WO2001022801A1 - Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes - Google Patents

Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes Download PDF

Info

Publication number
WO2001022801A1
WO2001022801A1 PCT/JP1999/005317 JP9905317W WO0122801A1 WO 2001022801 A1 WO2001022801 A1 WO 2001022801A1 JP 9905317 W JP9905317 W JP 9905317W WO 0122801 A1 WO0122801 A1 WO 0122801A1
Authority
WO
WIPO (PCT)
Prior art keywords
insect
entomopathogenic fungi
inoculant
fungi
entomogenous
Prior art date
Application number
PCT/JP1999/005317
Other languages
English (en)
French (fr)
Inventor
Hiroki Sato
Mitsuaki Shimazu
Original Assignee
Forestry And Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry And Forest Products Research Institute filed Critical Forestry And Forest Products Research Institute
Priority to PCT/JP1999/005317 priority Critical patent/WO2001022801A1/ja
Priority to KR10-2002-7004042A priority patent/KR100432281B1/ko
Publication of WO2001022801A1 publication Critical patent/WO2001022801A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/10Mycorrhiza; Mycorrhizal associations
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor

Definitions

  • the present invention relates to an inoculant, an insect bed and a production method for producing fruit bodies of entomopathogenic fungi.
  • the present invention relates to an inoculant, an insect bed, and a production method for easily mass-producing fruit bodies of entomopathogenic fungi such as insects.
  • BACKGROUND ART Entomopathogenic fungi are used as materials for Chinese herbal medicines and high-grade foods such as cordyceps.
  • it is usually expensive to collect natural products in the field, and the quality is often uneven.
  • the ecology of entomopathogenic fungi is unknown, and it is difficult to obtain large quantities of fruiting bodies of uniform quality by field sampling. Therefore, artificial culture of entomopathogenic fungi has been attempted.
  • entomopathogenic fungi When isolation culture is performed on an agar medium such as Sabouraud medium based on ascospores or fruiting bodies, entomopathogenic fungi usually grow in the form of hyphae. However, since the hypha has a filamentous structure, the needle is easily clogged in the injection vaccination, and the hypha is not suitable as an inoculation source for the injection vaccination.
  • Conidia also called conidia also have the following problems as inoculation sources. Hyphae grown on agar medium form conidia. It is possible to use conidia as an inoculum, but it takes a lot of work to get the volume for a large inoculation. The general method for obtaining conidia is shown below.
  • hyphae are grown on an agar medium in a petri dish, and conidia are formed thereon. Pour sterilized water into the Petri dish and rub the hypha with a sterilized glass rod to separate the conidia from the hypha.
  • the conidia suspension obtained in this way is
  • the process of adding sterile water to each petri dish, rubbing, and obtaining a conidiospore suspension must be repeated.
  • 10 to 20 ml of sterilized water is used per petri dish, the number of conidia remaining in the petri dish even after rubbing is large, and there is a lot of loss as an inoculum source, and the efficiency is poor.
  • the conidiospores begin to form approximately two days after inoculation of the hypha on the agar medium (under 25 ° C and 24 hours illumination).
  • the germination rate of the conidia was 90% for conidia 3 days after inoculation of the mycelium, but reached 50% on the 9th day after hyphal inoculation.
  • the germination rate drops sharply thereafter, and almost no germination occurs on the 15th day after hyphal inoculation.
  • the colony of fungi grows concentrically, so that the one at the center becomes older conidia.
  • conidia are used as an inoculum, old conidia and new conidia are mixed, and the germination rate is not uniform. It is difficult to stabilize the fruiting body formation rate. That is, it is difficult to obtain a large amount of conidia having stable properties.
  • the present invention has been made in view of the above-described problems, and the present invention aims to mass-produce fruit bodies of entomopathogenic fungi such as cordyceps, in a simple manner, in a short period of time, at low cost. With the goal.
  • the present inventors have conducted intensive studies to achieve the above object, and found that the use of hypgurodies of entomopathogenic fungi makes it possible to easily mass-produce fruit bodies of entomopathogenic fungi. Was completed.
  • the present invention is as follows.
  • An inoculant for producing fruit bodies of entomopathogenic fungi which contains the entropic fungal hyfal body.
  • a method for producing an inoculant for the production of fruiting bodies of entomopathogenic fungi wherein the cultivation of enthal pathogenic fungi is carried out by shaking and cultivating the hyfal body.
  • the method for producing fruit bodies of the entomopathogenic fungi wherein the insect is in the form of a pupa.
  • the present invention also provides the method for producing fruit bodies of the entomopathogenic fungi, wherein the entomopathogenic fungi are fungi belonging to the genus Cordyceps.
  • Fig. 1 An outline of the life cycle is shown in Fig. 1. Taking Pleurotus mushroom, an entomopathogenic fungus and a kind of cordyceps, as a specific example, its life cycle is considered to be roughly as follows.
  • the body of the pupae is a bundle of hyphae, and the tip of the body forms a club-shaped locust.
  • ascocysts When the ascus is crushed, multiple asci appear, with filamentous spores inside. Spores are germ cells that can become new individuals by themselves in plants and fungi, and spores in asci are called ascospores.
  • the ascospores are sexual spores. Ascospores jump out of the ascosils to the outside world, germinate under a predetermined favorable environment such as under fallen leaves, and form hyphae composed of a plurality of cells.
  • hyphae mainly enter the body of insects in the soil, such as insects in the form of pupae, through the body surface and infect them.
  • Hyphae that have been transcutaneously infected and have invaded the body of insects become hyperfalbodies that exhibit a yeast-like morphology and multiply in the body.
  • the insects die, while the Hyphal podii returns to the mycelial form again, where the hyphae bundle up and out of the host's body to form fruiting bodies.
  • insect pathogenic fungi is a general term for a group of eukaryotes, such as mushrooms, molds, yeasts, and slime molds, that form fruiting bodies with insects as their host, and does not include prokaryotic bacteria.
  • the “bearing body” is a bundle of hyphae, and refers to a bundle that has reached a locus or a conidiophore bundle. When simply referred to as fruiting bodies, both a bundle of hyphae grown from asexual spores and a bundle of hyphae grown from sexual spores are included.
  • Cordyceps sinensis refers to fungi belonging to the genus Ascomycota, karyophyte web, ergot fungi, ergot fungi, and the genus Cordyceps (Cor dyc eps), and Included in pathogenic fungi.
  • hypothalamic body refers to a cell in a form that entomopathogenic fungi exhibit when they proliferate in the body of an insect.
  • Hyfalbodies usually consist of a single cell, are morphologically yeast-like, and are distinct from hyphae.
  • yeast-like refers to a state in which the cells grow in a single cell cylindrical shape by budding.
  • blast spores The morphology of entomopathogenic fungi when they multiply in the body of an insect is sometimes referred to as blast spores, cylindrical spores, short hyphae, or segmented cells. Any form that entomopathogenic fungi exhibit when they proliferate in the body of an insect is referred to as a hyphal body.
  • the insect bed is an insect body that becomes a host of the fungus and serves as a place where the fungus grows.
  • an inoculant and an insect fungal bed for producing fruit bodies of a predetermined entomopathogenic fungus are provided.
  • fruit bodies of entomopathogenic fungi can be easily mass-produced.
  • the inoculant of the present invention is characterized in that it contains an entopathogenic fungus, Hyfalbody. Entomopathogenic fungi are as described above.
  • the present invention is applicable to entomopathogenic fungi capable of forming a hyfal body, the entomopathogenic fungi used in the present invention are preferably selected from the group consisting of the genus Cordyceps and the genus Akanthomyces.
  • Genus, bo Beauveria, Gibellula, Hirsutel la, Hymenostilbe, Metarhizium, Nomuraea, Paces i o ), Fungi belonging to the genus such as the genus Paraisaria araisaria), the genus Stilbella, the genus Tilachli dium, the genus Tripypocladium, and more preferably the fungi belonging to the genus Cordyceps. And particularly preferably, Corticeseps sinensis, Sana thousand bamboo (Cordyceps m_i 1 i tarjs) and the like.
  • the high fal body is as described above.
  • the inoculant containing the hyfal body can be obtained by shaking and culturing mycelia and Z or conidia of entomopathogenic fungi. By shaking and culturing hyphae, etc., it is possible to easily produce a large amount of hyfal body. Further, once the hyfal body is obtained, shaking culture may be performed based on the hyfal body to grow the hyfal body. As the medium used for shaking culture, a liquid medium is usually used because of easy handling.
  • the medium can be appropriately prepared according to the type of insect pathogenic fungi, and preferably includes a sub-mouth medium, a potato juice medium, a silkworm pupa juice medium, and more preferably, a sub-mouth medium.
  • the sub-culture medium is originally an agar medium containing agar (Sabouraud glucose agar medium), but it is usually used as a liquid medium except for agar because it is used for shaking culture when growing Hyfal body. (Note that "Sabouraud glucose agar medium” is described in "Fungibook, Kodansha, pp. 127, No. 25.")
