WO2001020710A1 - Diviseur de puissance pour dispositif a plasma - Google Patents

Diviseur de puissance pour dispositif a plasma Download PDF

Info

Publication number
WO2001020710A1
WO2001020710A1 PCT/FR2000/002507 FR0002507W WO0120710A1 WO 2001020710 A1 WO2001020710 A1 WO 2001020710A1 FR 0002507 W FR0002507 W FR 0002507W WO 0120710 A1 WO0120710 A1 WO 0120710A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
power
antennas
source
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2000/002507
Other languages
English (en)
French (fr)
Inventor
Jacques Pelletier
Ana Lacoste
Thierry Léon LAGARDE
Michel Moisan
Yves Alban-Marie Arnal
Zenon Zakrzewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Montreal
Centre National de la Recherche Scientifique CNRS
Metal Process SARL
Original Assignee
Universite de Montreal
Centre National de la Recherche Scientifique CNRS
Metal Process SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Montreal, Centre National de la Recherche Scientifique CNRS, Metal Process SARL filed Critical Universite de Montreal
Priority to AT00962606T priority Critical patent/ATE245855T1/de
Priority to JP2001524184A priority patent/JP4982022B2/ja
Priority to EP00962606A priority patent/EP1216493B1/fr
Priority to US10/088,326 priority patent/US6727656B1/en
Priority to DE60004073T priority patent/DE60004073T2/de
Publication of WO2001020710A1 publication Critical patent/WO2001020710A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32311Circuits specially adapted for controlling the microwave discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port

Definitions

  • the present invention relates to the field of microwave devices.
  • the present invention relates to the field of devices comprising several elementary microwave sources supplied from a common generator.
  • the present invention may find particular application in the production of plasma from a given number of elementary plasma sources supplied in microwave from a single power generator.
  • These elementary sources can be either independent in the same enclosure (the objective being for example to bypass the physical or technological limits of the maximum microwave power which it is possible to apply to a single plasma source), or distributed in the same enclosure to allow the extension of scale necessary for a targeted application.
  • the fields of application of multiple plasma sources can cover not only all the fields already covered by the implementation of single plasma sources, but also new fields which cannot be envisaged with unit sources (for example for reasons of uniformity, cadences, etc.).
  • the invention relates to all microwave plasmas and discharges, whatever the pressure range, the microwave frequency, the nature or configuration of the microwave applicator, the presence or absence of a field. magnetic.
  • the invention is not limited to the field of plasmas. It can for example also be applied for bonding, drying or vulcanization operations from multiple stations and more generally for any operation where the impedance of the system may vary depending on the time from one position to another.
  • the microwave field has already been the subject of much research.
  • Another commonly used solution is to take the microwave power either in a cavity, or in a guide, or in a ring resonator, in which standing waves are established, by antennas arranged at the bellies of electric field (zones of maximum electric field).
  • This solution generally assumes that each elementary plasma source behaves like an adapted impedance, in other words that it absorbs all of the microwave power sampled. With such a device, it is then possible to supply a predetermined microwave power to each elementary source.
  • impedance imbalances can also be encountered during operation, for example in the event of failure of one of the sources, or following an intentional or unintentional variation in operating conditions (composition of the gas , flow, pressure, plasma density, radio frequency polarization, etc.) in multi-sequence processes.
  • the aim of the present invention is to improve microwave systems comprising several elementary sources supplied from a common generator, in order to eliminate the drawbacks of the prior art.
  • This object is achieved in the context of the present invention thanks to a system comprising:
  • a rectangular guide coupled to the generator, adapted to operate in fundamental (H ⁇ 0 ) or transverse electric (TE 10 ) mode, and associated with means ensuring a standing wave regime,
  • an isolating means ensuring a power transmission from the socket to the source, without reflection towards the socket and - an impedance matching device of each source, located downstream of the isolating means, between the latter and the associated source.
  • FIG. 1 represents the evolution of the reduced conductance of an antenna brought back to the entry of the guide, as a function of the length of this antenna in the guide,
  • FIGS. 2 and 3 represent views in cross section of a guide and illustrate two variants of implantation of sockets or antennas thereon,
  • FIG. 4 represents an overall schematic view of a device according to the present invention.
  • FIG. 5 shows a perspective view of a guide corresponding to a preferred embodiment of the present invention.
  • the present invention calls upon the combination of three elements, the first 100 of which provides the required power division (preferably, but not necessarily the equipartition as required), the second 200 of which provides a transmission of independent and thoughtless power to each source 400, whatever the input impedance presented by each of these sources 400, and the third 300, impedance matching device on each source 400, ensures that the power thus available is more or less fully absorbed (for example in plasma) as needed.
  • the power divider 100 is obtained from a rectangular waveguide 110 from which a power draw is made, generally on a long side 112 of the guide, at points 114 distant by half a wavelength in the guide, ie ⁇ g / 2.
  • a is the width of the long side 112 of the rectangular guide 110 and ⁇ o the wavelength in vacuum, of microwaves.
  • the guide 110 is adapted to operate in fundamental mode H 10 or transverse electric TE-io.
  • the antennas 116 should preferably be placed at the maximum of the electric field intensity.
  • a sample by means of a magnetic antenna 116 (a loop), it is instead necessary to place these antennas 1 16 minimum electric field intensity (maximum magnetic field).
  • the sum of the admittances (case of electrical coupling ) reduced by all of the antennas 1 16 brought to the input of the divider 100 is unitary. To achieve this result, it is either necessary to adjust the penetration depth of the electric antenna 1 16 in the guide 1 10, or to move the position of the antennas 1 16 transversely relative to the axis of the guide 110, or yet to combine these two possibilities. One can proceed in an equivalent way for the magnetic coupling.
  • the conductance (real part of the impedance) reduced (reduced to the characteristic impedance ) of an antenna 1 16 brought to the entrance of the guide has the expression:
  • the length of the antenna 116 must therefore be adjusted so as to obtain the impedance corresponding to the desired power division N.
  • An example of evolution of conductance as a function of the length of the antenna 116 is shown in FIG. 1 (for an antenna with a diameter of 3 mm with a head at the end with a diameter of 5 mm and a thickness of 2 mm) for antennas arranged on the axis of one of the long sides 1 12 of the guide 1 10.
  • a variant of the invention consists in having 2 antennas 116 on either side of the axis of the long side 112 of the guide 110 every ⁇ g / 2 as in the first configuration presented. If g 0 is the conductance of an antenna 116 on the axis, its value g at the distance d from the axis of the long side 112 of the guide 110 is equal to:
  • another complementary variant of the invention consists in having pairs of antennas 116, as in the previous configuration, facing each other on each of the two faces of the large sides 112 of guide 110 as shown diagrammatically in FIG. 3. This possibility is however limited in terms of conductance achievable by the fact that the facing antennas 116 must neither touch nor be too close to each other; the interaction between opposite antennas 116 leads to an increase in the conductance of each antenna 116.
  • Another variant of the invention consists in taking the power from the guide by slots, in particular in the context of an application to the transmission of power to the plasma sources 400 by waveguides.
  • the second element 200 of the invention is intended to ensure an independent power transmission without reflection to each source 400. This is achieved by the insertion between the output of the antenna 116 of the divider guide 110 and the applicator, d '' a unidirectional isolator 200.
  • This generally consists of a circulator 210 with three branches made from ferrites and terminated on its third branch by a suitable charge 212 intended to absorb any reflected power coming from the plasma source 400 A proper functioning of this device requires an insulation between branches generally greater than 20 dB.
  • the third element 300 of the invention is intended to allow the adaptation of impedance on each source 400, in order to ensure that the power thus available is more or less completely absorbed in the plasma as required.
  • This can be achieved by using conventional impedance matching devices such as the sliding paper clip, or a three-piston system.
  • An essential characteristic required of these different possible devices is to be able to act both on the imaginary part and the real part of the impedance. This makes it possible to adjust the impedance of the source 400 as a function of the plasma conditions sought (density, length, etc.).
  • a typical complete complete power division device is shown diagrammatically in FIG. 4.
  • the microwave generator 10 (and possibly its protection circulator), it successively comprises the power divider 100 with its mobile short-circuit 130 and the transmission lines to each plasma source 400.
  • Each line of transmission comprises a circulator 210 and its adapted load 212 (which absorbs the reflected power) as well as the impedance matching device 300 just upstream from the plasma source 400.
  • the main advantage of the device according to the invention is allow the supply of a large number of plasma sources 400 to from a single generator 10. Furthermore, the production of this device is carried out using simple elements, several of which are commonly available commercially.
  • a device of the invention can be used with any type of microwave applicator.
  • An essential advantage of the invention presented is the possibility of distributing the microwave power over any number N of antennas 116, N possibly even being an odd number.
  • the invention allows the suppression of one or more plasma lines without altering the functioning of the others.
  • the invention which makes it possible to avoid any interference between the power supplies of the various plasma sources 400, makes it possible to quickly perform the impedance matching on each of the plasma sources 400. Finally, the invention allows the production of devices particularly compact.
  • a particular, but nonlimiting example of application illustrating the invention comprises a power division device by 24, (shown diagrammatically in FIG. 5), using the standard WR 340 rectangular waveguide or the long side.
  • the antennas 1 16 or groups of antennas are positioned along the wave guide 1 10 under the ⁇ g / 2, that is to say every 87.2 mm.
  • the reduced impedance g 0 of an antenna 116 of length f determined experimentally, is given in FIG. 1.
  • the antenna length £ corresponding to the impedance value given by Equation (6) is approximately equal (Fig. 1):
  • the power divider 100 by 24 thus produced is relatively compact since its total length corresponds to 5 half-wavelengths (plus the size of the antenna sockets and their coaxial connector).
  • each of the 24 transmission lines coming from the divider 100 successively comprises an isolator 200 with its adapted load 212 and the impedance matching 300 just upstream from the plasma source 400.
  • the device according to the invention can be applied in all processes where variations in impedance can occur on one or other of the N applicators supplied independently by the micro power divider. wave.
  • the present invention is not limited to particular embodiments which have just been described but extends to all variants in accordance with its spirit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Waveguides (AREA)
  • Drying Of Semiconductors (AREA)
  • Discharge Heating (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
PCT/FR2000/002507 1999-09-13 2000-09-12 Diviseur de puissance pour dispositif a plasma Ceased WO2001020710A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT00962606T ATE245855T1 (de) 1999-09-13 2000-09-12 Leistungsverteiler in einer plasmavorrichtung
JP2001524184A JP4982022B2 (ja) 1999-09-13 2000-09-12 マイクロ波システム
EP00962606A EP1216493B1 (fr) 1999-09-13 2000-09-12 Diviseur de puissance pour dispositif a plasma
US10/088,326 US6727656B1 (en) 1999-09-13 2000-09-12 Power splitter for plasma device
DE60004073T DE60004073T2 (de) 1999-09-13 2000-09-12 Leistungsverteiler in einer plasmavorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911422A FR2798552B1 (fr) 1999-09-13 1999-09-13 Dispositif assurant une division de puissance micro-onde predeterminee sur une pluralite de charges, notamment pour la production de plasma
FR99/11422 1999-09-13

Publications (1)

Publication Number Publication Date
WO2001020710A1 true WO2001020710A1 (fr) 2001-03-22

Family

ID=9549779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002507 Ceased WO2001020710A1 (fr) 1999-09-13 2000-09-12 Diviseur de puissance pour dispositif a plasma

Country Status (7)

Country Link
US (1) US6727656B1 (enExample)
EP (1) EP1216493B1 (enExample)
JP (1) JP4982022B2 (enExample)
AT (1) ATE245855T1 (enExample)
DE (1) DE60004073T2 (enExample)
FR (1) FR2798552B1 (enExample)
WO (1) WO2001020710A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490458C (zh) * 2002-09-20 2009-05-20 富士通株式会社 折叠式便携无线机和该无线机的底板
US8163128B2 (en) * 2002-10-07 2012-04-24 Tokyo Electron Limited Plasma processing apparatus
WO2012146870A1 (fr) 2011-04-27 2012-11-01 Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes Installation de traitement micro-onde d'une charge

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7806077B2 (en) * 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
US20070095281A1 (en) * 2005-11-01 2007-05-03 Stowell Michael W System and method for power function ramping of microwave liner discharge sources
JP4862375B2 (ja) * 2005-12-06 2012-01-25 株式会社エーイーティー 進行波形マイクロ波プラズマ発生装置
JP6085413B2 (ja) * 2008-08-20 2017-02-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 磁気共鳴システムに対するrf電力スプリッタ
US20110094830A1 (en) * 2009-10-26 2011-04-28 Lund Kurt O'ferrall Vehicle and object portable lift
GB2497880B (en) 2010-12-23 2015-05-27 Element Six Ltd Controlling doping of synthetic diamond material
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
GB201021855D0 (en) * 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
WO2012161231A1 (ja) * 2011-05-24 2012-11-29 イマジニアリング株式会社 電磁波放射装置
KR102007230B1 (ko) * 2018-01-26 2019-08-06 한국원자력연구원 대전력 가변 고주파 전력 분배기
WO2023162695A1 (ja) * 2022-02-25 2023-08-31 パナソニックIpマネジメント株式会社 電力合成器および電力分配器
JP2024178971A (ja) * 2023-06-14 2024-12-26 古野電気株式会社 導波管型電力分配器、導波管型電力合成器、アンテナ装置、及びレーダー

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847460A (en) * 1987-04-02 1989-07-11 Leybold Aktiengesellschaft Apparatus for injecting microwave energy by means of an open microwave guide
JPH0441675A (ja) * 1990-06-07 1992-02-12 Matsushita Electric Ind Co Ltd マイクロ波プラズマ装置
US5517085A (en) * 1992-10-23 1996-05-14 Jurgen Engemann Apparatus including ring-shaped resonators for producing microwave plasmas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946553A (ja) * 1982-09-08 1984-03-15 Sumitomo Chem Co Ltd 超音波による斜角探傷方法
JPS5946553U (ja) * 1982-09-20 1984-03-28 オージー技研株式会社 マイクロ波治療装置
JPS61290722A (ja) * 1985-06-19 1986-12-20 Tokuda Seisakusho Ltd プラズマ発生装置
JPH01132236A (ja) * 1987-11-18 1989-05-24 Matsushita Electric Ind Co Ltd 部品固定法
JPH0623569Y2 (ja) * 1988-03-02 1994-06-22 新日本無線株式会社 プラズマ発生反応装置
US5153406A (en) * 1989-05-31 1992-10-06 Applied Science And Technology, Inc. Microwave source
JPH0339480A (ja) * 1989-07-05 1991-02-20 Sony Corp Ecrプラズマ装置
US5714009A (en) * 1995-01-11 1998-02-03 Deposition Sciences, Inc. Apparatus for generating large distributed plasmas by means of plasma-guided microwave power
US5796080A (en) * 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
KR970071945A (ko) * 1996-02-20 1997-11-07 가나이 쯔도무 플라즈마처리방법 및 장치
US5869817A (en) * 1997-03-06 1999-02-09 General Mills, Inc. Tunable cavity microwave applicator
JP2925535B2 (ja) * 1997-05-22 1999-07-28 キヤノン株式会社 環状導波路を有するマイクロ波供給器及びそれを備えたプラズマ処理装置及び処理方法
JPH1167492A (ja) * 1997-05-29 1999-03-09 Sumitomo Metal Ind Ltd プラズマ処理装置及びプラズマ処理方法
JPH11195924A (ja) * 1997-12-26 1999-07-21 New Japan Radio Co Ltd マイクロストリップアレーアンテナ
US6258329B1 (en) * 1998-04-20 2001-07-10 Cem Corporation Microwave transparent vessel for microwave assisted chemical processes
US6084226A (en) * 1998-04-21 2000-07-04 Cem Corporation Use of continuously variable power in microwave assisted chemistry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847460A (en) * 1987-04-02 1989-07-11 Leybold Aktiengesellschaft Apparatus for injecting microwave energy by means of an open microwave guide
JPH0441675A (ja) * 1990-06-07 1992-02-12 Matsushita Electric Ind Co Ltd マイクロ波プラズマ装置
US5517085A (en) * 1992-10-23 1996-05-14 Jurgen Engemann Apparatus including ring-shaped resonators for producing microwave plasmas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 16, no. 219 (C - 0943) 22 May 1992 (1992-05-22) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490458C (zh) * 2002-09-20 2009-05-20 富士通株式会社 折叠式便携无线机和该无线机的底板
US8163128B2 (en) * 2002-10-07 2012-04-24 Tokyo Electron Limited Plasma processing apparatus
WO2012146870A1 (fr) 2011-04-27 2012-11-01 Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes Installation de traitement micro-onde d'une charge
US9860941B2 (en) 2011-04-27 2018-01-02 Sairem Societe Pour L'application Facility for microwave treatment of a load

Also Published As

Publication number Publication date
EP1216493A1 (fr) 2002-06-26
US6727656B1 (en) 2004-04-27
ATE245855T1 (de) 2003-08-15
JP4982022B2 (ja) 2012-07-25
JP2003509832A (ja) 2003-03-11
FR2798552B1 (fr) 2001-11-30
DE60004073T2 (de) 2004-04-15
FR2798552A1 (fr) 2001-03-16
DE60004073D1 (de) 2003-08-28
EP1216493B1 (fr) 2003-07-23

Similar Documents

Publication Publication Date Title
EP1216493B1 (fr) Diviseur de puissance pour dispositif a plasma
WO1999004275A1 (fr) Dispositif et procede de reflectometrie hyperfrequences, et four a micro-ondes ainsi equipe
EP2202839B1 (fr) Ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne et procédé d'élaboration d'un tel ensemble d'excitation
CA1290449C (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP0048195B1 (fr) Coupleurs directifs en hyperfréquence entre guide d'onde rectangulaire et ligne triplaque
FR2647269A1 (fr) Systeme d'antenne a fentes
FR2921538A1 (fr) Dispositifs generateurs de plasma micro-ondes et torches a plasma
EP3726642A1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
EP3180816B1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
FR2628893A1 (fr) Interrupteur hyperfrequence
EP3462532B1 (fr) Répartiteur de puissance pour antenne comportant quatre transducteurs orthomodes identiques
FR2928793A1 (fr) Dispositif d'amplification de puissance spatial multi-sources
EP0149400B1 (fr) Aérien comportant un dispositif d'excitation en mode circulaire
EP0021872B1 (fr) Tête hyperfréquence d'émission et de réception simultanées, émetteur-récepteur en ondes millimétriques et radar utilisant une telle tête
EP0377155A1 (fr) Dispositif rayonnant bifréquence
FR2749945A1 (fr) Composant electrooptique
EP0330540A1 (fr) Diviseur de puissance en guide d'ondes
EP3955374B1 (fr) Circuit réalisant une fonction de circulateur en technologie siw ; voie d'émission / réception et radar associés
EP0336339B1 (fr) Combineur à déphasage pour ondes élèctromagnétiques
FR3005825A1 (fr) Generateur de plasma etendu comprenant des generateurs elementaires integres
WO1994021096A1 (fr) Dispositif de production d'un plasma
FR2661559A1 (fr) Convertisseur de mode de propagation guidee des ondes electromagnetiques et tube electronique comportant un tel convertisseur.
FR2594259A1 (fr) Dispositif repartiteur de puissance dans un guide d'ondes fonctionnant en polarisation lineaire.
FR2642238A1 (fr) Modulateur equilibre pour signal electromagnetique hyperfrequence de puissance
FR2762717A1 (fr) Source a deux voies pour antenne a optique focalisante

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 524184

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000962606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10088326

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000962606

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000962606

Country of ref document: EP