WO2001023498A1 - Verfahren zur kontinuierlichen herstellung von stabilisatordispersionen - Google Patents

Verfahren zur kontinuierlichen herstellung von stabilisatordispersionen Download PDF

Info

Publication number
WO2001023498A1
WO2001023498A1 PCT/EP2000/009413 EP0009413W WO0123498A1 WO 2001023498 A1 WO2001023498 A1 WO 2001023498A1 EP 0009413 W EP0009413 W EP 0009413W WO 0123498 A1 WO0123498 A1 WO 0123498A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
tert
components
stabilizer
component
Prior art date
Application number
PCT/EP2000/009413
Other languages
English (en)
French (fr)
Inventor
Norbert Güntherberg
Bernhard Czauderna
Jürgen Hofmann
Peter Ittemann
Armin Kurps
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2001023498A1 publication Critical patent/WO2001023498A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/06Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen
    • C09K15/08Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/12Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing sulfur and oxygen
    • C09K15/14Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing sulfur and oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/20Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen and oxygen

Definitions

  • the present invention relates to a method for producing stabilizer dispersions for stabilizing plastic dispersions and to the use of a device for carrying out the method.
  • emulsion rubbers and emulsion gum rubbers which are used as dispersions for a wide variety of applications (emulsion paints, paper coating agents, leather and textile finishing, adhesive raw materials) and those which, after the solid has been isolated, are incorporated into thermoplastic molding compositions as impact modifiers
  • stabilizer dispersions containing phenolic antioxidants are usually used against oxidative influences.
  • the phenolic antioxidants are used in combination with costabilizers such as organic sulfur compounds and / or organic phosphorus compounds. Combinations with other additives such as light stabilizers are also conceivable. Antistatic agents and other common additives.
  • Such predominantly aqueous dispersions often have to be prepared at great expense in multi-stage processes.
  • the components used in the stabilizer dispersions can be solid or liquid at room temperature.
  • the manufacturing process for the stabilizer dispersions must be adapted. Manufacturing is particularly problematic of stabilizer dispersions if one or more of the components have a very high melting point (> 100 ° C).
  • the component must be incorporated as a powder into a melt from the other components, although a homogeneous distribution of the components is not always guaranteed.
  • EP-A 0 439 427 relates to storage-stable, non-sedimenting emulsions containing antioxidants, e.g. for use in stabilizing emulsion polymers against oxidative influences.
  • the emulsions are prepared by heating or, if the components are solid at room temperature, melting the components.
  • the aqueous phase optionally with further additives, is slowly added gradually, a temperature of 60 to 100 ° C. being maintained.
  • a water-in-oil emulsion is formed, which can be converted into a very fine emulsion by stirring. By further adding water, the emulsion inverts to the desired oil-in-water emulsion.
  • EP-A 0 488 550 relates to stabilizer compositions containing at least two sterically hindered phenols, one being less sterically hindered than the other, a sulfide and optionally a surfactant to enable the composition to be emulsified.
  • these stabilizer compositions are prepared by melting the phenols and the sulfide together and adding a surfactant-containing aqueous solution to the melt with vigorous stirring. Additional water is added and the stabilizer compositions are then ready for use.
  • the object of the present invention is to provide an uncomplicated process for the preparation of stabilizer dispersions, which is characterized by short mixing times without lengthy heating-up and cooling-down times, and which allows the finished stabilizer dispersion to be obtained in one process step.
  • the object is achieved by a process for the preparation of stabilizer dispersions for stabilizing plastic dispersions containing
  • the process according to the invention is characterized in that components A to E are continuously mixed by means of a mixer and homogenized in a dispersing device and the ready-to-use stabilizer dispersion is continuously removed from the dispersing device.
  • This method according to the invention leads to a streamlining of the manufacturing process for stabilizer dispersions and to a process engineering simplification.
  • the space requirement is reduced compared to batch-wise process management, since large storage tanks are eliminated with continuous process control.
  • the stabilizer dispersions prepared according to the invention preferably contain
  • At least one phenolic anoxidant C 0 to 65% by weight. preferably 0.1 to 59.9% by weight, particularly preferably 0.5 to 59.5% by weight, based on the total mass of the stabilizer dispersion. at least one phenolic anoxidant C,
  • At least one sulfur- or phosphorus-containing costabilizer D based on the total mass of the stabilizer dispersion, at least one sulfur- or phosphorus-containing costabilizer D.
  • Water preferably deionized water, is generally used as the liquor. This can be used alone or in a mixture with other auxiliaries and additives or together with the compound B which is active as a surfactant, or a salt or a base which can be reacted together with a suitable acid to give a compound (B) which is active as a surfactant , are used.
  • the liquor can also contain liquids other than water.
  • Liquids which are miscible with water or also immiscible with water can be used. Suitable liquids are, for example, water-miscible alcohols, ketones or water-immiscible aliphatic or aromatic solvents such as esters and aromatic hydrocarbons such as toluene.
  • the monomers of the plastic dispersion to be stabilized can also be used. It is also possible to use a combination of water and one or more of the liquids mentioned as a liquor.
  • the liquor is water, optionally with further auxiliaries and / or additives or a salt, as already explained.
  • the following text refers to water or an aqueous dispersion, without this being understood as a limitation to water as a liquor.
  • Protective colloids and emulsifiers that are usually used for this purpose are surfactants that are effective as surfactants and that are suitable for emulsification / dispersion.
  • the surface-active substances are generally used in an amount of 0.1 to 20% by weight, preferably 0.5 up to 15% by weight and particularly preferably from 0.5 to 10% by weight, based on the total mass of the stabilizer dispersion.
  • Suitable protective colloids are, for example, polyvinyl alcohols, cellulose derivatives or copolymers containing vinylpyrrolidone.
  • a detailed description of further suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Vol. XIV / 1, Macromolecular Substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 411 to 420.
  • Mixtures of emulsifiers and / or Protective colloids can be used.
  • Preferably only emulsifiers are used as surface-active substances, the relative molecular weights of which, in contrast to the protective colloids, are usually below 2000. They can be both anionic, cationic and nonionic in nature.
  • emulsifiers are e.g. ethoxylated mono-, di- and trialkylphenols with 4 to 9 carbon atoms in the alkyl radical (degree of ethoxylation (EO degree): 3 to 50), ethoxylated fatty alcohols with 8 to 36 carbon atoms in the alkyl radical (EO degree: 3 to 50), fatty alcohol sulfonates, sulfosucchinates , ⁇ -sulfonates, resin soaps and alkali and ammonium salts of alkyl sulfonates with 8 to 12 carbon atoms in the alkyl radical and salts of higher fatty acids with 10 to 30 carbon atoms in the alkyl radical. Further suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Vol. XIV / 1. Macromole
  • anionic emulsifiers are bis (phenylsulfonic acid) ether or their alkali metal or ammonium salts which carry a C 4 -C 4 -alkyl group on one or both aromatic rings. These compounds are known for example from US 4,269,749. Sodium and potassium salts of arylalkyl and alkyl sulfonates or of fatty acids having 10 to 18 carbon atoms are particularly preferably used as compounds which act as surfactants.
  • the substance active as a surfactant is converted from a fatty acid in situ with an alkali metal hydroxide into the corresponding salt of the fatty acid, which is active as a surfactant in the emulsion.
  • alkali metal hydroxides alkali metal carbonates or alkali metal hydrogen carbonates can also be used. Oleic acid, stearic acid and palmitic acid are preferably used as longer-chain fatty acids.
  • the phenolic antioxidants are used in an amount of generally 0 to 65% by weight, preferably 0.1 to 59.9% by weight, particularly preferably 0.5 to 59.5% by weight, based on the Total mass of the rod dispersion.
  • Suitable phenolic antioxidants can be solid or liquid at room temperature.
  • antioxidants which have a melting point above 100 ° C.
  • Substances that cannot be processed in the melt but have to be processed as powder can also be processed with the aid of the process according to the invention to form a homogeneous dispersion of the rod without complex process control.
  • Suitable phenolic antioxidants are compounds of the general formula I (taken from: US 5,196,142). Wonn
  • R 1 denotes Ci-Cis-alkyl, C 5 -C 2 -cycloalkyl, -C-C 14 -alkyl-substituted cycloalkyl having 5 to 12 carbon atoms in the ring, phenyl or C - to -C 9 aralkyl,
  • R 2 denotes hydrogen, Ci-Ci ⁇ -alkyl, C 5 -C 12 cycloalkyl, CC 4 alkyl, substituted cycloalkyl with 5 to 12 carbon atoms in the ring, phenyl or C 7 -C 9 aralkyl,
  • R 3 represents hydrogen or methyl
  • n 1 or 2.
  • R 6 is hydrogen, -CC 23 alkyl, C 5 -C 2 -cycloalkyl, C r C 4 -alkyl, substituted cycloalkyl having 5 to 12 carbon atoms in the ring,
  • R is a hydroxy group and R 3 is hydrogen
  • X represents oxygen or sulfur
  • a 2 to 6
  • R 4 is a hydroxy group
  • R7 or an unsubstituted or a C 1 -C 2 -alkyl-substituted C 1 -C 2 -alkylene radical
  • R 4 is a hydroxy group
  • R D is hydrogen or
  • R 5 is a hydroxy group and R is hydrogen or -CC 4 alkyl
  • R 1 is hydrogen
  • R 7 Ci-Cis-alkyl, unsubstituted, hydroxy-substituted or -CC 8 alkyl-substituted phenyl or phenyl- or hydroxyphenyl-substituted C ⁇ - 8 alkyl mean.
  • Antioxidants of the general formula Ia are preferred.
  • phenolic antioxidants can be found, for example, in US Pat. No. 5,196,142 and EP 0 669 367.
  • Other suitable compounds are compounds of the formula (II)
  • Ri is methyl or ethyl, R 2 C 2 -C 20 alkyl and R 3 -C-C 4 alkyl; or compounds of the formula (III)
  • R 3 is C 1 -C 2 alkyl
  • j is tert-butyl or cyclohexyl
  • R 2 means, for example, ethyl, propyl, butyl, pentyl, hexyl. Heptyl, octyl, nonyl, decyl, undecvl, dodecyl, tridecyl, tetradecyl, pentadecyl hexadecyl. Octadecyl, nonadecyl, icosyl, xx, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl. Octacosyl, Nonacosyl or Triacolyl.
  • R 2 is C 3 -C 30 alkyl, for example C 9 -Cj 3 alkyl or Cio-C 30 alkyl.
  • R 2 as C 2 -C 8 alkyl is particularly preferred.
  • R 3 means methyl, ethyl, propyl, isopropyl, sec-butyl or tert-butyl.
  • R 3 is particularly preferably methyl.
  • n is preferably 1 or 1-5.
  • compositions which contain mixtures of different R groups.
  • compositions in which the compound of the formula II are also of interest are compositions in which the compound of the formula II
  • the compounds of the formula (II) can also be present as a mixture of individual compounds.
  • the compounds of the formulas I and II are prepared by generally known methods, as are also described in "The Stabilization of Plastics against Light and Heat" by J. Voigt, Springer Verlag Berlin-Heidelberg-New York, 1966.
  • compositions according to the invention can additionally contain conventional additives, such as, for example:
  • Alkylated monophenols e.g. 2,6-di-tert-butyl-4-methylphenol, 2-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4- n-butylphenol, 2,6-di-tert-butyl-4-iso-butylphenol, 2,6-di-cyclopentyl-4-methylphenol, 2- ( ⁇ -methylcyclohexyl) -4,6-dimethylphenol, 2, 6-di-octadecyl-4-methylphenol, 2,4,6-tri-cyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, 2,6-di-nonyl-4-methylphenol, 2,4- Dimethyl-6- (-methyl-undec-1'-yl) phenol. 2,4-dimethyl-6- (l'-methyl-heptadec-1
  • Alkylthiomethylphenols e.g. 2,4-di-octylthiomethyl-6-tert-butylphenol, 2,4-di-octylthiomethyl-6-methylphenol, 2,4-di-octylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.
  • Hydroquinones and alkylated hydroquinones for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butyl-hydroquinone, 2,5-di-tert-amyl-hydroquinone, 2,6- Diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butyl-hydroquinone, 2,5-di-tert-butyl- 4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis- (3,5-di-tert-butyl-4 hydroxyphenyl) adipate.
  • Hydroxylated thiodiphenyl ethers e.g. 2,2-thio-bis- (6-tert-butyl-4-methylphenol), 2,2'-thio-bis- (4-octylphenol), 4,4'-thio-bis- (6-tert-butyl -3-methylphenol), 4,4'-thio-bis- (6-tert-butyl-2-methylphenol), 4,4'-thio-bis- (3,6-di-sec.-amylphenol), 4 , 4'-bis- (2,6-dimethyl-4-hydroxyphenyl) disulfide.
  • 2,2-thio-bis- (6-tert-butyl-4-methylphenol 2,2'-thio-bis- (4-octylphenol), 4,4'-thio-bis- (6-tert-butyl -3-methylphenol), 4,4'-thio-bis- (6-tert-butyl-2-methylphenol), 4,4'-thio-bis- (3,6-di-sec
  • Alkylidene bisphenols e.g. 2,2'-methylene-bis- (6-tert-butyl-4-methylphenol), 2,2'-methylene-bis- (6-tert-butyl-4-ethylphenol), 2,2'-methylene-bis - [4-methyl-6- ( ⁇ -methylcyclohexyl) phenol], 2,2'-methylene-bis- (4-methyl-6-cyclohexylphenol), 2,2'-methylene-bis- (6-nonyl- 4-methylphenol), 2,2'-methylene-bis- (4,6-di-tert-butylphenol), 2,2'-ethylidene-bis- (4,6-di-tert-butylphenol), 2 , 2'-Ethylidene-bis- (6-tert-butyl-4-isobutylphenol), 2,2'-methyl en-bis- [6- ( ⁇ -methylbenzyl) -4-nonylphenol), 2,2'-methylene -
  • Phenolic antioxidants used with particular preference are octadecyl-3- (3,5-bis (l, l-dimethylethyl) -4-hydroxyphenyl) propionate, a butylated reaction product of p-cresol and dicyclopentadiene, l, l, 3-tris (2 '-methyl-4'- hydroxy-5'-tert-butylphenyl) butane, 2,2'-methylenebis (6- (l, 1-dimethylethyl) 4-methylphenol and 4,4'-thio-bis (3-methyl-6-tert. butylphenol).
  • the phenolic antioxidants can be used individually or in a mixture of different antioxidants.
  • the costabilizers are used in an amount of 0 to 65% by weight, preferably 0.1 to 59.9% by weight, particularly preferably 0.5 to 59.5% by weight, based on the total mass of the stabilizer dispersion , used.
  • Organic phosphorus and / or sulfur-containing compounds are suitable as costabilizers.
  • Suitable phosphites and phosphonites are e.g. Triphenyl phosphite, diphenylalkyl phosphite, phenyl dialkyl phosphite, tris (nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris- (2,4-di-tert-butylphenyl) phosphite, diisodhritol (diisithritol) bisphitite tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis-isodecyloxy-pentaerythritol
  • Suitable organic phosphorus compounds are preferably organic phosphites. Aliphatic and aromatic phosphites can be used. Examples include tris (monononylphenyl) phosphite, bis-nonylphenyl pentaerythritol diphosphite, bis-octadecanyl-pentene thritol diphosphite, bis-tride-canyl-pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl ) pentaerythritol diphosphite, isopropylidene bis (phenylditridecyl) diphosphite, butylidene bis (3-methyl-6-tert-butylphenylditridecyl) phosphi
  • Tris (2,4-bis (l, l-dimethylethyl) phenyl) phosphite, trisnonylphenyl phosphite tertrakis (2,4-bis-1,1, dimethylethyl) phenyl-4,4'-diphenylene diphosphite are particularly preferred, Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite and triphenyl phosphite are used.
  • These organic phosphites can be produced, for example, by the alkoxylation or aryloxylation of PC1 of alcohols and phenols in the presence of a base.
  • Suitable sulfur compounds are preferably sulfides which have one or more of the following sulfide groups.