  • sucrose, yeast extract, etc. are mixed with the above liquid medium. It can also be used.
  • Particularly preferred specific examples of the liquid medium include a Sabouraud sucrose liquid medium in which the sugar content of the Sabouraud medium is changed from glucose to sucrose, and a yeast extract is further added, and a yeast extract is added.
  • the inoculant of the present invention may contain Hyfalbodies, for example, by diluting the liquid medium in which the Hyfalbodies are grown as described above, and appropriately adjusting the concentration of Hyfalbodies.
  • the inoculant of the present invention can be used.
  • a biologically acceptable solution can be used.
  • the liquid medium used for growing the hyfal body as described above may be used as it is, or sterile water, insect cells, or the like.
  • a liquid such as a liquid medium for culture, physiological saline, or Carlson's solution can also be used.
  • the inoculant of the present invention may contain other components which may be added to the inoculant to be inoculated into the body of the insect.
  • Conditions such as the temperature and the degree of shaking during liquid culture for growing hypgurodies can be appropriately adjusted according to the type of insect pathogenic fungi. Preferred conditions are as follows.
  • the preferred temperature during liquid culture is 20 to 25 ° C.
  • the degree of shaking may be adjusted as appropriate. For example, shaking may be performed at about 100 to 110 (reciprocating Z).
  • it is preferable that shaking culture for obtaining a high falbody is performed under dark conditions.
  • the conditions for shaking and culturing the Hyfal body should be the same regardless of whether the culture is started from hyphae or conidia or if the culture is started from the already obtained Hyfal body itself. Can be.
  • Hyphalbodies obtained under the above conditions are consistent and uniform, leading to stable inoculant quality. Synchronization here means that the growth speeds are uniform, and because of the synchronization, a large amount of Hyfal body in the same developmental stage can be obtained.
  • the dosage form of the inoculant of the present invention is not particularly limited, but is preferably a dosage form that can be directly introduced into the body of an insect, and specifically, an injection. As will be described below, injection can improve the infection rate and contribute to stable fruiting body production.
  • the suspension containing Hyfalbodies cultured in a liquid medium can be prepared to an appropriate concentration and used as it is as an injection.
  • the insect bed of the present invention is characterized in that a hyphal body of an entomopathogenic fungus is directly inoculated into a body and the hyphal body is retained in the body.
  • Insects that form an insect bed depend on the type of entomopathogenic fungus to be inoculated. Preferable examples include a green squirrel, a locust beetle (also referred to as a mealworm), a silkworm, and a beetle, and particularly preferred are a green stalk, a beetle, and a silkworm.
  • the insect bed can be selected without being limited to the combination of the original host and the entomopathogenic fungi in nature, and insects other than the original host can also be used as the insect bed.
  • a pupa-shaped insect as an insect bed because it does not require bait and can be packed in high density.
  • the insect bed can be either an adult or a larva, and it can be alive or dead if it is not corroded, and it is necessarily dormant. You don't have to. Further, for example, frozen pupae can be used.
  • a method such as injecting the inoculant of the present invention described above as an injection into an insect can be used.
  • fruiting bodies can be formed by subjecting them to appropriate conditions for fruiting body formation.
  • the insect fungal bed of the present invention can be stored for one month or more by low-temperature management (about 415 ° C), depending on the inoculated entomopathogenic fungi and the type of host insect.
  • the fruiting body production method of the present invention is characterized in that an insect pathogenic fungus, Hyfalbody, is inoculated into an insect body.
  • an insect pathogenic fungus Hyfalbody
  • the inoculant of the present invention may be used as an injection and injected into a host insect. It can be performed by such as. Inoculation into insects by injection leads to high infection rates, stable and short-term production of fruiting bodies.
  • the concentration of high-Fal body in force inoculant which depends on the type of insect fungi are preferably, be 1 0 4 -1 0 7 cells Zm 1 , particularly preferably Ru 1 0 6 -1 0 7 cells Zm 1 der. Adjusting the concentration to such a range increases the infection rate, This is preferable in that the period up to entity formation is shortened. Further, setting the concentration in such a range does not cause any inconvenience in operation such as clogging of the injection needle.
  • the inoculation amount of Hyfal body can be appropriately adjusted depending on the size of the insect, the concentration of the inoculant, and the like. In general, it is preferable to inoculate as much as possible the amount of Hyfal body in such an amount that the inoculant does not overflow from the insect body. The greater the amount of Hyfalbodies introduced into the body, the earlier the host insects will die, and the shorter the time to fruiting body formation will tend to be.
  • Preferred types and forms of the insects to be inoculated with the Hyfal body are the same as those listed as preferable in the description of the insect bed of the present invention.
  • the types of entomopathogenic fungi preferably used in the fruiting body production method of the present invention are the same as the entomopathogenic fungi listed as preferable in the inoculant of the present invention.
  • insects inoculated with Hyfalbodies ie, insect bed
  • appropriate environmental conditions such as temperature and humidity
  • preferable conditions include, for example, the following conditions.
  • the temperature for generating and growing fruiting bodies from insects inoculated with Hyfal body is preferably 20 to 25 ° C. Within this range, the period until the fruiting body is formed can be shortened. Conversely, below this range, fruiting body formation may be difficult, or fruiting body formation may take a long time.
  • the insect bed is preferably kept under moisturizing conditions, specifically at a humidity of 90 to 100%. It is easy to use moss to control insect beds under such temperature and humidity conditions.
  • the illuminance is preferably 50 to 3501X, and the length of the light period can be adjusted appropriately.
  • Hyfal body as an inoculant is that it can be mass-produced in a short period of time.
  • Hyfalbodies can be cultured in a liquid medium, they can be used immediately as injections by simply adjusting the culture solution containing Hyfalbodies to an appropriate concentration, and handling is easy. For example, the same amount of separation as when a hyphal adibody is grown and cultured once in a 500 ml flask in a 200 ml liquid medium (25 ° C, Sabouraud sucrose liquid medium with yeast extract).
  • a mycelium When trying to obtain spores, a mycelium must be planted on 10 to 20 petri dishes, sterilized water must be added, and scraping must be performed to produce a suspension. Take it.
  • Hyphalbodies are naturally occurring forms of entomopathogenic fungi in insects in nature. According to the present invention, insects can be killed in a short period of time by forcibly introducing them into the body of an insect after being prepared in a growth form in advance. In the field, it is believed that hyphae or conidia of cordyceps attach to the body surface of the insects and transdermally transmit and begin to proliferate. It is said that it takes about 40 days to die. However, it can be killed in 2-3 days according to the injection of Haifal body. It is thought that the short-term death of insects is caused by the high concentration of Hyfal bodied being injected directly into insect blood. The ability to greatly reduce the time between inoculation and fruiting body formation is a major advantage of Hyphalbody as an inoculation source.
  • Hyfalbodies can be maintained in a liquid medium suspension at low temperatures (about 5 ° C).
  • Hyfalbodies are also an easy-to-handle inoculant because they are easy to preserve.
  • FIG. 1 is a diagram showing the outline of the life cycle of entomopathogenic fungi.
  • BEST MODE FOR CARRYING OUT THE INVENTION examples of the present invention will be shown, and the present invention will be described in more detail. However, the present invention is not limited to the following examples.
  • An inoculant containing the Hyfal body of Pleurotus mushroom was prepared as follows. Sanagitake was collected from Iwakiyama, Japan (Aomori Prefecture) in July 1995, and used on agar medium at the Forestry Research Institute, Forestry Agency, Ministry of Agriculture, Forestry and Fisheries (Forest Biology, Forestry Research Institute) Department of Insect Pathology: strain number F—1 1 76-21). Hyphae are collected from the stored strain of P. osmanthus, and the mycelium is added to a liquid medium of Sabouraud sucrose containing yeast extract, and cultured for 5-7 days by a liquid shaking culture method (25 ° C, dark condition).
  • Sabouraud sucrose liquid medium for adding yeast extract is obtained by adding leptone, yeast extract, and sucrose to water in the amounts shown in Table 1.
  • the yeast extract used was BACTO® YEAST EXTRACT manufactured by DIFCO.
  • Example 2-1 Injections containing Hyfalbodies were injected into the pupae of Gotoga to form fruiting bodies under three different temperature conditions. Specifically, it is as follows.
  • Example 2-2 An inoculant containing a hyfalbody was injected into a pupa of a locust beetle, Hyphofal body, and a fruit body was formed under three kinds of temperature conditions in the same manner as in Example 2-1. Used as a high-Fal body concentration 1. 7 X 1 0 7 cells Zm 1 as inoculant, injections population which is 1 3 5 animals in total, was maintained by 45 animals under each temperature. Other conditions were the same as in Example 2-1. Table 3 shows the details up to the 47th day after inoculation. ⁇ Table 3> Results of Example 2-2
  • the locust beetle belongs to the order Lepidoptera, is taxonomically different from the order of the Lepidoptera, to which Gynostria belongs, and is not naturally the host of pupae in the natural world.
  • it has been clarified that fruiting bodies can be formed even using a locust beetle, which is not usually a host in the natural world.
  • Example 2-3 silkworm pupae were high Fal body concentration 2.3 1 0 7 cells] 1 1 of inoculant 1 0 0/1 injection per head and moistened pupae with water sphagnum It was embedded and moisturized and maintained in a laboratory at room temperature of 25 ° C. On the shortest day 47, the formation of mature fruiting bodies was confirmed.
  • the pupa of the silkworm is larger than the pupa of the insect used in Examples 2-1 and 2-2, it can be easily inoculated with a syringe such as a tuberculin syringe for humans, and the fruiting body can be easily produced. .
  • Sterile sterilized syringes can be easily obtained for humans, and it is necessary to gain some experience in inoculation using the microdispenser described in Example 2-1. If it can be used, even beginners can easily inoculate. Further, it was revealed that the pupa of the silkworm was not in a diapause state, and that the method of the present invention can form a fruiting body even from an insect that is not a diapause.
  • an inoculant for producing fruit bodies of entomopathogenic fungi such as Cordyceps can be easily, inexpensively, and mass-produced.
  • the inoculant of the present invention can be uniform in quality, easy to handle, and can be stored.
  • fruit bodies of entomopathogenic fungi such as Cordyceps can be easily, inexpensively, and efficiently mass-produced using this inoculant.
  • fruiting bodies can be produced regardless of the season.
  • Entomopathogenic fungi such as cordyceps are used as herbal medicines and high-end foods. Insect pathogens have also been developed for use as biological pesticides.
  • the present invention is expected to contribute to the field of utilizing such entomopathogenic fungi in stably supplying a large amount of fruiting bodies of entomopathogenic fungi.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Mushroom Cultivation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 接種剤、 昆虫菌床および昆虫病原菌類の子実体生産方法 技術分野 本発明は、 昆虫病原菌類の子実体を生産するための接種剤、 昆虫菌床および生 産方法に関し、 詳しくは冬虫夏草などの昆虫病原菌類の子実体を簡便に大量生産 するための接種剤、 昆虫菌床および生産方法に関する。 背景技術 昆虫病原菌類は、 例えば冬虫夏草などのように漢方薬の材料や高級食品などと して利用されている。 しかし、通常、天然のものを野外採取するため高価であり、 また品質が不揃いな場合が多い。 昆虫病原菌類の生態は不明な点も多く、 野外採 取により品質のそろった子実体を大量に得ることは難しい。 そこで、 昆虫病原菌 類の人工培養が試みられている。
例えば、 寄生昆虫に人工接種した冬虫夏草菌を、 寄主の温度を制御しつつ飼育 し子実体を得る方法が報告されている (特開平 8 — 7 5号公報)。 ここで接種に用 いられているのは、 子嚢胞子の懸濁液であり、 接種はこの懸濁液に蛹を浸漬する ことにより行っている。
また、 蚕の蛹の抽出物を得て、 これを含む人工培地を作製し、 この培地を用い て子実体を形成させることも報告されている (特開平 1 0— 4 2 6 9 1号公報)。 また、 子嚢胞子懸濁液に蛹を浸漬したり、 菌糸を蛹に触れさせて接種したりす る他、 子嚢胞子懸濁液を蛹に注射接種することも試みられているが、 子嚢胞子懸 濁液を注射接種したときには成熟した子実体を得るには至らなかったことが報告 されている (日本菌学会会報 3 6 : 6 7 - 7 2 , 1 9 9 5、 原田ら)。 発明の開示 上記のように、 子嚢胞子、 分生胞子などの胞子または菌糸などを用いて冬虫夏 草を人工的に培養することがいくつか試みられているが、 子嚢胞子などを接種源 とすることには次のような問題点がある。
子嚢胞子は、 接種源として集めにくいという問題点がある。 冬虫夏草などの昆 虫病原菌類は子実体の発生が極めてまれであり、 子実体から子嚢胞子を野外採取 できる機会は極めて少ない。 すなわち、 子嚢胞子を接種源にしょうにも、 子嚢胞 子を大量に野外採集することは極めて困難である。 例えば、 サナギタケの場合、 日本の東北地方では約 1 0年周期で大量発生するといわれているが、 それ以外の 年はほとんど発生せず、 子嚢胞子を採集することはほとんどできない。
野外採集できたとしても、 数本の子実体からでは多数の昆虫に接種するための 子嚢胞子を大量に、 かつ雑菌の混入なしに集めるのは困難である。 野外で生育し ている子実体の表面には様々な細菌類が付着している。 子嚢胞子を形成している 部分を子実体から切り出したり、 子実体から離脱する子嚢胞子を集めて接種源と するのでは細菌類の混入を免れない。 細菌類と冬虫夏草類の子嚢胞子とが混在し ているものを接種した場合、 細菌類のほうが増殖が早い場合が多く、 寄主である 昆虫が腐敗し子実体形成されない。
子嚢胞子または子実体をもとにして、 サブロー培地などの寒天培地で分離培養 を行うと、 通常、 昆虫病原菌類は菌糸の状態で成長する。 しかし、 菌糸は糸状構 造を有するため注射接種しょうにも針が詰まりやすく、 注射接種するための接種 源として菌糸は適さない。
また、 分生胞子 (分生子ともいわれる) も接種源としては次のような問題があ る。 寒天培地上で培養した菌糸は分生胞子を形成する。 分生胞子を接種源とする ことは可能ではあるが、 大量接種のための量を得るには大変手間がかかる。 分生 胞子を得るための一般的な方法を以下に示す。
まず、 シャーレ中の寒天培地上にて菌糸を繁茂させ、 その上で分生胞子を形成 させる。 このシャーレに滅菌水などを注ぎ、 滅菌したガラス棒で菌糸をこすり分 生胞子を菌糸から引き離す。 このようにして得られた分生胞子の懸濁液を接種源 とすることができるが、 シャーレ 1枚ごとに滅菌水を入れ、 こすり、 分生胞子の 懸濁液を得るという作業を繰り返さなければならない。 1枚のシャーレあたり 1 0〜 2 0 m 1の滅菌水を使用するが、 こすり取ってもシャーレに残る分生胞子数 が多く、 接種源とするにはロスが多く、 効率が悪い。
さらに、 分生胞子は、 菌糸を寒天培地に接種した後、 ほぼ 2日目から形成が始 まる(2 5 °C、 2 4時間照明条件下)。できた分生胞子を寒天培地に接種したとき、 分生胞子の発芽率は菌糸接種後 3日目の分生胞子では 9 0 %あるものの、 菌糸接 種後 9日目では 5 0 %にまで落ち、 その後は発芽率が急激に落ち、 菌糸接種後 1 5日目にはほとんど発芽しなくなる。 菌のコロニ一は同心円状に成長することか ら中心部のものほど古い分生子になる。 分生胞子を接種源とする場合、 古い分生 胞子と新しい分生胞子とが混在しており発芽率の不均一なものを接種することに なり、 接種後の結果、 例えば昆虫の死亡率、 子実体形成率などが安定しにくい。 すなわち、 安定した性質を有する分生胞子を大量に得るのは困難である。
また、 子実体、 菌糸、 分生胞子などを昆虫の体表に接触させ経皮感染させる方 法では、 例えばサナギタケ (Cordyceps mi l i t ar i s) の場合、 7 5〜: 1 0 0日以上 の日数がかかる。
本発明は上記のような問題点を踏まえてなされたものであり、 本発明は、 品質 のそろった冬虫夏草などの昆虫病原菌類の子実体を、 簡便に、 短期間で、 安価に 大量生産することを目的とする。
本発明者らは上記の目的達成のため鋭意研究を進めたところ、 昆虫病原菌類の ハイフアルボディを用いることにより、 昆虫病原菌類の子実体を簡便に大量生産 することができることを見いだし、 本発明を完成させた。
すなわち、 本発明は以下の通りである。
( 1 ) 昆虫病原菌類のハイファルボディを含有する、 昆虫病原菌類の子実体を生 産するための接種剤。
( 2 ) 昆虫病原菌類の菌糸および/または分生胞子を振とう培養してハイファル ボディを生産する、 昆虫病原菌類の子実体生産のための接種剤生産方法。
( 3 ) 昆虫病原菌類のハイファルボディを振とう培養してハイファルボディを増 殖させる、 昆虫病原菌類の子実体生産のための接種剤生産方法。 ( 4 ) 昆虫病原菌類のハイファルボディが体内に接種された、 昆虫病原菌類の子 実体を生産するための昆虫菌床。
( 5 ) 昆虫病原菌類のハイファルボディを昆虫の体内に接種する、 昆虫病原菌類 の子実体生産方法。
( 6 ) 前記接種を注射することによって行う、 前記昆虫病原菌類の子実体生産方 法。
( 7 ) 前記昆虫が、 蛹の形態である、 前記昆虫病原菌類の子実体生産方法である。 また、本発明は、 前記昆虫病原菌類が、 コルディセプス属に属する菌類である、 前記昆虫病原菌類の子実体生産方法。 昆虫病原菌類の生活環については必ずしも明らかではないところがあるが、 そ の生活環の概略を第 1図に示す。 昆虫病原菌類であって冬虫夏草の一種であるサ ナギタケを具体例にとると、 その生活環はおおむね次のようなものであると考え られる。
サナギタケの子実体は菌糸の束であり、 子実体の先の部分は棍棒状の形をした 子座を形成する。 子座には細かい粒が半分埋もれるようにしてたくさん集まって おり、 この細かい粒は子嚢殻と呼ばれている。 子嚢殻をつぶすと複数の子嚢が現 れ、その子嚢の中には糸状の胞子が入っている。胞子とは、 植物や菌類において、 単独で新たな個体となることができる生殖細胞のことであり、 子嚢に入っている 胞子のことを子嚢胞子という。 この子嚢胞子は有性胞子である。 子嚢胞子は、 子 嚢殻から外界へと飛び出し、 落ち葉の下などの所定の好ましい環境下で発芽し、 複数の細胞からなる菌糸を形成する。 菌糸の一部からは分生胞子とよばれる無性 胞子が形成される場合がある。 自然界では主に菌糸が、 土中にいる昆虫、 例えば 蛹の状態にある昆虫の体内へと体表を通じて侵入し、 感染する。 経皮感染し、 昆 虫の体内に侵入した菌糸は、 酵母状の形態を呈するハイファルボディとなり、 体 内で増殖する。 体内での増殖が進行すると、 昆虫は死亡する一方、 ハイファルポ ディは再び菌糸の形態に戻り、 菌糸が束になって寄主の体内から外に出て子実体 を形成するに至る。
ここで、 本明細書において用いる用語について説明する。 本明細書において、 「昆虫病原菌類」 とは、 昆虫を寄主として子実体を形成するきのこ、 かび、 酵母 類、 粘菌類など真核生物の一群の総称であり、 原核生物である細菌類までは含ま ない。 また、 本明細書において、 「子実体」 とは菌糸の束であり、 子座または分生 子柄束を形成するに至ったものをいう。 単に子実体というときは、 無性胞子から 成長した菌糸の束も、 有性胞子から成長した菌糸の束もいずれも含まれる。 また、 本明細書において、 「冬虫夏草」 とは、 子嚢菌亜門、 核菌網、 麦角菌目、 麦核菌科、 コルディセプス ( Cor dyc eps ) 属に属する菌類のことを意味であり、 昆 虫病原菌類に含まれる。
また、 本明細書において 「ハイファルボディ」 (hypha l body) とは、 昆虫病原 菌類が昆虫の体内で増殖する際に呈する形態をした細胞のことである。 ハイファ ルボディは、 通常、 1つの細胞からなり、 形態的には酵母状を呈し、 菌糸とは区 別される。 酵母状というのは単細胞円筒形状で出芽により増殖する状態を指す。 昆虫病原菌類が昆虫の体内で増殖する際に呈する形態については、 ブラストスポ ァ(b l as t spo r e)、 円筒形胞子、 短菌糸、 分節菌体などと称する場合があるが、 本 明細書では、 昆虫病原菌類が昆虫の体内で増殖する際に呈する形態となっている ものは、 いずれもハイフアルボディというものとする。
また、 本明細書において昆虫菌床とは、 菌類の寄主となり菌類の生育の場とな る昆虫体のことである。
本発明により、 所定の昆虫病原菌類の子実体を生産する接種剤、 昆虫菌床が提 供され、 これらを用いることにより、 簡便に、 昆虫病原菌類の子実体を大量生産 することができる。
以下、 本発明を詳細に説明する。
< 1 >本発明の接種剤
まず、 本発明の接種剤について説明する。 本発明の接種剤は、 昆虫病原菌類の ハイファルボディを含有することを特徴とする。 昆虫病原菌類とは上記で説明し たとおりである。 本発明はハイファルボディを形成させることのできる昆虫病原 菌類について適用可能であるが、 本発明で用いられる昆虫病原菌類として好まし くは、 コルディセプス ( Cor dyc eps ) 属、 アカントミケス (Akan t homyc e s ) 属、 ボ —ベリア (Beauveria) 属、 ギベルラ (Gibellula) 属、 ヒルステラ (Hirsutel la) 属、 ヒメノスティルべ (Hymenostilbe) 属、 メ夕リジゥム (Metarhizium) 属、 ノ ムラエア (Nomuraea) 属、 ぺシロマイセス (Paec i 1 omyces) 属、 パライサリア araisaria) 属、 スティルベラ (Stilbella) 属、 ティラクリディウム (Tilachli dium) 属、 トリポクラディウム (Tolypocladium) 属などの属に属する菌類が例示 され、 より好ましくはコルディセプス属に属する菌類が例示され、 特に好ましく は、 コルティセブス - シ不ンシス (Cordyceps sinensis), サナ千タケ (Cordyc eps m_i 1 i tarjs) などが、例示される。
ハイファルボディとは上記にて説明したとおりである。 ハイファルボディを含 む接種剤は、 昆虫病原菌類の菌糸および Zまたは分生胞子を振とう培養して得る ことができる。 菌糸等を振とう培養することによりハイファルボディを容易に大 量生産することができる。 また、 一旦ハイファルボディが得られれば、 ハイファ ルボディをもとにして振とう培養を行レ 、ハイフアルボディを増殖させてもよい。 振とう培養に用いる培地は、 取り扱い易さなどから、 通常、 液体培地が用いら れる。 また培地は、 昆虫病原菌類の種類に応じ適宜調製することができるが、 好 ましくは、 サブ口一培地、 バレイショせん汁培地、 蚕蛹せん汁培地などが挙げら れ、 より好ましくは、 サブ口一培地、 蚕蛹せん汁培地などが挙げられる。 サブ口 一培地はもともと寒天を含有する寒天培地(Sabouraudブドウ糖寒天培地) である が、 ハイファルボディを増殖させる際に振とう培養を行うため、 通常、 寒天を除 き液体培地として用いる。 (なお、 「Sabouraudブドウ糖寒天培地」 については、 「菌 類図鑑、 講談社、 第 1 2 7 9頁、 No25」 に記載がある。) また、 上記の液体培地に 蔗糖、 酵母エキスなどを配合して用いることもできる。 液体培地として特に好ま しい具体例を挙げると、 サブロー培地の糖分をブドウ糖から蔗糖に変更し、 さら に酵母エキスを配合した酵母エキス加用サブロー蔗糖液体培地などが挙げられ る。
本発明の接種剤はハイファルボディが含まれていればよいが、 例えば、 上記の ようにしてハイファルボディを増殖させた液体培地を希釈し、 ハイファルボディ の濃度を適切に調整することにより本発明の接種剤とすることができる。 また、 例えば注射剤などの接種剤とする場合に、 ハイファルボディを含有させることが できる液体としては生物学的に許容される溶液を用いることができ、具体的には、 上記のようにハイファルボディの増殖に用いた液体培地をそのまま用いてもよい し、 滅菌水、 昆虫細胞培養用液体培地、 生理食塩水、 カールソン氏液などの液体 を用いることもできる。 さらに、 本発明の接種剤には、 昆虫の体内に接種する接 種剤に配合することがある他の成分を配合することもできる。
ハイフアルボディを増殖させるための液体培養時の温度、 振とうの程度などの 条件は、 昆虫病原菌類の種類に応じて適宜調整することができるが、 好ましい条 件は次の通りである。 液体培養時の好ましい温度は 2 0〜 2 5 °Cである。 また、 振とうの程度は適宜調節してよいが、 例えば 1 0 0〜 1 1 0 (往復 Z分) 程度で 振とうすればよい。 また、 ハイファルボディを得るための振とう培養は、 暗条件 下で行うことが望ましい。
ハイファルボディを振とう培養する際の条件は、 菌糸、 分生胞子から培養を始 める場合でも、 また既に得られているハイフアルボディ自体から培養を始める場 合でも同様の条件で行うことができる。
上記のような条件で得られるハイフアルボディは、 同調していて均一であり、 接種剤の品質安定につながる。 ここでいう同調というのは、 増殖の速度が揃って いることであり、 同調しているゆえに同じ発育段階のハイファルボディを多量に 得られる。
本発明の接種剤の剤形に特に制限はないが、 昆虫の体内に直接導入できる剤形 が好ましく、具体的には注射剤などにすることが好ましい。下記にも説明するが、 注射剤とすることは、 感染率などを向上させ、 安定した子実体生産に寄与するこ とができる。 液体培地で培養したハイファルボディを含む懸濁液は、 適切な濃度 に調製し、 そのまま注射剤とすることができる。
< 2 >本発明の昆虫菌床
次に、 本発明の昆虫菌床について説明する。 本発明の昆虫菌床は、 昆虫病原菌 類のハイフアルボディが体内に直接接種され、 体内にハイフアルボディが保持さ れた状態であることを特徴とする。
昆虫菌床となる昆虫は、 接種しょうとする昆虫病原菌類の種類にもよるが、 好 ましくはョトウガ、 チヤイロコメノゴミムシダマシ (ミールワームとも言われ る)、 カイコ、 ハチノスッヅリガ ハスモンョ トウなどが挙げられ、 特に好ましく はョトウガ、 チヤイロコメノゴミムシダマシ、 カイコなどが挙げられる。 ただし、 昆虫菌床となる昆虫は自然界における本来の寄主と昆虫病原菌類の組み合わせに は限定されず選択することができ、 本来の寄主以外の昆虫も昆虫菌床として用い ることができる。
また、 昆虫菌床となる昆虫は、 蛹の形態のものを用いることが、 餌が不要、 高 密度に箱詰めできるなどの点で好適である。 なお、 昆虫菌床となる昆虫は、 成虫 でも幼虫でもよく、 また生存しているもののほか、 腐食などしていなければ死亡 しているものでも用いることができ、 また必ずしも休眠中であることであること を要しない。 さらに、 例えば、 冷凍保存した蛹などを用いることもできる。
昆虫の体内にハイファルボディを接種するには、 上記で説明した本発明の接種 剤を注射剤として、 昆虫に注射するなどの方法により行うことができる。 昆虫体 内にハイファルボディを導入した後は、 子実体形成のための適切な条件下におく ことにより、 子実体を形成させることができる。 また。 本発明の昆虫菌床は、 接 種した昆虫病原菌類や寄主となる昆虫の種類などにもよるが、 低温管理 (4一 5 °C程度) することで、 1月以上保存することもできる。
:発明の子実体生産方法
次に、 本発明の昆虫病原菌類の子実体生産方法について説明する。 本発明の子 実体生産方法は、 昆虫病原菌類のハイファルボディを昆虫の体内に接種すること を特徴とする。 本発明の方法では、 昆虫病原菌類のハイファルボディを昆虫の体 内に直接導入することができればよく、 例えば、 上記本発明の接種剤を注射剤と して、 寄主となる昆虫に注射することなどにより行うことができる。 注射により 昆虫体内に接種することは、 感染率に優れ、 安定的にかつ短期間に子実体を生産 することにつながる。 本発明の接種剤を昆虫の体内に注射する場合、 昆虫病原菌 類の種類などにもよる力 接種剤中のハイファルボディの濃度は、 好ましくは、 1 0 4〜 1 0 7細胞 Zm 1であり、 特に好ましくは、 1 0 6〜 1 0 7細胞 Zm 1であ る。 濃度をこのような範囲とすることは、 感染率を高めるという点や、 接種後子 実体形成までの期間を短期化させるなどの点で好ましい。 また、 濃度をこのよう な範囲とすることは、 注射針が詰まるなどの作業上の不都合も少ない。
また、 ハイファルボディの接種量は、 昆虫の大きさ、 接種剤の濃度などにより 適宜調節することができる。 通常、 昆虫体から接種剤があふれない程度の量で、 できるだけ多量のハイファルボディを接種することが好ましい。 体内に導入され るハイファルボディの量が多いほど、 寄主である昆虫が早期に死に至り、 子実体 の形成までの期間を短縮しやすい傾向がある。
ハイファルボディを接種する昆虫の好ましい種類、 形態は、 上記本発明の昆虫 菌床についての説明で好ましいものとして列挙したものと同じである。
また、 本発明の子実体生産方法に好ましく用いられる昆虫病原菌類の種類は、 上記本発明の接種剤において好ましいものとして列挙した昆虫病原菌類と同様で ある。
ハイファルボディが接種された昆虫 (すなわち昆虫菌床) を適切な温度、 湿度 等の環境条件下におくことにより、 昆虫から子実体を発生させることができる。 接種した菌類の種類や寄主となる昆虫の種類などにもよるが、 好ましい条件とし ては、 例えば、 次のような条件が挙げられる。 ハイファルボディが接種された昆 虫から子実体を発生させ生育させるための温度として好ましくは 2 0〜 2 5 °Cで ある。 この範囲内であれば、 子実体が形成されるまでの期間を短くすることがで きる。 逆にこの範囲を下まわると子実体形成が困難である場合または子実体形成 に長期間を要する場合がある。 また、 昆虫菌床は、 保湿条件下におくことが好ま しく、 具体的には湿度 9 0〜 1 0 0 %である。 このような温度、 湿度条件下で昆 虫菌床を管理するには、 水苔を用いると容易である。 また、 照度は好ましくは 5 0〜 3 5 0 1 Xであり、 明期の長さは適宜調節して行うことができる。
< 4 >ハイファルボディを用いることの利点
ハイファルボディを接種剤して用いることの第 1の利点は、 短期間に大量生産 することができることである。 また、 ハイファルボディは、 液体培地で培養でき るので、 ハイファルボディを含む培養液を適切な濃度に調節するだけで、 すぐに 注射剤として用いることができ、 取り扱いが容易である。 例えば、 5 0 0 m 1のフラスコを用い 2 0 0 m 1の液体培地でハイフアルボデ ィを 1回増殖培養した場合 (2 5 °C、 酵母エキス加用サブロー蔗糖液体培地) と 同じ量の分生胞子を得ようとした場合、 1 0〜 2 0枚のシャーレに菌糸を植え、 滅菌水を加え、 こすり取る作業をして懸濁液を作製しなければならず、 実用上大 変な手間がかかる。
ハイフアルボディというのは、 本来自然界において昆虫病原菌類が昆虫の体内 で呈する増殖形態である。 本発明では、 あらかじめ増殖形態の状態に調製した上 で昆虫の体内に強制的に導入することにより、昆虫を短期間で殺すことができる。 野外では冬虫夏草類の菌糸または分生胞子が昆虫の体表に付着して経皮感染し、 増殖を始めると考えられており、 この過程は、 サナギタケの場合、 通常、 蛹の状 態の昆虫を死亡させるのに約 4 0日かかるといわれている。 しかし、 ハイファル ボディの注射接種によれば 2〜 3日で殺すことができる。 昆虫が短期間で死亡す るのは、 高濃度のハイファルボディを直接昆虫の血液中に打ち込まれることによ り引き起こされるものと考えられる。 接種してから子実体形成までの時間を大幅 に短縮することができるのは、 接種源としてのハイフアルボディの大きな利点で ある。
さらに、 ハイファルボディは液体培地懸濁状態で低温管理 (5 °C程度) すれば
1ヶ月以上保存することができる。保存が利くという点でもハイファルボディは、 扱いやすい接種源である。
また、ハイファルボディは、品質の均一なものを大量に増殖させることができ、 子実体の生産を効率よく行うことが可能となる。 また、 ハイファルボディは、 ひ とたび子嚢胞子、 菌糸などを得れば、 その後は安価に増殖させることができる。 図面の簡単な説明 第 1図は、 昆虫病原菌類の生活環の概略を示す図である。 発明を実施するための最良の形態 次に、 本発明の実施例を示し、 本発明をより詳細に説明するが、 本発明は以下 の実施例にのみ限定されるものではない。 ぐ実施例 1>接種剤の作製
サナギタケのハイファルボディを含有する接種剤を次のようにして作製した。 サナギタケは、 1 99 5年 7月に日本の岩木山 (青森県) で採取され、 農林水産 省林野庁森林総合研究所にて寒天培地で保存されているものを用いた (森林総合 研究所森林生物部昆虫病理室:菌株番号 F— 1 1 76 - 2 1)。このサナギタケの 保存菌株から菌糸を採取し、 この菌糸を酵母エキス加用サブロー蔗糖液体培地に 添加し、 液体振とう培養法 (2 5°C、 暗条件下) で、 5〜7日間培養を行った。 酵母エキス加用サブロー蔗糖液体培地は、 表 1に示すような配合量で水にぺプト ン、 酵母エキス、 蔗糖を添加したものである。 なお酵母エキスは D I F CO社製 BACTO® YEAST EXTRACTを用いた。
7日後には、液体培地中にサナギタケのハイファルボディが約 1 07細胞 Zm 1 にまで増殖していることが確認された。
液体培地中のハイファルボディの濃度を調節し、 2. 1 X 1 07細胞 Zm 1、 1. 7 1 07細胞 111し 2. 3 X 1 07細胞 Zm 1の接種剤を作製した。
ぐ表 1 >酵母抽出物加用サブ口一蔗糖液体培地の組成
Figure imgf000014_0001
<実施例 2 >子実体の生産
(実施例 2 — 1 ) ョトウガの蛹に、 ハイファルボディを含有する接種剤を注射 し、 3種類の異なる温度条件下で子実体を形成させた。 具体的には次の通りであ る。
上記実施例 1で作製したハイファルボディ濃度 2 . 1 X 1 0 7細胞 Zm 1の接種 剤を、 細管部を細くし先端を鋭利に改良したマイクロディスペンサーで、 ョトウ ガの蛹 1頭あたり 5 a 1注射した。 ハイファルボディを体内に接種されたョトウ ガの蛹は、 水で湿らせた水苔の中に埋め込んで保湿した。 9 0頭の蛹に接種を行 い、 3 0頭ずつ別々に温度条件 1 5 °C、 2 0 °C、 2 5 °Cの条件下で管理した。 な お、 照度はすべて 1 0 0〜 3 0 0 1 Xとし、 明期 1 4時間暗期 1 0時間とした。 接種後 4 7日目までの経緯を表 2に示す。
<表 2> 実施例 2— 1の結果
Figure imgf000015_0001
表 1に示されるように、 子実体が成熟するのに、 2 5 °Cの場合は最短で 34日 要し、 2 0度では最短で 46日要し、 1 5T:では子実体が得られなかった。 ョトウガを用いた既知の報告 (日本菌学会会報 3 6 : 6 7 - 7 2, 1 9 9 5、 原田ら) では、 成熟した子実体形成に接種後少なくとも 7 5日を要しているが、 本発明の場合それよりも 1月以上も早く成熟した子実体を収穫できた。
(実施例 2— 2) チヤイロコメノゴミムシダマシの蛹に、 ハイファルボディを含 有する接種剤を注射し、 実施例 2— 1と同様に 3種類の温度条件下で子実体を形 成させた。接種剤としてハイファルボディ濃度 1. 7 X 1 07細胞 Zm 1のものを 用い、 注射頭数は全部で 1 3 5頭とし、 45頭ずつを各温度下に維持した。 他の 条件は、 実施例 2— 1と同様とした。 接種後 4 7日目までの経緯を表 3に示す。 <表 3 > 実施例 2— 2の結果
Figure imgf000016_0001
チヤイロコメノゴミムシダマシはコゥチュウ目に属し、 ョトウガの属するチヨ ゥ目とは分類学的に大きく異なり、 また本来自然界ではサナギタケの寄主となる ものではない。 しかし、 本発明の方法によれば、 通常自然界では寄主とはならな いチヤィロコメノゴミムシダマシを用いても子実体の形成が可能であることが明 らかとなつた。 また、 チヤイロコメノゴミムシダマシを寄主としても、 サナギタ ケの子実体形成を短期間で行い得ることも明らかとなった。
(実施例 2— 3 ) カイコの蛹に、 ハイファルボディ濃度 2 . 3 1 0 7細胞 ]1 1 の接種剤を 1頭あたり 1 0 0 / 1注射し、 蛹を水で湿らせた水苔中に埋め込み保 湿して、 室温 2 5 °Cの実験室内で管理した。 最短で 4 7日目には成熟した子実体 の形成が確認された。
なお、カイコの蛹は実施例 2— 1 、 2 - 2で用いた昆虫の蛹よりも大きいため、 ヒト用のッベルクリン注射器などの注射器で容易に接種でき、 簡便に子実体生産 を行うことができる。 ヒト用のッベルクリン注射器は滅菌済みのものを容易に入 手でき、 また実施例 2— 1に記載のマイクロディスペンサーを用いて接種作業を 行うには若干経験を積む必要があるが、 ヒトのッベルクリン注射器を用いること ができれば、 初心者でも容易に接種作業をすることができる。 また、 カイコの蛹は休眠状態にあるわけではなく、 本発明の方法によれば、 休 眠中ではない昆虫からも子実体を形成させることができることが明らかとなつ た。 産業上の利用の可能性 本発明によれば、 冬虫夏草などの昆虫病原菌類の子実体を生産するための接種 剤を簡便に、 安価に、 大量生産することができる。 この本発明の接種剤は、 品質 が均一なものとすることができ、 取り扱いが容易であり、 保存も可能である。 さ らに、 本発明によれば、 この接種剤などを用い、 冬虫夏草など昆虫病原菌類の子 実体を、 簡便に、 短期間で、 安価に、 しかも効率よく大量生産することができる。 また、 本発明によれば、 季節によらず子実体を生産することが可能である。
冬虫夏草などの昆虫病原菌類は、漢方薬や高級食品などとして利用されている。 また、 昆虫病原菌類は生物農薬としての利用も開発されている。 本発明は、 この ような昆虫病原菌類を利用する分野に対し、 昆虫病原菌類の子実体を安定して大 量供給することに寄与するものと期待される。

Claims

請求の範囲
1 . 昆虫病原菌類のハイファルボディを含有する、 昆虫病原菌類の子実体を生 産するための接種剤。
2 . 昆虫病原菌類の菌糸およびノまたは分生胞子を振とう培養してハイフアル ボディを生産する、 昆虫病原菌類の子実体生産のための接種剤生産方法。
3 . 昆虫病原菌類のハイフアルボディを振とう培養してハイフアルボディを増 殖させる、 昆虫病原菌類の子実体生産のための接種剤生産方法。
4 . 昆虫病原菌類のハイファルボディが体内に接種された、 昆虫病原菌類の子 実体を生産するための昆虫菌床。
5 . 昆虫病原菌類のハイファルボディを昆虫の体内に接種する、 昆虫病原菌類 の子実体生産方法。
6 . 前記接種を注射することによって行う、 請求項 5に記載の昆虫病原菌類の 子実体生産方法。
7 . 前記昆虫が、 蛹の形態である、 請求項 5または 6に記載の昆虫病原菌類の 子実体生産方法。
8 . 前記昆虫病原菌類が、 コルディセプス属に属する菌類である、 請求項 5か ら 7のいずれかに記載の昆虫病原菌類の子実体生産方法。
PCT/JP1999/005317 1999-09-29 1999-09-29 Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes WO2001022801A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/005317 WO2001022801A1 (fr) 1999-09-29 1999-09-29 Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes
KR10-2002-7004042A KR100432281B1 (ko) 1999-09-29 1999-09-29 접종제, 곤충균상 및 곤충병원균류의 자실체 생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005317 WO2001022801A1 (fr) 1999-09-29 1999-09-29 Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes

Publications (1)

Publication Number Publication Date
WO2001022801A1 true WO2001022801A1 (fr) 2001-04-05

Family

ID=14236831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005317 WO2001022801A1 (fr) 1999-09-29 1999-09-29 Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes

Country Status (2)

Country Link
KR (1) KR100432281B1 (ja)
WO (1) WO2001022801A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165041B1 (ko) * 2010-03-09 2012-07-20 대한민국 살아 있는 누에번데기를 이용한 밀리타리스동충하초 자실체의 배양방법
KR102193525B1 (ko) 2019-04-29 2020-12-21 전희경 필터 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530851A (ja) * 1991-08-02 1993-02-09 Yoshii Kingaku Kenkyusho:Kk きのこ菌用培養液の製造方法
JPH0947149A (ja) * 1995-08-03 1997-02-18 Fukushima Pref Gov 冬虫夏草の子実体人工栽培方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530851A (ja) * 1991-08-02 1993-02-09 Yoshii Kingaku Kenkyusho:Kk きのこ菌用培養液の製造方法
JPH0947149A (ja) * 1995-08-03 1997-02-18 Fukushima Pref Gov 冬虫夏草の子実体人工栽培方法

Also Published As

Publication number Publication date
KR20020048422A (ko) 2002-06-22
KR100432281B1 (ko) 2004-05-20

Similar Documents

Publication Publication Date Title
CA2059057C (en) A process and method for production and use of pathogenic fungal preparation for pest control
Jacquelinet‐Jeanmougin et al. ENDOMYCORRHIZAS IN THE GENTIANACEAE: I. THE FUNGI ASSOCIATED WITH GENTIANA LUTEA L.
Sato et al. Stromata production for Cordyceps militaris (Clavicipitales: Clavicipitaceae) by injection of hyphal bodies to alternative host insects
CN110964644B (zh) 一种青霉菌及其发酵方法与应用
JP3902216B1 (ja) 昆虫寄生菌の子実体の生産方法
CN112553086B (zh) 一种淡紫紫孢菌菌株及其在防治黄曲条跳甲方面的应用
EP1297746B1 (en) Entomopathogenic fungus for use as insecticide
KR100288105B1 (ko) 신규한 번데기동충하초 균주와 그 종균 및 자실체 재배방법
Batra et al. Pleomorphism in some ambrosia and related fungi
CN101597574A (zh) 一株高产孢环链拟青霉菌株及其筛选与应用方法
JPH0947149A (ja) 冬虫夏草の子実体人工栽培方法
WO2001022801A1 (fr) Inoculants, lits fongiques entomogenes et procede de fructification de champignons entomogenes pathogenes
CN109207489B (zh) 一种膨大弯颈孢菌株及其应用
RU2763055C1 (ru) СПОСОБ ПРОИЗВОДСТВА СПОР МИКРОСПОРИДИИ Nosema pyrausta
JP3665845B2 (ja) 九州虫草菌の人工培養方法
CN102168108B (zh) 一种深红虫草及利用其制备卵孢菌素的方法和其用途
JP3252110B2 (ja) 家蚕を用いた冬虫夏草の人工栽培方法
KR100509686B1 (ko) 파리 유충을 기주로 한 동충하초 재배방법
CN109618811B (zh) 产业化冬虫夏草人工培育方法
KR100459869B1 (ko) 누에배지 또는 누에번데기 배지를 사용한 코디셉스시넨시스의 배양방법
Ahmed et al. Correlation of photothermal quotient with spring wheat yield
US4246258A (en) Biological control system
Sharma Potential of Pleurotus sajor-caju for biocontrol of Aphelenchoides camposticola in Agaricus bisporus cultivation
CN113994846B (zh) 保幼激素类似物甲氧普林在促进蝙蝠蛾幼虫僵化中的应用
Keno et al. Evaluation of Ethiopian Entomopathogenic Fungi Isolates Against the Two-Spotted Spider Mite, Tetranychus urticae Koch on Tomato, Solanum lycopersicum L.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 526030

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027004042

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027004042

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10089448

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020027004042

Country of ref document: KR