor family, chemokine and G-protein coupled receptor. It is known.
  • TNFa Tumor necrosis factor
  • Fas ligand Fas ligand
  • Fas ligand Fas ligand
  • TRAIL TNF-related apoptosis-inducing 1 igand
  • BLYS Moore et al, Science 285, 260-263, 199
  • the molecule belonging to the TNF family is a type 11 membrane protein, and homology in the amino acid sequence is recognized in the extracellular region. Although these molecules have homology to the amino acid sequence, it has been shown that each molecule has a unique function, and attempts to apply it as a drug to various diseases have been attempted. Have been. In addition, it has been clarified that each molecule of the TNF family has its own receptor, and it has been attempted to apply these receptors as pharmaceuticals. Some have been approved (eg, soluble TNF receptor, Immunex). Antibodies to these molecules are also being researched and developed as pharmaceuticals, and some of them have actually been approved as pharmaceuticals (eg, anti-TNFa antibody, Centocore). TNF families and TNF receptor families are shown above as examples in which molecules having homology to the amino acid sequence are applied to drug development. One of the reasons behind the application of these molecules to pharmaceuticals is that functional analysis of each molecule was performed, and the similarities and differences were clarified.
  • the TNF family molecules have a type II membrane protein structure, and are mainly expressed in blood and lymphoid cells. There are many parts that can be done. Therefore, if a new gene belonging to the TNF family was discovered, the speed of its functional analysis would have been faster than that of the earlier discovered molecule. Thus, the discovery of a novel gene having homology to the amino acid sequence and the analysis of its function require the discovery of a new gene to be discovered in the future Not only does this aid in functional analysis, but it can be compared with known molecules based on the results of the analysis, so that more detailed knowledge of the function of known molecules would be obtained.
  • an object of the present invention is to provide a novel polypeptide similar to ChM-I and a gene encoding the same.
  • the production of an antibody against the polypeptide, the analysis of the expression levels of the gene and the polypeptide in various tissues, the expression and structural analysis of the recombinant protein, and the like are performed.
  • the purpose is to clarify the similarities and differences from (1) and elucidate their functions, and to make it possible to elucidate the pathology, diagnose, and treat these diseases.
  • ChM-I is a type II membrane protein that regulates the proliferation and differentiation of chondrocytes and has an angiogenesis inhibitory effect, and is expected to be applied to pharmaceuticals. Therefore, if a gene encoding a new polypeptide similar to ChM-1 can be provided, its expression level, structure and function in various cells can be analyzed, and the expression of these products can be analyzed by analyzing the expressed product. Seki It will be possible to elucidate the pathological condition, diagnose, and treat the disease to be given. However, there is no report of a molecule showing homology to the amino acid sequence of ChM-1 at present, and it is unclear whether ChM-I constitutes a gene family.
  • the present inventors have conducted intensive research on the above purpose and as a result, have newly isolated a gene (ChMIL gene) meeting the above purpose from human, mouse and rat cDNA libraries.
  • ChMIL gene a gene meeting the above purpose from human, mouse and rat cDNA libraries.
  • the inventors have clarified that the polypeptide has an angiogenesis inhibitory action, and have now completed the present invention.
  • the present invention relates to a gene encoding a polypeptide substantially containing the amino acid sequence represented by SEQ ID NO: 2, 4, or 6.
  • Examples of the above genes include the nucleotide sequences represented by SEQ ID NOs: 1, 3, and 5.
  • the present invention is a polypeptide encoded by a human, mouse or rat gene substantially comprising the amino acid sequence represented by SEQ ID NO: 2, 4, or 6.
  • the present invention is an oligonucleotide probe which hybridizes with at least a part of the gene.
  • the present invention is a recombinant DNA containing the gene.
  • the present invention provides a form transformed with the recombinant DNA. Transformant.
  • the present invention is the method for producing the polypeptide, wherein the transformant is cultured, and the polypeptide encoded by the gene of the present invention is collected from the obtained culture.
  • the present invention is a monoclonal antibody or a monoclonal antibody that specifically reacts with the polypeptide.
  • the present invention is a hybridoma producing the monoclonal antibody, which is obtained by fusing an antibody-producing cell immunized with the polypeptide with a myeloma cell.
  • the present invention is a reagent for detecting a gene comprising the above-mentioned oligonucleotide probe.
  • the present invention is a diagnostic kit comprising the polypeptide, and the monoclonal antibody or the polyclonal antibody.
  • the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide encoding a gene substantially containing the amino acid sequence represented by SEQ ID NO: 2, 4, or 6.
  • the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a monoclonal antibody or a polyclonal antibody that specifically reacts with the polypeptide.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an antisense oligonucleotide which specifically hybridizes with a part of the gene.
  • the present invention is a pharmaceutical composition
  • a nucleic acid for use in gene therapy comprising at least a part of the above-mentioned gene.
  • the present invention is a polypeptide, wherein the polypeptide is a cell membrane-bound type.
  • the present invention provides a method for encoding the above-mentioned cell membrane-bound polypeptide. Gene.
  • the present invention is a gene characterized in that the human gene is present on the X chromosome.
  • the present invention is a polypeptide, wherein the polypeptide has an angiogenesis inhibitory action.
  • the present invention relates to a gene encoding the above-mentioned polypeptide having an angiogenesis inhibitory action.
  • FIG. 1A shows the results of comparing the homology between the amino acid sequences of human ChMlL and human ChM-1.
  • FIG. 1B shows the results of comparing the homology of the amino acid sequences of human, mouse and rat ChMlL.
  • FIG. 2 shows the hydrophobic amino acid sequences of human ChM-1, human ChM1L and mouse ChM1L.
  • FIG. 3 shows the results of ChMlL mRNA expression analysis in adult and fetal tissues of mice, and ChMlL and ChM-1 mRNA expression analysis during fetal development of mice.
  • FIG. 4 shows the results of expressing human and mouse ChMlL proteins in C0S7 cells and detecting them from Western blo.
  • A shows the results of transfection of Mock (lane 1), human ChMlL (lane 2) and mouse ChMlL (lane 3) and electrophoresis of the cell components, followed by Coomassie Prienant blue staining.
  • (B) transfects Mock (lane 1), human ChMlL (with His tag) (lane 2) and mouse ChMlL (with His tag) (lane 3), electrophoreses the cell components, and Ensemble single stain (D) shows the results of detection of the same sample by Western blot using an anti-His tag antibody.
  • FIG. 5 shows the results of detection of soluble ChMlL (lane 2) and Mock (lane 1) expressed in C0S7 cells by Western blotting using an anti-FLAG M2 antibody.
  • Figure 6 shows the expression of mouse ChMlL (His-tagged) protein in C0S7 cells, recovery of cell components, sugar chain digestion, and detection of ChMlL protein by Western blot using an anti-His tag antibody. The results of analyzing the sugar chain structure are shown. Lane 1 is untreated, lane 2 is treated with NA Nase II + 0-glycosidase DS + PNGase, lane 3 is treated with NANase II, lane 4 is treated with 0-glycosidase DS, and lane 5 is a Western blot of a PNGase treated sample Is shown.
  • FIG. 7 shows the results of detecting the expression of ChMlL protein in costal cartilage tissue of mice by immunostaining using an anti-ChMlL polypeptide antibody.
  • Figure 8 shows that soluble human ChMlL protein expressed in the culture medium of C0S7 cells was purified by affinity chromatography using anti-FLAG M2 affinity gel. The results of Ant Blue staining are shown. Lane 1 shows the results of electrophoresis of C0S7 cell culture supernatant, and Lane 2 shows the results of electrophoresis of purified ChMlL protein.
  • Figure 9 shows the results of (a) (B) BSA (bovine serum albumin) 20ug, (c PJ) soluble human ChMlL 10ug, (d) soluble individual human ChMlL 20ug, (e) PF-4 (platelet factor 4) lug, (f) Shows the result of processing PF-4 lOug Embodiment of the Invention
  • substantially contains means that the gene or polypeptide of the present invention has a nucleotide sequence represented by SEQ ID NO: 1, 3, or 5, or SEQ ID NO: 2, as long as it has the function thereof. It means that mutation such as substitution, insertion or deletion may occur in the amino acid sequence represented by 4 or 6.
  • the ChMIL gene sequence of the present invention is obtained by the RACE method (RACE: Rapid amplification of cDNA ends; Frohman, MA et al, Proc. Natl. Acad. ScI. USA, 85, 8998-9002, 1988). It can be done, but the outline is as follows.
  • the RACE method is a method for efficiently obtaining a full-length cDNA based on a partial sequence of the cDNA when the sequence is known.
  • a primer is prepared so that it can be extended in the direction of the 3 'end or 5' end from the known sequence region, and cDNA is synthesized by PCR (Polymerase Chain Reaction, Science, 230, 1350-1354, 1985). Amplify.
  • PCR Polymerase Chain Reaction, Science, 230, 1350-1354, 1985. Amplify.
  • a primer that specifically anneals to a known region and a primer that anneals to a sequence added by a ligation reaction or the like at the 3 ′ end and 5 ′ end are used. Therefore, the region amplified by the PCR method contains a region whose sequence is unknown.
  • Isolation and purification of the amplified DNA fragment can be performed according to a conventional method as described in Examples below, for example, by gel electrophoresis.
  • the nucleotide sequence of the DNA fragment and the like obtained in this manner can be determined according to a conventional method, such as the dideoxy method (Proc. Natl. Acad. Sci. USA, 74, 5463-5467, 1977).
  • the method can be carried out by the maximus ginorenot method (Methods in Enzymology, 65, 499, 1980).
  • Such a base sequence can be easily determined using a commercially available sequent kit or the like.
  • Example 2 The outline of the force is as follows. Using the amino acid sequence of human ChM-I, the EST database (dbE'ST, EST: Expressed sequence tag) was obtained using the DNA data bank of Japan (DDBJ: DNA data bank of Japan). ), And a T BLASTN search was performed to detect EST finole, Genbank accession number AI123839. AI123839, which is a nucleotide sequence fragment registered in dbEST, was first revealed by the above TBLASTN search to be a novel gene fragment encoding an amino acid sequence similar to ChM-1.
  • dbE'ST EST: Expressed sequence tag
  • a primer was synthesized from a partial sequence of the cDNA obtained from this dbEST, and the sequence of the human ChMlL gene was determined using the RACE method. Thereafter, the sequences of the mouse and rat ChMlL genes were determined in the same manner.
  • the sequences of the human, mouse and rat ChMlL genes are shown in SEQ ID NOs: 1, 3 and 5, and the amino acid sequences of the polypeptides encoded by them are shown in SEQ ID NOs: 2, 4 and 6.
  • the polypeptide encoded by the ChMlL gene of the present invention is composed of 317 amino acids (SEQ ID NOs: 2, 4, and 6).
  • the amino acid sequence of ChMlL has homology to ChM-1. It has very high homology, especially to the C-terminal portion secreted extracellularly after processing of ChM-1 (Fig. 1 (a)). .
  • the amino acid sequence of ChMlL has very high homology between human, mouse and rat (Fig. 1 (b)). Analysis of the hydrophobicity of the amino acid sequence suggests that ChMlL is a molecule having a type II membrane protein structure, similar to ChM-1 (Fig. 2). As shown in FIG.
  • both the polypeptide and ChM-I have a number of hydrophobic domains consisting of about 20 amino acids, which are characteristically found in molecules having membrane-binding properties, from the N-terminus. It exists near jumic acid.
  • the fact that the polypeptide is a molecule having a type II membrane protein structure was also clarified from the results of Example 8 in which the polypeptide was expressed in C0S7 cells (FIG. 4).
  • the human ChMlL gene of the present invention was prepared as described in Example 12 below. It was found to be present on the human X chromosome (Genbank accession No. AL035608).
  • the ChMIL gene of the present invention includes cDNA, chemically synthesized DNA, DNA isolated by PCR, genomic DNA, and combinations thereof.
  • the genomic DNA can also be isolated by hybridisation to the ChM1L gene disclosed herein using standard techniques.
  • RNA transcribed from the ChMIL gene is also encompassed by the present invention.
  • the sequences of the gene of the present invention represented by SEQ ID NOs: 1, 3 and 5 are examples of one combination of codons representing the amino acid residues encoded thereby, and the ChMIL gene of the present invention
  • the present invention is not limited to this, and it is of course possible to have a DNA sequence in which any codon is selected in combination with each amino acid residue.
  • the selection of the codon can be performed according to a conventional method, and for example, the codon usage of the host to be used can be considered (Nucleic Acids Research, 9, 43-74, 1981).
  • the ChMIL gene of the present invention also includes a DNA sequence encoding a mutant in which a part of the amino acid sequence represented by SEQ ID NO: 2, 4, or 6 has been substituted, deleted, or added.
  • the production, modification (mutation), etc. of these polypeptides may occur naturally, or may be carried out by post-translational modification, or by genetic engineering techniques, for example, cytoplasmic mitogenesis ( Nucleic Acids Research, 12, 9441, 1984; Methods for Enzymology, 154, 350, 367-382, 1987; Nucleic Acids Research, 12, 9441, 1984; 10 5, 1986).
  • the production of the ChMIL gene of the present invention can be easily carried out by general genetic engineering techniques based on the sequence information of the ChMIL gene of the present invention (Moleculer tumor oning 2nd ED, Cold Spring Harbor Laboratory Press, 1989). ; Seismic Chemistry Experiment Course “Gene Research Methods I, II, III” (See Society, 1986).
  • examples of the source cells include various cells and tissues expressing the ChMlL gene and cultured cells derived therefrom, and the separation of total RNA, the separation and purification of mRNA, The conversion (synthesis) of and the cloning thereof can be carried out according to a conventional method.
  • cDNA libraries are commercially available, and in the present invention, those cDNA libraries, for example, various cDNA libraries commercially available from Clonetech, etc. can also be used.
  • the screening method includes, for example, immunoscreening of a polypeptide produced by cDNA using an antibody specific to the polypeptide encoded by the ChMlL gene of the present invention. Examples thereof include a method for selecting a corresponding cDNA clone, plaque hybridization using a probe that selectively binds to a target nucleotide sequence, colony hybridization, and the like, and combinations thereof.
  • Examples of the probe used here include a DNA sequence chemically synthesized based on the information on the DNA sequence of the ChMlL gene of the present invention, and a probe to which the previously obtained ChMlL gene or a fragment thereof of the present invention is used. Available.
  • a DNA / RNA amplification method by a PCR method can be suitably used.
  • the primer used in the adoption of such a PCR method is the same as the primer of the present invention, which has already been revealed by the present invention. It can be appropriately set based on the sequence information of the MIL gene, and can be synthesized according to a conventional method.
  • Example 2 More specifically, the details are described in Example 2, but the outline is as follows.
  • a primer is synthesized so as to include the coding sequence of the ChMlL gene, and this is used to amplify the ChMlL gene by PCR. Thereafter, agarose electrophoresis is performed to cut out the target band, and then the DNA is purified. A ligation reaction is performed between the purified DNA and the plasmid vector, followed by transformation with E. coli. Then, the plasmid is purified from the Escherichia coli culture solution, and the DNA sequencer is used to confirm that the target sequence has been incorporated.
  • the ChMlL gene thus cloned can be transferred to another plasmid vector or virus vector by using an appropriate restriction enzyme.
  • ChMlL gene cDNA and genomic DNA
  • RT reverse transcribed—polymerase chain react ion
  • Kawasaki ES
  • et al. Amplmcation of RNA.
  • PCR Protocol A Guide to methods and application s, Academic Press, Inc., SanDiego, 21-27, 1989
  • Northern blotting analysis Molecular cloning, Cold Spring Harbor Laboratory, 1989.
  • the primer for RT-PCR and the probe for Northern blotting analysis are not particularly limited as long as they are sequences capable of specifically detecting the ChMlL gene, and the corresponding sequence is the base sequence of the ChMlL gene of the present invention. Set appropriately And it is possible. Therefore, the present invention provides primers and / or probes useful for detecting the ChMIL gene.
  • the probe can also be used for detecting genomic DNA by Southern blotting analysis.
  • Example 6 The RT-PCR method described in Example 6 can be exemplified as a means for detecting ChMIL mRNA expression. Details are described in Example 6, but the outline is as follows.
  • ChMIL mRNA expression in tissues of adult mice was observed in brain, eyeball, skeletal muscle, whole rib and thyroid gland (Fig. 3 (a)).
  • ChM-I mRNA expression in mice has been confirmed in the eyes, thymus, cartilage and whole ribs (Shukunami et al, Int. J. Dev. Biol 43, 39-49, 1999). Therefore, it became clear that ChMIL and ChM-I were expressed in different tissues in vivo, and their physiological functions were considered to be different. ChMIL was expressed in brain, skeletal muscle, and thyroid, which are tissues whose expression was not confirmed in ChM-1.
  • ChMIL is also involved in angiogenesis, as it is also expressed in ChM-I and expressed in whole ribs including eyes and cartilage, which are resistant to vascular invasion. It seems to do. Based on these results, ChMIL can be used for brain-related diseases such as Alzheimer's disease, skeletal muscle-related diseases such as muscular dystrophy, thyroid-related diseases such as Basedow's disease, and diabetic retinopathy. It is thought to be involved in diseases related to cartilage tissue such as ocular-related diseases, osteoarthritis and rheumatic diseases, and diseases related to angiogenesis including cancer. You.
  • the antagonists and agonists against ChMlL including the ChMlL gene, ChMlL polypeptide, antibodies binding to ChMlL, and substances that promote or attenuate the expression of ChMlL gene, etc. of the present invention are applied as therapeutic agents for these diseases. It is thought that it can be done.
  • Substances such as agonist and antagonist listed here can be peptides, proteins and low molecular weight compounds, and the properties of the substances are not limited as long as they have the function.
  • ChMlL mRNA expression was observed in the eyes, kidneys, stomach, holerib and trachea in each fetal tissue (FIG. 3 (b)). ChMlL mRNA expression in the kidney and stomach is not observed in adult mice, but expression of ChMlL mRNA in these tissues in the fetus indicates that ChMlL is involved in the development and morphogenesis of these organs. It is considered to indicate that Therefore, ChMlL is considered to be involved in the repair and regeneration of these organs even in adults. In addition, it was revealed that ChMl L mRNA was also expressed in the trachea.
  • the ChMIL gene, ChMlL polypeptide of the present invention antagonists and agonists against ChMlL containing antibodies that bind to ChMlL, substances that promote or attenuate ChMlL gene expression, etc. It can be applied as a therapeutic agent for related diseases, gastric related diseases such as gastric cancer and gastric ulcer, and tracheal related respiratory diseases such as chronic bronchitis and asthma.
  • ChMlL mRNA expression during fetal development is very weak on day 10 of pregnancy, and increases from day 11 to day 13 (Fig. 3 (c)).
  • the expression of ChM-I also increased with the development of the fetus, similarly to ChMlL, but was clearly stronger than ChMlL on the 10th and 11th days of gestation.
  • ChMlL was found to increase in expression during fetal development later than ChM-1. It was revealed that they had different functions in life.
  • Increased ChMIL expression during fetal development also indicates that ChMIL is deeply involved in organ and skeletal formation.
  • the antagonist and agonist against ChM 1L including the ChMIL gene, the ChMIL polypeptide, and the antibody that binds to ChMIL, the substance that promotes or attenuates the expression of the ChMIL gene, etc. of the present invention are congenital due to insufficient organ development. It is considered to be applicable as a drug to regenerate and repair organs in cases of disease or acquired organ damage.
  • ChMIL and ChM-1 show differences in expression in adult and fetal tissues and in fetal development.Therefore, these molecules and drugs targeting these molecules are used to treat various diseases. When applied as a drug, the use may be different.
  • ChMIL gene of the present invention By using the sequence of the ChMIL gene of the present invention, it is possible to produce a polypeptide encoded by the gene by a genetic engineering technique.
  • the polypeptide is produced by preparing a recombinant DNA capable of expressing the ChMIL gene of the present invention in a host cell, introducing the recombinant DNA into a host cell, transforming the DNA, and culturing the transformant. More done.
  • any of eukaryotic host cells and prokaryotic host cells can be used as the host cells.
  • Such eukaryotic host cells include vertebrate, yeast, insect cells and the like.
  • Vertebrate cells include, for example, CH0 cells and COS cells.
  • a vertebrate expression vector those having a promoter, a polyadenylation site, a transcription termination sequence, and the like which are usually located upstream of the gene to be expressed can be used.
  • An example of such an expression vector is pSV2dhfr (Mol. Cell. Biol) which has an early promoter of SV40. 1, 854, 1981), pcDNA3.1 (+) (Invitrogen) and pCAGGS (Gene, 108, 193-200, 1991).
  • a system for expression in yeast includes "expression of polypeptide in yeast" described in JP-A-57-159489, and a system for expression in insect cells is particularly preferred.
  • a method for producing a recombinant baculovirus expression vector described in Japanese Unexamined Patent Publication (Kokai) No. 60-37988 is described.
  • a system for expression in mammalian cells is described in JP-A-2-171198.
  • JP-A-2-171198 There are many examples of “improved eukaryotic expression”, but of course there are many others.
  • the ChMIL gene of the present invention can also be expressed in prokaryotic host cells such as E. coli, Bacillus subtilis, and Streptomyces.
  • Escherichia coli K12 strain or the like is often used as Escherichia coli as the host, and pBR322 and its improved vector are often used as vectors, but are limited to these.
  • various known strains and vectors can also be used.
  • It is a flop port motor primary, for example, E. coli Lac preparative Ichisu (lac), including but promoter one coater such as E. coli t gamma [rho not limited thereto. All of the above promoters have already been characterized and are well known to those skilled in the art and can be assembled synthetically or from known plasmids.
  • nucleotide substitution can be performed throughout the symbol region of the polypeptide.
  • Such a sequence can be deduced from the nucleotide sequence of the ChMIL gene of the present invention or the amino acid sequence of the polypeptide encoded thereby, and is assembled by the following conventional synthesis method. be able to. That Such a synthesis method is substantially carried out by the method of Itakura et al. (Science 198, 1059, 1977) and the method of Clair et al. (Crea et al, Proc. Natl. Acad. Scad. USA 75, 5765, 1978). Therefore, the present invention is not limited to the specifically exemplified nucleotide sequences, plasmids and viruses.
  • the obtained transformant can be cultured according to a conventional method, and the culture produces the polypeptide encoded by the ChMIL gene of the present invention.
  • the medium used for the culture can be appropriately selected from various commonly used ones according to the host cells employed, and the culture can be carried out under conditions suitable for the growth of the host cells.
  • the polypeptide is produced intracellularly, extracellularly, or on the cell membrane of the transformant.
  • the polypeptide may be subjected, if desired, to various separation operations utilizing its physical properties, chemical properties, etc. [Biochemical Data Book II, pp. 1175-1259, 1st edition, 1st printing, 1980 June 23, Tokyo Chemical Co., Ltd .; Biochemistry, 25 (25), 8274-8277 (1986); Eur. J. Biochem., 163, 313-321 (1987), etc.] it can.
  • Examples of the method include, for example, ordinary reconstitution treatment, treatment with a polypeptide precipitant (salting out method), centrifugation, osmotic shock, ultrasonic crushing, ultrafiltration, gel filtration , Adsorption chromatography, ion-exchange chromatography, affinity chromatography, high-performance liquid chromatography (HPLC), and other liquid chromatographies, dialysis methods, and combinations of these. Can be illustrated.
  • affinity tag described here is, for example, poly The histidine tag (His tag, Sisk et al, J. Virol.
  • ChMlL polypeptides fused with these affinity tags can be carried out as described in Examples 8 and 9, and ChMlL polypeptides are purified using these tags. This can also be implemented.
  • the human and mouse ChMlL gene of the present invention and the gene encoding the ChMlL protein having a His tag fused to the C-terminus were cloned into a PC DNA3.1 (+) vector (Example 4), and this was transferred to C0S7 cells. Transfected. After about 48 hours, the culture supernatant and cell components were collected, and an attempt was made to detect ChMlL recombinant protein by Western blotting. However, ChMlL protein expression could not be detected in either the culture supernatant or the cell components.
  • ChMlL protein is a membrane-bound protein. I came straight away. On the other hand, it has been confirmed that ChM-1 is secreted as a soluble protein in the culture supernatant when expressed in C0S7 cells (Hiraki et al, J. Biol. Chem., 272, 32419). -32426, 1997). Therefore, analysis with C0S7 cells revealed that ChMlL and ChM-1 were proteins having different structures. In other words, it was revealed that ChMlL is a cell membrane-bound protein, and ChM-1 is a secretory protein, and the processing mechanisms of both molecules are different. It should be noted that, of the two bands of Ch MIL protein, the band on the high molecular weight side was a form modified with an N-linked sugar chain, according to Example 10 described later. (Fig. 6).
  • ChMlL protein expressed in this manner is affinity-purified using a ChMlL-specific antibody or an antibody against a tag (His tag) fused with 6 residues of histidine and a nickel column. And it is possible.
  • the polypeptide encoded by the ChMlL gene of the present invention may be a membrane-bound polypeptide or a soluble polypeptide having no cell membrane-binding properties.
  • a membrane-bound polypeptide For example, it is conceivable that after being expressed as a membrane-bound polypeptide on a cell membrane, it is cleaved and becomes soluble.
  • the ChMlL protein was detected as a membrane-bound protein (Example 8), but it may be processed into a soluble protein if the host cells or culture conditions are different. Yes.
  • the soluble polypeptide lacking the transmembrane region can be expressed by fusing a heterologous signal peptide to the N-terminus.
  • the soluble ChMlL polypeptide secreted into the culture solution in this way can be purified using an anti-FLAG antibody (Sigma) because the anti-ChMlL antibody or FLAG tag is fused. It is. Also, the FLAG tag can be removed by cleaving the FLAG fusion protein with enterokinase.
  • ChMlL polypeptide of the present invention can be used as a polypeptide purification reagent.
  • the polypeptide bound to a solid support material is useful for purification of the polypeptide capable of binding to the polypeptide by affinity chromatography.
  • Examples of the polypeptide that can bind to the ChMlL polypeptide include a soluble polypeptide, a membrane-bound polypeptide, and an antibody. Soluble ChMlL polypeptide can be easily applied to cell culture medium in vitro, intravenous administration in vivo, and the like.
  • HUVECs Human Umbilical Vein Endothelial Ce 11 s: HUVECs.
  • HUVECs Human Umbilical Vein Endothelial Ce 11 s: HUVECs.
  • HUVECs Human Umbilical Vein Endothelial Ce 11 s: HUVECs
  • FIG. 9 The addition of ChMIL polypeptide purified by affinity chromatography to the culture broth inhibited the formation of HUVECs lumen-like structures (FIG. 9).
  • ChMIL has an inhibitory effect on angiogenesis, and that soluble ChMIL polypeptide can be applied as a therapeutic drug for angiogenesis-related diseases such as diabetic retinopathy, cancer, and rheumatoid arthritis. became.
  • a specific antibody can also be prepared using the polypeptide encoded by the ChMIL gene of the present invention.
  • the antigens used here include polypeptides produced in large quantities according to the above-described genetic engineering techniques or chemically synthesized polypeptides.
  • the antibodies obtained are those of polyclonal antibodies and monoclonal antibodies. In any case, these antibodies can be effectively used for purification, measurement, identification and the like of the polypeptide.
  • monoclonal and monoclonal antibodies to the polypeptide may be used in the treatment of diseases mediated (directly or indirectly) by the polypeptide and in the development of therapeutics. It can also be used as a diagnostic reagent for the above diseases.
  • Example 7 An antibody that specifically binds to the polypeptide encoded by the ChMIL gene of the present invention can be prepared as shown in Example 7. The specific binding of the prepared anti-ChMIL polypeptide antibody to the polypeptide was confirmed by the results of Western blot in Example 8 (FIG. 4).
  • Anti-ChMIL polypeptide antibodies can also be used for immunostaining of tissue sections as shown in Example 11.
  • FIG. 7 When the costal cartilage tissue was stained with anti-ChMIL polypeptide antibody, Cells presenting a fibroblast-like flat morphology were specifically stained (FIG. 7).
  • ChM-I is specifically expressed in chondrocytes, and it was clarified by immunostaining that it was accumulated in chondrocytes and extracellular matrix. (Hi rak et al, J. Biol. Chem., 272, 32419-32426, 1997). Therefore, it was revealed that ChMIL and ChM-1 are expressed in different cells in tissues containing cartilage. Therefore, it was revealed that ChMIL is a molecule having a function different from that of ChM-1.
  • perichondrium peri chondrium
  • perichondrium a tissue containing cells exhibiting a fibroblast-like morphology surrounding chondrocytes.
  • perichondrium is an important tissue that supplies chondrocytes during skeletal formation during development and bone and cartilage damage in adults.
  • cartilage tissue is characterized by the absence of blood vessels, nerves, and lymphatic vessels.However, since perichondrium exists at the boundary between cartilage tissue and other tissues, the perichondrium is It is thought to control the invasion of blood vessels, nerves, and lymph vessels.
  • perichondrium is recognized as an important tissue, it is not a well-defined tissue as described above, and no detailed studies are currently being conducted. The reason for this is that no molecule that expresses perichondrium specifically has been clarified.
  • perichondrium surrounding the cartilage tissue. If the existence of a molecule expressed in the cartilage becomes clear, it can be used as a very important tool for studying perichondrium and cartilage tissue.
  • ChMIL of the present invention is the only molecule that has been found to be expressed specifically in perichondrium, and is thought to control the invasion of blood vessels, nerves, and lymphatic vessels into cartilage tissue.
  • the ChMIL gene, ChMIL polypeptide, antagonist and agonist against ChMIL including antibodies that bind to ChMIL, substances that promote or attenuate ChMIL gene expression, etc. of the present invention express the above ChMlL. It can be applied as a therapeutic agent for diseases involving cells.
  • the ChMIL gene of the present invention and the polypeptide encoded by the same can be obtained from the results of the above mRNA expression analysis and immunostaining, based on the results of the above analysis, including brain, eyeball, skeletal muscle, thyroid, and cartilage. In addition, it was revealed that the protein was expressed in cells having a flat morphology like fibroblasts existing around the cartilage tissue. Therefore, the ChMIL gene of the present invention and the polypeptide encoded by the same are related to the above-mentioned tissue-related diseases confirmed to be expressed, such as diabetic retinopathy and muscular dystrophy. It is considered to be involved in cerebral disease, Graves' disease, chronic renal failure, gastric cancer, chronic bronchitis, osteoarthritis and rheumatic diseases.
  • the ChMIL gene of the present invention the ChMIL polypeptide, the antagonist and agonist against ChMIL including the antibody binding to ChMIL, the substance that promotes or attenuates the expression of ChMIL gene, etc. It can be applied as a remedy for
  • ChMlL has homology to ChM-I throughout the molecule, it has been revealed that ChMlL has particularly high homology to the C-terminal side secreted extracellularly by processing of ChM-I.
  • ChMlL polypeptide was composed of 317 amino acids in humans, mice and rats, and the 300 amino acid residues were the same among the three species (about 95%).
  • FIG. 2 A diagram of the hydrophobicity of ChM-I and ChMlL is shown ( Figure 2). Both ChM-1 and ChMlL show large hydrophobic peaks at the N-terminal. This hydrophobic region is characteristically recognized in a cell membrane-bound protein, and it was shown that ChMlL is a type II membrane-bound protein like ChM-I.
  • the cDNA was amplified by the RACE method according to the product manual.
  • the primer was synthesized from the nucleotide sequence obtained from the above dbEST, and using ExTaq plymerase (Takara Shuzo) according to the product instruction, the reaction cycle was performed using GeneAmp® PCR System 9700 (PE Applied Biosystems). The cycle of 96 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 1 minute was repeated 30 times, and the PCR reaction solution was finally obtained by incubating at 72 ° C for 6 minutes. This reaction solution was added in an amount of 180 as a template, and a second PCR was performed under the same conditions.
  • the obtained PCR product was subjected to electrophoresis using 1% agarose gel containing ethidium bromide, and the DNA band was examined by observing the gel under ultraviolet light.
  • the amplified fragment was excised from the gel and purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the manufacturer's instructions.
  • the nucleotide sequence of the purified fragment was determined using a DM Sequencer (ABI PRISM TM 310 Genetic Analyzer) manufactured by PE Applied Biosystems and ABI PRISM TM BigDye Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's instructions.
  • the nucleic acid base sequence of human ChMIL cDNA is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2.
  • the coding sequence (CDS) of the human ChMIL cDNA is purified by PCR (amplification, garose electrophoresis), purified, and cloned using pCR-Script TM Amp Cloning Kit (Stratagene) according to the product manual.
  • the sequences of the primers used for PCR are shown in SEQ ID NO: 7 (Forward primer) and SEQ ID NO: 8 (Reverse primer)
  • the sequence of the ChMIL gene incorporated in the vector was determined according to the ABI PRISM TM 310 Genet according to the manufacturer's instructions. It was determined using an ic Analyzer (PE Applied Biosystems) and ABI PRISM TM BigDye Terminator Cycle Sequencing Ready Reaction kit.
  • a TBLASTN search was performed using the amino acid sequence of human ChMlL (SEQ ID NO: 2) in the same manner as in the case of the above human.
  • EST files as gene fragments encoding mouse ChMlL, Genbank accession number AV009191, EST files as gene fragments encoding rat ChMlL, Genbank accession number AI112003 S detected.
  • Mouse 11-day Embryo Marathon-Ready T "cDNA and Rat Skeletal muscle Marathon-Ready TM cDNA manufactured by Clontech Co., Ltd.
  • the ChMlL gene sequence was determined.
  • the nucleotide sequence of mouse ChMlL cDNA is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4.
  • the nucleotide sequence of the rat ChMlL cDNA is shown in SEQ ID NO: 5, and the amino acid sequence is shown in SEQ ID NO: 6.
  • the coding sequence (CDS) of mouse and rat ChMlL cDNA is amplified by PCR, agarose gel electrophoresed, purified, and purified using pCR-Script TM Amp Clo-Jung Kit (Stratagene) according to the manufacturer's instructions. B-Jung.
  • the sequences of the primers used for the PCR of the mouse gene are shown in SEQ ID NO: 9 (Forward primer) and the sequence of the torso, 10 (Reverse primer). Forward primer) No. 12 (The reverse primer was not found.
  • the ChMlL gene sequence incorporated into the vector was determined by ABI PRISM TM 310 Genetic Analyzer (PE Applied Biosystems) according to the product manual. And ABI PRISM TM BigDye Terminator Cycle Sequencing Ready Reaction kit.
  • CDS coding sequence of human and mouse ChMlL cDNA
  • PCR amplification, agarose gel electrophoresis, purification, and histidine 6 residue at the C-terminus. His tag
  • His tag was modified according to the product description using pCR-Script SK (+) vector (Stratagene) and pCR-Script TM Amp cloning kit (Stratagene) modified to fuse.
  • the sequences of the primers used for PCR of the human gene were set to SEQ ID NO: 7 (Forward primer) and SEQ ID NO: 13 (Reverse primer), and the sequences of the primers used for PCR of the mouse gene were set to SEQ ID NO: 9 (Forward primer).
  • pcD ⁇ 3.1 (+) vector (Invitrogen) and pCAGGS vector (Gene, 108, 193-200, 1991) -CDS is excised from the hChMl pCR-mCh IL, pCR-hCh MlLHis and pCR-mChMlLHis vectors with the restriction enzymes EcoRI and NotI.
  • the target band is purified and ligated ion high (Toyobo ) was used according to the manufacturer's instructions to perform the ligation reaction.
  • the solution after the ligation reaction was subjected to transformation using E. coli JM109 Competent cell (Takara Shuzo) according to the manufacturer's instructions.
  • the incorporation of the gene of interest is confirmed by restriction enzyme reaction and agarose gel electrophoresis.
  • Example 5 Construction of vector expressing human soluble ChMlL protein fused with FLAG tag
  • the FLAG tag (Sigma) described in this example is composed of 8 amino acids.
  • the hydrophilic marker peptide K (Asp Tyr Lys Asp Asp Asp Lys), and the last 5-amino acid (Asp Asp Asp Asp Lys) is the recognition sequence of the entomokinase.
  • the vector prepared according to the present example can express, from the N-terminal side, a protein in which the signal sequence of prebroribulin, the FLAG tag, and the C-terminal side of the extracellular region of ChMlL are fused. .
  • the protein expressed using this vector is converted into a soluble protein in the culture medium after the signal sequence of prebub trypsin is cleaved. Secreted.
  • the protein expressed by this vector is fused with a FLAG tag, it can be purified using an anti-FLAG antibody (Sigma). By cutting, the FLAG tag can be removed.
  • pCAGGS vector the nucleotide sequence encoding the signal sequence of preprotrypsin and the FLAG tag (SEQ ID NO: 20) from the N-terminus (SEQ ID NO: 19, Sigma pFLAG-CMV-1 vector) (Hereafter referred to as pSF vector).
  • a nucleotide sequence encoding a region containing amino acid numbers 212 to 317 of human ChMlL represented by SEQ ID NO: 2 and a translation stop codon in the pSF vector (nucleotide numbers 684 to 1020 of SEQ ID NO: 1) ) was amplified by PCR, and the amplified product was incorporated into the pSF vector at the 3 'end of the nucleotide sequence encoding the FLAG tag.
  • the sequences of the primers used for PCR are shown in SEQ ID NO: 21 (Forward prime r) and SEQ ID NO: 8 (Reverse primer).
  • the nucleotide sequence of the nucleic acid thus obtained is shown in SEQ ID NO: 22, and the amino acid sequence encoding it is shown in SEQ ID NO: 23.
  • the vector prepared in this example is abbreviated as pSF-shChMIL.
  • RNA of each tissue was obtained using IS0GEN (Nippon Gene) according to the manufacturer's instructions.
  • 20 uL of cDNA was synthesized using Superscript II preamp refection kit (GIBCO BRL) according to the product description.
  • the total volume of the reaction system was assumed to be 50 u, the cDNA of each tissue was 0-5 u, and ExTaq polymerase (Takara Shuzo) was used at 0.25 uL, using the forward primer (SEQ ID NO: 9) and the reverse primer (sequence No. 9). No. 10) to 0.2 uM each, and use GeneAmp® PCR System 9700 (PE Applied Biosystems) to amplify 30 cycles at 96 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 1 minute. I let it.
  • the obtained reaction solution was subjected to electrophoresis on a 1% agarose gel containing ethidium, and the gel was photographed under ultraviolet irradiation to examine the expression of ChMlL mRNA in each tissue.
  • ChMlL mRNA expression analysis in each tissue of adult mouse was carried out in the same manner as in the above-mentioned “ChMlL mRNA expression analysis in each tissue of adult mouse”.
  • ChMlL mRNA expression in each fetal tissue was observed in the eyeball, kidney, stomach, whole rib and trachea. In fetal mice, expression was observed in kidney and stomach, where expression was not observed in adult mice.
  • ChMlL may be involved in the development and morphogenesis of these organs, and may be involved in organ repair and regeneration. ChMlL mRNA was also expressed in the trachea. ChMlL mRNA expression analysis during fetal development: Figure 3 (c)
  • fetuses of each age from C57BL / 6 mouse gestation day 10 to the date of birth were removed by cesarean section, and the whole fetus was frozen with liquid nitrogen. Extraction of total RNA from frozen fetuses, synthesis of cDNA, and RT-PCR were performed in the same manner as in the above-mentioned “ChMlL mRNA expression analysis in each tissue of adult mice”.
  • the ChM-I mRNA was analyzed under the same conditions using a forward primer (SEQ ID NO: 23) and a reverse primer (SEQ ID NO: 24).
  • ChMlL mRNA expression during fetal development is very weak on day 10 of pregnancy, and increases from day 11 to day 13.
  • the expression of ChM-I also showed the same increase in expression as ChMlL, but on the 10th and 11th days of gestation, the expression was clearly higher than that of ChMlL. Therefore, during fetal development, ChMlL The expression was found to increase later than M-1, indicating that both molecules have different functions in fetal development.
  • a peptide having a cysteine at the C-terminus of the sequence of residues 245-252 shown in SEQ ID NO: 2 of human ChMIL was chemically synthesized.
  • the synthetic peptide was coupled with MBS / KLH (m-male imidobenzoyl-N-hydroxysuccinimide ester / keyhole limpet hemocyanin ⁇ ). After dissolving this complex in physiological saline, an equal amount of FCA (complete Freund's adjuvant) was added, and the mixture was sonicated to prepare an emulsion. This emulsion was subcutaneously administered to a egret, and the first immunization was performed.
  • FCA complete Freund's adjuvant
  • Libofectamine Reagent GIBCO BRL
  • the product manuals (conformity, pCAGGS, pCAGGS-hChMIL and pCAGGS-mChMIL (Fig. 4 (a) and (c))) were used for pCAGGS, pCAGGS- hChMlLHis and pCAGGS-mChMlLHis (Fig. 4 (b) and (d)) were transfected into C0S7 cells.Approximately 48 hours after the transfection, the culture supernatant and cell components were reduced to 12.5%.
  • the Western b1ot was used as a primary antibody, an anti-His tag antibody (Invitrogen) and a secondary antibody.
  • an anti-mouse IgG antibody (Amersham Armasia Biotech) labeled with HRP.
  • pCAGGS and pSF-shChMIL were transfused into C0S7 Itoda vesicle according to the product manual.
  • the culture supernatant was subjected to SDS-PAGE using a 12.5% gel, and then was transferred onto a nitrose cellulose membrane.
  • the anti-FLAG M2 antibody (Sigma) was used as the primary antibody
  • the anti-mouse IgG antibody (Amersham Pharmacia Biotech) labeled with HRP was used as the secondary antibody
  • the ECLplus reagent Amersham Pharmacia Biotech
  • soluble human ChMlL protein was detected as a single band around 17-18 kDa.
  • the above protein solution was treated with II, O-Glycosidase DS and PNGase F, and a sugar chain digestion reaction was performed.
  • This reaction solution was subjected to SDS-PAGE with a 12.5% gel, and then transferred onto a nitrocellulose membrane.
  • An anti-His tag antibody (Invitrogen) was used as the primary antibody, and an anti-mouse IgG antibody (Amersham Pharmacia Biotech) labeled with HRP was used as the secondary antibody.
  • ECLplus reagent (Amersham Armasia Biotech) was used.
  • a color development reaction was carried out according to the product instructions using.
  • Example 1 Analysis of ChMlL protein in costal cartilage by immunostaining
  • Egret IgG was used as a negative control. After a reaction between a biotin-labeled anti-Peacock IgG antibody and peroxidase-labeled streptavidin, 3,3-diaminopenitidine / 4HC1 was added to perform a color reaction. The nuclei were stained with hematoxylin, encapsulated, and observed.
  • ChMlL protein was expressed in cells exhibiting a flat fibroblast-like morphology around chondrocytes in costal cartilage tissue. On the other hand, no expression was observed in chondrocytes reported to express ChM-1.
  • a BLASTN search was performed on all DDBJ data using the human ChMlL gene sequence (SEQ ID NO: 1) from the DNA Data Bank of Japan (DDBJ: DNA Data Bank of Japan).
  • Genbank accession No. AL035608 was detected as a genome IJ of the ChMlL gene.
  • AL035608 is a sequence mapped to the human X chromosome. Therefore, it was revealed that the human ChMlL gene was present on the X chromosome.
  • Example 13 3 Purification of soluble human ChMlL recombinant protein Transfection of pSF-shChMIL into C0S7 cells using a Libofectamine reagent (GIBCO BRL) according to the manufacturer's instructions was performed at about 48 hours.
  • the culture supernatant was collected.
  • An affinity column was prepared using an anti-FLAG M2 affinity gel (Sigma), and the culture supernatant was applied to the column. Clean the column with 25 mM Tris-HC1, 150 mM NaCl (pH 7.4). After washing three times, the eluate was eluted with 0.1 M glycine-HC1 (pH 3.5), and the eluate was neutralized with 1/20 volume of 1 M Tris-HCl (pH 9.5).
  • Example 1 Detection of angiogenesis inhibitory effect using human umbilical vein endothelial cells f ⁇
  • Human umbilical vein endothelial cells Human Umbilical Vein Endothelial Cels: HUVECs, Clonetics
  • HUVECs Human Umbilical Vein Endothelial Cels: HUVECs, Clonetics
  • EBM®-2 Bullet Kit®, Clonetics The growth factor reduced Matrigel (BECTON DICKINSON) was added to the 12-well plate at 600 uL / well, and the plate was incubated at 37 ° C for 30 minutes.
  • EBM®-2 Endothelial Cell Basal Medium
  • Each test substance solution was prepared as a solution prepared by adding 1/20 volume of 1M Tris-HCl (pH9.5) to 0.1M glycine-HC1 (pH3.5), and processed at a volume of 200uL / well. went.
  • the above buffer and BSA bivin serum albumin
  • Piete 1 et factor 4 PF-4, CHEMICON
  • the eluted fraction of Example 13 was treated at 10 and 20 ug / well.
  • HUVECs form a lumen-like structure in the negative control (Figs. 9 (a) and (b)), but when ChMlL is treated with 20ug / ul (Fig. 9 (d)), it is compared with the negative control. The formation of the lumen-like structure was inhibited.
  • ChMlL has an angiogenesis inhibitory action, and that the soluble ChMlL polypeptide can be applied as a therapeutic drug for angiogenesis-related diseases such as diabetic retinopathy, cancer, and rheumatoid arthritis. became.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

明 細 書 新規なポリペプチ ド及びそれをコー ドする遺伝子 発明の分野
本発明は、 軟骨細胞の増殖 · 分化を調節し、 血管新生阻害作用を 有することが知られている Chondromodulin - I (ChM-I) とアミ ノ酸 配列に相同性が認められる新規なヒ ト、 マウス及びラッ トポリぺプ チ ド、 並びにそれをコー ドするヒ ト、 マウス及びラッ ト遺伝子 (以 下、 「ChMlL遺伝子」 と略記することがある) に関する。
¾ 旦 哺乳類の大部分の骨は、 軟骨細胞の増殖、 分化を経て石灰化が起 こ り、 最後は骨に置換する、 いわゆる 「内軟骨骨化」 という仕組み によって作られる。 この一連の過程には種々のホルモンや成長因子 が関与しており、 イ ンス リ ン様増殖因子 (IGF1、 IGF2) 、 線維芽細 胞増殖因子 (FGF) 、 癌細胞増殖因子 (TGF) 、 成長ホルモンなどが 知られている。 開らは、 前記ホルモンや成長因子の他に軟骨細胞の 増殖、 分化機能を促進する因子と して ChM-I遺伝子を単離した (Bio chem. Biophys. Res. Commun. , 175, 971-977, 1991、 欧州公開特 許第 473080号公報) 。 ヒ ト ChM - 1は 334アミ ノ酸残基からなる II型の 膜タンパク質と して合成され、 糖鎖修飾の後、 プロセシングを受け て 120アミ ノ酸残基で構成される C末端部分が細胞外に分泌される ( Hiraki et al, Eur. J. Biochem. 260, 869 - 878, 1999) 。 ChM - 1は 培養軟骨細胞の増殖を促進するのみならず、 プロテオグリカ ン合成 、 ァガロース中での軟骨細胞のコ ロ ニー形成を強力に促進する (In oue et al, Biochem. Biophys. Res. Commun. , 241, 395-400, 199 7) 。 また、 ChM-Iは軟骨だけでなく骨芽細胞の増殖をも促進する ( Mori et al, FEBS Letters, 406 310 - 314, 1997) 。
一方、 軟骨は無血管組織であるばかりでなく血管侵入に対して抵 抗性を示すことは古くから指摘されてきた。 開らは、 軟骨組織抽出 物から血管内皮細胞に対する増殖抑制因子の精製を試み、 その完全 精製に成功した。 その結果、 これが ChM-Iであることが判明した (H iraki et al , FEBS Letter, 415, 321-324, 1997、 Hiraki et al , J. Biol. Chem. , 272, 32419-32426, 1997) 。 軟骨組織は、 通常、 無血管に保たれているのが特徴であるが、 骨組織への置換には軟骨 組織への血管侵入が必要であると考えられている。 一次骨化中心の 形成を準備する血管侵入に先立って、 予定血管侵入領域では、 軟骨 細胞の肥大化と軟骨基質の石灰化がおこる。 ChM - 1は肥大化軟骨と これに続く石灰化軟骨の出現領域で、 劇的に発現が消失する。 すな わち、 ChM-I遺伝子の発現は軟骨特異的であるが、 血管侵入に抵抗 性を示す無血管軟骨に限局されていることになる。 既に述べたよう に、 ChM- 1は、 軟骨の増殖と分化成熟を促進するのみならず、 血管 内皮細胞の増殖阻害によ り血管侵入を抑制するのではないかと考え られる。 従って、 無血管軟骨での発現と血管侵入に先立つ石灰化層 での発現消失は、 ChM-Iの bifunctionalな作用とよく一致している また、 軟骨組織には強力な血管新生促進因子でぁる ?6 が ;1(^ llular spaceに多量に蓄積されているが、 ChM- 1は bFGFを取り囲む よ うにして interterritorial spaceに存在するこ と力 s明ら力、にされ ている (Hiraki et al, J. Biol. Chem. , 272, 32419-32426, 1997 ) 。 すなわち、 無血管軟骨では、 ChM- 1が血管新生促進因子をマス クするよ うな形で存在しており、 ChM-Iの血管新生阻害作用は軟骨 に血管が存在しないことを説明し得るものであると考えられている (蛋白質 核酸 酵素 Vol.40 No.5. 1995) 。 また、 ChM- 1は、 in vivoにおいてヒ ト腫瘍細胞への血管侵入を阻害して、 癌細胞の増 殖を抑制することが確かめられている (Hayami et al, FEBS Lette rs, 458, 436-440, 1999) 。 マウスの各糸且織における ChM— Iの mRNA の発現解析から、 ChM- 1は軟骨以外にも眼と胸腺で発現しているこ とが明らかとなったが、 これらの組織における ChM-Iの機能に関し てはいまだ未知である (Shukunami et al, Int. J. Dev. Biol. 43 , 39-49, 1999) 。
骨折の治癒、 各種軟骨疾患の治癒過程には軟骨細胞の増殖、 分化 機能の発現が重要である。 従って、 軟骨細胞の増殖と分化を促進す る因子である ChM-Iは、 軟骨細胞増殖剤と しての応用が期待されて いる (特開平 7-138295号公報) 。 癌細胞の増殖、 転移においては、 エネルギー獲得のために組織内への血管侵入が必須である。 従って 、 血管新生阻害作用を有する ChM- 1は抗腫瘍剤と しての応用も期待 されている (特開平 7- 138295号公報) 。 以上のように、 ChM- 1は、 軟骨細胞の増殖 · 分化を制御すると共に、 血管新生阻害作用をも有 する分子であり、 その機能から医薬品への応用が期待されている。 近年、 バイオテク ノ ロジーは急速な進歩を続けており、 ヒ トゲノ ムプロジェク トの進行とも関連して、 大量の新規遺伝子がク ロー二 ングされている。 ヒ ト遺伝子は、 約 10万個存在すると言われている 力 s、 その中にはアミ ノ酸配列に相同性が認められる分子群がファ ミ リーを形成している場合がある。 アミ ノ酸配列に相同性が認められ る分子群と しては、 TNFファ ミ リー、 TNFレセプターファ ミ リー、 ケ モカイ ン及び G- protein coupled receptorなど多種の遺伝子フ ァ ミ リ一が存在することが知られている。 例えば、 TNFフア ミ リーに属 する分子と しては、 Tumor necrosis f actor a (TNFa、 Pennica et al, Nature 312, 724, 1984) 、 Fas ligand (Fasし、 Suda et al , Cell 75, 1167 , 1993) 、 TNF - related apoptosis - inducing 1 igand (TRAIL, Steven et al, Immmunity 3, 673, 1995) 及び B lymphoc yte stimulator (BLYS、 Moore et al , Science 285, 260 - 263, 199 9) など、 約 20種類存在することが知られている。
TNFファ ミ リーに属する分子は、 11型の膜タンパク質であり、 細 胞外領域にァミ ノ酸配列上の相同性が認められる。 これらの分子は 、 アミ ノ酸配列に相同性が認められるものの、 それぞれの分子は固 有の機能を有することが明らかにされており、 さまざまな疾患に対 して医薬品と しての適用が試みられている。 また、 TNFファ ミ リ一 の分子にはそれぞれ固有のレセプターが存在することが明らかにさ れており、 これらのレセプタ一も医薬品と しての適用が試みられて おり、 実際に医薬品と して認可されたものも存在する (例 : 可溶性 TNF受容体, Immunex社) 。 また、 これらの分子に対する抗体も医薬 品と しての研究開発が進められており、 実際に医薬品と して承認さ れたものも存在する (例 : 抗 TNFa抗体、 Centocore社) 。 アミ ノ酸 配列に相同性が認められる分子を医薬品開発へ応用した例と して、 TNFフア ミ リー及び TNFレセプターフア ミ リ一を上記に例と して示し た。 これらの分子の医薬品への応用を可能にした背景には、 それぞ れの分子の機能解析が実施され、 その類似性と差異が明らかにされ たことが挙げられる。
また、 TNFファ ミ リーの分子は、 II型の膜タンパク構造を有する 分子であり、 主に、 血液系、 リ ンパ系の細胞に発現しているものが 多いため、 実験手法や材料面では共有できる部分が多い。 従って、 TNFファ ミ リ一に属する新規遺伝子が発見された場合には、 その機 能解析の速度は初期に発見された分子よ り も加速したものと思われ る。 このよ う に、 アミ ノ酸配列に相同性を有する新規遺伝子を発見 し、 その機能解析を実施することは、 今後発見される新規遺伝子の 機能解析の一助となるのみならず、 その解析結果によ り、 既知の分 子との比較を行う ことができるため、 既知の分子の機能に関しても よ り詳細な知見が得られると考えられる。
一般に、 既知の分子とアミ ノ酸配列に相同性が認められるタンパ ク質をコー ドする新規遺伝子をクローニングした場合には、 機能解 析に用いる技術や材料は既知の分子の例を参考にすることができる 。 しかし、 アミ ノ酸配列に相同性が認められる分子であっても、 上 記の TNFフア ミ リーのよ うに、 それぞれの分子は固有の機能を有し ていると考えられるため、 医薬品への応用を考えた場合には、 リ コ ンビナントタンパク質の発現と精製、 抗体の作製、 各種組織での mR NA及びタンパク質の発現等を明確にし、 既知の分子との構造及び機 能面での違いを明らかにするこ とが必要である。 発明の開示
従って、 本発明は、 ChM- Iに類似した新たなポリペプチ ド及びそ れをコー ドする遺伝子を提供することを目的と している。 また、 本 発明においては、 該ポリペプチ ドに対する抗体の作製、 各種組織で の該遺伝子及びポ リ ペプチ ドの発現レベルの解析、 リ コ ンビナン ト タンパク質の発現及び構造解析などを実施して、 ChM- 1との類似性 と差異を明らかにすると ともに、 機能を解明し、 これらの関与する 疾患の病態解明や診断、 治療等を可能にするこ とを目的と している
ChM- Iは、 軟骨細胞の増殖 · 分化を調節し、 血管新生阻害作用を 有する I I型の膜タンパク質であり、 医薬品への応用が期待されてい る分子である。 従って、 ChM- 1に類似した新たなポリペプチ ドをコ 一ドする遺伝子が提供できれば、 その各種細胞での発現レベルや構 造及び機能を解析でき、 またその発現物の解析等によ り これらの関 与する疾患の病態解明や診断、 治療等が可能となると考えられる。 しかしながら、 現在のところ ChM - 1のァミ ノ酸配列と相同性を示す 分子の報告はなく、 ChM- Iが遺伝子ファ ミ リ一を構成しているのか どうかは不明である。 従って、 ChM- Iに類似した新たなポリべプチ ド及びそれをコー ドする遺伝子の存在が明らかになれば、 その構造 及び機能等の解析によ り、 ChM- 1との類似性及び相違性を検討する ことが可能となり、 互いの分子の生理的な機能の解明及びこれらの 分子が関与する病態の解明、 診断及び治療薬の開発等を加速するこ とも期待される。
本発明者らは、 上記目的よ り鋭意研究を重ねた結果、 ヒ ト、 マウ ス及びラッ ト cDNAライブラ リ一よ り新たに、 上記目的に合致する遺 伝子 (ChMIL遺伝子) を単離するこ とに成功し、 その各組織での発 現レベルの解析、 該ポリペプチ ドに対する抗体の作製、 該遺伝子が コー ドするポリペプチ ドの哺乳動物細胞での発現、 検出及び精製な どを実施し、 該ポリべプチ ドが血管新生阻害作用を有することを明 らかにして、 ここに本発明を完成するに至った。
即ち、 本発明は配列番号 2 、 4及び 6で表されるアミ ノ酸配列を 実質的に含むポリペプチ ドをコー ドする遺伝子である。 上記遺伝子 と しては、 例えば配列番号 1 、 3及び 5で表される塩基配列が挙げ られる。
さ らに、 本発明は、 配列番号 2 、 4及び 6で表されるアミ ノ酸配 列を実質的に含む、 ヒ ト、 マウス及びラッ ト遺伝子がコー ドするポ リぺプチ ドである。
さ らに、 本発明は、 前記遺伝子の少なく とも一部とハイブリ ダィ ズするオリ ゴヌク レオチ ドプローブである。
さ らに、 本発明は、 前記遺伝子を含む組換え体 DNAである。
さ らに、 本発明は、 前記組換え体 DNAによって形質転換された形 質転換体である。
さ らに、 本発明は、 前記形質転換体を培養し、 得られる培養物か ら本発明遺伝子がコー ドするポリペプチ ドを採取するこ とを特徴と する前記ポリペプチ ドの製造方法である。
さ らに、 本発明は、 前記ポリペプチ ドと特異的に反応するモノ ク 口ーナル抗体またはポリ ク 口一ナル抗体である。
さ らに、 本発明は、 前記ポリペプチ ドで免疫された抗体産生細胞 と ミエローマ細胞とを融合させるこ とによ り得られる、 前記モノ ク ローナル抗体を産生するハイプリ ドーマである。
さ らに、 本発明は、 前記オリ ゴヌ ク レオチ ドプローブを含む遺伝 子の検出試薬である。
さ らに、 本発明は、 前記ポリペプチ ド、 及び前記モノ ク ローナル 抗体又はポリ ク ローナル抗体を含む診断キッ トである。
さ らに、 本発明は、 配列番号 2、 4または 6で表されるアミ ノ酸 配列を実質的に含む遺伝子がコ一 ドするポリべプチ ドからなる医薬 組成物である。
さ らに、 本発明は、 上記ポリペプチ ドと特異的に反応するモノ ク 口ーナル抗体も しく はポリ ク ロ一ナル抗体からなる医薬組成物であ る。
さ らに、 本発明は、 前記の遺伝子の一部と特異的にハイブリ ダィ ズするアンチセンスオリ ゴヌク レオチ ドからなる医薬組成物である
さ らに、 本発明は、 前記の遺伝子の少なく と も一部を含む、 遺伝 子治療に利用しう る核酸からなる医薬組成物である。
さ らに、 本発明は、 前記のポリ ペプチ ドが細胞膜結合型であるこ と を特徴とするポリペプチ ドである。
さ らに、 本発明は、 前記の細胞膜結合型ポリペプチ ドをコー ドす る遺伝子である。
さらに、 本発明は、 前記のヒ ト遺伝子が X染色体に存在すること を特徴とする遺伝子である。
さ らに、 本発明は、 前記のポリペプチ ドが血管新生阻害作用を有 することを特徴とするポリペプチドである。
さらに、 本発明は、 前記の血管新生阻害作用を有するポリべプチ ドをコー ドする遺伝子である。
図面の簡単な説明
図 1 Aは、 ヒ ト ChMlLとヒ ト ChM- 1のァ ミ ノ酸配列の相同性を比較 した結果を示す。
図 1 Bは、 ヒ ト、 マウス及びラッ ト ChMlLのアミ ノ酸配列の相同 性を比較した結果を示す。
図 2は、 ヒ ト ChM- 1、 ヒ ト ChMlL及びマウス ChMlLのアミ ノ酸配列 の疎水性プ口フィ一ルを示す。
図 3は、 マウスの成体及び胎児の各組織における ChMlL mRNAの発 現解析、 並びにマウスの胎児発生段階における ChMlL及び ChM- 1 mRN Aの発現解析の結果を示す。
図 4は、 C0S7細胞においてヒ ト及びマウス ChMlLタンパク質を発 現させ、 Western blo こよ り検出した結果を示す。 ( a ) は、 Mock (レーン 1 ) 、 ヒ ト ChMlL (レーン 2 ) 及びマウス ChMlL (レーン 3 ) を ト ラ ンスフエタ ト して細胞成分を電気泳動後、 クーマシープリ リ アン トブルー染色した結果を、 ( c ) は同サンプルを抗 ChMlLぺ プチド抗体を用いた Western blotによ り検出した結果を示す。 ( b ) は、 Mock (レーン 1 ) 、 ヒ ト ChMlL (Hisタグ付き) (レーン 2 ) 及びマウス ChMlL (Hisタグ付き) (レーン 3 ) を トランスフエク ト して細胞成分を電気泳動後、 クーマシープリ リ アン トブル一染色し た結果を、 ( d ) は同サンプルを抗 Hisタグ抗体を用いた Western b lotによ り検出した結果を示す。
図 5は、 C0S7細胞において発現させた可溶性 ChMlL (レーン 2 ) 及び Mock (レーン 1 ) を抗 FLAG M2抗体を用いた Western blot法に よ り検出した結果を示す。
図 6は、 C0S7細胞においてマウス ChMlL (Hisタグ付き) タンパク 質を発現させ、 細胞成分を回収して糖鎖消化反応を行い、 抗 Hisタ グ抗体を用いた Western blotによ り ChMlLタンパク質を検出し糖鎖 構造の解析を行った結果を示す。 レーン 1 は未処理、 レーン 2は NA Nase II + 0-glycos idase DS + PNGase処理、 レーン 3は NANase II 処理、 レーン 4は 0- glycosidase DS処理、 レーン 5は PNGase処理の サンプルの Western blotの結果を示す。
図 7は、 マウスの肋軟骨組織における ChMlLタンパク質の発現を 、 抗 ChMlLポリペプチ ド抗体を用いた免疫染色によ り検出した結果 を示す。
図 8は、 C0S7細胞の培養液中に発現させた可溶性ヒ ト ChMlLタ ン パク質を、 抗 FLAG M2ァフィニティ一ゲルを用いたァフィニティー ク ロマ トグラフィーによ り精製し、 電気泳動後、 クーマシープリ リ アントブルー染色した結果を示す。 レーン 1 は、 C0S7細胞の培養上 清、 レーン 2は精製した ChMlLタンパク質の電気泳動の結果を示す 図 9は、 ヒ ト臍帯静脈内皮細胞の管腔様構造形成系に、 ( a ) バ ッ フ ァーのみ、 ( b ) BSA(bovine serum albumin) 20ug、 ( c PJ" 溶'性ヒ ト ChMlL 10ug、 ( d ) 可溶个生ヒ ト ChMlL 20ug、 ( e ) PF - 4 ( platelet factor 4) lug, ( f ) PF- 4 lOugを処理した結果を示す 発明の実施の形態
本発明において、 「実質的に含む」 とあるのは、 本発明の遺伝子 又はポリペプチ ドは、 その機能を有する限り、 配列番号 1、 3また は 5で表される塩基配列、 あるいは配列番号 2、 4または 6で表さ れるアミ ノ酸配列に置換、 挿入又は欠失等の変異が生じてもよいこ とを意味する。
本発明の ChMIL遺伝子配列は、 RACE (RACE: Rapid amplification of cDNA ends ; Fr ohman , M. A. et al , Proc. Natl. Acad. Sc i . USA, 85, 8998-9002, 1988) 法によ り取得することができるが、 そ の概要を述べれば次のとおりである。
一般的に、 RACE法とは、 cDNAの一部の配列が既知である場合、 こ れをもとに完全長 cDNAを効率よく取得する方法である。 既知の配列 領域から 3' 末端あるいは 5' 末端それぞれの方向に伸長できるよう にプライマ一を作製し、 PCR (Polymerase Chain Reaction, Scienc e, 230, 1350-1354, 1985) 法によ り、 cDNAを増幅する。 PCR法を実 施する際は、 既知領域では特異的にァニールするプライマー、 3' 末端及び 5' 末端ではライゲ一ショ ン反応等によ り付加した配列に ァニールするプライマーを用いる。 従って、 PCR法によ り増幅させ た領域は配列が未知の領域を含んでいる。 増幅させた DNA断片の単 離 · 精製は後述の実施例でも述べるとおり常法に従う ことができ、 例えばゲル電気泳動等によればよい。 このよ うにして得られた DNA 断片等の塩基配列の決定も、 常法に従う こ とができ、 例えばジデォ キシ法 (Proc. Natl. Acad. Sci. USA, 74, 5463-5467, 1977) や マキサムーギノレノ ー 卜法 (Methods in Enzymology, 65, 499, 1980 ) 等によ り行う ことができる。 かかる塩基配列の決定は、 市販のシ ークエ ンスキッ ト等を用いても容易に行い得る。
よ り具体的には、 本発明における後述の実施例 2で詳細に述べる 力 概略は以下の通りである。 ヒ ト ChM-Iのァミ ノ酸配列を用いて 、 曰本 DNAデータノ ンク (DDBJ: DNA data bank of Japan) ίこおレヽ て、 ESTデータべース (dbE'ST、 EST: Expressed sequence tag) で T BLASTNサーチを実施し、 ESTフアイノレ、 Genbank accession number AI123839を検出した。 AI123839は、 dbESTに登録された塩基配列断 片であるが、 前記の TBLASTNサーチによ りはじめて ChM- 1に類似した アミ ノ酸配列をコー ドする新規遺伝子断片であることが明らかとな つた。 そこで、 この dbESTよ り得た cDNAの一部の配列よ りプライマ —を合成し、 RACE法を用いてヒ ト ChMlL遺伝子の配列を決定するに 至った。 その後、 同様にマウス及びラッ ト ChMlL遺伝子の配列を決 定した。 ヒ ト、 マウス及びラッ ト ChMlL遺伝子の配列を配列番号 1、 3及び 5に、 それがコー ドするポリぺプチ ドのァミ ノ酸配列を配列 番号 2, 4及び 6に示す。
本発明の ChMlL遺伝子がコ ー ドするポリべプチ ドは、 317アミ ノ酸 で構成される (配列番号 2 , 4及び 6 ) 。 ChMlLのアミ ノ酸配列は C hM- 1と相同性を有する力 特に ChM- 1のプロセシングを受けて細胞 外に分泌される C末端部分と非常に高い相同性を有する (図 1 (a)) 。 また、 ChMlLのアミ ノ酸配列はヒ ト、 マウス及びラッ トの間で非 常に高い相同性を有する (図 1 (b)) 。 アミ ノ酸配列の疎水性度の 解析から、 ChMlLは ChM- 1と同様に II型の膜タンパク構造を有する分 子であると考えられる (図 2 ) 。 図 2に示すよ うに、 該ポリべプチ ド及び ChM-Iは共に、 膜結合性を有する分子に特徴的に認められる 約 20ァミ ノ酸からなる疎水性の ドメイ ンが、 N末端から数十ァミ ノ 酸付近に存在する。 該ポリペプチ ドが II型の膜タンパク構造を有す る分子であることは、 該ポリべプチ ドを C0S7細胞に発現させた実施 例 8の結果からも明らかにされた (図 4 ) 。
本発明のヒ ト ChMlL遺伝子は、 後述の実施例 1 2で述べるとおり ヒ ト X染色体に存在することが明らかとなつた (Genbank accession No. AL035608) 。
本発明の ChMIL遺伝子は、 cDNA、 化学的に合成された DNA、 PCRに よって単離された DNA、 ゲノム DNA及びそれらの組み合わせがある。 該ゲノム DNAは標準的な技法を用いて、 本明細書中に開示された ChM 1L遺伝子に対するハイプリ ッ ド形成によっても単離することができ る。 該 ChMIL遺伝子から転写された RNAもまた、 本発明によって包含 される。 配列番号 1、 3及び 5で示される本発明遺伝子の配列は、 これによ り コー ドされる各アミ ノ酸残基を示すコ ドンの一つの組み 合わせ例であり、 本発明の ChMIL遺伝子はこれに限らず、 各ァミ ノ 酸残基に対して任意のコ ドンを組み合わせ選択した DNA配列を有す ることも勿論可能である。 該コ ドンの選択は常法に従う ことができ 、 例えば利用する宿主のコ ドン使用頻度を考慮することができる ( Nucleic Acids Research, 9, 43-74, 1981) 。
さらに本発明の ChMIL遺伝子には、 配列番号 2、 4及び 6で表さ れるアミ ノ酸配列の一部が置換、 欠失、 付加した変異体をコー ドす る DNA配列もまた包含される。 これらポリペプチ ドの製造、 改変 ( 変異) 等は、 天然に生じるこ ともあり、 また翻訳後の修飾によ り、 或いは遺伝子工学的手法によ り、 例えばサイ トスぺシフィ ッ ク · ミ ユ ータジエネシス (Methods in Enzymology, 154, 350, 367 - 382, 1987; 同 100, 468, 1983; Nucleic Acids Research, 12, 9441, 19 84 ; 続生化学実験講座 1 「遺伝子研究法 II」 , 日本生化学会編, 10 5, 1986) 等の方法によ り収得するこ とができる。
本発明の ChMIL遺伝子の製造は、 本発明の ChMIL遺伝子の配列情報 に基づいて、 一般的遺伝子工学的手法によ り容易に実施できる (Mo leculer し丄 oning 2nd ED , Cold Spring Harbor Laboratory Press, 1989; 続生化学実験講座 「遺伝子研究法 I、 II、 III」 、 日本生化 学会編, 1986等参照) 。
これは例えば cDNAライブラ リー (ChMlL遺伝子の発現される適当 な起源細胞よ り常法に従い調製されたもの) から、 本発明遺伝子に 特有の適当なプローブや抗体を用いて所望クローンを選択すること によ り実施できる (Pro c . Nat l . Acad. Sc i . USA , 78, 6613 , 1981 ; Sc i enc e , 222 , 778, 1983等) 。
上記方法において、 起源細胞と しては、 ChMlL遺伝子を発現する 各種の細胞、 組織やこれらに由来する培養細胞等が例示され、 これ らからの全 RNAの分離、 mRNAの分離や精製、 cDNAへの変換 (合成) とそのク ローニング等はいずれも常法に従い実施できる。 また、 cD NAライブラ リ一は市販されてもおり、 本発明ではそれら cDNAライブ ラ リ一、 例えばク ローンテック社よ り市販の各種 cDNAライブラ リー 等を用いることもできる。
cDNAライブラ リーからの本発明の ChMlL遺伝子のスク リーニング は前記通常の方法に従い実施することが出来る。 該スク リーニング 方法と しては、 例えば cDNAの産生するポリペプチ ドに対して、 本発 明の ChMlL遺伝子がコ一 ドするポリべプチ ドに対する特異的抗体を 使用した免疫的ス ク リーニングによ り対応する cDNAク ローンを選択 する方法、 目的の塩基配列に選択的に結合するプローブを用いたプ ラークハイプリ ダイゼーシ ョ ン、 コロニーハイブリ ダイゼーシ ョ ン 等やこれらの組み合わせを例示できる。 ここで用いられるプローブ と しては、 本発明の ChMlL遺伝子の DNA配列に関する情報をもとにし て化学合成された DNA配列、 既に取得された本発明の ChMlL遺伝子や その断片がかかるプローブと して利用できる。
また、 本発明の ChMlL遺伝子の取得に際しては、 PCR法による DNA/ RNA増幅法が好適に利用できる。 かかる PCR法の採用に際して使用さ れるプライマ一は、 既に本発明によって明らかにされた本発明の Ch MIL遺伝子の配列情報に基づいて適宜設定するこ とができ、 これは 常法に従い合成するこ とができる。
よ り具体的には、 実施例 2で詳細に述べるが概略は以下のとおり である。 ChMlL遺伝子の coding sequenceを含むよ う にプライマ一を 合成し、 これを用いて PCR法によ り ChMlL遺伝子を増幅する。 その後 、 ァガロース電気泳動を行い、 目的のバン ドを切り出した後、 DNA を精製する。 精製した DNAとプラスミ ドベクターを ligation反応さ せ、 大腸菌で形質転換を行う。 その後、 大腸菌培養液よ りプラス ミ ドを精製し、 DNAシークェンサ一によ り 目的の配列が組み込まれた こ とを確認する。 このよ う にしてク ロ一ニングされた ChMlL遺伝子 は、 適切な制限酵素を用いるこ とによ り 、 他のプラス ミ ドベクタ一 やウィルスべク ターに移しかえるこ とが可能である。
このよ う にして得られた ChMlL遺伝子 (cDNA及びゲノム DNA) を利 用すれば、 常法に従い、 ChMlL遺伝子の発現が増加、 減弱及び消失 した遺伝子改変動物を作成するこ とが可能である。
本発明の ChMlL遺伝子の配列情報を基にすれば、 該遺伝子の一部 又は全部の塩基配列を利用するこ とによ り、 各種組織における本発 明の ChMlL遺伝子の発現を検出するこ とができる。 これは常法に従 つて行う こ と力 でき、 例えば、 RT— PCR (Reverse transcribed— polyme rase chain react ion) Kawasaki , E. S., et al . , Amplmcation of RNA. In PCR Protocol , A Guide to methods and application s, Academic Press, Inc. , SanDiego, 21-27, 1989) 法、 ノ ーザン ブロ ッティ ング解析 (Molecular cloning , Cold Spring Harbor La boratory, 1989) 等によ り、 いずれも良好に実施しう る。 RT- PCR法 のプライマ一及びノーザンブロ ッティ ング解析のプローブは、 ChMl L遺伝子を特異的に検出しう る配列である限り何ら制限はなく 、 カゝ かる配列は本発明の ChMlL遺伝子の塩基配列によ り適宜設定するこ とが可能である。 従って、 本発明は、 ChMIL遺伝子の検出に有用な プライマ一及び またはプローブを提供するものである。 尚、 該プ ローブは、 サザンプロ ッティ ンング解析によるゲノム DNAの検出に も利用可能である。
ChMIL mRNAの発現を検出する手段と しては、 実施例 6で述べる R T - PCR法を例示できる。 詳細は実施例 6で述べるが、 概略は以下の とおりである。
各組織を摘出して RNAを抽出した後、 逆転写反応によ り cDNAを合 成する。 この cDNAをテンプレー トにして PCR反応を行い、 得られた 反応液をァガロースゲルで電気泳動し、 紫外線照射下でバンドを観 察することによ り、 各組織での ChMIL遺伝子の発現量を検出した。 その結果、 成体マウスの各組織における ChMIL mRNAの発現は、 脳、 眼球、 骨格筋、 whole rib及び甲状腺で認められた (図 3 (a)) 。 一 方、 マウスにおける ChM-I mRNAの発現は、 眼球、 胸腺、 軟骨及び wh ole ribで確認されてレヽる (Shukunami et al , Int. J. Dev. Biol 43, 39-49, 1999) 。 従って、 ChMILと ChM— Iは生体内にお ヽて異な る組織に発現していることが明らかとなり、 その生理的な機能は異 なると考えられた。 ChMILは、 ChM - 1では発現が確認されていない組 織である脳、 骨格筋及び甲状腺で発現が認められた。
また、 ChM-Iでも発現が認められている組織であり、 血管侵入に 対して抵抗性のある組織である眼球及び軟骨を含む whole ribで発 現しているこ とから、 ChMILは血管新生に関与していると考えられ る。 これらの結果から ChMILは、 アルツハイマー病等の脳が関連し た疾患、 筋ジス ト ロ フ ィ ー等の骨格筋が関連した疾患、 バセ ドウ病 などの甲状腺が関連した疾患、 糖尿病性網膜症等の眼球が関連した 疾患、 変形性関節症ゃリ ゥマチ性疾患などの軟骨組織が関連した疾 患及び癌を含む血管新生が関連した疾患に関与していると考えられ る。 従って、 本発明の ChMlL遺伝子、 ChMlLポリペプチ ド、 ChMlLに 結合する抗体を含む ChMlLに対するア ンタゴニス ト及びァゴニス ト 、 ChMlL遺伝子の発現を促進あるいは減弱させる物質等をこれらの 疾患の治療薬と して適用することができると考えられる。 尚、 ここ で挙げたァゴニス トやアンタゴニス トなどの物質は、 ペプチ ド、 タ ンパク質及び低分子化合物などが考えられ、 その機能を有する限り 物質の性状に制限はないものとする。
胎児の各組織において ChMlL mRNAの発現は、 眼球、 腎臓、 胃、 wh o l e r ib及び気管で認められた (図 3 ( b ) ) 。 成体マウスでは、 腎臓 及び胃での ChMlL mRNAの発現は認められていないが、 胎児において これらの組織に ChMlL mRNAが発現していることは、 これらの臓器の 発生 · 形態形成に ChMlLが関与していることを示しているものと考 えられる。 従って、 ChMlLは、 成体においてもこれらの臓器の修復 や再生にも関与していると考えられる。 また、 気管においても ChMl L mRNAが発現していることが明らかとなった。 従って、 本発明の Ch MIL遺伝子、 ChMlLポリペプチ ド、 ChMlLに結合する抗体を含む ChMlL に対するア ンタゴニス ト及びァゴニス ト、 ChMlL遺伝子の発現を促 進あるいは減弱させる物質等を、 慢性腎不全等の腎臓が関連した疾 患、 胃がんや胃潰瘍などの胃が関連した疾患及び慢性気管支炎や喘 息などの気管が関連した呼吸器系疾患に対する治療薬と して適用す ることができると考えられる。
胎児発生段階において ChMlL mRNAの発現は、 妊娠 1 0 日 目では非 常に弱く 、 1 1 日 目から 1 3 日 目にかけて発現が上昇している (図 3 ( c ) ) 。 一方、 ChM- Iも ChMlLと同様に胎児の発生に伴って発現が 上昇するが、 妊娠 1 0 日 目及び 1 1 日 目では明らかに ChMlLよ り も 強い発現を示した。 従って、 胎児発生段階において、 ChMlLは ChM - 1 よ り も遅れて発現が上昇するこ とが明らかとなり、 両分子が胎児発 生において異なる機能を有することが明らかとなった。 また、 胎児 発生段階において ChMILの発現が上昇することは、 ChMILが臓器や骨 格の形成に深く関与していることを示している。 従って、 本発明の ChMIL遺伝子、 ChMILポリペプチド、 ChMILに結合する抗体を含む ChM 1Lに対するアンタゴニス ト及びァゴニス ト、 ChMIL遺伝子の発現を 促進あるいは減弱させる物質等は、 臓器の不十分な発達による先天 性疾患や後天的に臓器が損傷した場合に、 臓器を再生及び修復させ る薬剤と して適用できるものと考えられる。 また、 ChMILと ChM - 1で は成体及び胎児の各組織における発現、 胎児発生段階における発現 に違いが認められることから、 これらの分子及びこれらの分子をタ ーゲッ トにした薬剤を各種疾患の治療薬と して適用する場合には、 その用途は異なる場合があると考えられる。
本発明の ChMIL遺伝子の配列を使用すれば、 遺伝子工学的手法に よ り該遺伝子がコ ー ドするポリべプチ ドを製造することが可能であ る。
該ポリべプチ ドの製造は、 本発明の ChMIL遺伝子が宿主細胞中で 発現できる組換え体 DNAを作製し、 これを宿主細胞に導入して形質 転換し、 該形質転換体を培養することによ り行われる。
ここで宿主細胞と しては、 真核性宿主細胞及び原核性宿主細胞のい ずれを用いることもできる。
該真核性宿主細胞には、 脊椎動物、 酵母及び昆虫細胞等が含まれ る。 脊椎動物細胞と しては、 例えば CH0細胞及び COS細胞等が挙げら れる。
脊椎動物の発現べクタ一と しては、 通常発現しょう とする遺伝子 の上流に位置するプロモーター、 ポリ アデニル化部位及び転写終了 配列等を保有するものを使用できる。 該発現べクターと しては例え ば、 SV40の初期プロモータ一を保有する pSV2dhfr ( Mo l . Ce l l . B i o 1 ·, 854 , 1981) 、 pcDNA3. 1 ( + ) ( Invi t rogen社) 及び pCAGGS ( Gene , 108, 193-200 , 1991) 等を例示できる。
真核細胞中で目的ポリペプチ ドを発現させる手段は、 それ自体当 該分野では多く の系が周知である。
例えば酵母中で発現させる系と しては特開昭 57 - 159489号公報に 記載された 「酵母中でのポリペプチ ドの発現」 が挙げられ、 昆虫細 胞中で発現させる系と しては特開昭 60- 37988号公報に記載された 「 組換えバキュ ロ ウィルス発現べクタ一の製法」 が挙げられ、 哺乳類 動物細胞中で発現させる系と しては特開平 2— 171198号公報に記载 された 「真核性発現の改良」 が挙げられるが、 もちろんこれら以外 にも多数存在する。
本発明 ChMIL遺伝子は、 例えば、 大腸菌、 枯草菌およびス ト レブ トマイセス等の原核性宿主細胞内でも発現し得る。 例えば、 上記宿 主と しての大腸菌は Echer i chi a co l i K12株等がよ く用いられ、 ベ クタ一と しては pBR322及びその改良べク ターがよ く用いられるが、 これらに限定されず公知の各種菌株及びベクターも利用できる。 プ 口モータ一と しては、 例えば、 大腸菌ラク ト一ス (lac ) 、 大腸菌 t Γρ等のプロモ一ターが挙げられるがこれらに限定されない。 また、 上記のプロ モーターは、 いずれも既に特性化されており、 当業者が 熟知しているものであって、 合成的にあるいは、 既知のプラス ミ ド から組み立てるこ とができる ものである。
本発明の例示 DNA配列、 プラス ミ ドおよびウィルスには多く の修 飾や変更が可能である。 例えば、 遺伝暗号の同義性によ り、 ポリべ プチ ドの喑号領域全体を通して、 ヌク レオチ ドの置換を行う こ とが できる。 そのよ うな配列は、 本発明 ChMIL遺伝子の塩基配列又はそ れがコー ドするポリぺプチ ドのァミ ノ酸配列から推定するこ とがで き、 下記の従来からの合成法によ り組み立てるこ とができる。 その よ うな合成法は、 実質上、 イタク ラ らの方法 (Itakura et al, Sci ence 198, 1059, 1977) ならびにク レアらの方法 (Crea et al, Pr oc. Natl. Acad. Sci. USA 75, 5765, 1978) に従って行う こ と力 S できる。 従って、 本発明は特に例示した塩基配列、 プラス ミ ドおよ びウィルスに限定されるものではない。
かく して得られる所望の本発明の組換え体 DNAの宿主細胞への導 入方法及びこれによる形質転換方法と しては、 一般的な各種方法を 採用できる。 また、 得られる形質転換体は常法に従い培養でき、 該 培養によ り本発明の ChMIL遺伝子がコー ドするポリペプチ ドが生産 される。 該培養に用いられる培地と しては、 採用した宿主細胞に応 じて慣用される各種のものを適宜選択でき、 その培養も宿主細胞の 成育に適した条件下で実施できる。
上記によ り、 形質転換体の細胞内、 細胞外あるいは細胞膜上に該 ポリペプチ ドが生産される。 該ポリペプチ ドは、 所望によ りその物 理学的性質、 化学的性質等を利用した各種の分離操作 [ 「生化学デ —タブック II」 、 1175- 1259頁、 第 1版第 1刷、 1980年 6月 23日株式 会社東京化学同人発行 ; Biochemistry, 25(25) , 8274-8277 (1986) ; Eur. J. Biochem. , 163, 313-321 ( 1987 )等参照]によ り分離、 精 製できる。 該方法と しては、 具体的には例えば通常の再構成処理、 ポリペプチ ド沈澱剤による処理 (塩析法) 、 遠心分離、 浸透圧ショ ック法、 超音波破砕、 限外ろ過、 ゲルろ過、 吸着ク ロマ トグラフィ ―、 イオン交換ク ロマ トグラフィー、 ァフィ二ティーク 口マ トダラ フィ一、 高速液体ク ロマ トグラフィー (HPLC) 等の各種液体ク ロマ トグラフィ一、 透析法、 これらの組合わせ等を例示できる。 また、 該ポリペプチ ドにァフィ二ティータグを融合したタンパク質を発現 させれば、 このタグを利用してァフィ二ティ一精製を実施するこ と が可能である。 こ こで述べるァフィ二ティータグとは例えば、 ポリ ヒ スチジンタグ (Hisタグ、 Sisk et al, J. Virol. 68, 766, 1994 ) 及び FLAGタグ (Hopp et al, Biotechnology 6, 1204-1210, 1988 ) が挙げられる。 これらのァフィ二ティータグを融合した ChMlLポ リペプチ ドの発現及び検出は、 実施例 8及び 9で述べるよ う に実施 するこ とが可能であり、 これらのタグを用いて ChMlLポリペプチ ド を精製するこ とも実施し得る。
本発明の ChMlL遺伝子がコ一 ドするポリペプチ ドの製造方法は、 よ り具体的には実施例 8で詳細に述べるが概略は以下のとおりであ る。
本発明のヒ ト及びマウス ChMlL遺伝子及び C末端に Hisタグが融合 した ChMlLタンパク質をコー ドする遺伝子を PCDNA3.1(+ )べクターに ク ローニングし (実施例 4 ) 、 これを C0S7細胞に ト ラ ンスフエク ト した。 約 4 8時間後に、 培養上清及び細胞成分を回収して Western blot法によ り ChMlLリ コンビナン トタンパク質の検出を試みた。 し かし、 培養上清及び細胞成分のいずれにおいても ChMlLタンパク質 の発現を検出するこ とはできなかった。
そこで、 ChMlLリ コンビナン トタンパク質の発現を検出する条件 を検討したと ころ、 発現べク ターに pCAGGSを使用するこ とによ り CO S7細胞での該ポリペプチ ドの発現を検出するこ とが可能となった。 本発明のヒ ト及びマウス ChMlL遺伝子及び C末端に Hisタグが融合し た ChMlLタンパク質をコー ドする遺伝子を pCAGGSべクターにクロー ニングし (実施例 4 ) 、 これを C0S7細胞に ト ランスフエタ ト した。 約 4 8時間後に、 培養上清及び細胞成分を回収して Western blot法 によ り ChMlLリ コ ンビナン トタ ンパク質を検出した。 培養上清では C hMILタンパク質の発現は確認されず、 細胞成分では 40kDa付近に 2 本のバン ドが検出された。
従って、 ChMlLタンパク質は膜結合性タンパク質であるこ とが明 らかになつた。 一方、 ChM- 1を C0S7細胞で発現させる と培養上清中 に可溶性のタンパク質と して分泌されるこ とが確認されている (Hi raki e t al, J. Bi o l . Chem., 272 , 32419-32426 , 1997) 。 従って 、 C0S7細胞による解析から ChMlLと ChM- 1は異なる構造を有するタン パク質であるこ とが明らかとなった。 すなわち、 ChMlLは細胞膜結 合型のタンパク質であり、 ChM- 1は分泌性のタンパク質であり、 両 分子のプロセシングの機構が異なるこ とが明らかとなった。 尚、 Ch MILタンパク質の 2本のパン ドのう ち、 高分子量側のパン ドは、 N結 合型の糖鎖によ り修飾されたフォームであるこ とが、 後述する実施 例 1 0によ り明らかになった (図 6 ) 。
このよ う にして発現させた ChMlLタンパク質は、 ChMlL特異的抗体 あるいはヒ スチジンが 6残基融合したタグ (Hi sタグ) などに対す る抗体及びニッケルカラムなどを用いてァフィ二ティ一精製するこ とが可能である。
本発明の ChMlL遺伝子がコ一 ドするポリぺプチ ドは、 膜結合性ポ リペプチ ド及び細胞膜結合性を有しない可溶性のポリペプチ ドでも あり得る。 例えば、 細胞膜上に膜結合性ポリペプチ ドと して発現し た後、 切断されて可溶性になる場合等が考えられる。 C0S7細胞にお ける発現では ChMlLタンパク質は膜結合型のタンパク質と して検出 されたが (実施例 8 ) 、 宿主細胞や培養条件などが異なればプロセ シングを受けて可溶性タンパク質となるこ と もあ り う る。 また、 膜 貫通領域を欠く 可溶性の該ポリ ペプチ ドは、 異種シグナルペプチ ド を N末端に融合するこ とによ り発現させるこ とができる。
よ り具体的には、 実施例 9で詳細に述べるが可溶性の ChMlLタン パク質を発現させる方法の概略は以下のとおり である。
pCAGGSベクタ一に N末側から、 プレプロ ト リ プシンのシグナルシ ークエンス、 FLAGタグ、 ChMlLの細胞外領域の C末端側が融合したタ ンパク質コー ドする塩基配列を組み込んだベクタ一を構築した (実 施例 5 ) 。 このベクターを用いて発現させた ChMlLタンパク質は、 プレブ口 ト リ プシンのシグナルシークェンスが切断を受けた後、 可 溶性タンパク質と して培養液中に分泌された (実施例 9、 図 5 ) 。
このよ う にして培養液中に分泌された可溶性の ChMlLポリぺプチ ドは、 抗 ChMlL抗体あるいは、 FLAGタグが融合しているため抗 FLAG 抗体 (Sigma社) を用いて精製するこ とが可能である。 また、 FLAG 融合タンパク質をェンテロキナーゼで切断するこ とによ り、 FLAGタ グを除去するこ と も可能である。
よ り具体的には、 実施例 1 3で詳細に述べるが可溶性 ChMlLタン パク質の精製方法の概略は以下のとおりである。
リ ボフェク トアミ ン試薬 (GIBCO BRL社) を用いて製品説明書に 従って、 pSF- shChMlLを C0S7細胞に ト ラ ンスフヱク ト して約 4 8時 間後に培養上清を回収した。 この培養上清から、 抗 FLAG M2ァフィ 二ティーゲル (Sigma社) を用いたァフィ二ティーク 口マ トグラフ ィ一によ り、 可溶性ヒ ト ChMlLタンパク質を精製した (図 8 ) 。 本発明の ChMlLポリペプチ ドは、 ポリペプチ ド精製試薬と して用 いるこ とができる。 固体支持材料に結合した該ポリペプチ ドは、 ァ フィニティーク ロマ トグラフィ一による該ポリべプチ ドに結合し得 るポリペプチ ドの精製に有用である。 ChMlLポリペプチ ドに結合し 得るポリペプチ ドと しては、 可溶性ポリペプチ ド、 膜結合性ポリべ プチ ド及び抗体などが考えられる。 可溶性の ChMlLポリペプチ ドは 、 in vitroでは細胞培養液中への添加、 in vivoでは静脈内投与な どに容易に適用し得る。
本発明 ChMlLポリベプチ ドの活性を検索する 目的で、 ヒ ト臍帯静 脈内皮糸田胞 (Human Umbilical Vein Endothelial Ce 11 s : HUVECs )を 用いて血管新生阻害作用の有無を解析した。 詳細は、 後述の実施例 1 4で述べるが概略は以下のとおりである。 HUVECsをマ ト リ ゲル ( BECTON DI CKI NSON )でコー ト したプレ一 ト上で培養すると、 血管内 皮細胞が管腔様の構造を形成する (図 9 ) 。 この培養液中に、 前述 のァフィ二ティーク ロマ トグラフィーによ り精製した ChMILポリぺ プチ ドを加えると HUVECsの管腔様構造の形成が阻害された (図 9 ) 。 従って、 ChMILは血管新生阻害作用を有することが明らかとなり 、 可溶性の ChMILポリペプチ ドは糖尿病性網膜症、 癌、 慢性関節リ ゥマチなどの血管新生を伴う疾患の治療薬と して適用できることが 明らかとなった。
本発明の ChMIL遺伝子がコー ドするポリペプチ ドは、 これを用い て特異抗体を作製することもできる。 こ こで使用される抗原は、 上 記遺伝子工学的手法に従って大量に産生されるポリペプチド又は化 学的に合成されたポリペプチ ドがあり、 得られる抗体はポリ ク ロー ナル抗体及びモノク ローナル抗体のいずれでもよく、 これらの抗体 は該ポリペプチ ドの精製、 測定、 識別等に有効に利用できる。 従つ て、 該ポリペプチ ドに対するポリ ク ローナル抗体及びモノ ク ロ一ナ ル抗体は該ポリペプチ ドによって (直接的に又は間接的に) 媒介さ れる疾患の治療及び治療法の開発に使用することができ、 上記疾患 の診断用試薬と して使用することも可能である。
本発明の ChMIL遺伝子がコ一 ドするポリべプチ ドに特異的に結合 する抗体は、 実施例 7に示すよ うに作製することができる。 作製し た抗 ChMILポリベプチ ド抗体が該ポリぺプチ ドと特異的に結合する ことは、 実施例 8の Wes t ern b l o tの結果によ り確かめられた (図 4 ) 。
抗 ChMILポリぺプチ ド抗体は、 実施例 1 1 に示したよ うに組織切 片の免疫染色にも使用可能である。 肋軟骨組織を抗 ChMILポリぺプ チド抗体を用いて染色すると、 軟骨組織周囲を取り囲むよ うにして 存在する線維芽細胞様の扁平な形態を示す細胞が特異的に染色され た (図 7 ) 。 一方、 ChM- Iは軟骨細胞に特異的に発現しており、 免 疫染色によっても軟骨細胞及び軟骨細胞外のマ ト リ ッ ク スに蓄積さ れていることが明ら力、にされている (Hi rak i e t al , J. B i o l . Che m. , 272 , 32419-32426 , 1997) 。 従って、 ChMILと ChM - 1は軟骨を含 む組織において異なる細胞に発現していることが明らかとなった。 従って、 ChMILは ChM - 1と異なる機能を有する分子であることが明ら かとなつた。
免疫染色によって ChMILタンパク質を発現していることが明らか になった線維芽細胞様の形態を示す細胞群を含む組織は、 従来よ り 軟骨膜 (pe r i chondr ium) と呼ばれている (Suda e t al , 骨形成と 骨吸収及びそれらの調節因子 1 、 2 , 1995) 。 軟骨膜という組織に 関しては現在のところ明確な定義はないが、 本明細書中では軟骨細 胞周囲を取り囲む線維芽細胞様の形態を示す細胞を含む組織のこと を指すものとする。
軟骨膜に存在する細胞は、 内軟骨性骨化の過程で軟骨組織が成長 する際の軟骨細胞の供給源であると考えられている。 従って、 軟骨 膜は発生過程における骨格形成や成体における骨、 軟骨の損傷時に 軟骨細胞を供給する重要な組織である。 また、 軟骨組織には血管、 神経、 リ ンパ管が存在しないことが特徴であるが、 軟骨組織と他の 組織の境界に存在するのが軟骨膜であることから、 軟骨膜は軟骨細 胞への血管、 神経、 リ ンパ管の侵入を制御していると考えられる。 このよ うに、 軟骨膜は重要な組織であることが認識されているが、 上述のよ うに明確に定義された組織ではなく、 現在のところ詳細な 研究は行われていない。 その理由と しては、 軟骨膜特異的に発現す る分子が全く 明らかにされていないこ とが挙げられる。
従って、 軟骨組織周囲を取り囲む軟骨膜と呼ばれる組織に特異的 に発現する分子の存在が明らかになれば、 軟骨膜及び軟骨組織の研 究に非常に重要なツールと して利用できる。
本発明の ChMILは、 軟骨膜特異的に発現していることが明らかに された唯一の分子であり、 血管、 神経、 リ ンパ管の軟骨組織への侵 入を制御していると考えられる。
従って、 ChMIL遺伝子の発見と本発明に含まれる ChMILの機能解析 の結果は、 今後、 軟骨膜及び軟骨組織を含む ChMILが発現している その他の組織が関与する疾患の原因や治療法の開発に新たな視点を 与えうるものであると考えられる。
従って、 本発明の ChMIL遺伝子、 ChMILポリペプチ ド、 ChMILに結 合する抗体を含む ChMILに対するアンタゴニス ト及びァゴニス ト、 C hMIL遺伝子の発現を促進あるいは減弱させる物質等は、 上記の ChMl Lを発現している細胞が関与している疾患の治療薬と して適用する ことができると考えられる。
本発明の ChMIL遺伝子及びそれがコー ドするポリペプチドは、 上 記の mRNAの発現解析及び免疫染色の結果から、 脳、 眼球、 骨格筋、 甲状腺、 軟骨を含む who l e r ib , 腎臓、 胃、 気管及び軟骨組織周囲 を取り囲むよ うにして存在する線維芽細胞様の扁平な形態を示す細 胞に発現しているこ とが明らかとなった。 従って、 本発明の ChMIL 遺伝子及びそれがコ ー ドするポリべプチ ドは、 それが発現している ことが確認された上記の組織が関連する疾患、 例えば糖尿病性網膜 症、 筋ジス ト ロ フィ ー、 バセ ドウ病、 慢性腎不全、 胃癌、 慢性気管 支炎、 変形性関節症及びリ ゥマチ性疾患などに関与していると考え られる。
従って、 本発明の ChMIL遺伝子、 ChMILポリペプチ ド、 ChMILに結 合する抗体を含む ChMILに対するアンタ ゴニス ト及びァゴニス ト、 C hMIL遺伝子の発現を促進あるいは減弱させる物質等はこれらの疾患 に対する治療薬と して適用するこ とができる と考えられる。
実施例
以下、 実施例によ り本発明をさ らに具体的に説明するが、 これら の実施例は本発明の範囲を限定するためのものでない。
実施例 1 . ChMlLァミ ノ酸配列の解析
ChM-Iと ChMlLのアミ ノ酸配列の相同性を比較した (図 1 (a)) 。 尚、 アミ ノ酸配列はアルフ ァべッ ト 1文字で表示した。 ChMlLは、 分子全体を通して ChM-Iと相同性を有するが、 ChM-Iのプロセシング を受けて細胞外に分泌される C末側と特に高い相同性を有するこ と が明らかになった。
ヒ ト、 マウス及びラ ッ ト ChMlLのアミ ノ酸配列の相同性を比較し た (図 1 (b)) 。 ChMlLポリペプチ ドは、 ヒ ト、 マウス及びラ ッ ト と もに、 317アミ ノ酸で構成されるが、 3種間で 300アミ ノ酸残基が同 —であった (約 95%) 。
ChM-Iと ChMlLの疎水性度の図を示す (図 2 ) 。 ChM- 1及び ChMlL共 に N末側に疎水性の大きなピークが認められる。 この疎水性の領域 は、 細胞膜結合型のタンパク質に特徴的に認められるものであり、 ChMlLは ChM-Iと同様に II型の膜結合性タンパク質であるこ とが示さ れた。
実施例 2. ChMlL遺伝子のク ローニング
曰本 DNAデ—タノ ンク (DDBJ : DNA data bank of Japan) 力、ら、 ヒ ト ChM— Iのアミ ノ酸酉己歹 IJ (Genbank accession number M16441) を 用レヽて、 Expressed sequence tag データベース (dbEST) 上で TBLA STNサーチを実施した。 その結果、 ChM-Iと相同性を有する新規遺伝 子断片と して、 ESTフアイノレ、 Genbank accession number AI123839 を検出した。
ク ローンテック社製 Human fetus Marathon - ReadyT M cDNAを用い て製品説明書に従い、 RACE法によ り cDNAの増幅を行った。 プライマ 一は上記の dbESTよ り得られた塩基配列よ り合成し、 ExTaq plymera se (宝酒造) を製品説明書に従って使用し、 GeneAmp® PCR System 9700 (PE Applied Biosystems社) を用いて、 反応サイクルは 96°C 30秒、 60°C 30秒、 72°C 1分を 30回繰り返すこ と と し、 最後に 72°C で 6分間インキュベー ト して PCR反応液を得た。 この反応液をテンプ レー ト と して 1八 0量加え、 同条件で 2度目の PCR行った。
得られた PCR産物をェチジゥムブロマイ ド入りの 1%ァガ口一スゲ ルで電気泳動を行い、 このゲルを紫外線下で観察することによ り DN Aバン ドを調べた。 増幅されたフラグメ ントをゲルから切り取り、 製品説明書に従い、 QIAquick Gel Extraction Kit (QIAGEN社) を 用いて精製した。
精製フラグメ ントの塩基配列は製品説明書に従い、 PE Applied B iosystems社製 DMシークェンサ一 (ABI PRISM™ 310 Genetic Anal yzer) 及ひ ABI PRISMTM BigDye Terminator Cycle Sequencing Rea dy Reaction kitを用いて決定した。
ヒ ト ChMIL cDNAの核酸塩基配列を配列番号 1 に、 アミ ノ酸配列を 配列番号 2を示す。
配列番号 1 で表されるヒ ト ChMIL遺伝子によ り コー ドされるアミ ノ酸配列が、 ヒ ト ChM- I と相同性を示すことから、 この遺伝子を Ch MIL遺伝子 (ChM - 1 like gene) と呼ぶこと と した。
ヒ 卜 ChMIL cDNAの coding sequence (CDS) を PCR (こよ り増幅、 了 ガロース電気泳動後、 精製し、 pCR- ScriptTM Ampク ローニングキッ ト (Stratagene社) を用いて製品説明書に従ってク ロ一ユングした 。 PCRに用いたプライマ一の配列を配列番号 7 (Forward primer) 及び配列番号 8 (Reverse primer) に示した。 ベクターに組み込ま れた ChMIL遺伝子配列は製品説明書に従い、 ABI PRISM™ 310 Genet ic Analyzer (PE Applied Biosystems社) 及び ABI PRISM™ BigDye Terminator Cycle Sequencing Ready Reaction kitを用レヽて決定 した。
ヒ ト ChMlLのァミ ノ酸配列 (配列番号 2 ) を用いて、 上記ヒ トの 場合と同様に TBLASTNサーチを実施した。 その結果、 マウス ChMlLを コ 一 ドする遺伝子断片と して ESTフアイノレ、 Genbank accession num ber AV009191, ラ ッ ト ChMlLをコ ー ドする遺伝子断片と して ESTフ ァ ィ ノレ、 Genbank accession number AI 112003力 S検出された。 ク ロ一 ンテック社製 Mouse 11-day Embryo Marathon-ReadyT " cDNA及ひ Rat Skeletal muscle Marathon-Ready™ cDNAを用レヽてヒ 卜 ChMlL遺伝 子の単離と同様に RACE法によ りマウス及びラ ッ ト ChMlL遺伝子配列 を決定した。
マウス ChMlL cDNAの核酸塩基配列を配列番号 3に、 アミ ノ酸配列 を配列番号 4に示す。 ラ ッ ト ChMlL cDNAの核酸塩基配列を配列番号 5に、 アミ ノ酸配列を配列番号 6に示す。
マウス及びラ ッ ト ChMlL cDNAの coding sequence (CDS) を PCRに よ り増幅、 ァガロース電気泳動後、 精製し、 pCR-ScriptT M Ampク ロ —ユングキッ ト (Stratagene社) を用いて製品説明書に従ってク ロ —ユングした。 マウス遺伝子の PCRに用いたプライマーの配列を配 列番号 9 (Forward primer) 及び酉己列番号 1 0 (Reverse primer) に、 ラ ッ ト遺伝子の PCRに使用したプライマーの配列を配列番号 1 1 (Forward primer) 及ひ目己歹 (J番号 1 2 (Reverse primerノ に不し た。 べク ターに組み込まれた ChMlL遺伝子配列は製品説明書に従い 、 ABI PRISM™ 310 Genetic Analyzer (PE Applied Biosystems社 ) 及び ABI PRISM™ BigDye Terminator Cycle Sequencing Ready R eaction ki tを用レ、て決定した。
本実施例で作製した、 ヒ ト、 マウス及びラ ッ ト ChMlL遺伝子を組 み込んだベクタ一は、 以下の略称を用いるこ と とする。
• ヒ ト ChMlL遺伝子を含むべクタ一 : pCR- hChMIL
' マウス ChMlL遺伝子を含むべクタ一 : pCR- mChMIL
• ラ ッ ト ChMlL遺伝子を含むべクタ一 : pCR-rChMIL
実施例 3. C末端にヒ スチジン 6残基が融合したヒ ト及びマウス ChM
1Lタンパク質をコ一 ドする遺伝子を含むべクターの構築 ヒ ト及びマウス ChMlL cDNAの coding sequence (CDS) を PCR (こよ り増幅、 ァガロース電気泳動後、 精製し、 C末端にヒ スチジン 6残 基 (Hisタグ) が融合するよ う に改良した pCR- Script SK( + )ベクタ 一 (Stratagene社) 及び pCR- Scr iptT M Ampク ローニングキッ ト (St ratagene社) を用いて製品説明書に従ってク ロ一ユングした。 ヒ ト 遺伝子の PCRに用いたプライマーの配列を配列番号 7 (Forward pri mer) 及び配列番号 1 3 (Reverse primer) に、 マウス遺伝子の PCR に使用したプライマーの配列を配列番号 9 (Forward primer) 及び 配列番号 1 4 (Reverse primer) に示した。 ChMlLの C末端に Hi sタ グが融合したタンパク質をコ一 ドする塩基配列が組み込まれている こ とは、 ABI PRISM™ 310 Genetic Analyzer (PE Applied Biosyst ems社) 及び ABI PRISM™ BigDye Terminator Cycle Sequencing Re ady Reaction ki tを製品説明書に従って使用し確認した。 C末端に H isタグが融合したヒ ト及びマゥス ChMlLのァミ ノ酸配列を配列番号 1 7及び 1 8に、 それをコー ドする核酸塩基配列を配列番号 1 5及 び 1 6に示した。
本実施例で作製した Hisタグが融合した ChMlLタンパク質をコー ド する遺伝子をク ローニングしたベク ターは、 以下の略称を用いるこ と とする。
• ヒ ト ChMlLと Hisタグが融合したタンパク質をコー ドする遺伝子 を含むベクター : pCR-hChMlLHis • マゥス ChMlLと Hisタグが融合したタンパク質をコ一 ドする遺伝 子を含むベクタ一 : pCR- mChMlLHis
実施例 4. 発現べク ターの構築
哺乳動物細胞で ChMlL遺伝子を発現させるこ とを目的と して、 pcD ΝΑ3· 1(+ )ベク ター ( Invitrogen社) 及び pCAGGSベクター (Gene, 1 08, 193-200, 1991) に、 前記の pCR - hChMl pCR-mCh IL, pCR-hCh MlLHis及び pCR-mChMlLHisベク タ一から CDSを制限酵素 EcoRI及び Not Iで切り 出し、 ァガロース電気泳動後、 目的のパン ドを精製し、 Lig at ion high (東洋紡) を製品説明書に従って使用してライゲーショ ン反応を行った。 ライゲーシヨ ン反応後の溶液を、 E. coli JM109 C ompetent cell (宝酒造) を用いて製品説明書に従って ト ラ ンスフ ォーメーシヨ ンを行った。 プラス ミ ドを精製後、 目的の遺伝子が組 み込まれているこ とは制限酵素反応とァガロース電気泳動によ り確
¾iひした o
本実施例で作製したベクターは、 以下の略称を用いるこ と とする
• hChMlし、 mChMlし、 hChMlLHis及び mChMIL遺伝子を含む pcDNA3.1 (+ ) ベクター :
pcDNA hChMlし、 pcDNA mChMlし、 pcDNA hChMlし His及び pcDNA mChMl LHis
• hChMlし、 mChMlし、 hChMlLHi s及び mChMIL遺伝子を含む pCAGGSべク タ一 :
pCAGGS-hChMIL, pCAGGS - mChMlし、 pCAGGS - hChMlLHi s及び pCAGGS - mChMlし His
実施例 5. FLAGタグが融合したヒ ト可溶性 ChMlLタンパク質を発現 するべク ターの構築
本実施例で述べる FLAGタグ (Sigma社) とは、 8アミ ノ酸からなる 親水性のマーカーぺプチ K (Asp Tyr Lys Asp Asp Asp Asp Lys) であり、 最後の 5アミ ノ酸 (Asp Asp Asp Asp Lys) は、 ェンテ口 キナーゼの認識配列となっている。 本実施例によって作製されたべ クタ一は、 N末側から、 プレブロ ト リ ブシンのシグナルシークェン ス、 FLAGタグ、 ChMlLの細胞外領域の C末端側が融合したタンパク質 を発現させるこ とが可能である。 このべクタ一を用いて発現させた タンパク質は、 後述する実施例 9で詳述するよ うに、 プレブ口 ト リ プシンのシグナルシークェンスが切断を受けた後、 可溶性タンパク 質と して培養液中に分泌される。 また、 このベクターによ り発現さ れたタンパク質は、 FLAGタグが融合しているため、 抗 FLAG抗体 (Si gma社) を用いて精製するこ とが可能であり 、 融合タンパク質をェ ンテロキナーゼで切断するこ とによ り、 FLAGタグを除去するこ と も 可能である。
pCAGGSベク タ一に、 N末端からプレプロ ト リ プシンのシグナルシ ークエンス と FLAGタグ (配列番号 2 0 ) をコー ドする塩基配列 (配 列番号 1 9、 Sigma社製 pFLAG- CMV-1ベク タ一に含まれる) を組み 込んだベク ターを構築した (以下、 pSFベク ターとする) 。 pSFべク タ一に配列番号 2で表される ヒ ト ChMlLのァミ ノ酸番号 212から 317 及び翻訳停止コ ドンを含む領域をコー ドする塩基配列 (配列番号 1 の塩基配列番号 684から 1020) を PCR法によ り増幅し、 この増幅産物 を pSFべクターの FLAGタグをコ一ドする塩基配列の 3' 側に組み込ん だ。 PCRに用いたプライマーの配列を配列番号 2 1 (Forward prime r) 及び配列番号 8 (Reverse primer) に示した。 構築したベクタ 一に目的とする塩基配列が組み込まれているこ とは、 ABI PRISM™ 310 Genetic Analyzer (PE Applied Biosystems社) 及び ABI PRISM TM BigDye rerminator Cycle Sequencing Ready React ion kitを製 品説明書に従って使用し確認した。 本実施例で、 ベク ターに組み込 んだ核酸塩基配列を配列番号 2 2に、 それがコ一 ドするアミ ノ酸配 列を配列番号 2 3に示した。 本実施例で作製したベクターは、 pSF - shChMILという略称を用いること とする。
実施例 6. ChMlL mRNAの発現解析
成体 (10週齢) の各組織における ChMlL mRNAの発現解析 : 図 3 (a i
10 週齢の C57BL/6 マウスを解剖して各組織を取り出し、 直ちに 液体窒素で凍結した。 凍結した組織を細かく砕き、 IS0GEN (二ッポ ンジーン社) を製品説明書に従って使用して、 各組織の total RNA を得た。 得られた各組織の total RNA lugをテンプレート と して、 Superscript II preampref icat ion kit ( GIBCO BRL 社) を製品説 明書に従って使用して、 cDNA 20uLを合成した。 RT- PCRは反応系の 総液量を 50uし と し、 各組織の cDNA 0-5uし、 ExTaq polymerase (宝 酒造) を 0.25uL 使用して、 Forward primer (配列番号 9 ) 及び reverse primer (配列番号 1 0 ) をそれぞれ 0.2uM となるよ うに加 えて、 GeneAmp® PCR System 9700 (PE Applied Biosystems 社) を 用い、 96°C 30 秒、 60°C 30 秒、 72°C 1 分で 30 サイクル増幅させ た。 得られた反応液をェチジゥムブ口マイ ド入りの 1%ァガロース ゲルで電気泳動し、 ゲルを紫外線照射下で撮影して、 各組織におけ る ChMlL mRNAの発現を検討した。
図 3 (a)に示したよ うに、 成体マウスの各組織における ChMlL mRN Aの発現は、 脳、 眼球、 骨格筋、 whole rib及び甲状腺で認められた 。 マウスにおける ChM- 1の発現は、 眼球、 胸腺、 軟骨及び whole rib で確認されている。 従って、 ChMlLと ChM- 1は、 生体内において異な る組織に発現していることが明らかとなり、 その生理的な機能は異 なることが示唆された。 胎児 (妊娠 17日 目) の各組織における ChMlL mRNAの発現解析 : 図 3 (b)
C57BL/6マウスの妊娠 17日 目の胎児を帝王切開によ り取り出し、 各組織を取り出し直ちに液体窒素で凍結した。 凍結した組織からの total RNAの抽出、 cDNAの合成、 RT- PCRの実施は上述のく成体マウ スの各組織における ChMlL mRNAの発現解析〉 と同様に実施した。 図 3 (b)に示すように、 胎児の各組織における ChMlL mRNAの発現 は、 眼球、 腎臓、 胃、 whole rib及び気管で認められた。 胎児マウ スにおいては、 成体マウスでは発現が認められなかった腎臓及び胃 で発現が認められた。 従って、 ChMlLはこれらの臓器の発生 . 形態 形成に関与している可能性があり、 臓器修復や再生にも関与すると 考えられる。 また、 気管においても ChMlL mRNAが発現がしているこ とが明らかとなった。 胎児発生段階における ChMlL mRNAの発現解析 : 図 3 (c)
C57BL/6マウスの妊娠 10日 目から出生日までの各日齢の胎児を帝 王切開によ り取り出し、 胎児を丸ごと液体窒素で凍結した。 凍結し た胎児からの total RNAの抽出、 cDNAの合成、 RT- PCRの実施は上述 のく成体マウスの各組織における ChMlL mRNAの発現解析〉 と同様に 実施した。
ChM-I mRNAの解析は、 Forward primer (配列番号 2 3 ) 及び reve rse primer (配列番号 2 4 ) を使用して、 同条件で実施した。
図 3 (c)に示すよ うに、 胎児発生段階における ChMlL mRNAの発現 は、 妊娠 1 0 日 目では非常に弱く、 1 1 日 目から 1 3 日 目にかけて 発現が上昇している。 一方、 ChM-Iの発現も ChMlLと同様の発現上昇 を示すが、 妊娠 1 0 日 目及び 1 1 日 目では明らカ こ、 ChMlLよ り も 強い発現を示した。 従って、 胎児発生段階においては、 ChMlLは Ch M- 1よ り も遅れて発現が上昇するこ とが明らかとなり、 両分子が胎 児発生において異なる機能を有するこ とが明らかとなった。
実施例 7. 抗 ChMILぺプチ ドポリ ク 口一ナル抗体の作製
ヒ ト ChMILの配列番号 2に示した 2 4 5〜 2 5 2残基までの配列 の C末端にシスティ ンを有するペプチ ドを化学合成した。 この合成 ペプチ ド、に MBS/KLH (,m-male imidobenzoyl-N-hydroxysucc inimide e ster/keyhole limpet hemocyanin^ ベ一リ ン刀ーマンノヽ ム社) を カ ップリ ングさせた。 この複合体を生理食塩液に溶解させた後、 等 量の FCA (フロイ ン ト完全アジュバン ト) を加え、 超音波処理して ェマルジョ ンを調製した。 このェマルジョ ンをゥサギの皮下に投与 し、 初回免疫と した。 初回免疫から 4週間後に FI A (フロイ ン ト不 完全アジュバン ト) を用いて大腿筋に追加免疫を行い、 その後は約 2週間又は約 4週間の間隔で皮下投与によ り 4回免疫を行った。 追 加免疫の間に耳介から部分採血、 最終免疫後は全採血を行い血清を 分離し、 ペプチ ドカラムによるァフィ二ティ一精製を実施して抗 Ch MILぺプチ ドポリ ク ローナル抗体を得た。
実施例 8. ヒ ト及びマウス ChMILリ コ ンビナン トタンパク質の weste
rn blot法による解析 : 図 4
リ ボフェク トアミ ン試薬 (GIBCO BRL社) を用いて、 製品説明書 (こ従レヽ、 pCAGGS、 pCAGGS— hChMIL及び pCAGGS— mChMIL (図 4 (a)及び( c)) あるレヽは、 pCAGGS、 pCAGGS - hChMlLHis及び pCAGGS - mChMlLHis ( 図 4 (b)及び(d)) を C0S7細胞に ト ランスフ エク ト した。 ト ラ ンスフ ェク ショ ンしてから約 48時間後に、 培養上清及び細胞成分を 12.5% ケノレで SDS— PAGE ( sodium dodecyl sulfate— polyacrylamide gel el ectrophoresis) を行った後、 ニ ト ロセノレロース膜に ト ラ ンスフ ァ 一した。 一次抗体反応及び二次抗体反応を行い、 ECLplus試薬 (ァ マシャムフアルマシアバイオテク社) を用いて製品説明書に従い、 発色反応を行った。 pCAGGS、 pCAGGS - hChMIL及び pCAGGSiChMILを 卜 ラ ンスフヱク 卜 した場合の Western blotは、 一次抗体に前述の実施 例で述べた抗 ChMlLポリ ク 口ーナル抗体、 二次抗体に horseradish p eroxdase (HRP) で標識された抗ゥサギ I gG抗体 (Dako社) を、 pCAG GS、 pCAGGS - hChMlLHis及び pCAGGSiChMlLHisを 卜 ランスフエク 卜 し た場合の Western b 1 o tには一次抗体に抗 Hi sタグ抗体 (Invitrogen 社) 、 二次抗体に HRPで標識された抗マウス IgG抗体 (アマシャムフ アルマシアバイオテク社) を用いて実施した。
Western b 1 o tと同じサンプルで SDS- PAGEを実施し、 クーマシ一ブ リ リ アン トブル一 (CBB)で染色した結果を図 4 ( a ) 及び ( b ) に 示した。
Western blotの結果、 すべての培養上清で ChMlLのバン ドは確認 されなかった。 細胞成分では、 図 4 (b)及び(d)に示したよ う にリ コ ンピナン ト ChMlLタンパク質は、 抗 ChMlLぺプチ ド抗体及び抗 Hisタ グ抗体のいずれを使用しても、 40kDa付近に 2本のバン ドと して検 出された。 後述の実施例で詳しく述べるが、 糖鎖構造の解析によ り 、 高分子量側のバン ドは N結合型の糖鎖が結合したフォームである こ とが確認された。
実施例 9. 可溶性ヒ ト ChMlLリ コ ンビナン トタンパク質の western b
lot法による解析 : 図 5
リ ボフェク トアミ ン試薬 (GIBCO BRL社) を用いて、 製品説明書 に従い、 pCAGGS及び pSF— shChMILを C0S7糸田胞に ト ランスフ エタ ト し た。 培養上清を 12.5%ゲルで SDS- PAGEを行った後、 ニ ト ロセルロ ー ス膜に ト ラ ンスフ ァーした。 一次抗体には抗 FLAG M2抗体 (Sigma社 ) を、 二次抗体には HRPで標識された抗マウス IgG抗体 (アマシャム フ アルマシアバイ オテク社) を使用し、 ECLplus試薬 (アマシャム フ アルマシアバイオテク社) を用いて製品説明書に従い、 発色反応 を行った。
図 5に示すよ うに、 可溶性ヒ ト ChMlLタンパク質は 17-18kDa付近 に 1本のバン ドと して検出された。
実施例 1 0. ChMlLリ コンビナン トタンパク質の糖鎖構造解析
リ ボフヱク トアミ ン試薬 (GIBCO BRL社) を用いて、 製品説明書 に従い、 pCAGGS- mChMlLHisを C0S7細胞に ト ラ ンスフエク ト した。 デ ィ ッシュに 2%SDSを含む PBSをカ卩え、 スク レイパーで細胞を回収し、 この懸濁液を 95°Cで 60分間加熱した後、 その上清を SDS- 0UTTMSDS P recipitation kit (Pierce社) を用いて処理して SDSを除いた。 こ のよ う にして得られたタンパク質溶液を用いて、 Enzymatic Deglyc osylation Kit (BIO RAD社) を用いて製品説明書に従って、 NANase
II、 O-Glycosidase DS及び PNGase Fで上記のタンパク質溶液を処 理して、 糖鎖消化反応を実施した。 この反応液を 12.5%ゲルで SDS - P AGEを行った後、 ニ ト ロセルロース膜に ト ラ ンスフ ァ一した。 一次 抗体には抗 Hisタグ抗体 (Invitrogen社) を、 二次抗体には HRPで標 識された抗マウス IgG抗体 (アマシャムフアルマシアバイオテク社 ) を使用し、 ECLplus試薬 (アマシャムフ アルマシアバイオテク社 ) を用いて製品説明書に従い、 発色反応を行った。
図 6に示したよ う に、 ChMlLタンパク質の高分子量側のバン ドは 、 PNGase Fで処理した場合 (レーン 2及び 5 ) にのみ消失した。 従 つて、 ChMlLタンパク質は N結合型の糖鎖で修飾されているこ とが明 らかとなつた。
実施例 1 1 . 肋軟骨における ChMlLタンパク質の免疫染色法による 解析
約 10週齢の C57BL/6マウスを解剖して、 whole ribを取り 出し、 4% パラホルムアルデヒ ドを含む 10mMリ ン酸緩衝バッファー、 pH7, 4 (P BS) 中で固定し、 パラ フィ ンで包埋した後、 切片を作成した。 免疫 染色の各工程は、 ヒ ス トフ ァイ ン SAB-PO(R)キッ ト (ニチレイ) を 用いて製品説明書に従って実施したが、 概略は以下のとおりである 。 脱パラ フィ ン処理の後、 3%過酸化水素水で内因性ペルォキシダー ゼを消化した。 PBSで洗浄し、 10%正常ャギ血清でブロ ッキングした 後、 前述の抗 ChMlLペプチ ド抗体を 1/160希釈で加え、 4°Cでー晚ィ ンキュベー ト した。 ネガティブコン ト ロールと してはゥサギ IgGを 使用した。 ピオチン標識抗ゥサギ IgG抗体及びペルォキシダーゼ標 識ス ト レプ トアビジンを反応させた後、 3,3-ジアミ ノベンチジン · 4HC1を加えて発色反応を行った。 核をへマ トキシリ ンで染色、 封入 後、 観察を実施した。
図 7 に示すよ う に、 ChMlLタンパク質は肋軟骨組織において軟骨 細胞周囲に存在する扁平な線維芽細胞様の形態を示す細胞に発現し ているこ とが明らかになった。 一方、 ChM - 1が発現している と報告 されている軟骨細胞では発現が認められなかった。
実施例 1 2 . ヒ ト ChMlL遺伝子の染色体マッ ピング
曰本 DNAデータノ ンク (DDBJ : DNA data bank of Japan) 力 ら、 ヒ ト ChMlL遺伝子配列 (配列番号 1 ) を用いて、 DDBJ全データを対 象にして BLASTNサーチを実施した。 その結果、 ChMlL遺伝子のゲノ ム酉己歹 IJと して Genbank accession No. AL035608を検出した。 AL03560 8は、 ヒ ト X染色体にマッ ピングされている配列である。 従って、 ヒ ト ChMlL遺伝子は、 X染色体上に存在するこ とが明らかとなった。 実施例 1 3 . 可溶性ヒ ト ChMlLリ コンビナン トタンパク質の精製 リ ボフェク トアミ ン試薬 (GIBCO BRL社) を用いて製品説明書に 従って、 pSF- shChMILを C0S7細胞に ト ランスフエク ト し、 約 4 8時 間後に培養上清を回収した。 抗 FLAG M2ァフィ二ティーゲル (Sigma 社) を用いて、 ァフィ二ティーカラムを作製し、 培養上清をカラム にアプライ した。 25mM Tris- HC1, 150mM NaCl (pH7.4)でカラムを 3回洗浄後、 0.1Mグリ シン— HC1 (pH3.5)を用いて溶出し、 1/20容 量の 1M Tris-HCl (pH9.5)を用いて溶出液を中和した。
培養上清及び溶出液を用いて SDS- PAGEを行い、 クーマシ一プリ リ アントブル一 (CBB)染色を実施した結果を図 8に示した。 培養上清 中には多種のタンパク質が存在するが (図 8、 レーン 1 ) 、 溶出液 中では可溶性ヒ ト ChMlLタンパク質力 約 20kDaのバンドと して確認さ れ、 上記操作によって可溶性ヒ ト ChMlLタンパク質が濃縮、 精製さ れたことが明らかになった (図 8、 レーン 2 ) 。
実施例 1 4. ヒ ト臍帯静脈内皮細胞を用いた血管新生阻害作用の検 f±
ヒ 卜臍帯静脈内皮細胞 (Human Umbilical Vein Endothelial Cel ls:HUVECs、 Clonetics社) は、 内皮細胞専用培地 (EGM®- 2 Bullet Kit® , Clonetics社) で培養した。 1 2 ゥエルプレートに、 Growth factor reduced Matrigel (BECTON DICKINSON社) を 600uL/ウ エノレ で加えて、 3 7 °Cで 3 0分間ィ ンキュベ一 ト した。 へパリ ンを含ま ない内皮細胞専用培地を内皮細胞基本培地 (EBM®-2、 Clonetics社 ) で 1/8に希釈した培地を用いて、 5xl04cells/mLの HUVECsを含む 細胞懸濁液を調製した。
各被験物質溶液は、 0.1Mグリ シン- HC1 (pH3.5)に 1/20容量の 1M T ris-HCl (pH9.5)を加えた溶液で調製し、 200uL/ゥエルの容量で処 理を行った。 陰性対象と して上記のバッファー及び BSA (bovin ser um albumin)を 20ug/ゥエルで、 陽性対象物質と して Pie t e 1 e t facto r 4 (PF - 4、 CHEMICON社) を 1及び 10ug/ゥヱルで、 可溶性ヒ ト ChMl Lリ コ ンビナン トタンパク質は実施例 1 3の溶出画分を 10及び 20ug/ ゥエルで処理した。 細胞懸濁液 2mL (1 X105 cells)と各被験物質溶 液 200uLを混合して、 Growth factor reduced Matrigelでコ一 卜 し た 12ゥエルプレー トにシーデイ ングし、 9時間後に管腔様構造の形 成を観察して写真を撮影した。 その結果を図 9に示した。 陰性対象 では HUVECsが管腔様構造を形成しているが (図 9 ( a ) 及び ( b ) ) 、 ChMlLを 20ug/ゥュルで処理した場合には (図 9 ( d ) ) 、 陰性 対象と比較して管腔様構造の形成が阻害された。
従って、 ChMlLは血管新生阻害作用を有することが明らかとなり 、 可溶性の ChMlLポリペプチドは糖尿病性網膜症、 癌、 慢性関節リ ゥマチなどの血管新生を伴う疾患の治療薬と して適用できることが 明らかとなった。

Claims

請 求 の 範 囲
1 . 配列番号 2で表されるァミ ノ酸配列を実質的に含むポリぺプ チドをコ一 ドするヒ ト遺伝子。
2 . 配列番号 4で表されるアミ ノ酸配列を実質的に含むポリぺプ チドをコー ドするマウス遺伝子。
3 . 配列番号 6で表されるアミ ノ酸配列を実質的に含むポリぺプ チドをコー ドするラッ ト遺伝子。
4 . 配列番号 1 で表される塩基配列を有する請求項 1 に記載のヒ ト遺伝子。
5 . 配列番号 3で表される塩基配列を有する請求項 2に記載のマ ゥス遺伝子。
6 . 配列番号 5で表される塩基配列を有する請求項 3に記載のラ ッ ト迪ィ E子。
7 . 配列番号 2で表されるアミ ノ酸配列を実質的に含む、 ヒ ト遺 伝子がコ ー ドするポリべプチ ド。
8 . 配列番号 4で表されるアミ ノ酸配列を実質的に含む、 マウス 遺伝子がコ ー ドするポリべプチ ド。
9 . 配列番号 6で表されるアミ ノ酸配列を実質的に含む、 ラッ ト 遺伝子がコー ドするポリペプチ ド。
10. 請求項 1 〜 6のいずれか一項に記載の遺伝子の少なく とも一 部とハイプリ ダイズするオリ ゴヌク レオチ ドプローブ。
11 . 請求項 1 〜 6のいずれか一項に記載の遺伝子を含む組換え体 DNA。
12. 請求項 1 1 に記載の組換え体 DNAによって形質転換された形 質転換体。
13. 請求項 1 2に記載の形質転換体を培養し、 得られる培養物か らヒ ト、 マウス及びラ ッ ト遺伝子がコ ー ドするポリべプチ ドを採取 するこ とを特徴とする前記ポリペプチ ドの製造方法。
14. 請求項 7 〜 9のいずれか一項に記載のポリペプチ ドと特異的 に反応するモノ ク ローナル抗体。
15. 請求項 7 〜 9のいずれか一項に記載のポリペプチ ドと特異的 に反応するポリ ク ロ一ナル抗体。
16. 請求項 7 〜 9のいずれか一項に記載のポリペプチ ドで免疫さ れた抗体産生細胞と ミエローマ細胞とを融合させるこ とによ り得ら れる、 請求項 1 4に記載のモノ ク ローナル抗体を産生するハイプリ ド 7 o
17. 請求項 1 0に記載のオリ ゴヌ ク レオチ ドプローブを含む遺伝 子の検出試薬。
18. 請求項 7 〜 9のいずれか一項に記載のポリペプチ ド、 並びに 請求項 1 4に記載のモノ ク ロ ーナル抗体及び/又は請求項 1 5に記 載のポリ ク ローナル抗体を含む診断用キッ ト。
19. 請求項 7 〜 9のいずれか一項に記載のポリべプチ ドからなる 医薬組成物。
20. 請求項 1 4 に記載のモノ ク ローナル抗体又は請求項 1 5 に記 載のポリ ク ローナル抗体からなる医薬組成物。
21. 請求項 1 〜 6 に記載の遺伝子の一部と特異的にハイブリ ダィ ズするァンチセンスオリ ゴヌ ク レオチ ドからなる医薬組成物。
22. 請求項 1 〜 6 に記載の遺伝子の少なく と も一部を含む、 遺伝 子治療に利用 しう る核酸からなる医薬組成物。
23. 請求項 1 あるいは 4に記載の X染色体上に存在するこ とを特 徴とする ヒ ト遺伝子。
24. 請求項 7 〜 9 に記載のポリぺプチ ドが細胞膜結合型であるこ とを特徴とするポリペプチ ド。
25. 請求項 2 4に記載の細胞膜結合型ポリペプチ ドをコー ドする 遺伝子。
26. 請求項 7〜 9に記載のポリべプチ ドが血管新生阻害作用を有 することを特徴とするポリペプチ ド。
27. 請求項 2 6に記載の血管新生阻害作用を有するポリペプチ ド をコー ドする遺伝子。
PCT/JP2000/006804 1999-09-29 2000-09-29 Polypeptides et genes les codant WO2001023557A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP00963008A EP1219710B1 (en) 1999-09-29 2000-09-29 Novel polypeptides and genes encoding the same
CA2386141A CA2386141C (en) 1999-09-29 2000-09-29 A novel polypeptide and gene encoding the same
AU74508/00A AU784054B2 (en) 1999-09-29 2000-09-29 Novel polypeptides and genes encoding the same
KR1020027003927A KR100934594B1 (ko) 1999-09-29 2000-09-29 신규 폴리펩티드 및 그것을 코드하는 유전자
DE60044138T DE60044138D1 (de) 1999-09-29 2000-09-29 POLYPEPTIDE UND FüR DIESE KODIERENDE GENE
AT00963008T ATE463510T1 (de) 1999-09-29 2000-09-29 Polypeptide und für diese kodierende gene
HK02109473.5A HK1047958B (zh) 1999-09-29 2002-12-31 嶄新的縮多氨酸及其基因解碼
US11/055,967 US8030277B2 (en) 1999-09-29 2005-02-14 Polypeptide and gene encoding the same
US11/196,618 US7575922B2 (en) 1999-09-29 2005-08-04 Polypeptide and gene encoding the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/275947 1999-09-29
JP27594799 1999-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10089600 A-371-Of-International 2000-09-29
US11/055,967 Division US8030277B2 (en) 1999-09-29 2005-02-14 Polypeptide and gene encoding the same

Publications (1)

Publication Number Publication Date
WO2001023557A1 true WO2001023557A1 (fr) 2001-04-05

Family

ID=17562652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006804 WO2001023557A1 (fr) 1999-09-29 2000-09-29 Polypeptides et genes les codant

Country Status (11)

Country Link
US (2) US8030277B2 (ja)
EP (1) EP1219710B1 (ja)
KR (1) KR100934594B1 (ja)
CN (1) CN1207387C (ja)
AT (1) ATE463510T1 (ja)
AU (1) AU784054B2 (ja)
CA (1) CA2386141C (ja)
DE (1) DE60044138D1 (ja)
HK (1) HK1047958B (ja)
WO (1) WO2001023557A1 (ja)
ZA (1) ZA200202311B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520590A (ja) * 2000-01-19 2003-07-08 アムジェン インコーポレイテッド コンドロモジュリンi関連ペプチド
WO2005037864A1 (ja) * 2003-10-21 2005-04-28 Teijin Pharma Limited 新規な分泌タンパク質とその製造法及び用途
WO2007034753A1 (ja) * 2005-09-22 2007-03-29 Keiichi Fukuda コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤
US8481676B2 (en) 2003-10-21 2013-07-09 Teijin Pharma Limited Protein and production process and use thereof
CN113260708A (zh) * 2018-12-18 2021-08-13 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719125A (en) * 1993-05-11 1998-02-17 Mitsubishi Chemical Corporation Human chondromodulin-I protein
EP0869180A1 (en) * 1997-04-02 1998-10-07 Smithkline Beecham Corporation A TNF homologue, TL5
WO2000012708A2 (en) * 1998-09-01 2000-03-09 Genentech, Inc. Further pro polypeptides and sequences thereof
WO2000029579A1 (en) * 1998-11-13 2000-05-25 Zymogenetics, Inc. Mammalian chondromodulin-like protein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854205A (en) * 1995-10-23 1998-12-29 The Children's Medical Center Corporation Therapeutic antiangiogenic compositions and methods
WO2000078961A1 (en) * 1999-06-23 2000-12-28 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030073129A1 (en) * 1998-09-01 2003-04-17 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US7160985B2 (en) * 1997-10-29 2007-01-09 Genentech, Inc. Pro180 polypeptide
US6852318B1 (en) * 1998-05-08 2005-02-08 The Regents Of The University Of California Methods for detecting and inhibiting angiogenesis
CA2361272A1 (en) * 1999-01-19 2000-07-27 Human Genome Sciences, Inc. 33 human secreted proteins
CA2481788A1 (en) 1999-09-01 2001-03-08 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
CA2380355A1 (en) * 1999-09-01 2001-03-08 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1265582A2 (en) * 1999-09-29 2002-12-18 Human Genome Sciences, Inc. Colon and colon cancer associated polynucleotides and polypeptides
CA2490909A1 (en) * 1999-12-01 2001-06-07 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
AU2225401A (en) * 1999-12-27 2001-07-09 Takeda Chemical Industries Ltd. Novel protein and dna thereof
WO2001053344A2 (en) * 2000-01-19 2001-07-26 Amgen, Inc. Chondromodulin-i related peptide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719125A (en) * 1993-05-11 1998-02-17 Mitsubishi Chemical Corporation Human chondromodulin-I protein
EP0869180A1 (en) * 1997-04-02 1998-10-07 Smithkline Beecham Corporation A TNF homologue, TL5
WO2000012708A2 (en) * 1998-09-01 2000-03-09 Genentech, Inc. Further pro polypeptides and sequences thereof
WO2000029579A1 (en) * 1998-11-13 2000-05-25 Zymogenetics, Inc. Mammalian chondromodulin-like protein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520590A (ja) * 2000-01-19 2003-07-08 アムジェン インコーポレイテッド コンドロモジュリンi関連ペプチド
WO2005037864A1 (ja) * 2003-10-21 2005-04-28 Teijin Pharma Limited 新規な分泌タンパク質とその製造法及び用途
US8481676B2 (en) 2003-10-21 2013-07-09 Teijin Pharma Limited Protein and production process and use thereof
US8617841B2 (en) 2003-10-21 2013-12-31 Teijin Pharma Limited Protein and production process and use thereof
WO2007034753A1 (ja) * 2005-09-22 2007-03-29 Keiichi Fukuda コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤
CN113260708A (zh) * 2018-12-18 2021-08-13 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体
CN113260708B (zh) * 2018-12-18 2024-03-29 帝人株式会社 用于制造烟酰胺衍生物的重组微生物和方法、以及其中使用的载体

Also Published As

Publication number Publication date
DE60044138D1 (de) 2010-05-20
CN1207387C (zh) 2005-06-22
HK1047958A1 (en) 2003-03-14
EP1219710A1 (en) 2002-07-03
US7575922B2 (en) 2009-08-18
KR100934594B1 (ko) 2009-12-31
KR20020092913A (ko) 2002-12-12
AU784054B2 (en) 2006-01-19
ATE463510T1 (de) 2010-04-15
EP1219710B1 (en) 2010-04-07
CA2386141C (en) 2012-10-23
US20050272127A1 (en) 2005-12-08
ZA200202311B (en) 2002-12-24
US8030277B2 (en) 2011-10-04
AU7450800A (en) 2001-04-30
CA2386141A1 (en) 2001-04-05
HK1047958B (zh) 2010-12-17
US20050171018A1 (en) 2005-08-04
CN1402783A (zh) 2003-03-12
EP1219710A4 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
Byrd et al. Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex.
Estaller et al. Human complement factor H: two factor H proteins are derived from alternatively spliced transcripts
EA007985B1 (ru) Молекулы распознавания на клеточной поверхности, содержащие иммуноглобулиновый домен
CA2571350A1 (en) Peptides for inhibiting the interaction of protein kinase a and protein kinase a anchor proteins
US7575922B2 (en) Polypeptide and gene encoding the same
JP4315257B2 (ja) 新規コンドロイチン硫酸プロテオグリカン、そのコア蛋白質、それをコードするdnaおよびそれに対する抗体
JP2004521607A (ja) ケモカイン、神経ペプチド前駆体または少なくとも一つの神経ペプチドをコードする核酸配列を含んでなる核酸分子
US7226997B2 (en) Mast cell-specific signal transducer and cDNA thereof
AU2004234532A1 (en) SPEX compositions and methods of use
CA2367468C (en) Rheumatoid arthritis gene and method for diagnosing rheumatoid arthritis
EP1125947A1 (en) HUMAN H37 PROTEINS AND cDNAS ENCODING THE SAME
JP4041913B2 (ja) 抗腫瘍タンパク質およびその遺伝子
JP2006296429A (ja) 新規なポリペプチド及びそれをコードする遺伝子
EP1148125B1 (en) Human nucleoprotein having a ww domain and polynucleotide encoding the same
US6838548B1 (en) Artiodactyl epimorphine
JP2000095795A (ja) プロテオグリカンのコアタンパク質のポリペプチド及びそれをコードするdna
EP1369478A1 (en) Novel scavenger receptor class a protein
JPH0984581A (ja) 組換え型ヒト・メラトニン受容体タンパク質の製造法
EP1284288A1 (en) Human apoptosis-associated genes and human apoptosis-associated proteins produced thereby
JP2001128680A (ja) ヒト脱ユビキチン化酵素
JP2001046072A (ja) Ace類似遺伝子
JP2001335598A (ja) 新規タンパク質、その製造法および用途
JP2003169683A (ja) 新規脱共役蛋白質mt0029
JPWO2004001038A1 (ja) 細胞または組織の神経化に関与する新規遺伝子およびタンパク質、並びにその利用
JP2003116558A (ja) 成人t細胞白血病(atl)関連遺伝子とその発現タンパク質

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2001 526939

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200074508

Country of ref document: AU

Ref document number: 74508/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002/02311

Country of ref document: ZA

Ref document number: 200202311

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1020027003927

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00334/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2386141

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10089600

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000963008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008164037

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000963008

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027003927

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5705/DELNP/2005

Country of ref document: IN

WWG Wipo information: grant in national office

Ref document number: 200074508

Country of ref document: AU