  • R and R 'independently of one another are an alkyl group of 1 to 20 carbon atoms or an alkyl alkanoate of the formula
  • n 0, 1 or 2.
  • suitable sulfides are dilauryl thiodipropionate, pentaerythritol tetrakis (octylthiopropionate), distearyl thiodipropionate, dimyristyl thiodipropionate, pentaerythriol tetrakis ( ⁇ -laurylthiopropionate), 2,4-bis (n-octylthio) -6 -6 - 3 ', 5' -di-tert.-butylanione) - 1, 3, 5-triazine, trimethylolpropane tris (octylthiopropionate), trimethylolethane tris (octylthiopropionate), ethylene
  • the stabilizer dispersions can be further provided.
  • auxiliaries and additives can be suitable both to facilitate the preparation of the dispersion and to improve its stability (soaps, protective colloids, Pickering emulsifiers, bactericides, fungicides, etc.) and also to improve the properties of the products to be stabilized, such as light stabilizers, for example the group of hindered amines (HALS stabilizers, for example bis (2,2,6,6, -tetramethyl-4-piperidyl) sebacate; diester of sebacic acid with 4-hydroxy-1,2,2,6,6-pentamethylpiperidm; Bis-N, N- (2,2,6,6-tetramethyloxypiperidinyl-) N, N-bisformylhexamethylenediamine), benzotiazoles, such as 2- (2'-hydroxy-5'methylphenyl) benzotriazole or 2 - (2-Hydroxy-3,5-bis (l, l-dimethylbenzyl) phenyl) 2H-benzotriazo
  • Suitable UV absorbers and light stabilizers are
  • 2- (2'-hydroxyphenyl) benzotriazoles such as 2 - (2'-hydroxy- 5-methylphenyl) benzotriazole, 2- (3 ', 5'-di-tert-butyl-2'-hydroxyphenyl) - benzotriazole, 2- (5'-tert-butyl-2'-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy-5'- (1,1, 3, 3-tetramethylbutyl) phenyl) benzotriazole, 2- ( 3 * , 5'-di-tert-butyl-2 '-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3'-tert-butyl-2'-hydroxy-5'-methylphenyl) -5 -chlorobenztriazole, 2- (3 '-sec-butyl-5' -tert-butyl-2 '-hydroxyphenyl) -benztriazole, 2- (2' -hydroxy-4 '-octoxyphenyl) -
  • 2-hydroxybenzophenones such as, for example, the 4-hydroxy, 4-methoxy, 4-octoxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2 ', 4'-trihydroxy-, 2 '- Hydroxy-4,4'-dimethoxy derivative.
  • Esters of optionally substituted benzoic acids such as e.g. 4-tert-butylphenylsalicylate, phenylsalicylate, octylphenylsahcylate, dibenzoylresorcinol,
  • Acrylates such as ⁇ -cyano-ß, ß-diphenylacrylate or iso-octyl ester, ⁇ -carbomethoxy-cinnamic acid methyl ester, ⁇ -cyano-ß-methyl-p-methoxy-cinnamic acid methyl ester or -butyl ester, ⁇ -carbomethoxy-p-methoxy-cinnamic acid- methyl ester, N- ( ⁇ -carbomethoxy- ⁇ -cy ano vinyl) -2-methyl-indoline.
  • Nickel compounds such as nickel complexes of 2,2'-thio-bis- [4- (1,1,3,3-tetramethylbutyl) phenol], such as the 1: 1 or 1: 2 complex, optionally with additional ones
  • Ligands such as n-butylamine, triethanolamine or N-cyclohexyl-diethanolamine, nickel dibutyldithiocarbamate, nickel salts of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid monoalkyl esters, such as of the methyl or ethyl ester, nickel complexes of Ketoximes, such as of 2-hydroxy-4-methyl-phenyl-undecylketoxime, nickel complexes of l-phenyl-4-lauroyl-5-hydroxy-pyrazole, optionally with additional ligands.
  • Ligands such as n-butylamine, triethanolamine or N-cyclohexyl-diethanolamine, nickel dibutyldi
  • Sterically hindered amines such as, for example, bis- (2,2,6,6-tetramethyl-piperidyl) sebacate, bis- (2,2,6,6-tetra-methyl-piperidyl) succinate, bis- (1, 2,2,5,5-pentamethylpiperidyl) sebacate, n-butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malonic acid bis (1,2,2,6,6-pentamethylpiperidyl ) -ester, condensation product from 1 - (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, condensation product from N, N'-bis- (2,2,6,6- tetramethyl-4- piperidyl) hexamethylene diamine and 4-tert-octylamino-2,6-dichloro-1, 3, 5-s-triazine, tris (2,2,6,6-tetramethyl-4-piperidyl
  • Oxalic acid diamine such as e.g. 4,4'-di-octyloxy-oxanüid, 2,2'-di-octyloxy-5,5'-di-tert-butyl-oxanüid, 2,2'-di-dodecy_oxy-5,5'-di-tert-butyl-oxanüid .
  • auxiliaries and additives are metal deactivators, such as N, N'-diphenyloxalic acid diamide, N-salicylal-N'-salicycloylhydrazine, N, N'-bis (salicy_oyl) hydrazine, N, N'-bis (3,5-di-tert-butyl-4-hydroxyphe) - nylpropionyl) hydrazine, 3-salicyloylamino-l, 2,4-triazole, bis (benzylidene) oxalic acid dihydrazide, oxanilide, isophthalic acid dihydrazide, sebacic acid bisphenylhydrazide, N ', N'-diacetyl adipic acid dihydrazide, N, N'-bis-salicyloyl-thiopropionic acid dihydrazide.
  • metal deactivators such as N, N'-diphenyloxa
  • Basic co-stabilizers such as Melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali and alkaline earth metal salts of higher fatty acids, for example Ca stearate, Zn stearate, Mg behenate, Mg stearate, Na ricinoleate, K-palmitate, antimony catecholate or tin catecholate.
  • Basic co-stabilizers such as Melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali and alkaline earth metal salts of higher fatty acids, for example Ca stearate, Zn stearate, Mg behenate, Mg stearate, Na ricinoleate
  • Nucleating agents e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid.
  • Fillers and reinforcing agents such as e.g. Calcium carbonate, silicates, glass fibers, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides. Soot. Graphite.
  • additives such as Plasticizers, lubricants.
  • Emulsifiers pigments, optical brighteners, flame retardants, antistatic agents, blowing agents.
  • auxiliaries and additives are disclosed, inter alia, in EP-A 0 669 367.
  • the process according to the invention is particularly suitable if at least one of components C or D with a melting point of> 100 ° C. is used. Very particularly preferably at least one of components C or D has a melting point of> 100 ° C. and at least one of the other components used has a melting point below 100 ° C. Such Components can be processed excellently as a solid in the process according to the invention.
  • the components B, C, D to be metered into the liquor A and possibly other auxiliaries and / or additives can be in solid or liquid form.
  • the components can be individual, or mixtures of substances are used which are fed together to the dispersing element. The way and the order of the dosing is determined by the properties of the raw materials and the desired product properties.
  • only water is initially introduced as the liquor and the substance which acts as a surfactant is metered in as a solid together with components C and D.
  • the substance which acts as a surfactant is metered in as a solid together with components C and D.
  • components C and D can mean as a mixture of substances or separately through the same opening or different openings of the dispersing element.
  • a surfactant-containing water is already used as the liquor, into which the components C and D and, if appropriate, further auxiliaries and / or additives are continuously metered together and mixed intensively.
  • one of components C or D is first mixed with a surfactant-containing liquor, and in a second step (in the same apparatus or a suitable downstream apparatus) the second component D and / or further auxiliaries and / or additives are added to the first mixture incorporated.
  • a surfactant-containing liquor in a second step (in the same apparatus or a suitable downstream apparatus) the second component D and / or further auxiliaries and / or additives are added to the first mixture incorporated.
  • component B substance acting as a surfactant
  • component B the substance acting as a surfactant
  • s further component
  • components with melting points below the boiling point of the liquor are often used in stabilizer dispersions which are used in rubber dispersions. It can therefore be useful and useful to carry out the preparation of the stabilizer dispersion at temperatures above the melting point of one or more of components B to D and, if appropriate, further auxiliaries and additives E. This may result in melting of one or all of the components, so that after cooling, a finely divided dispersion is formed via an intermediate emulsion stage.
  • Suitable devices for the continuous production of stabilizer dispersions are those which, on the one hand, are solid and continuous
  • solid and liquid should be brought into intensive contact with each other, e.g. by forcibly conveying the solid, for example by means of a
  • Screw conveyor or inclined sheet conveyor within a cylinder in the walls of which there are feed openings for the liquid phase at several points.
  • the mixture of substances premixed in this way must finally go through a homogenization step.
  • Dispersing elements are used to homogenize the mixture of substances.
  • the mixture is generally premixed in a suitable mixing device.
  • Dispersing elements which are preferably used for this purpose are those which are based on a penetrated rotor-stator principle. The task of mixing between
  • Solids and liquids can be in the same device as that Homogenization is done or in separate but sequential process units. It may be sufficient for the mixture of materials to be processed to pass through only one rotor-stator unit for homogenization or, if the desired product properties so require, several rotor-stator units connected in series. These can be constructed identically or different from one another. If the homogenization units are different from one another, they can differ from one another in the diameter of the rotor-stator units, in the gap width, the number and shape of the slots in the rotor-stator units or also in the operating parameters such as speed and throughput. Operation at different speeds generally requires a second drive unit for the dispersion unit different from the first dispersion unit.
  • Dispersion elements which are preferably used and which are based on a flow-through rotor-stator principle have at least one shear element with a fixed, circular, slotted stator and a slotted rotor rotating within the stator, which is mounted on a rotatably mounted drive shaft.
  • the dispersion is conveyed in such a way that the components introduced into the device are guided radially from the inside to the outside by the rotation of the rotor in the shear element and are subjected to such a strong shear during or after passage through the slots of the rotor and stator, that a finely divided dispersion is obtained.
  • Such dispersing organs are described, for example, in DE-A-196 54 169, which discloses the use of such organs for the coagulation of graft rubber dispersions.
  • Dispersing elements are furthermore suitable for carrying out the method according to the invention, with at least one shear element, which has a stator and one arranged inside the stator, approximately complementary to that Has stator-formed rotor, the mutually facing surfaces of the stator and the rotor show a structure formed on this surface and pointing away from it towards the respective other element, and a gap with a predetermined gap width is formed between the stator and the rotor.
  • the stator is designed with a structure in the form of a toothed ring, the rows of teeth of which are arranged in a radially circular manner around the rotor, and the rotor has one or more rows of teeth which are approximately complementary thereto.
  • the gap width can vary within a wide range, depending on the dispersion to be produced and the desired product quality. Gap widths of about 0.1 to 10 mm, preferably from 0.2 to 5 mm, particularly preferably from 0.2 to 2 mm, give good results.
  • the homogenization is brought about by strong shear of the dispersion, in which the mixture of substances to be homogenized is continuously conveyed through a single-stage or multi-stage dispersing element running at high speed, each stage consisting of a circular slotted stator and a coordinated, there is a slotted rotor rotating within the stator circuit and the medium to be homogenized is conveyed radially from the inside to the outside in each process part consisting of a rotor and stator with a central flow. Circumferential speeds are generally from 1 to 50 m / s.
  • Such dispersing elements are constructed from a housing in which the rotor or rotors in the associated stators rotate at high speed on a shaft driven by a motor. The medium to be dispersed is sucked in axially and conveyed radially after passing through the rotor-stator units.
  • Suitable rotor-stator combinations have one or more rows of teeth (each on the rotor and stator) with different tooth spacings and corresponding tooth gaps, depending on the equipment and area of application. Examples of such particularly suitable dispersing devices are mixers of the type MHD-2000 and Dispax® from IKA®-mill.
  • the process according to the invention is particularly preferably carried out in such a way that components B to E are mixed intensively with the liquor A individually, as a mixture or separately from one another by means of a suitable mixing organ, components B to E being in the form of a solid by means of a screw conveyor or as a liquid using a pump into a cylindrically '-shaped, radial bores provided with mixing chamber through which the liquor flows a, registered and is intensively mixed by means of rotating mixing elements.
  • Another object of the present invention is the use of said dispersing agents for the continuous production of stabilizer dispersions.
  • Rotors with additional knives in the axial and / or radial direction can also be used.
  • rotors are used which, in addition to the shear elements, also contain turbine blade-like displacer strips and thus lead to better product delivery / suction.
  • El ethylene oxide-propylene oxide block copolymer for example a commercial product from the Pluronics series from BASF AG
  • a MHD-2000 mixer from IKA ⁇ -96 is used, provided with a solid dosage and a single-stage rotor-stator dispersing device with narrow slots (size 4)
  • Component A 500 kg / h, 25 ° C component Bl 70 kg / h
  • Components B and D are dosed together as a solid mixture.
  • a dispersion is obtained which still contains solid particles of component Dl. After pumping around in a circle twice, the dispersion is homogeneous.
  • Component A 500 kg / h, 60 ° C
  • Component B 1 50 kg / h
  • Component C 1 100 kg / h
  • Component A is pumped on the liquid side.
  • Component B and C are dosed as a mixture, and component D is gravimetrically dosed into the same opening, but independently of the other components.
  • Component C2 100 kg / h
  • Component A is pumped on the liquid side.
  • Component B and D are metered in as a mixture, and component C is metered gravimetrically into the same opening but independently of the other components.
  • a mixture is obtained, component C having not yet been mixed in sufficiently.
  • Phase separation occurs when left standing.
  • Two MHD-2000 mixers are arranged one behind the other, both equipped with a two-stage dispersing unit.
  • Component A 50 ° C, 550 1 / h component Bl 50 kg / h component Dl 200 kg / h
  • Solid side component C2 200 kg / h
  • a homogeneous dispersion is obtained.
  • Component A 50 ° C, 1100 1 h
  • Component B2 50 kg / h
  • a homogeneous dispersion is obtained.
  • Component A 25 ° C, 800 1 / h component B2 50 kg / h
  • a homogeneous dispersion is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Stabilisatordispersionen zur Stabilisierung von Kunststoffdispersionen enthaltend: f) ein Dispergiermittel, die Flotte A, g) mindestens eine als Tensid wirksame Verbindung B, h) gegebenenfalls mindestens ein phenolisches Antioxidans C, und i) gegebenenfalls mindestens einen schwefel- oder phosphorhaltigen Costabilisator D, j) gegebenenfalls weitere Hilfs- und/oder Zusatzstoffe, wobei mindestens eine der Komponenten C oder D in der Stabilisatordispersion vorliegt und die Komponenten B, C und D pulverförmig oder flüssig vorliegen können, und die Komponenten A bis D kontinuierlich mittels eines Mischers gemischt und in einem Dispergierorgan homogenisiert werden und die einsatzfertige Stabilisatordispersion kontinuierlich aus dem Dispergierorgan entnommen wird. Des weiteren betrifft die Erfindung die Verwendung einer Vorrichtung, aufgebaut aus einem Gehäuse, in dem auf einer durch einen Motor angetriebenen Welle ein oder mehrere Rotoren in dazugehörigen Statoren mit hoher Geschwindigkeit rotieren, zur kontinuierlichen Herstellung von Stabilisatordispersionen.

Description

Verfahren zur kontinuierlichen Herstellung von Stabilisatordispersionen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Stabilisatordispersionen zur Stabilisierung von Kunststoffdispersionen sowie die Verwendung einer Vorrichtung zur Durchfuhrung des Verfahrens.
Zur Stabilisierung von Kunststoffdispersionen, insbesondere von Emulsions- kautschuken und Emulsionspropfkautschuken, die als Dispersionen für die verschiedensten Anwendungen (Dispersionsfarben, Papierstreichmittel. Leder- und Textilveredelung, Klebrohstoffe) eingesetzt werden, und solchen, die nach Isolierung des Feststoffs als Schlagzähmodifizierungsmittel in thermoplastische Formmassen eingearbeitet werden, gegen oxidative Einflüsse werden üblicher- weise Stabilisatordispersionen eingesetzt, die phenolische Antioxidantien enthalten. Im allgemeinen kommen die phenolischen Antioxidantien in Kombination mit Costabilisatoren wie organischen Schwefelverbindungen und/oder organischen Phosphorverbindungen zum Einsatz. Denkbar sind auch Kombinationen mit anderen Additiven wie Lichtschutzmitteln. Antistatika und anderen üblichen Zusatzstoffen.
Solche überwiegend wäßrigen Dispersionen müssen oft unter großem Aufwand in mehrstufigen Verfahren hergestellt werden. Die in den Stabilisatordispersionen eingesetzten Komponenten können bei Raumtemperatur fest oder flüssig sein. Je nach Konsistenz der Einsatzstoffe muß das Herstellverfahren für die Stabilisatordispersionen angepaßt werden. Besonders problematisch ist die Herstellung von Stabihsatordispersionen, wenn eine oder mehrere der Komponenten einen sehr hohen Schmelzpunkt (> 100°C) aufweisen. Hier muß die Komponente als Pulver in eine Schmelze aus den weiteren Komponenten eingearbeitet werden, wobei jedoch nicht immer eine homogene Verteilung der Komponenten gewähr- leistet ist.
EP-A 0 439 427 betrifft lagerstabile, nicht sedimentierende Emulsionen, die Antioxidantien enthalten, z.B. für die Verwendung zur Stabilisierung von Emulsionspolymerisaten gegen oxidative Einflüsse. Die Herstellung der Emulsionen erfolgt durch Erhitzen bzw., wenn es sich um bei Raumtemperatur feste Komponenten handelt, Aufschmelzen der Komponenten. Die wäßrige Phase, gegebenenfalls mit weiteren Zusätzen, wird nach und nach langsam zugegeben, wobei eine Temperatur von 60 bis 100 °C eingehalten wird. Es bildet sich eine Wasser-in-Öl- Emulsion aus, die durch Rühren in eine feinstteilige Emulsion überfuhrt werden kann. Durch weitere Zugabe von Wasser invertiert die Emulsion zur gewünschten Öl-in- Wasser-Emulsion.
EP-A 0 488 550 betrifft Stabilisator-Zusammensetzungen, enthaltend mindestens zwei sterisch gehinderte Phenole, wobei eines weniger sterisch gehindert ist als das andere, ein Sulfid und gegebenenfalls ein Tensid, um eine Emulsion der Zusammensetzung zu ermöglichen. Gemäß der Beispiele werden diese Stabilisator-Zusammensetzungen hergestellt, indem die Phenole und das Sulfid gemeinsam aufgeschmolzen werden und eine tensidhaltige wäßrige Lösung unter starkem Rühren zur Schmelze gegeben wird. Es wird weiteres Wasser zugegeben und die Stabilisator-Zusammensetzungen sind anschließend einsatzbereit.
Diese Verfahren zur Herstellung von Stabihsatordispersionen haben den Nachteil, daß die Herstellung in mehreren Verfahrensschritten (Aufschmelzen und Wasserzugabe) erfolgt. Es muß geheizt und abgekühlt werden, so daß der Zeitbedarf bei der Herstellung beträchtlich ist. Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines unkomplizierten Verfahrens zur Herstellung von Stabilisatordispersionen, das sich durch kurze Mischzeiten ohne langwierige Aufheiz- und Abkühlzeiten auszeichnet, und das die Gewinnung der fertigen Stabüisatordispersion in einem Verfahrensschritt erlaubt.
Die Aufgabe wird durch ein Verfahren zur Herstellung von Stabihsatordispersionen zur Stabilisierung von Kunststoffdispersionen gelöst, enthaltend
a) ein Dispergiermittel, die Flotte A, b) mindestens eine als Tensid wirksame Verbindung B, c) gegebenenfalls mindestens ein phenolisches Anüoxidans C, d) gegebenenfalls mindestens einen schwefel- oder phosphorhaltigen Costabilisator D, e) gegebenenfalls weitere Hilfs- und/oder Zusatzstoffe
wobei mindestens eine der Komponenten C oder D in der Stabüisatordispersion vorliegt und die Komponenten B, C, D und E pulverfb'rmig oder flüssig vorliegen können.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die Komponenten A bis E kontinuierlich mittels eines Mischers gemischt und in einem Dispergierorgan homogenisiert werden und die einsatzfertige Stabüisatordispersion kontinuierlich aus dem Dispergierorgan entnommen wird.
Bisher sind aus dem Stand der Technik ausschließlich diskontinuierliche Verfahren zur Herstellung von Stabihsatordispersionen bekannt, da zur Herstellung von homogenen Stabihsatordispersionen Aufheiz- und Abkühlphasen zur homogenen Verteilung der eingesetzten Komponenten erforderlich sind. Durch intensives Mischen der Komponenten in einem Dispergierorgan ist es jedoch gelungen, den Mischeffekt zur Gewinnung einer homogenen Stabüisatordispersion ohne Temperaturprogramm in einem kontinuierlichen Verfahren zu erreichen.
Dieses erfindungsgemäße Verfahren führt zu einer zeitlichen Straffung des Herstellverfahrens für Stabilisatordispersionen sowie zu einer verfahrenstechnischen Vereinfachung. Des weiteren verringert sich der Raumbedarf gegenüber einer batchweisen Verfahrensführung, da große Lagertanks bei einer kon- tinuierlichen Verfahrensführung entfallen.
Die erfindungsgemäß hergestellten Stabilisatordispersionen enthalten bevorzugt
0,1 bis 20 Gew.-%, bevorzugt 0,5 bis 15 Gew.-%, besonders bevorzugt 0,5 bis 10 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, mindestens einer als Tensid wirksamen Verbindung B,
0 bis 65 Gew.-%. bevorzugt 0,1 bis 59,9 Gew.-%, besonders bevorzugt 0.5 bis 59,5 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion. mindestens eines phenolischen Anüoxidans C,
0 bis 65 Gew.-%, bevorzugt 0,1 bis 59,9 Gew.-%, besonders bevorzugt 0,5 bis 59,5 Gew.-%. bezogen auf die Gesamtmasse der Stabüisatordispersion, mindestens eines schwefel- oder phosphorhaltigen Costabilisators D.
0 bis 40 Gew.-%, bevorzugt 0,005 bis 30 Gew.-% besonders bevorzugt 0.01 bis 20 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion. weiterer Hufs- und/oder Zusatzstoffe,
- sowie eine solche Menge des Dispergiermittels, der Flotte A, daß die Gesamtmasse der Stabüisatordispersion 100 Gew.-% beträgt. Dispergiermittel. Flotte A
Im allgemeinen wird als Flotte Wasser, bevorzugt deionisiertes Wasser, eingesetzt. Dieses kann allein oder in einer Mischung mit weiteren Hilfs- und Zusatzstoffen oder gemeinsam mit der als Tensid wirksamen Verbindung B, bzw. einem Salz bzw. einer Base, das gemeinsam mit einer geeigneten Säure zu einer als Tensid wirksamen Verbindung (B) umgesetzt werden kann, eingesetzt werden.
Die Flotte kann auch andere Flüssigkeiten als Wasser enthalten. Dabei können mit Wasser mischbare oder auch mit Wasser nicht mischbare Flüssigkeiten eingesetzt werden. Geeignete Flüssigkeiten sind beispielsweise mit Wasser mischbare Alkohole, Ketone oder nicht mit Wasser mischbare aliphatische oder aromatische Lösungsmittel wie Ester und aromatische Kohlenwasserstoffe wie Toluol. Es können auch die Monomeren der zu stabilisierenden Kunststoffdispersion eingesetzt werden.. Es ist auch möglich, eine Kombination aus Wasser und einer oder mehrerer der genannten Flüssigkeiten als Flotte einzusetzen.
In einer bevorzugten Ausführungsform handelt es sich bei der Flotte um Wasser, gegebenenfalls mit weiteren Hilfs- und/oder Zusatzstoffen oder einem Salz, wie bereits erläutert. Im folgenden ist der Einfachkeit halber von Wasser bzw. einer wäßrigen Dispersion die Rede, ohne daß dies als eine Einschrärikung auf Wasser als Flotte zu verstehen sein soll.
Als Tensid wirksame Substanz. B
Als Tensid wirksame, grenzflächenaktive Substanzen, die für die Emulgie- rung/Dispergierung geeignet sind, sind üblicherweise für diesen Zweck eingesetzte Schutzkolloide und Emulgatoren. Die grenzflächenaktiven Substanzen werden im allgemeinen in einer Menge von 0,1 bis 20 Gew.-%, bevorzugt von 0,5 bis 15 Gew.-% und besonders bevorzugt von 0,5 bis 10 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, eingesetzt.
Geeignete Schutzkolloide sind beispielsweise Polyvinylalkohole, Cellulosede- rivate oder Vinylpyrrolidon enthaltende Copolymerisate. Eine ausführliche Beschreibung weiterer geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Bd. XIV/1, Makromolekulare Stoffe, Georg- Thieme- Verlag, Stuttgart, 1961, S. 411 bis 420. Auch Gemische aus Emulgatoren und/oder Schutzkolloiden können verwendet werden. Vorzugsweise werden als grenzflächenaktive Substanzen ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 2000 liegen. Sie können sowohl anionischer, kationischer als auch nichtionischer Natur sein. Bei der Verwendung von Gemischen grenzflächenaktiver Substanzen müssen die einzelnen Komponenten miteinander verträglich sein, was im Zweifelsfall anhand weniger Vorversuche überprüft werden kann. Gebräuchliche Emulgatoren sind z.B. ethoxylierte Mono-, Di- und Trialkylphenole mit 4 bis 9 Kohlenstoffatomen im Alkylrest (Ethoxylierungsgrad (EO-Grad): 3 bis 50), ethoxylierte Fettalkohole mit 8 bis 36 Kohlenstoffatomen im Alkylrest (EO- Grad: 3 bis 50), Fettalkoholsulfonate, Sulfosucchinate, ε-Sulfonate, Harzseifen sowie Alkali- und Ammoniumsalze von Alkylsulfonaten mit 8 bis 12 Kohlenstoffatomen im Alkylrest und Salze höherer Fettsäuren mit 10 bis 30 Kohlenstoffatomen im Alkylrest. Weitere geeignete Emulgatoren finden sich in Houben-Weyl, Methoden der organischen Chemie, Bd. XIV/1. Makromolekulare Stoffe, Georg-Thieme- Verlag, Stuttgart 1961, S. 192 bis 206.
Weitere geeignete anionische Emulgatoren sind Bis(phenylsulfonsäure)ether bzw. deren Alkali- bzw. Ammoniumsalze, die an einem oder beiden aromatischen Ringen eine C4-C 4-Alkylgruppe tragen. Diese Verbindungen sind beispielsweise aus US 4,269,749 bekannt. Besonders bevorzugt werden als als Tensid wirksame Verbindungen Natrium- und Kalium-Salze von Arylalkyl- und Alkylsulfonaten oder von Fettsäuren mit 10 bis 18 Kohlenstoffatomen eingesetzt.
In einer weiteren bevorzugten Ausführungsform wird die als Tensid wirksame Substanz ausgehend von einer Fettsäure in situ mit einem Alkalimetallhydroxid in das entsprechende Salz der Fettsäure umgewandelt, das in der Emulsion als Tensid wirksam ist. Anstelle von Alkalimetallhydroxiden können auch Alkalime- tallcarbonate oder Alkalimetallhydrogencarbonate eingesetzt werden. Als länger- kettige Fettsäuren werden bevorzugt Ölsäure, Stearinsäure und Palmitinsäure eingesetzt.
Phenolische Antioxidantien C
Die phenolischen Antioxidantien werden in einer Menge von im allgemeinen 0 bis 65 Gew.-%, bevorzugt von 0,1 bis 59,9 Gew.-%, besonders bevorzugt von 0,5 bis 59,5 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, eingesetzt.
Geeignete phenolische Antioxidatien können bei Raumtemperatur fest oder flüssig sein. In dem erfindungsgemäßen Verfahren ist es insbesondere möglich, Antioxidantien einzusetzen, die einen Schmelzpunkt oberhalb von 100 °C besitzen. Auch Substanzen, die nicht in der Schmelze verarbeitet werden können sondern als Pulver verarbeitet werden müssen, können mit Hilfe des erfindungs gemäßen Verfahrens zu einer homogenen Stabüisatordispersion ohne aufwendige Verfahrensführung verarbeitet werden.
Beispiele für geeignete phenolische Antioxidantien sind Verbindungen der allgemeinen Formel I (entnommen aus: US 5,196,142).
Figure imgf000009_0001
wonn
R1 Ci-Cis-Alkyl, C5-Cι2-Cycloalkyl, Cι-C14-Alkyl-substituiertes Cycloalkyl mit 5 bis 12 Kohlenstoffatomen im Ring, Phenyl oder C - bis -C9-Aralkyl bedeutet,
R2 Wasserstoff, Ci-Ciβ-Alkyl, C5-C12-Cycloalkyl, C C4-Alkyl, substituiertes Cycloalkyl mit 5 bis 12 Kohlenstoffatomen im Ring, Phenyl oder C7-C9- Aralkyl bedeutet,
R , 3 Wasserstoff oder Methyl bedeutet und
n 1 oder 2 ist. und
wenn n = 1 ist, bedeutet A
Figure imgf000009_0002
wonn
x = 0 bis 6 ist.
R6 Wasserstoff, Cι-C23-Alkyl, C5-Cι2-Cycloalkyl, CrC4-Alkyl, substituiertes Cycloalkyl mit 5 bis 12 Kohlenstoffatomen im Ring bedeutet,
R eine Hydroxygruppe und R3 Wasserstoff
bedeuten, oder
wenn n = 2 ist, bedeutet A
Figure imgf000010_0001
worin x = 0 bis 6 ist,
X Sauerstoff oder Schwefel bedeutet,
a 2 bis 6 ist, und
b 3 bis 40 ist,
R4 eine Hydroxygruppe und
R5 Wasserstoff bedeuten, oder, wenn n = 2 ist,
A -S-, -O-, -CH2-S-CH2-, -CHRt, — CH2— N~ CH2
R7 oder einen unsubstituierten oder einen Cι-C2o-Alkylsubstituierten Cι-C2o- Alkylenrest bedeutet, und
R4 eine Hydroxygruppe und
RD Wasserstoff oder
R5 eine Hydroxygruppe und R Wasserstoff oder Cι-C4-Alkyl bedeuten, und
R1 Wasserstoff bedeutet und
R7 Ci-Cis-Alkyl, unsubstituiertes, hydroxysubstituiertes oder Cι-Cι8-Alkyl- substituiertes Phenyl oder Phenyl- oder Hydroxyphenyl-substituiertes Cι-Cι8 -Alkyl bedeuten.
Bevorzugt werden Antioxidantien der allgemeinen Formel la
Figure imgf000011_0001
eingesetzt, worin
Rl, R2, RJ, R5 und R6 die bereits definieren Bedeutungen haben und x = 2 oder 3 ist.
Besonders bevorzugt werden Verbindungen der allgemeinen Formel la eingesetzt, worin die Gruppe -(CxH2x)-, -CH2-CH2- oder
Figure imgf000011_0002
bedeuten.
Weitere geeignete phenolische Antioxidantien sind beispielsweise US 5,196,142 und EP 0 669 367 zu entnehmen. Weitere geeignete Verbindungen sind Verbindungen der Formel (II)
Figure imgf000012_0001
worin Ri Methyl oder Ethyl, R2 C2-C20-Alkyl und R3 Cι-C4-Alkyl bedeutet; oder Verbindungen der Formel (III)
Figure imgf000012_0002
worin R3 Cι-C2-Alkyl, j tert.-Butyl oder Cyclohexyl, L -CH2- oder Tricyclo[5.2.1.02 6]decan-3,3-ylen und n > 1 bedeutet.
R2 bedeutet z.B. Ethyl, Propyl, Butyl, Pentyl, Hexyl. Heptyl, Octyl, Nonyl, Decyl, Undecvl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl Hexadecyl. Octadecyl, Nonadecyl, Icosyl, xx, Docosyl, Tricosyl, Tetracosyl, Pentacosyl, Hexacosyl, Heptacosyl. Octacosyl, Nonacosyl oder Triacolyl.
Eine bevorzugte Bedeutung von R2 ist C3-C30-Alkyl, z.B. C9-Cj3-Alkyl oder Cio- C30-Alkyl. R2 als Cι2-Cι8-Alkyl ist besonders bevorzugt.
R3 bedeutet Methyl, Ethyl, Propyl, iso-Propyl, sec-Butyl oder tert.-Butyl. R3 ist besonders bevorzugt Methyl.
n ist bevorzugt 1 oder 1-5. Von Interesse sind Zusammensetzungen, worin die Verbindung der Formel I
Figure imgf000013_0001
ist.
Ebenfalls von Interesse sind Zusammensetzungen, die Gemische unterschiedlicher Reste R enthalten.
Von Interesse sind weiterhin Zusammensetzungen, worin die Verbindung der Formel II
Figure imgf000013_0002
(mittleres Molekulargewicht: 600 - 700) oder
Figure imgf000013_0003
gemäß EP-A 0 669 367 ist.
Auch die Verbindungen der Formel (II) können als Gemisch von Einzelverbindungen vorliegen. Die Herstellung der Verbindungen der Formeln I und II erfolgt nach allgemein bekannten Methoden, wie sie auch in „Die Stabilisierung der Kunststoffe gegen Licht und Wärme" von J. Voigt, Springer Verlag Berlin-Heidelberg-New York, 1966, beschrieben werden.
Gemäß EP-A 0 669 367 stellt eine Mischung aus den Komponenten b) und c) eine leicht handhabbare Emulsion dar, während Komponente c) für sich alleine bisher nur unter Schwierigkeiten zu emulgieren ist. Diese Schwierigkeiten können mit dem erfindungsgemässen Verfahren überwunden werden.
Neben Verbindungen der Formel (II) und (III) können die erfindungsgemässen Zusammensetzungen zusätzlich herkömmliche Additive enthalten, wie beispielsweise:
Alkylierte Monophenole, z.B. 2,6-Di-tert-butyl-4-methylphenol, 2-butyl-4,6- dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4-n-butyl- phenol, 2,6-Di-tert-butyl-4-iso-butylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Di-octadecyl-4-methylphenol, 2,4,6-Tri-cyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethylphenol, 2,6-Di- nonyl-4-methylphenol, 2,4-Dimethyl-6-( -methyl-undec-l '-yl)-phenol. 2,4- Dimethyl-6-(l '-methyl-heptadec-1 '-yl)-phenol, 2,4-Dimethyl-6-(l '-methyl-tridec- 1 '-yl)-phenol und Mischungen davon.
Alkylthiomethylphenole, z.B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, 2,4-Di- octylthiomethyl-6-methylphenol, 2,4-Di-octylthiomethyl-6-ethylphenol, 2.6-Di- dodecylthiomethyl-4-nonylphenol.
Hydrochinone und alkylierte Hydrochinone, z.B. 2,6-Di-tert-butyl-4-methoxy- phenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-amyl-hydrochinon, 2,6- Diphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl- 4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxy- phenyl-stearat, Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipat.
Hydroxylierte Thiodiphenylether, z.B. 2,2-Thio-bis-(6-tert-butyl-4-methylphenol), 2,2'-Thio-bis-(4-octylphenol), 4,4'-Thio-bis-(6-tert-butyl-3-methylphenol), 4,4'- Thio-bis-(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis-(3,6-di-sec.-amylphenol), 4,4'-Bis-(2,6-dimethyl-4-hydroxyphenyl)-disulfid.
Alkyliden-Bisphenole, z.B. 2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol), 2,2 ' -Methylen-bis-(6-tert-butyl-4-ethylphenol), 2,2 ' -Methylen-bis-[4-methyl-6- (α-methylcyclohexyl)-phenol], 2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis-(6-nonyl-4-methylphenol), 2,2'-Methylen-bis-(4,6-di-tert-bu- tylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(6-tert- butyl-4-isobutylphenol), 2,2' -Methyl en-bis-[6-(α-methylbenzyl)-4-nonylphenol), 2,2'-Methylen-bis-[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-Methylen-bis- (2,6-di-tert-butylphenol), 4,4' -Methylen-bis-(6-tert-butyl-2-methylphenol), 1,1- Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 2,6-Bis-(3-tert-butyl-6-meth- yl-2-hydroxybenzyl)-4-methylphenol, 1 , 1 ,3-Tris-(5-tert-butyl-4-hydroxy-2- methylphenyl)-butan, 1 , 1 -Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dode- cylmercaptobutan, Ethylenglycol-bis-[3,3-bis-(3'-tert-butyl-4'-hydroxyphenyl)- butyrat], Bis-(3-tert-butyl-4-hydroxy-5-methyl-phenyl)-dicyclopentadien, Bis-[2- (3 ' -tert-butyl-2 ' -hydroxy-5 ' -methyl-benzyl)-6-tert-butyl-4-methyl-phenyl]tereph- thalat, l,l-Bis-(3,5.dimethyl-2-hydroxyphenyl)-butan, 2,2-Bis-(3,5-di-tert-butyl- 4-hydroxyphenyl)-propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n- dodecylmercaptobutan, 1 , 1 ,5,5-Tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)- pentan.
Besonders bevorzugt eingesetzte phenolische Antioxidantien sind Octadecyl-3- (3,5-bis(l,l-dimethylethyl)-4-hydroxyphenyl)-priopionat, ein butyliertes Reaktionsprodukt von p-Kresol und Dicyclopentadien, l,l,3-Tris(2'-methyl-4'- hydroxy-5 ' -tert.-butylphenyl)butan, 2,2'-Methylenbis-(6-(l , 1 -dimethylethyl)4- methylphenol sowie 4,4'-Thio-bis(3-methyl-6-tert.-butylphenol).
Die phenolischen Antioxidantien können einzeln oder im Gemisch aus verschiedenen Antioxidantien eingesetzt werden.
Costabilisatoren D
Die Costabilisatoren werden in einer Menge von 0 bis 65 Gew.-%, bevorzugt von 0,1 bis 59,9 Gew.-%, besonders bevorzugt von 0,5 bis 59,5 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, eingesetzt.
Als Costabilisatoren sind organische phosphor- und/oder schwefelhaltige Verbindungen geeignet.
Geeignete Phosphite und Phosphonite sind z.B. Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris-(nonylphenyl)-phosphit, Trilaurylphosphit, Trioctadecylphosphit, Distearyl-pentaerythritdiphosphit, Tris- (2,4-di-tert-butylphenyl)-phosphit, Diisodecylpentaerythrit-diphosphit, Bis-(2,4- di-tert-butylphenyl)-pentaerythritdiphosphit, Bis-(2,6-di-tert-butyl-4-methyl- phenyl)-pentaerythritdiphosphit, Bis-isodecyloxy-pentaerythritphosphit, Bis-(2,4- di-tert-butyl-6-methylphenyl)-pentaerythritdiphosphit, Bis-(2,4,6-tri-tert-butyl- phenyl)-pentaerythritdisphosphit, Tristearyl-sorbit-triphosphit, Tetrakis-(2,4-di- tert-butylphenyl)-4,4' -biphenylen-diphosphonit, 6-Isooctyloxy-2,4,8, 10-tetra-tert- butyl-12H-dibenzyl[d,g]-l,3,2-dioxaphosphocin, 6-Fluor-2,4,8,10-tetra-tert-butyl- 12-methyl-dibenz[d,g] 1 ,3,2-dioxaphosphocin, Bis-(2,4-di-tert-butyl-6-methyl- phenyl)-methylphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-ethylphosphit.
Geeignete organische Phosphorverbindungen sind bevorzugt organische Phosphite. Dabei können aliphatische und aromatische Phosphite eingesetzt werden. Beispiele dafür sind Tris(monononylphenyl)phosphit, Bis-nonylphenyl- pentaerythritoldiphosphit, Bis-octadecanyl-pentyer thritoldiphosphit, Bis-tride- canyl-pentaerythritoldiphosphit, Bis(2,4-di-tert.-butylphenyl)pentaerythritoldi- phosphit, Bis(2,6-di-tert.-butyl-4-methylphenyl)pentaerytrιritoldiphosphit, Iso- propyliden-bis-(phenyl-ditridecyl)diphosphit, Butyliden-bis(3-methyl-6-tert.- butylphenyl-ditridecyl)phosphit, Tris(2,4-di-tert.-butylphenyl)phosphit, ein Gemisch aus Tris(mono- oder bi-nonylphenyl)phosphit, Tisnonylphenylphosphit, Phenyl-didecanylphosphit, Tris-decanylphosphit, Triphenylphosphit, Tris-(2,4- bis-( 1 , 1 -dimethylethyl)phenyl)phosphit, Tertrakis-(2,4-bis- 1 , 1 -dimethylethyl)- phenyl-4 , 4 ' -dipheny lendiphosphit .
Besonders bevorzugt werden Tris-(2,4-bis-(l,l-dimethylethyl)phenyl)phosphit, Trisnonylphenylphosphit Tertrakis-(2,4-bis- 1 , 1 -dimethylethyl)phenyl-4,4' -di- phenylendiphosphit, Bis(2,4-di-tert.-butylphenyl)pentaerythritoldiphosphit und Triphenylphosphit eingesetzt. Diese organischen Phosphite können beispielsweise durch die Alkoxylierung oder Aryloxylierung von PC1 von Alkoholen und Phenolen in Anwesenheit einer Base hergestellt werden.
Geeignete Schwefelverbindungen sind bevorzugt Sulfide, die eine oder mehrere der folgenden Sulfid-Gruppen aufweisen.
R'-CH2-S-CH2-R
worin R und R' unabhängig voneinander eine Alkylgruppe von 1 bis 20 Kohlenstoffatomen oder ein Alkylalkanoat der Formel
ff (CH2)n— C— O(d- bis C20-)alkyl
mit n = 0, 1 oder 2, bedeuten.
In den bevorzugt eingesetzten Sulfiden weist die Alkylgruppe R 1 bis 11, bevorzugt 7 bis 1 1 Kohlenstoffatome auf und die bevorzugte Alkylalkanoatgruppe weist 12 bis 18 Kohlenstoffatome auf, wobei n = 0, 1 oder 2 ist. Beispiele für geeignete Sulfide sind Dilaurylthiodipropionat, Pentaerythritol-tetrakis- (octylthiopropionat), Distearyl-thiodipropionat, Dimyristyl-thiodipropionat, Pentaerythriol-tetrakis(ß-laurylthiopropionat), 2,4-Bis(n-octylthio)-6-(4'-hydroxy- 3 ' ,5 ' -di-tert.-butylanüion)- 1 ,3 ,5-triazin, Trimethylolpropantris(octylthiopropio- nat), Trimethylolethan-tris(octylthiopropionat), Ethylenglycol-bis-(laurylthio- propionat) und Didodecylmonosulfid. Ganz besonders bevorzugt sind 3,3'- Thiodipropionsäuredüaurylester sowie 3,3' -Thiodipropionsäuredistearylester.
Komponente E
Neben den Komponenten A bis D können die Stabilisatordispersionen weitere
Hilfs- und Zusatzstoffe enthalten.
Die Hilfs- und Zusatzstoffe können sowohl geeignet sein, die Herstellung der Dispersion zu erleichtern und deren Stabilität zu verbessern (Seifen, Schutzkolloide, Pickering-Emulgatoren, Bakterizide, Funghizide etc.) als auch die Eigenschaften der zu stabilisierenden Produkte verbessern, wie Lichtschutzmittel beispielsweise aus der Gruppe der gehinderten Amine (HALS-Stabilisatoren, beispielsweise Bis(2,2,6,6,-tetramethyl-4-piperidyl)sebacat; Diester der Sebazinsäure mit 4-Hydroxy-l,2,2,6,6-pentamethylpiperidm; Bis-N,N-(2,2,6,6- tetramethyl-oxy-piperidinyl-)N,N-bisformylhexamethylendiamin), Benzotiazole, wie 2-(2'-Hydroxy-5'methyl-phenyl)-benzotriazol oder 2-(2-Hydroxy-3,5-bis(l,l- dimethylbenzyl)phenyl)2H-benzotriazol; Bis(2-Hydroxy-5-t-octyl-(Benzotriazol- 2-yl)phenyl)-methan; Cyan-acrylate wie Ethyl-2-cyano-3,3-diphenylacrylat oder 2-Ethyl-2-cyano-3,3-diphenylacrylat; und Benzophenone, wie 2,4- Dihydroxybenzophenon, 2-Hydroxy-4-octoxybenzophenon, 2,2'-Dihydroxy- 4,4'dimethoxybenzophenone; sowie antstatische Komponenten wie sie dem Fachmann geläufig sind, beispielsweise Blockcopolymere aus Ethylenoxid- Propylenoxid in unterschiedlicher Zusammensetzung, wie sie beispielsweise unter dem Handelsnamen Pluronics der BASF-AG vertrieben werden, ferner Na- Alkansulfonate, langkettige Alkohole wie Cetylalkohol, Stearylalkohol, sowie deren Ester; ethoxylierte Aminderivate, Glycerinester und -Halbester, Pentaerytrit und dessen Teilester sowie Polyolamine.
Auch die Zugabe von Farbstoffen, Bakteriziden, Funghiziden. Gleitmitteln und Füllstoffen ist möglich.
Geeignete UV-Absorber und Lichtschutzmittel sind
• 2-(2'-Hydroxyphenyl)-benztriazole, wie z.B. 2 -(2 '-Hydroxy- 5- methylphenyl)-benztriazol, 2-(3 ' ,5 ' -Di-tert-butyl-2 ' -hydroxyphenyl)-benz- triazol, 2-(5'-tert-butyl-2'-hydroxyphenyl)benztriazol, 2-(2'-Hydroxy-5'- (1,1 ,3 ,3-tetramethylbutyl)phenyl)benztriazol, 2-(3 * ,5 ' -Di-tert-Butyl-2' -hy- droxyphenyl)-5-chlor-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-methyl- phenyl)-5-chlor-benztriazol, 2-(3 ' -sec-Butyl-5 ' -tert-butyl-2 ' -hydroxyphe- nyl)-benztriazol, 2-(2 ' -Hydroxy-4 ' -octoxyphenyl)-benztriazol, 2-(3 ' ,5 ' -Di- tert-amyl-2'-hydroxyphenyl)-benztriazol, 2-(3',5'-Bis-(α,α-dimethylben- zyl)-2'-hydroxyphenyl)-benztriazol, Mischung aus 2-(3'-tert-Butyl-2'- hydroxy-5'-(2octyloxycarbonylethyl)-phenyl)-5-chlor-benztriazol. 2-(3'- tert-Butyl-5'-[2-(2-ethylhexyloxy)-carbonylethyl]-2'-hydroxyphenyl)-5- chlor-benztriazol, 2-(3 ' -tert-Butyl-2 ' -hydroxy- 5 " -(2-methoxycarbonyl- ethyl)phenyl-5-chlor-benztriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-meth- oxycarbonylethyl)phenyl)-benztriazol, 2-(3 ' -tert-Butyl-2 ' -hydroxy-5 ' -(2-oc- tyloxycarbonylethyl)phenyl)-benztriazol, 2-(3'-tert-Butyl-5'-[2-(-ethylhex- yloxy)carbonylethyl]-2'-hydroxyphenyl)-benztriazol. 2-(3 '-Dodecyl-2'-hy- droxy-5 ' -methylphenyl)-benztriazol und 2-(3 ' -tert-Butyl-2' -hydroxy- 5 ' -(2- isooctyloxycarbonylethyl)phenyl-benztriazol, 2,2 ' -Methylen-bis [4-( 1,1,3,3- tetramethylbutyl)-6-benztriazol-2-yl-phenol]; Umesterungsprodukt von 2- [3*-tert-Butyl-5'-(2-methoxycarbonylethyl)-2'-hydroxy-phenyl]-2H- benztriazol mit Polyethylenglycol 300; [R-CH2CH2-COO(CH2)a]2 mit R =
3 ' -tert-Butyl-4' -hydroxy-5 ' -2H-benztriazol-2-yl-phenyl. • 2-Hydroxybenzophenone, wie z.B. das 4-Hydroxy-, 4-Methoxy-, 4-Octoxy-, 4-Decyloxy-, 4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4'-Trihydroxy-, 2'- Hydroxy-4,4' -dimethoxy-Derivat.
• Ester von gegebenenfalls substituierten Benzoesäuren, wie z.B. 4-tert-Butyl- phenylsalicylat, Phenylsalicylat, Octylphenylsahcylat, Dibenzoylresorcin,
Bis-(4-tert-butylbenzoyl)-resorcin, Benzoylresorcin, 3 ,5-Di-tert-butyl-4- hydroxybenzoesäure-2,4-di-tert-butylphenylester, 3,5-Di-tert-butyl-4-hydro- xybenzoesäurehexadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure- octadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-2-methyl-4,6-di- tert-butylphenylester.
• Acrylate, wie z.B. α-Cyan-ß,ß-diphenylacrylsäureethylester bzw. -iso- octylester, α-Carbomethoxy-zimtsäuremethylester, α-Cyano-ß-methyl-p- methoxy-zimtsäuremethylester bzw. -butylester, α-Carbomethoxy-p- methoxy-zimtsäure-methylester, N-( ß -Carbomethoxy- ß -cy ano vinyl)-2- methyl-indolin.
• Nickelverbindungen, wie z.B. Nickelkomplexe des 2,2'-Thio-bis-[4- (l,l,3,3-tetramethylbutyl)-phenols], wie der 1 :1- oder l :2-Komplex, gegebenenfalls mit zusätzlichen Liganden, wie n-Butylamin, Triethanolamin oder N-Cyclohexyl-diethanolamin, Nickeldibutyldithiocarbamat, Nickel- salze von 4-Hydroxy-3,5-di-tert-butylbenzyl-phosphonsäure-monoalkyl- estern, wie vom Methyl- oder Ethylester, Nickelkomplexe von Ketoximen, wie von 2-Hydroxy-4-methyl-phenyl-undecylketoxim, Nickelkomplexe des l-Phenyl-4-lauroyl-5-hydroxy-pyrazols, gegebenenfalls mit zusätzlichen Liganden. • Sterisch gehinderte Amine, wie z.B. Bis-(2,2,6,6-tetramethyl-piperidyl)- sebacat, Bis-(2,2,6,6-tetra-methyl-piperidyl)-succinat, Bis-(1 ,2,2,5,5-penta- methylpiperidyl)-sebacat, n-Butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malon- säure-bis(l ,2,2,6,6-pentamethylpiperidyl)-ester, Kondensationsprodukt aus 1 -(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernstein- säure, Kondensationsprodukt aus N,N'-Bis-(2,2,6,6-Tetramethyl-4- piperidyl)-hexamethylendiamin und 4-tert-Octylamino-2,6-dichlor- 1 ,3 ,5-s- triazin, Tris-(2,2,6,6-tetramethyl-4-piperidyl)-nitrolotriacetat, Tetrakis- (2.2,6,6-tetramethyl-4-piperidyl)- 1 ,2,3,4-butantetraoat, 1 , 1 ' -( 1 ,2-Ethandiyl)- bis-(3,3,5,5-tetramethylpiperazinon), 4-Benzoyl-2,2,6,6-tetramethylpipe- ridin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Bis-(1, 2,2,6,6- pent__methylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)- malonat, 3-n-Octyl-7,7,9,9-tetramethyl-l,3.8-triazaspirol[4.5]decan-2.4- dion, Bis-(l-octyloxy-2,2,6,6-tetramethylpiperidyl)-sebacat, Bis-(l-octyl- oxy-2,2,6,6-tetramethylpiperidyl)-succinat, Kondensationsprodukt aus N,N'-Bis-(2,2,6,6-teti"amethyl-4-piperidyl)-hexamethylendiamin und 4-
Morpholino-2,6-dichlor-l,3,5-triazin, Kondensationsprodukt aus 2-Chlor- 4,6-di-(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-l ,3,5-triazin und 1 ,2- Bis-(3-aminopropylamino)äthan, Kondensationsprodukt aus 2-Chlor-4,6-di- (4-n-butylamino-l,2,2,6,6-pentamethylpiperidyl)-l,3,5-triazin und 1,2-Bis- (3-aminopropylamino)-äthan, 8-Acetyl-3-dodecyl-7,7,9,9-tetramethyl-l,3,8- triazaspiro-[4.5]decan-2,4-dion, 3-Dodecal-l-(2,2,6,6-tetramethyl-4-pipe- ridyl)pyrrolidin-2,5-dion, 3-Dodecyl-l-(l,2,2,6,6-pentamethyl-4-piperidyl)- pyrrolidin-2,5-dion.
• Oxalsäurediamin, wie z.B. 4,4'-Di-octyloxy-oxanüid, 2.2'-Di-octyloxy- 5,5'-di-tert-butyl-oxanüid, 2.2'-Di-dodecy_oxy-5,5'-di-tert-butyl-oxanüid,
2-Ethoxy-2'-ethyl-oxanüid. N,N'-Bis-(3-dimethylaminopropyl)-oxalamid, 2-Ethoxy-5-tert-butyl-2'-ethyloxanüid und dessen Gemisch mit 2-Ethoxy- 2'-ethyl-5,4'-di-tert-butyl-oxanüid. Gemische von o- und p-Methoxy- sowie von o- und p-Ethoxy-di-substituierten Oxanüiden. • 2-(2-Hydroxyphenyl)-l,3,5-trianine, wie z.B. 2,4,6-Tris(2-hydroxy-4- octyloxyphenyl)-l,3,5-triazin, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis-(2,4- dimethylphenyl)-l,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-(2,4-dimethyl- phenyl)-l,3.5-triazin, 2,4-Bis-(2-hydroxy-4-propyloxyphenyl)-6-(2,4-di- methylphenyl)-l,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4.6-bis(4- methylphenyl)- 1 ,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis-
(2,4-dimethylphenyl)l,3,5-triazin, 2-[2-hydroxy-4-(2-hydroxy-3-butyloxy- propyloxy(phenyl]-4,6-bis(2,4-dimethylpheny_)-l,3,5-triazin, 2-[2-hydroxy- 3 -octyloxypropyloxy)phenyl] -4,6-bis(2,4-dimethylphenyl)- 1 ,3 ,5 -triazin.
• Weiterhin geeignete Hilfs- und Zusatzstoffe sind Metalldesaktivatoren, wie z.B. N,N'-Diphenyloxalsäurediamid, N-Salicylal-N'-salicycloylhydrazin, N,N'-Bis-(salicy_oyl)-hydrazin, N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphe- nylpropionyl)-hydrazin, 3-Salicyloylamino-l ,2,4-triazol, Bis-(benzyliden)- oxalsäuredihydrazid, Oxanilid, Isophthalsäure-dihydrazid, Sebacinsäure-bis- phenylhydrazid, N',N'-Diacetyl-adipinsäure-dihydrazid, N,N'-Bis- salicyloyl-thiopropionsäure-dihydrazid. • Basische Co-Stabilisatoren, wie z.B. Melamin, Polyvinylpyrrolidon, Dicyandiamid, Triallylcyanurat, Harnstoff-Derivate, Hydrazin-Derivate, Amine, Polyamide, Polyurethane, Alkali- und Erdalkalisalze höherer Fettsäuren, beispielsweise Ca-Stearat, Zn-Stearat, Mg-Behenat, Mg-Stearat, Na-Ricinoleat, K-Palmitat, Antimonbrenzcatechinat oder Zinnbrenzcatechinat.
• Nukleierungsmittel, wie z.B. 4-tert-Butylbenzoesäure, Adipinsäure, Diphenylessigsäure.
• Füllstoffe und Verstärkungsmittel, wie z.B. Calciumcarbonat, Silikate, Glasfasern, Talk, Kaolin, Glimmer, Bariumsulfat, Metalloxide und -hydroxide. Ruß. Graphit.
• Sonstige Zusätze, wie z.B. Weichmacher, Gleitmittel. Emulgatoren, Pigmente, Optische Aufheller, Flammschutzmittel, Antistatika, Treibmittel.
Solche Hilfs- und Zusatzstoffe sind unter anderem in EP-A 0 669 367 offenbart.
Das erfindungsgemäße Verfahren ist besonders geeignet, wenn mindestens eine der Komponenten C oder D mit einem Schmelzpunkt von > 100 °C eingesetzt werden. Ganz besonders bevorzugt weist mindestens eine der Komponenten C oder D einen Schmelzpunkt von > 100 °C und mindestens eine der weiteren eingesetzten Komponenten einen Schmelzpunkt unter 100 °C auf. Solche Komponenten können in dem erfmdungsgemäßen Verfahren hervorragend als Feststoff verarbeitet werden.
Herstellung der Stabilisatordispersionen
Die in die Flotte A zu dosierenden Komponenten B, C, D und eventuell weitere Hilfs- und/oder Zusatzstoffe können fest oder flüssig vorliegen. Es kann sich um einzelne Komponenten handeln, oder es werden Stoffgemische eingesetzt, die gemeinsam dem Dispergierorgan zugeführt werden. Die Art und Weise sowie die Reihenfolge der Dosierung wird durch die Eigenschaften der Rohstoffe und die gewünschten Produkteigenschaften bestimmt.
In einer bevorzugten Ausfiihrungsform wird als Flotte nur Wasser vorgelegt und die als Tensid wirkende Substanz wird als Feststoff gemeinsam mit den Komponenten C und D dosiert. Gemeinsam kann dabei bedeuten als Stoffgemisch oder seperat durch die gleiche Öffnung oder unterschiedliche Öffnungen des Dispergierorgans.
In einer weiteren bevorzugten Ausfuhrungsform wird als Flotte bereits ein tensidhaltiges Wasser eingesetzt, in das die Komponenten C und D sowie gegebenenfalls weitere Hilfs- und/oder Zusatzstoffe gemeinsam kontinuierlich dosiert werden und intensiv vermischt werden.
In einer weiteren bervorzugten Ausführungsform wird zunächst eine der Komponenten C oder D mit einer tensidhaltigen Flotte vermischt und in einem zweiten Schritt (in der gleichen Apparatur oder einer geeigneten nachgeschalteten Apparatur) die zweite Komponente D und/oder weitere Hilfs- und/oder Zusatzstoffe in die erste Mischung eingearbeitet. Bei dieser Variante ist es auch möglich, als Flotte Wasser einzusetzen und die als Tensid wirkende Substanz (Komponente B) gemeinsam mit einer ersten Komponente C oder D zu dosieren und in einer zweiten Stufe die weitere(n) Komponente(n) zuzugeben. Diese Varianten sind dann bevorzugt, wenn die erste Komponente C oder D gemeinsam mit der als Tensid wirkenden Verbindung stabilisierend für das ganze System wirkt und bei einstufiger Zugabe noch keine ausreichende Durchmischung erreicht wird.
Die Durchmischung erfolgt im allgemeinen bei Raumtemperatur. Es ist jedoch auch möglich, sofern es für die gewünschten Produkteigenschaften erforderlich ist, daß erfindungsgemäße Verfahren bei höheren oder niedrigeren Temperaturen als Raumtemperatur durchzuführen. Zur Durchfuhrung des Verfahrens im Falle von Wasser als Flotte, Komponente A, sind Temperaturen von im allgemeinen 4 °C bis maximal zum Siedepunkt der am niedrigsten siedenden eingesetzten Komponente, bevorzugt von 10 bis 98 °C, besonders bevorzugt von 15 bis 90 °C geeignet. Bei anderen Komponenten A sind entsprechend geeignete Temperaturbereiche denkbar, die von den für Wasser angegebenen Bereichen gegebenenfalls abweichen können. Ein Temperaturprogramm mit verschiedenen Aufheiz- und Abkühlphasen ist in dem erfindungsgemäßen Verfahren nicht erforderlich. In Stabilisatordispersionen, die in Kautschukdispersionen zum Einsatz kommen, werden beispielsweise oft Komponenten mit Schmelzpunkten unterhalb des Siedepunktes der Flotte eingesetzt. Daher kann es sinnvoll und nützlich sein, die Herstellung der Stabüisatordispersion bei Temperaturen oberhalb des Schmelzpunktes einer oder mehrerer der Komponenten B bis D sowie gegebenenfalls weiterer Hilfs- und Zusatzstoffe E durchzuführen. Hierbei kann es zum Aufschmelzen einer oder aller Komponenten kommen, so daß auf diese Weise nach Abkühlen eine feinteilige Dispersion über eine Emulsionszwischenstufe entsteht.
Schließlich ist auch der direkte Einsatz einer Dispersion denkbar, bei der eine oder mehrere Komponenten in geschmolzener Form vorliegen. Das erfindungsgemäße kontinuierliche Verfahren zur Herstellung von Stabihsatordispersionen ist geeignet, in gegenüber dem Batch- Verfahren des Standes der Technik kurzer Zeit und ohne aufwendige Verfahrensführung feinteilige Stabihsatordispersionen zur Verfügung zu stellen, die zum direkten Einsatz in den Kunststoffdispersionen geeignet sind.
Vorrichtungen
Geeignete Vorrichtungen für die kontinuierliche Erzeugung von Stabihsatordispersionen sind solche, die einerseits kontinuierlich Feststoff und
Flüssigkeiten schnell vermischen können und andererseits auch genügend
Scherenergie einbringen, um das eingebrachte Flüssig-Festgemisch ausreichend zu homogenisieren, wobei auch ein gewisser Anteil Zerkleinerungsarbeit aufzubringen sein kann. Wegen einer möglichen Schaumbildung sollte dabei ein über das unbedingt notwendige hinausgehender Lufteintrag vermieden werden.
Um eine schnelle Vermischung zu gewährleisten, sollten Feststoff und Flüssigkeit intensiv miteinander in Kontakt gebracht werden, was z.B. durch eine zwangsweise Förderung des Feststoffs, beispielsweise mittels eines
Schraubenförderers oder Schrägblattförderers innerhalb eines Zylinders, in dessen Wandungen sich an mehreren Stellen Zufuhröffnungen für die Flüssigphase befinden, erreicht werden kann. Das so vorgemischte Stoffgemisch muß schließlich noch einen Homogenisierungsschritt durchlaufen.
Zur Homogenisierung des Stoffgemisches werden Dispergierorgane eingesetzt. Das Gemisch wird dabei im allgemeinen in einer geeigneten Mischvorrichtung vorgemischt. Es ist jedoch auch möglich, das Mischen in dem Dispergierorgan, in dem die Homogenisierung erfolgt, durchzuführen.
Hierfür bevorzugt eingesetzte Dispergierorgane sind solche, die auf einem durchstörmten Rotor-Stator-Prinzip beruhen. Die Aufgabe des Mischens zwischen
Feststoffen und Flüssigkeiten kann in ein und derselben Vorrichtung wie die Homogenisierung geschehen oder in voneinander getrennten, aber hintereinander geschalteten Verfahrenseinheiten. Dabei kann es ausreichen, daß das zu bearbeitende Stoffgemisch zur Homogenisierung nur eine Rotor-Stator-Einheit durchläuft, oder aber, wenn die gewünschten Produkteigenschaften dies erfordern, mehrere hintereinander geschaltete Rotor-Stator-Einheiten. Diese können identisch aufgebaut sein oder voneinander verschieden sein. Sind die Homogenisierungseinheiten voneinander verschieden, so können sie sich im Durchmesser der Rotor-Stator-Einheiten, in der Spaltweite, der Anzahl und Form der Schlitze der Rotor-Stator-Einheiten oder auch in den Betriebsparametern wie Drehzahl und Durchsatz voneinander unterscheiden. Der Betrieb mit unterschiedlichen Drehzahlen erfordert im allgemeinen eine zweite Antriebseinheit, für die von der ersten Dispergiereinheit unterschiedliche Dispergiereinheit.
Bevorzugt eingesetzte Dispergierorgane, die auf einem durchströmten Rotor- Stator-Prinzip beruhen, weisen mindestens ein Scherelement mit einem feststehenden, kreisförmigen, geschlitzten Stator und einem innerhalb des Stators rotierenden geschlitzten Rotor, der auf einer drehbar gelagerten Antriebswelle montiert ist, auf. Dabei wird die Dispersion so gefördert, daß man die in die Vorrichtung eingeführten Komponenten durch die Rotation des Rotors in dem Scherelement radial von innen nach außen leitet und sie beim bzw. nach dem Durchtritt durch die Schlitze von Rotor und Stator einer so starken Scherung unterwirft, daß eine feinteilige Dispersion gewonnen wird.
Solche Dispergierorgane sind beispielsweise in DE-A-196 54 169 beschrieben, worin der Einsatz solcher Organe zur Koagulation von Pfropfkautschukdispersionen offenbart ist.
Zur Durchführung des erfindungsgemäßen Verfahrens sind weiterhin Dispergierorgane geeignet, mit zumindest einem Scherelement, das einen Stator und einen innerhalb des Stators angeordneten, in etwa komplementär zu dem Stator ausgebildeten Rotor aufweist, wobei die zueinander weisenden Oberflächen des Stators und des Rotors eine auf dieser Oberfläche ausgebildete und von dieser in Richtung auf das jeweilige andere Element wegweisende Struktur zeigen, und zwischen dem Stator und dem Rotor ein Spalt mit einer vorherbestimmten Spaltweite ausgebildet ist.
In einer bevorzugten Ausführungsform eines solchen Dispergierorgans ist der Stator mit einer Struktur in Form eines Zahnkranzes ausgebildet, dessen Zahnreihen radial kreisförmig um den Rotor angeordnet sind, und der Rotor weist eine oder mehrere dazu in etwa komplementär ausgebildete Zahnreihen auf.
Die Spaltweite kann innerhalb eines größeren Bereichs variieren, in Abhängigkeit von der herzustellenden Dispersion und der gewünschten Produktqualität. Spaltweiten von etwa 0,1 bis 10 mm, bevorzugt von 0,2 bis 5 mm, besonders bevorzugt von 0,2 bis 2 mm liefern gute Ergebnisse.
In einer besonders bevorzugten Ausführungsform des Dispergierorgans wird die Homogenisierung durch starke Scherung der Dispersion herbeigeführt, in dem das zu homogenisierende Stoffgemisch durch ein mit hoher Drehzahl laufendes einstufiges oder mehrstufiges Dispergierorgan kontinuierlich gefördert wird, wobei jede Stufe aus einem kreisförmigen geschlitzten Stator und einem darauf abgestimmten, innerhalb des Statorkreises rotierenden, geschlitzten Rotor besteht und die Förderung des zu homogenisierenden Mediums in jedem aus zentral angeströmtem Rotor und Stator bestehenden Verfahrensteil radial von innen nach außen erfolgt. Dabei liegen Umfangsgeschwindigkeiten von dem allgemeinen 1 bis 50 m/s. bevorzugt von 3 bis 30 m/s, besonders bevorzugt von 5 bis 25 m/s an, und die mittleren Verweilzeiten im Scherorgan sind im allgemeinen kleiner als 12 Sekunden, bevorzugt kleiner als 10 Sekunden und besonders bevorzugt kleiner als 8 Sekunden. Derartige Dispergierorgane sind aus einem Gehäuse aufgebaut, in dem auf einer durch einen Motor angetriebenen Welle der oder die Rotoren in den dazugehörigen Statoren mit hoher Geschwindigkeit rotieren. Die Ansaugung des zu dispergierenden Mediums erfolgt axial und die Förderung erfolgt nach Passieren der Rotor-Stator-Einheiten radial. Geeignete Rotor-Stator- Kombinationen weisen je nach Ausstattung und Anwendungsbereich eine oder mehrere Zahnreihen (jeweils auf Rotor und Stator) mit unterschiedlichen Zahnabständen und entsprechenden Zahnlücken auf. Beispiele für solche besonders geeigneten Dispergierorgane sind Mischer des Typs MHD-2000 und Dispax® von IKA®-Maschinenbau.
Das erfindungsgemäße Verfahren wird besonders bevorzugt so durchgeführt, daß die Komponenten B bis E einzeln, als Gemisch oder getrennt voneinander mittels eines geeigneten Mischorgans intensiv mit der Flotte A vermischt werden, wobei die Komponenten B bis E als Feststoff mittels einer Förderschnecke oder als Flüssigkeit mittels einer Pumpe in eine zylinderf 'rmige, radial mit Bohrungen versehene Mischkammer, durch die die Flotte A strömt, eingetragen und durch rotierende Mischorgane intensiv vermischt wird.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der genannten Dispergierorgane zur kontinuierlichen Herstellung von Stabihsatordispersionen.
Durch die hohen Leistungsdichten, die in den turbulenten Scherströmungen zwischen den Rotor-Stator-Spalten konzentriert werden, entstehen sehr starke Schergefälle zwischen Rotor- und Statorelementen, so daß die Dispersionsteilchen mit hoher Geschwindigkeit aufeinander treffen und weiter dispergiert werden.
Auch Rotoren mit zusätzlichen Messern in axialer und/oder radialer Richtung sind einsetzbar. In einer bevorzugten Ausfiihrungsform kommen Rotoren zum Einsatz, die zusätzlich zu den Scherelementen noch turbinenschaufelartige Verdrängerleisten enthalten und damit zu einer besseren Produktförderung/ Ansaugwirkung fuhren.
Die nachfolgenden Beispiele erläutern die Erfindung zusätzlich.
Beispiele:
Einsatzstoffe:
Komponente A
A Flotte: voll entsalztes (VE) Wasser Komponente B
B als Tensid geeignete Verbindung:
B 1 Kaliumstearat B2 sekundäres Na-Alkylsulfonat
B3 Na-Alkylarylsulfonat
Komponente C
C erste Stabilisatorkomponente
C 1 Octadecyl-3-(3,5-bis( 1 , 1 -dimethylethyl)-4-hydroxyphenyl)-propionat
(= Irganox 1076) C2 butyliertes Reaktionsprodukt von p-Kresol und Dicyclopentadien (Ralox LC, Wingstay L)
C3 l,l,3,-Tris-(2'-methyl-4'-hydroxi-5'-tert.-butylphenyl)butan (Topanol CA) C4 4,4'-Thiobis-(3-methyl-6-tert.butylphenol)
Komponente D
D zweite Stabilisatorkomponente
Dl 3,3'-Thiodipropionsäuredüaurylester (Irganox PS 800)
D2 3,3'-Thiodipropionsäuredistearylester (Irganox PS 802)
D3 TNPP (Triphenylphosphit)
Komponente E
El Ethylenoxis-Propylenoxid-Blockcopolymer, beispielsweise Handels- produkt aus der Reihe Pluronics der BASF AG)
E2 Siliconöl
Dispergierorgan
Es wird ein MHD-2000 Mischer von IKA ©-Maschinenbau eingesetzt, versehen mit einer Feststoffdosierung und einem einstufigen Rotor-Stator-Dispergierorgan mit engen Schlitzen (Größe 4)
Beispiel 1
Herstellung einer Tensidlösung
Durchsatz 600 kg/h Komponente A 570 kg/h, 25°C
Komponente Bl 30 kg/h Man erhält eine homogene Tensidlösung.
Beispiel 2
Herstellung einer Costabilisatoremulsion
Durchsatz 700 kg/h
Komponente A 500 kg/h, 25°C Komponente Bl 70 kg/h
Komponente Dl 130 kg/h
Die Komponenten B und D werden gemeinsam als Feststoffgemisch dosiert.
Man erhält eine Dispersion, die noch Feststoffpartikel der Komponente Dl enthält. Nach zweimaligem Umpumpen im Kreis ist die Dispersion homogen.
Beispiel 3
Herstellung einer Costabilisatoremulsion
Durchsatz 700 kg/h
Komponente A 500 kg/h, 60°C
Komponente B 1 70 kg/h Komponente Dl 130 kg/h
Man erhält eine homogene Emulsion. Beispiel 4
Herstellung einer Stabüisatordispersion
Durchsatz 1000 kg/h
Komponente A 650 kg/h, 86°C
Komponente B 1 50 kg/h
Komponente C 1 100 kg/h
Komponente Dl 200 kg/h
Komponente A wird flüssigkeitsseits gepumpt. Komponente B und C werden als Gemisch dosiert, und Komponente D wird in die gleiche Öffnung, aber unabhängig von den anderen Komponenten gravimetrisch dosiert.
Beispiel 5
Herstellung einer Stabüisatordispersion
Durchsatz 1000 kg/h Komponente A 650 kg/h, 60°C
Komponente Bl 50 kg/h
Komponente C2 100 kg/h
Komponente Dl 200 kg/h
Komponente A wird flüssigkeitsseits gepumpt. Komponente B und D werden als Gemisch dosiert, und Komponente C wird in die gleiche Öffnung aber unabhängig von den anderen Komponenten gravimetrisch dosiert. Man erhält ein Gemisch, wobei die Komponente C noch nicht ausreichend eingemischt ist. Beim Stehenlassen erfolgt Phasentrennung. Zwei MHD-2000 Mischer werden hintereinander angeordnet, beide ausgestattet mit einem zweistufigen Dispergierteü.
Beispiel 6
Gesamtdurchsatz 1000 kg/h
1. Schritt:
Komponente A 50°C, 550 1/h Komponente Bl 50 kg/h Komponente Dl 200 kg/h
2. Schritt:
Flüssigkeitsseitig Produkt aus Schritt 1. Feststoffseitig Komponente C2, 200 kg/h
Man erhält eine homogene Dispersion.
Dispergierorgan 3
MHD-2000 Mischer mit zweistufiger Disper gierstufe, dahintergeschaltet ein dreistufiger Dispax®.
Beispiel 7
Durchsatz 1600 kg/h
Komponente A 50°C, 1100 1 h Komponente B2 50 kg/h
Komponente Dl 300 kg/h
Komponente C 3 150 kg/h
Flüssigkeitsseitig Komponente A + B
Feststoffseitig Komponente C + D unabhängig in gleicher Öffnung
Man erhält eine homogene Dispersion.
Beispiel 8:
Durchsatz 1000 kg/h
Komponente A 25°C, 800 1/h Komponente B2 50 kg/h
Komponente C4 150 kg/h
Flüssigkeitsseitig Komponente A + B Feststoffseitig Komponente C
Man erhält eine homogene Dispersion.

Claims

PATENT ANSPRUCHE
1. Verfahren zur Herstellung von Stabihsatordispersionen zur Stabilisierung von Kunststoffdispersionen enthaltend a) ein Dispergiermittel, die Flotte A, b) mindestens eine als Tensid wirksame Verbindung B, c) gegebenenfalls mindestens ein phenolisches Anüoxidans C, und d) gegebenenfalls mindestens einen Schwefel- oder phosphorhaltigen Costabilisator D, e) gegebenenfalls weitere Hilfs- und/oder Zusatzstoffe
wobei mindestens eine der Komponenten C oder D in der Stabüisatordispersion vorliegt und die Komponenten B, C und D pulverförmig oder flüssig vorliegen können, dadurch gekennzeichnet, daß die Komponenten A bis D kontinuierlich mittels eines Mischers gemischt und in einem
Dispergierorgan homogenisiert werden und die einsatzfertige Stabüisatordispersion kontinuierlich aus dem Dispergierorgan entnommen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stabüisatordispersion
0,1 bis 20 Gew.-%, bezogen auf die Gesamtmasse der
Stabüisatordispersion, einer als Tensid wirksamen Verbindung B,
0 bis 65 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, mindestens eines phenolischen Anüoxidans C, und 0 bis 65 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, mindestens eines schwefel- oder phorphorhaltigen Costabilisators D, 0 bis 40 Gew.-%, bezogen auf die Gesamtmasse der Stabüisatordispersion, weiterer Hilfs- und Zusatzstoffe, - sowie eine solche Menge des Dispergiermittels, der Flotte A, daß die
Gesamtmasse der Stabüisatordispersion 100 Gew.-% beträgt, enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Flotte A Wasser ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Komponente B eine als Tensid wirksame Verbindung ausgewählt aus Natrium- und Kaliumsalzen von Arylalkyl-, Alkylsulfonaten oder Fettsäuren mit 10 bis 18 Kohlenstoffatomen eingesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Komponente C ein phenolisches Anüoxidans ausgewählt aus Octadecyl-3- (3,5-bis(l ,l-dimethylethyl)-4-hydroxyphenyl)-priopionat, ein butyliertes Reaktionsprodukt von p-Kresol und Dicyclopentadien, l,l,3-Tris(2'-methyl-
4'-hydroxy-5'-tert.-butylphenyl)butan, 2,2'-Methylenbis-(6-(l,l-dimethyl- ethyl)4-methylphenol sowie 4,4'-Thio-bis(3-methyl-6-tert.-butylphenol) und Verbindungen sind Verbindungen der Formel (II)
Figure imgf000036_0001
worin Ri Methyl oder Ethyl, R2 C2-C20-Alkyl und R3 Cι-C4-Alkyl bedeutet.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Komponente D ein schwefel- und/oder phosphorhaltiger Costabilisator ausgewählt aus 3,3'-Thiodipropionsäuredüaurylester, 3,3'- Thiodipropionsäure-distearylester, und Tris-(2,4-bis-(l,l-dimethyl- ethyl)phenyl)phosphit, Trisnonylphenylphosphit Tertrakis-(2,4-bis-l,l-di- methylethyl)phenyl-4,4'-diphenylendiphosphit, Bis(2,4-di-tert.-butyl- phenyl)pentaerythritoldiphosphit und Triphenylphosphit eingesetzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eine der Komponenten C oder D einen Schmelzpunkt von > 100°C aufweisen.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß mindestens eine der restlichen Komponenten einen Schmelzpunkt von < 100°C aufweist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ein Dispergierorgan eingesetzt wird, daß auf einem durchströmten Rotor-Stator- Prinzip beruht.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Dispergierorgan aus einem Gehäuse aufgebaut ist, in dem auf einer durch einen Motor angetriebenen Welle ein oder mehrere Rotoren in dazugehörigen Statoren mit hoher Geschwindigkeit rotieren, wobei die Ansaugung der Komponenten axial erfolgt und die Förderung nach Passieren der Rotor-Stator-Einheit radial erfolgt.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Komponenten B bis E einzeln, als Gemisch oder getrennt voneinander mittels eines geeigneten Mischorgans intensiv mit der Flotte A vermischt werden, wobei die Komponenten B bis E als Feststoff mittels einer
Förderschnecke oder als Flüssigkeit mittels einer Pumpe in eine zylinderförmige, radial mit Bohrungen versehene Mischkammer, durch die die Komponente A strömt, eingetragen und durch rotierende Mischorgane intensiv vermischt wird.
12. Verwendung einer Vorrichtung, aufgebaut aus einem Gehäuse, in dem auf einer durch einen Motor angetriebenen Welle ein oder mehrere Rotoren in dazugehörigen Statoren mit hoher Geschwindigkeit rotieren, wobei die Ansaugung der Komponenten axial erfolgt und die Förderung nach Passieren der Rotor- Stator-Einheit radial erfolgt, zur kontinuierlichen Herstellung von
Stabihsatordispersionen.
PCT/EP2000/009413 1999-09-28 2000-09-26 Verfahren zur kontinuierlichen herstellung von stabilisatordispersionen WO2001023498A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19946519A DE19946519A1 (de) 1999-09-28 1999-09-28 Verfahren zur kontinuierlichen Herstellung von Stabilisatordispersionen
DE19946519.3 1999-09-28

Publications (1)

Publication Number Publication Date
WO2001023498A1 true WO2001023498A1 (de) 2001-04-05

Family

ID=7923621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009413 WO2001023498A1 (de) 1999-09-28 2000-09-26 Verfahren zur kontinuierlichen herstellung von stabilisatordispersionen

Country Status (2)

Country Link
DE (1) DE19946519A1 (de)
WO (1) WO2001023498A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092391A1 (de) * 2000-05-31 2001-12-06 Basf Aktiengesellschaft Stabilisierte thermoplastische formmassen
WO2002042362A1 (de) * 2000-11-22 2002-05-30 Basf Aktiengesellschaft Verfahren zur herstellung von additivdispersionen
WO2003008492A1 (de) * 2001-07-14 2003-01-30 Degussa Ag Antioxidantien für polyamide
CN107033419A (zh) * 2017-04-27 2017-08-11 江苏飞亚化学工业有限责任公司 一种阻燃型低粒径高效抗氧剂的制备方法
WO2017211783A1 (en) 2016-06-06 2017-12-14 Ineos Styrolution Group Gmbh Process for producing a stabilizer dispersion and process for producing a thermoplastic composition stabilized with the stabilizer dispersion
CN109810289A (zh) * 2018-12-27 2019-05-28 江苏迈达新材料股份有限公司 一种液体复合抗氧剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466956A1 (de) * 2003-04-07 2004-10-13 Clariant International Ltd. Hochkonzentrierte, lagerstabile wässrige Dispersionen zur Stabilisierung von Lacken und Lasuren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962123A (en) * 1974-05-20 1976-06-08 Ciba-Geigy Corporation Phenolic antioxidant aqueous dispersions
EP0200684A2 (de) * 1985-05-02 1986-11-05 Ciba-Geigy Ag Verfahren zum Stabilisieren von kugelförmig polymerisierten Polyolefinen
EP0439427A1 (de) * 1990-01-24 1991-07-31 Ciba-Geigy Ag Wässrige Emulsionen, enthaltend Antioxidantien
EP0488550A1 (de) * 1990-11-30 1992-06-03 Rohm And Haas Company Thermische Stabilisatoren
EP0761724A2 (de) * 1995-08-30 1997-03-12 Dow Corning Toray Silicone Company Ltd. Verfahren zur kontinuierlichen Herstellung von Organopolysiloxanemulsionen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063274A (ja) * 1983-09-16 1985-04-11 Mitsui Toatsu Chem Inc 酸化防止剤分散液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962123A (en) * 1974-05-20 1976-06-08 Ciba-Geigy Corporation Phenolic antioxidant aqueous dispersions
EP0200684A2 (de) * 1985-05-02 1986-11-05 Ciba-Geigy Ag Verfahren zum Stabilisieren von kugelförmig polymerisierten Polyolefinen
EP0439427A1 (de) * 1990-01-24 1991-07-31 Ciba-Geigy Ag Wässrige Emulsionen, enthaltend Antioxidantien
EP0488550A1 (de) * 1990-11-30 1992-06-03 Rohm And Haas Company Thermische Stabilisatoren
EP0761724A2 (de) * 1995-08-30 1997-03-12 Dow Corning Toray Silicone Company Ltd. Verfahren zur kontinuierlichen Herstellung von Organopolysiloxanemulsionen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092391A1 (de) * 2000-05-31 2001-12-06 Basf Aktiengesellschaft Stabilisierte thermoplastische formmassen
US6835776B2 (en) 2000-05-31 2004-12-28 Basf Aktiengesellschaft Stabilized thermoplastic molding materials
WO2002042362A1 (de) * 2000-11-22 2002-05-30 Basf Aktiengesellschaft Verfahren zur herstellung von additivdispersionen
WO2003008492A1 (de) * 2001-07-14 2003-01-30 Degussa Ag Antioxidantien für polyamide
AU2002328874B2 (en) * 2001-07-14 2007-01-11 Raschig Gmbh Antioxidants for polyamides
WO2017211783A1 (en) 2016-06-06 2017-12-14 Ineos Styrolution Group Gmbh Process for producing a stabilizer dispersion and process for producing a thermoplastic composition stabilized with the stabilizer dispersion
KR20190015510A (ko) * 2016-06-06 2019-02-13 이네오스 스티롤루션 그룹 게엠베하 안정화제 분산액을 생산하는 방법 및 안정화제 분산액에 의해서 안정화된 열가소성 조성물을 생산하는 방법
US10815342B2 (en) 2016-06-06 2020-10-27 Ineos Styrolution Group Gmbh Process for producing a stabilizer dispersion and process for producing a thermoplastic composition stabilized with the stabilizer dispersion
KR102383487B1 (ko) 2016-06-06 2022-04-05 이네오스 스티롤루션 그룹 게엠베하 안정화제 분산액을 생산하는 방법 및 안정화제 분산액에 의해서 안정화된 열가소성 조성물을 생산하는 방법
CN107033419A (zh) * 2017-04-27 2017-08-11 江苏飞亚化学工业有限责任公司 一种阻燃型低粒径高效抗氧剂的制备方法
CN109810289A (zh) * 2018-12-27 2019-05-28 江苏迈达新材料股份有限公司 一种液体复合抗氧剂及其制备方法

Also Published As

Publication number Publication date
DE19946519A1 (de) 2001-08-16

Similar Documents

Publication Publication Date Title
DE69929242T2 (de) Stabilisierte thermoplastische zusammensetzungen
EP0200684B1 (de) Verfahren zum Stabilisieren von kugelförmig polymerisierten Polyolefinen
EP0052579B1 (de) Neue Lichtschutzmittel
EP0500496A1 (de) Stabilisierte Polymere mit Heteroatomen in der Hauptkette
EP0009115A1 (de) Neue Phosphorigsäureester und ihre Verwendung zur Stabilisierung von Polyamiden
EP0119160A1 (de) N-substituierte (4-Hydroxyphenylthiomethyl)-amine oder -ureide
DE3222522A1 (de) Stabilisatorkombinationen, ihre verwendung zur stabilisierung von thermoplastischen polycarbonaten sowie stabilisierte thermoplastische polycarbonate
EP0905181A1 (de) Stabilisatorgemisch für organische Materialien
EP1565522B1 (de) Verwendung uv-absorber enthaltender polymerpulver zur stabilisierung von polymeren gegen die einwirkung von uv-strahlung
EP0081457B1 (de) Phenole und ihre Verwendung als Stabilisatoren
EP0545865B1 (de) Stabilisatorgemisch
WO2001023498A1 (de) Verfahren zur kontinuierlichen herstellung von stabilisatordispersionen
DE10051198A1 (de) Stabilisatoren für Emulsions-Rohkautschuke, synthetischen Latex und Naturkautschuklatex
DE19703047A1 (de) Synergistisches Gemisch aus einem 2,4-Dimethyl-6-s-alkylphenol und einem sterisch gehinderten Phenol
DE19855598A1 (de) Stabilisierung von Polyamid, Polyester und Polyacetal
DE19712788A1 (de) Stabilisierung von Polyamid, Polyester und Polyketon
DE112004000970T5 (de) Polymerzusammensetzungen, die Stabilisatorverbindungen umfassen, welche Tricyclodecylmethylgruppen besitzen
DE69821261T2 (de) Morpholin-endständige, gehinderte amin-substituierte aminotriazine und deren verwendung als lichtstabillisatoren
EP0579576A1 (de) 2,4-Dialkyl-6-sec-alkylphenole
EP0324106B1 (de) Verwendung einer Polyolefinformmasse für Dauerkontakt mit extrahierenden Medien
EP0514332B1 (de) Bisphosphite
EP0233153A2 (de) Stabilisierung von Polyphenylenethern mit makrocyclischen Polyalkylpiperidinverbindungen
DE3541234A1 (de) Substituierte (4-hydroxyphenylthioalkyl)-derivate
EP0152022B1 (de) Di-(substituiertes hydroxyphenylthio)-alkane und -cycloalkane und sie enthaltende Stoffzusammensetzungen
DE2324922A1 (de) Polyolefine mit erhoehter verarbeitungsstabilitaet und mit verbesserter farbe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase