WO2001022060A1 - Procede optique pour la caracterisation de systemes particulaires et dispositif pour la mise en oeuvre de ce procede - Google Patents

Procede optique pour la caracterisation de systemes particulaires et dispositif pour la mise en oeuvre de ce procede Download PDF

Info

Publication number
WO2001022060A1
WO2001022060A1 PCT/EP2000/007937 EP0007937W WO0122060A1 WO 2001022060 A1 WO2001022060 A1 WO 2001022060A1 EP 0007937 W EP0007937 W EP 0007937W WO 0122060 A1 WO0122060 A1 WO 0122060A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
unit
optical
identification unit
Prior art date
Application number
PCT/EP2000/007937
Other languages
German (de)
English (en)
Inventor
Oliver K. Valet
Peter A. GÜNTHER
Original Assignee
Apsys Advanced Particle Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apsys Advanced Particle Systems Gmbh filed Critical Apsys Advanced Particle Systems Gmbh
Priority to AU65710/00A priority Critical patent/AU6571000A/en
Publication of WO2001022060A1 publication Critical patent/WO2001022060A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction

Definitions

  • the invention relates to an optical method for the characterization of particulate systems, in particular for clean room monitoring, with which the in a particulate system, e.g. a clean room, existing particles in terms of quantity and size and at the same time a statement about the identity of the particles can be made.
  • the invention also relates to an apparatus for performing the method. With the method and the associated device, it is possible, for example, to carry out preventive quality assurance in clean rooms.
  • So-called particle counters are used to determine the particle concentration in the clean room air. These are measuring devices that are able to continuously measure an air sample from the clean room. These can be measuring devices that use an optical method to detect particles down to a size of 0.1 ⁇ m and to assign them to certain size classes. Special particle counters, so-called condensation core counters, allow the measurement of particles down to 0.05 ⁇ m in size. This is made possible by the fact that particles are enlarged by condensation of a liquid and then measured.
  • the particle counters are only used to count the particles, an analysis of the material composition of the particles is not possible.
  • the measured particles are also no longer available for later analysis with other measuring systems, since the sample volume is discarded after flowing through the measuring device. A further sampling is therefore required for further analyzes.
  • measuring devices for particle analysis which allow the material composition of particles to be determined. These measuring devices work on the principle of electron / laser spectroscopy. The measuring systems are usually located in separate laboratories because they are generally not suitable for use in clean rooms and require very difficult sample preparation. A direct analysis of the particles in the clean room air is not possible with these devices.
  • a method is currently under development that can analyze both the number and size of particles as well as the particle composition. This method is based on the mass spectrometric analysis of particles that have been ionized with the help of UV lasers. However, due to the oil pumps used, this technology is not suitable for clean rooms. In addition, the size of the measuring unit does not allow its mobile use and it is likely to be very expensive.
  • the object of the present invention is to develop a method and an associated device for quantity and size detection and simultaneous determination of the identity of the particles present in a particulate system, in particular in a clean room, which can be automated and online. Operation allows, clean room suitable, inexpensive, industry-standard and mobile.
  • the object is achieved according to the invention by an optical method for characterizing particulate systems according to claim 1 and an apparatus for carrying out the method according to claim 7.
  • an air stream from the ambient air is passed at a defined speed through a particle feeder past a first scattered light measuring unit and the scattered light is detected, the speed of the particle is then reduced and the particles moving in the air stream with the reduced speed in an identification unit by means of interaction with monochromatic light identified.
  • This method makes it possible for the first time to quantify the particles present in a clean room and at the same time to make a statement about the identity of the particles.
  • the clean room operators can thus be provided with a tool that makes it possible for the first time to carry out preventive quality assurance and thus meet the increasing requirements for the cleanliness requirements of the indoor air used in the electronic production process as far as possible.
  • the optical system of the identification unit, the spectrometer unit is triggered by the scattered light measuring unit via an electronic control.
  • the selection criteria can be determined and selected by software using the electronic control. Such a selection option is particularly advantageous when using the identification unit in particle-rich environments.
  • the particles are identified by combined laser Raman spectroscopy, which, with a short exposure time, is achieved by using powerful light sources, bright optics and, in particular, by doing without
  • the reduction in the speed of the particle to a residence time of approximately 1 ms up to approximately 1 s in the second laser beam serves to obtain oscillation spectra which allow all spectral features to be recognized and are suitable for automated evaluation.
  • signals that are obtained without reducing the speed of the particle are not sufficient for identification, since the noise increases sharply and therefore an automated evaluation of the spectra becomes impossible.
  • the Raman spectra obtained are electronically filtered and examined for spectral features (peaks) and the peak table obtained is finally compared with a database which contains corresponding reference tables and the sub- punch identified.
  • the device according to the invention consists of module units which comprise at least the following elements:
  • an optical unit for determining the size and number of particles in an air stream from the ambient air, a particle brake, an optical identification unit for the moving particles contained in the air stream, consisting of corona discharge, excitation laser and
  • Spectrometer unit an electronic control.
  • the modular structure of the system is an important aspect, because on the one hand it enables further development and application in other areas of application and on the other hand it allows the exchange of individual modules for other suitable ones according to the properties of the particles to be identified.
  • the spectrometer unit Different requirements are made depending on whether organic contaminants or biotic particles have to be identified.
  • a resonance Raman module would be used to identify biotic particles, either together with the Raman module or instead of the Raman module.
  • the system is preferably designed as a mobile unit, with dimensions of a maximum of approx. 1 x 2 x 1 m and a weight of approx. 40 kg, so that it can be used directly at the location to be sampled and the samples are not sent to analysis laboratories have to. This will e.g. preventive clean room monitoring enables.
  • the light source of the identification unit is preferably a narrow-band light source, preferably a monochromatic light source.
  • the spectrometer unit the identification unit is preferably formed from an NIR multichannel spectrometer.
  • the multichannel spectrometer preferably has approximately 255 detectors and preferably has a measuring range of approximately 900-1,900 nm. This technique is inexpensive and allows the desired small dimensions of the entire measuring device.
  • a narrow-band light source preferably a monochromatic light source with high power, has proven to be particularly suitable.
  • other suitable laser light sources are also possible, e.g. Multimode laser diodes, broadband laser diodes and pulsed laser light sources.
  • this new technology combines laser spectroscopy with the simplicity and convenience of other optical methods, e.g. NIR spectroscopy. In contrast to FT spectroscopy, this enables the stated, very short measuring times.
  • the electronic control makes decisions based on specified parameters, such as Size of the particle, after interaction with the first scattered light measuring unit, whether the particle is analyzed in the identification unit or not.
  • a programmable AD converter card with an integrated processor preferably an 80x86 processor, is read out at a frequency of approximately 20 KHz, the size or the refractive index is determined with the aid of the integrated program and compared with the preset size. If the particle falls within the area of interest, a trigger signal is sent to the identification unit, whereupon the particle is characterized.
  • the use of the integrated AD converter card ensures a very high level of system security.
  • the application of the electronic circuit basically enables the use of the described system in particle-rich environments in which the identification unit would be overloaded without preselection.
  • Fig. 1 is a schematic representation of the module units and their interaction
  • the method and the device according to the invention used to carry out the method are to be presented, for example, by identifying a polymer microparticle with a size between 0.5 ⁇ m and 15 ⁇ m, which is typical for contamination in clean rooms.
  • Contamination in a clean room for example of the 10000 class, is sucked in with a pump and converted into a single particle stream with the aid of a nozzle and a particle feeder 1.
  • the particle 10 generally receives a speed of approximately 10 mm / s.
  • This particle 10 now passes the first laser beam L 1, which is emitted, for example, by a HeNe laser 2 with an output power of approximately 20 mW and focused on 50 ⁇ m.
  • the scattered light is detected depending on the angle and evaluated to determine the particle size according to the known theory of elastic light scattering (Mie theory).
  • the laser 2 sends a trigger signal to the downstream identification unit, which consists of corona discharge 4, excitation laser 5 and spectrometer unit 6, via a controller 3 when the detection properties are met by the detected particle.
  • the selectable properties of the particles can be preselected using software on the electronic control 3. This selection Technology is particularly advantageous when using the identification unit in particle-rich environments. If no selection is to be made, the trigger signal is sent for every detected particle 1 0.
  • the particle 10 After detection and size determination by the first laser 2, the particle 10 passes through the corona discharge 4, which is operated, for example, at 10,000 V. Particle 10 is loaded with charge proportional to the surface. In a downstream electromagnetic field, a so-called electromagnetic brake 7, the particle 10 is braked to a speed of approximately 1 mm / s, so that the particle 10 stays in the second laser beam L2 of approximately 10 ms.
  • the laser beam L2 is preferably focused on a 10 ⁇ m beam diameter by a semiconductor laser 5 at a wavelength of 780 nm and an output power of 300 mW.
  • the light inelastically scattered in this period is detected after suppression of the excitation wavelength by means of a holographic notch filter of one to three mini spectrometers 6, the geometric arrangement of which is such that spectra with a resolution of 1 2 cm " over a wavelength range of 200 - 4000 cm relative to The oscillation spectrum obtained in this way in the range from 200 to 4000 cm " is electronically filtered and examined for spectral features (peaks).
  • the peak table obtained is finally compared with a database 8, which contains the necessary reference tables, and the substance of the particle 10 is identified.
  • Fig. 2 shows the spectrum of a palmitic acid particle that was used as a test system. It has a diameter of approximately 4 ⁇ m and was recorded once with a dwell time in the second laser beam L2 of 10 ms and once with a shorter dwell time, that is to say without braking the particle 10.
  • the lower spectrum shows the image with conventional Raman technology and that upper spectrum, the image with a short exposure time of 1 0 ms and an i resolution of 1 2 cm " using the technique according to the invention on a single particle. With a short exposure time, all spectral features can be seen, that noise is significantly more pronounced.
  • the signal that is obtained without the use of the electromagnetic brake, i.e. without extending the available measuring time, is in the majority of cases not sufficient for identification, since the noise increases sharply and an automated evaluation is therefore impossible.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention concerne un procédé optique et un dispositif correspondant pour la caractérisation de systèmes particulaires, au moyen duquel les particules présentes dans un système particulaire, par exemple, un espace stérile, peuvent être détectées quantitativement et numériquement, tout en permettant en même temps d'obtenir des informations sur l'identité des particules. L'invention est caractérisée en ce qu'un courant d'air provenant de l'environnement est envoyé, à une vitesse déterminée, à travers un chargeur de particules, sur une première unité de mesure de la lumière dispersée, et détecte la lumière dispersée, la vitesse des particules est ensuite réduite, et les particules déplacées à vitesse réduite dans le courant d'air sont identifiées dans une première unité d'identification, par interaction en lumière monochromatique. L'identification des particules s'effectue, conformément à l'invention, par spectroscopie combinée laser-Raman, laquelle fournit des résultats utilisables pour l'évaluation automatisée, ceci pour une courte durée d'exposition, par utilisation de sources lumineuses puissantes, d'optiques à grande ouverture, tout en évitant, notamment, des résolutions optiques élevées. Une résolution spectrale faible est utilisée avantageusement.
PCT/EP2000/007937 1999-09-17 2000-08-15 Procede optique pour la caracterisation de systemes particulaires et dispositif pour la mise en oeuvre de ce procede WO2001022060A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU65710/00A AU6571000A (en) 1999-09-17 2000-08-15 Optical method for characterization of particulate systems and device for carrying out said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19946110.4 1999-09-17
DE1999146110 DE19946110C1 (de) 1999-09-17 1999-09-17 Optisches Verfahren zur Charakterisierung von Partikeln in einem System, z.B. einem Reinraum, und Vorrichtung zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
WO2001022060A1 true WO2001022060A1 (fr) 2001-03-29

Family

ID=7923360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007937 WO2001022060A1 (fr) 1999-09-17 2000-08-15 Procede optique pour la caracterisation de systemes particulaires et dispositif pour la mise en oeuvre de ce procede

Country Status (3)

Country Link
AU (1) AU6571000A (fr)
DE (1) DE19946110C1 (fr)
WO (1) WO2001022060A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095983A1 (fr) * 2002-05-10 2003-11-20 Abb Patent Gmbh Procede et dispositif pour prelevement d'echantillons d'air ambiant
US8111395B2 (en) 2007-01-05 2012-02-07 Malvern Instruments Ltd Spectrometric investigation of heterogeneity
US10509976B2 (en) 2012-06-22 2019-12-17 Malvern Panalytical Limited Heterogeneous fluid sample characterization

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097409A1 (fr) * 2001-05-31 2002-12-05 Rap.Id Particle Systems Gmbh Procede de reconnaissance automatique et d'analyse et d'identification spectroscopiques de particules
DE10127537C1 (de) * 2001-05-31 2002-11-14 Apsys Advanced Particle System Trägersubstrat für die Abscheidung, automatisierte Erkennung und spektroskopische Identifizierung von Partikeln
DE10320956B4 (de) * 2003-02-05 2005-02-17 Evotec Technologies Gmbh Untersuchungsverfahren für biologische Zellen und zugehörige Untersuchungseinrichtung
US7333197B2 (en) * 2004-11-17 2008-02-19 Honeywell International Inc. Raman detection based flow cytometer
DE102006049517A1 (de) * 2006-10-20 2008-04-24 Haver & Boecker Ohg Vorrichtung zur Bestimmung von Parametern eines Schüttgut-Partikelstromes
EP2081010B1 (fr) * 2008-01-16 2014-03-12 SICK Engineering GmbH Mesure de poussière modulaire
DE102010053749B4 (de) * 2010-12-08 2015-02-19 Airbus Defence and Space GmbH Vorrichtung zum Identifizieren biotischer Partikel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071298A (en) * 1974-06-27 1978-01-31 Stanford Research Institute Laser Raman/fluorescent device for analyzing airborne particles
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
WO1996031900A1 (fr) * 1995-04-03 1996-10-10 Stichting Scheikundig Onderzoek In Nederland Procede et dispositif d'analyse de la composition chimique de particules
US5565677A (en) * 1995-08-04 1996-10-15 The University Of Delaware Aerodynamic nozzle for aerosol particle beam formation into a vacuum
US5665964A (en) * 1994-02-25 1997-09-09 Yokogawa Electric Corporation Particle component analyzing apparatus, and equivalent particle diameter measuring method using same
JPH10300671A (ja) * 1997-04-22 1998-11-13 Yokogawa Electric Corp 微粒子計測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946092A (en) * 1998-02-27 1999-08-31 Pacific Scientific Instruments Company Dual laser heterodyne optical particle detection technique
US8706697B2 (en) * 2010-12-17 2014-04-22 Microsoft Corporation Data retention component and framework

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071298A (en) * 1974-06-27 1978-01-31 Stanford Research Institute Laser Raman/fluorescent device for analyzing airborne particles
US4383171A (en) * 1980-11-17 1983-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Particle analyzing method and apparatus
US5665964A (en) * 1994-02-25 1997-09-09 Yokogawa Electric Corporation Particle component analyzing apparatus, and equivalent particle diameter measuring method using same
WO1996031900A1 (fr) * 1995-04-03 1996-10-10 Stichting Scheikundig Onderzoek In Nederland Procede et dispositif d'analyse de la composition chimique de particules
US5565677A (en) * 1995-08-04 1996-10-15 The University Of Delaware Aerodynamic nozzle for aerosol particle beam formation into a vacuum
JPH10300671A (ja) * 1997-04-22 1998-11-13 Yokogawa Electric Corp 微粒子計測装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *
WOOD S H ET AL: "Time-of-flight mass spectrometry methods for real time analysis of individual aerosol particles", TRAC, TRENDS IN ANALYTICAL CHEMISTRY,GB,ANALYTICAL CHEMISTRY. CAMBRIDGE, vol. 17, no. 6, 7 June 1998 (1998-06-07), pages 346 - 356, XP004125247, ISSN: 0165-9936 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095983A1 (fr) * 2002-05-10 2003-11-20 Abb Patent Gmbh Procede et dispositif pour prelevement d'echantillons d'air ambiant
US8111395B2 (en) 2007-01-05 2012-02-07 Malvern Instruments Ltd Spectrometric investigation of heterogeneity
US10509976B2 (en) 2012-06-22 2019-12-17 Malvern Panalytical Limited Heterogeneous fluid sample characterization

Also Published As

Publication number Publication date
AU6571000A (en) 2001-04-24
DE19946110C1 (de) 2001-02-01

Similar Documents

Publication Publication Date Title
EP0293983B1 (fr) Procédé pour analyser des particules métalliques
DE2929170C2 (de) Meßeinrichtung zur Ermittlung des Fluoreszenz-Emissionsspektrums von Partikeln
DE69835663T2 (de) Verfahren zur Online-Analyse von in Aerosolen befindlichen polycyclischen aromatischen Kohlenwasserstoffen
DE4004627C2 (de) Verfahren zur Bestimmung von Materialeigenschaften polymerer Werkstoffe und Vorrichtung zur Durchführung des Verfahrens
EP2194368B1 (fr) Système de détection destiné à détecter et spécifier des particules individuelles dans un fluide
EP1145303A1 (fr) Dispositif et procede de controle optique de processus de fabrication de surfaces microstructurees dans la production de semi-conducteurs
DE19946110C1 (de) Optisches Verfahren zur Charakterisierung von Partikeln in einem System, z.B. einem Reinraum, und Vorrichtung zur Durchführung des Verfahrens
DE102005027260B4 (de) Verfahren und Vorrichtung zur Qualitätsbestimmung einer Schweißnaht oder einer thermischen Spritzschicht und Verwendung
DE112017008060T5 (de) Zubehörteil für ein Infrarot-Spektrometer
DE4228388A1 (de) Vorrichtung zur Bestimmung von Partikelgrößen und/oder Partikelgrößenverteilungen
WO2008046914A1 (fr) Dispositif de détermination de paramètres d'un flux de particules de matière en vrac
DE10327531B4 (de) Verfahren zur Messung von Fluoreszenzkorrelationen in Gegenwart von langsamen Signalschwankungen
EP3811063A1 (fr) Dispositif et procédé permettant d'identifier et/ou d'évaluer des articles ou des produits
EP2110187B1 (fr) Procédé d'identification, de classification et de tri d'objets, de matériaux et système de reconnaissance destiné à l'exécution de ce procédé
DE102004058408B4 (de) Vorrichtung zur Bestimmung von Oberflächeneigenschaften
EP2734311B1 (fr) Dispositif d'irradiation pour le traitement par rayonnement uv
DE60115064T2 (de) Analyseeinrichtung und -verfahren für flüssigkeitshaltige substanzen
EP3104164B1 (fr) Systeme de mesure destine a la surveillance de la qualite de tablettes
DE19758399A1 (de) Verfahren zur Bestimmung von Bestandteilen in Speiseölmischungen
WO2021259635A1 (fr) Procédé pour surveiller un processus de soudage laser et système de soudage laser faisant intervenir un ensemble spectroscope
EP1284588A2 (fr) Procédé de monitorage d'un plasma - ou procédé de projection à la flamme
DE102005000840B4 (de) Verfahren und Vorrichtung zur Elementanalyse mittels Laser-Emissionsspektrometrie
DE102022112765B4 (de) Detektionseinheit zur spektralen Analyse eines laserinduzierten Plasmas und laserinduziertes Plasmaspektrometer
DE19909351A1 (de) Verfahren und Vorrichtung zur Wirkstoffsuche
WO2023280609A1 (fr) Dispositif et procédé d'analyse d'un échantillon gazeux, et spectromètre raman

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10088008

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP