WO2001015314A2 - Dispositif et procede permettant d'envoyer un signal d'emission a modulation d'amplitude en quadrature - Google Patents

Dispositif et procede permettant d'envoyer un signal d'emission a modulation d'amplitude en quadrature Download PDF

Info

Publication number
WO2001015314A2
WO2001015314A2 PCT/EP2000/008132 EP0008132W WO0115314A2 WO 2001015314 A2 WO2001015314 A2 WO 2001015314A2 EP 0008132 W EP0008132 W EP 0008132W WO 0115314 A2 WO0115314 A2 WO 0115314A2
Authority
WO
WIPO (PCT)
Prior art keywords
complex data
phase
signal
data pair
calculation
Prior art date
Application number
PCT/EP2000/008132
Other languages
German (de)
English (en)
Other versions
WO2001015314A3 (fr
Inventor
Heinrich Schenk
Thomas Magesacher
Martin Krüger
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001015314A2 publication Critical patent/WO2001015314A2/fr
Publication of WO2001015314A3 publication Critical patent/WO2001015314A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/365Modulation using digital generation of the modulated carrier (not including modulation of a digitally generated carrier)

Definitions

  • the invention relates to an apparatus and a method for transmitting a quadrature amplitude modulated transmission signal (QAM transmission signal) with a specific carrier frequency, in particular in a return channel in cable television transmission systems.
  • QAM transmission signal quadrature amplitude modulated transmission signal
  • Television signals are increasingly being transmitted from a central television station over a broadband cable network to the terminals of television subscribers.
  • the television signals were only transmitted in one direction from the television station to the participants.
  • the existing broadband cable network can also be used for interactive services, in particular Internet services, it is necessary to provide a return channel in which digital data in addition to the forward channel, which is in a frequency spectrum range of approximately 90 MHz to 800 MHz can be sent from the subscriber to the service provider.
  • Bidirectional communication between the service provider and the subscriber who is connected to the broadband cable network is possible via the forward channel and the return channel.
  • the subscriber can, for example, send digital commands for selecting films or video games to the service provider via the return channel or also send purchase commands for buying goods.
  • the bidirectional communication via the downlink and the return channel also enables interactive learning via the broadband cable network, for example answering transmitted questions.
  • the frequency ranges for the outgoing and return channels have been standardized by the cable network operators.
  • a frequency range of approximately 90 to 800 MHz is specified for the forward channel and a frequency range of approximately 5 to 65 MHz for the return channel. has been laid.
  • the quadrature amplitude modulation method (QAM) has been established as the type of modulation for transmitting the data.
  • the amplitude and the frequency or the phase of a harmonic oscillation are modulated by two different time functions.
  • Fig. 1 shows a block diagram of a conventional QAM transmitter according to the prior art.
  • the data to be transmitted are fed to an encoder, which combines a sequence of binary data and assigns it to a pair of numbers (a, b).
  • the set of values for the number pairs determines the exact type of modulation. For example, if only four pairs of values ((1, 1), (1, -1), (-1, 1), (-1, -1)) are used, this is a pure phase modulation (QPSK). If the two values a and b of the pair of numbers each take several amplitude values, then this is a QAM modulation method.
  • the complex data signal is sampled at a specific sampling rate and two identical low-pass filters (g (t)) are supplied to limit the band.
  • the low-pass filtered, sampled data signals are then modulated by multiplication with carrier signals that are orthogonal to one another.
  • the transmission signal is formed by summing the two signal components, ie the normal and quadrature components.
  • the carrier frequency f 0 of the orthogonal carrier signals determines the spectral position of the transmission signal x (t).
  • the spectral position of the transmission signal x (t) is in a range from approximately 5 MHz to 65 MHz in accordance with the established standard.
  • sampling frequency of the sampling switches S1, S2 shown in FIG. 1 must satisfy the sampling theorem.
  • the frequency range of the jerk channel is between 5 MHz and approx. 65 MHz, so that the sampling frequency must be more than 100 MHz.
  • this object is achieved by a device for transmitting a QAM transmission signal with the features specified in patent claim 1 and by a method for transmitting a QAM transmission signal with the characteristics specified in patent claim 21.
  • the particular advantage of the invention is that no analog mixer stages are required to generate the QAM transmit signal.
  • the invention provides a device for transmitting a QAM transmission signal with a carrier frequency, the device comprising: a coding device for coding data m complex data pairs each consisting of two data, a sampling device for scanning the complex data pair signals with a first sampling frequency , a selection device for selecting the carrier frequency, a memory from which a phase increment assigned to the carrier frequency can be read, an accumulator for generating a phase signal as a function of a read phase increment, at least one calculation device for generating the QAM transmission signal by multiplying the complex data pair by a phase rotation operator, the complex data pair being rotated by a phase angle in accordance with the phase signal.
  • the sampled complex data pairs are filtered by digital low-pass filters to limit the band.
  • the filtered output signals of the digital low-pass filter are sampled by a further sampling device with a second sampling frequency.
  • the accumulator has a clocked intermediate store for intermediate storage of the phase signal.
  • the accumulator has an adder for adding the phase increment read out to the buffer-stored phase signal of the previous clock cycle.
  • the accumulator has a modulo calculation unit.
  • the modulo calculation unit is a two's complement calculation unit.
  • a plurality of calculation devices for parallel data processing of a large number of complex data signals are connected in parallel.
  • the carrier frequency of the QAM transmit signal is between 5 MHz and 65 MHz.
  • the device according to the invention can be used as a transmitting device in a return channel of a broadband television cable network.
  • the second sampling frequency is a multiple of the first sampling frequency.
  • the second sampling frequency is more than 100 MHz.
  • the digital low-pass filters are non-recursive filters.
  • the digital low-pass filters are interpolation filters.
  • the digital low-pass filters are narrow-band with an adjustable bandwidth which can be set as a function of the symbol rate.
  • the calculation device contains at least one cordic calculation unit.
  • the kordische calculation unit has: two shift registers for bit-wise shifting the data of a complex data pair depending on an iteration number, a first addition / subtraction device for adding / subtracting the first date of the complex data pair with the shifted second date of the complex data pair depending on the sign of the phase angle to form the first date for the next iteration, a second addition / subtraction device for adding / subtracting the second date of the complex data pair with the shifted first date of the complex data pair m Dependence on the sign of the phase angle for the formation of the second date for the next iteration.
  • the kordische computation unit contains a third addition / subtraction device for adding / subtracting the phase signal with a stored arc tangent value depending on the sign of the phase angle for forming the phase signal for the next iteration.
  • the kordische calculation unit contains a decrement device for decrementing the iteration number.
  • the calculation device has a kordische calculation unit, which is fed back via an intermediate memory.
  • the calculation device has a plurality of cordic calculation units connected in series.
  • the invention also provides a method for transmitting a QAM transmit signal with a specific carrier frequency, which has the following steps:
  • FIG. 2 is a block diagram to show a cable network connection in which the device according to the invention can be used;
  • FIG. 3 shows a block diagram of the device according to the invention for transmitting a QAM transmit signal
  • FIG. 4 shows a first embodiment of a cordless calculation unit according to the invention
  • Fig. 6 is a flowchart showing the calculation process within a kordische calculation unit according to the invention.
  • Fig. 7 shows a cordial calculation element according to the invention.
  • FIG. 2 shows a block diagram of a cable connection in which the transmission device according to the invention can be used.
  • the cable television connection 2 of a subscriber is connected to a service provider via a data forward channel in the frequency range from approximately 90 MHz to 800 MHz and via a data return channel in the frequency range from approximately 5 MHz to 65 MHz.
  • the cable television connection 2 is connected via a signal line 3 to a subscriber television cable modem 4.
  • the subscriber television cable modem 4 outputs an analog television signal to a television terminal 6 via an analog signal line 5.
  • the subscriber television cable modem 4 is connected to a digital terminal, in particular a computer or PC 8, via a bidirectional digital data line 7.
  • a di- Binary data output digital terminal 8 are sent by the inventive transmission device as a QAM transmission signal for the lines 3, 1 to the service provider in a data return channel.
  • FIG. 3 shows a block diagram of the device according to the invention for transmitting a QAM transmission signal.
  • Binary data are fed via the digital signal line 7 to a coding device 9 for coding data into complex-value data pair signals consisting of two data a, b.
  • the signal output 10 for the first data signal is connected via a line 11 and the second output 12 for the second data signal is connected via a line 13 to a sampling device 14 for sampling the complex data pair signals with a first sampling frequency f t .
  • the sampled first data signal is fed via a line 15 and the second sampled data signal is fed via a line 16 to the digital low-pass filters 17, 18.
  • the digital low-pass filters 17, 18 are preferably non-recursive filters with a high sampling frequency of more than 100 MHz or, alternatively, cascade-shaped filters, the first cascade stage of which is a non-recursive filter and the second cascade stage of which is an interpolation filter, in particular a COMB filter a sampling frequency of more than 100 MHz.
  • the sampling frequency of the first cascade stage, ie the non-recursive filter, is lower than the sampling frequency of the second cascade stage, ie the interpolation filter.
  • the digital low-pass filters 17, 18 are narrow-band low-pass filters with a bandwidth that can be set as a function of the symbol rate.
  • the sampled and filtered first data signal arrives via a line 19 and the second sampled and filtered data signal arrives via a line 20 to a further sampling device 21, which samples the signals with a sampling frequency f a and via lines 22, 23 to a cordless calculation device 24 to generate the QAM transmit signal on line 3.
  • the calculation device 24 performs a multiplication of the complex data pair present on the lines 22, 23 by a rotary operator, the complex data pair signal being rotated by a phase angle ⁇ corresponding to a phase signal.
  • the phase signal is generated in an accumulator 25, which supplies the phase signal to the calculation device 24 via a line 26.
  • the accumulator 25 contains a clocked buffer store 27 for the buffer storage of the phase signal.
  • the buffered phase signal is fed back to an adder 30 via lines 28, 29.
  • the adder 30 adds the fed-back temporarily stored phase signal with a phase increment read out from a memory 31.
  • the memory 31 is connected via a line 32 to the second input of the adder 30.
  • the sum signal of the adder 30 is fed via a line 33 to a module calculation unit 34 which is connected on the output side to the buffer store 27 via a line 35.
  • the modulo calculation unit 34 is preferably a two's complement calculation unit.
  • a desired carrier frequency fo is selected by means of a selection unit 36 and this is communicated to the memory 31 via a line 37.
  • the desired carrier frequency is characterized by a constant phase increment ⁇ .
  • an associated phase increment is assigned to each carrier frequency in a table.
  • the phase increment assigned to the carrier frequency f 0 is read out via the read-out line 32 and fed to the digital accumulator 25.
  • the adder 30 of the accumulator 25 adds the phase increment read out to the phase value ⁇ of the previous clock cycle. If a certain phase threshold, for example ⁇ , is exceeded, the modulo calculation unit pulls twice the value of the phase threshold, for example 2 ⁇ .
  • the phase range from - ⁇ to + ⁇ can be scaled or mapped to the range from -1 to +1 by appropriate scaling.
  • the carrier frequency which can be selected by the selection device 36 is preferably between 5 MHz and 50 MHz.
  • the second sampling frequency f a of the second sampling device 21 is preferably a multiple of the first sampling frequency f t of the first sampling device 14. In a preferred embodiment, the second sampling frequency f a is more than 100 MHz.
  • the first sampling frequency f t corresponds, for example, to a symbol rate of 0.16 - 2.65 Mbaud.
  • FIG. 4 shows a first embodiment of the cordless calculation unit 24, as shown in FIG. 3.
  • the cordic calculation unit 24 contains a kordic calculation component 40 with four inputs 41, 42, 43, 44 and four outputs 45, 46, 47, 48 connected.
  • the first data signal of the complex data signal pair is applied to the first input 41 via the line 22 and the second data signal of the complex data signal pair is applied to the fourth input 44 via the line 23.
  • the accumulator 25 shown in FIG. 3 is connected to the second input 42 of the cordial calculation element 40 via the line 26.
  • the third connection 43 of the cordial calculation element 40 receives an iteration number N via a line 52, which indicates the number of iteration steps carried out.
  • the first datum of the complex data signal pair after an iteration step is applied to the output 45 and the second datum of the complex data signal pair after the iteration is applied to clocked registers 55, 56 via lines 53, 54 at the fourth output 48.
  • the phase signal for the next iteration is applied to a clocked buffer store 58 via a line 57.
  • the iteration number applied at the input 43 is decremented within the calculation element 40 and applied to an intermediate memory 60 via a line 59 at the output 47.
  • the buffer 55 emits the QAM transmission signal.
  • the first date of the complex data signal which is stored in the buffer 55, is fed back to the first input 41 via a feedback line 61.
  • the buffer store 58 in which the phase signal is buffered, is connected via a feedback line 62 to the second input 42 of the cordial calculation element 40.
  • the buffer memory 60 in which the iteration number is buffered, is fed back via a feedback line 63 to the third input 43 of the cordial calculation element 40.
  • the buffer store 56 is fed back via a feedback line 64 to the fourth input 44 of the cordic calculation element.
  • FIG. 5 shows a second embodiment of the cordless calculation unit 24.
  • a number of identical cordless calculation components 40-1, 40-2,... 40- (n + l) are connected in series and form a so-called pipeline structure.
  • the various cordic calculation elements 40-1, 40-2, .... 40 (M + 1) are connected via a multiplexer / demultiplexer 69 via read and write lines 70, 71 to a common read-only memory 72 for storing arc tangent values.
  • FIG. 6 shows a schematic flowchart of the calculation process within a cordial calculation element 40, the internal structure of which is shown in FIG. 7.
  • a first step S1 the two data a, b of the complex data input signal, the phase signal ⁇ and the number N of the iteration steps to be performed are applied.
  • the first datum a is applied to the input 41, the second datum b to the input 44, the phase signal to the input 42 and the iteration number N to the input 43 of the cordless calculation element 40.
  • a calculation step S2 the data a, b of the complex data signal pair are calculated iteratively m as a function of the sign of the phase signal.
  • phase signal for the next iteration step is also calculated:
  • the arc tangent value is obtained from the read-only memory 51 and 5 from the read-only memory 72 in the embodiment shown in FIG.
  • the calculated values are fed back in a step S3 in the first embodiment shown in FIG. 4 to the inputs of the corded calculation element 40 or in the second embodiment shown in FIG. 5 to a downstream identical corded calculation element.
  • step S4 the first data item of the complex data signal is read out at output 53 and output as a QAM transmission signal via line 3.
  • FIG. 7 shows the circuitry structure of a cordial calculation element 40 in detail.
  • the calculation element 40 contains shift registers 73, 74 for the bit-wise shift m as a function of the iteration number n, a bit-wise shift to the left if n> 0 and a bit-wise shift to the right if n ⁇ 0.
  • the iteration number n is applied to the third input 43 of the calculation element 40.
  • the calculation element 40 also contains a first addition / subtraction device 75 which, depending on the signs of the applied phase signal, adds or subtracts the second date b shifted bit by bit in the second shift register 74 with the first date a.
  • the kordische calculating element 40 further contains a second add-on / sub-traction unit 76 which, depending on the sign of the applied phase signal, sums or subtracts the first datum a shifted bit by bit in the first shift register 73 with the second datum b.
  • the kordische calculating element 40 also has a third add-on / sub-traction device 77, which the phase signal of the previous iteration present at the input 42 depending on the sign of the phase signal with an arctangent value, which is read out from a read-only memory via the line 51 is summed or subtracted.
  • the cordial calculation element 40 comprises a decrementing device 78 which decrements the iteration number applied to the input 43 for the next iteration

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

L'invention concerne un dispositif permettant d'envoyer un signal d'émission à MAQ ayant une fréquence de déclenchement f0. Ce dispositif présente un dispositif de codage (9) permettant de coder des données en paires de données (a, b) à valeur complexe composées de deux données; un dispositif de détection (14) destiné à la détection des signaux paires de données à valeur complexe et ayant une première fréquence de détection; un dispositif de sélection (36) destiné à la sélection de la fréquence porteuse f0; une mémoire (31) dans laquelle on peut lire un incrément de phase δζ associé à la fréquence porteuse; un accumulateur (25) destiné à la production d'un signal de mise en phase ζ en fonction de l'incrément de phase δζ lu et au moins un dispositif de calcul (24) destiné à la production du signal d'émission MAQ par la multiplication des paires de données à valeur complexe par un opérateur de rotation de phase. La paire de données à valeur complexe est tournée d'un angle de phase ζ correspondant au signal de phase.
PCT/EP2000/008132 1999-08-20 2000-08-21 Dispositif et procede permettant d'envoyer un signal d'emission a modulation d'amplitude en quadrature WO2001015314A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939588.8 1999-08-20
DE1999139588 DE19939588A1 (de) 1999-08-20 1999-08-20 Vorrichtung und Verfahren zum Senden eines quadraturamplitudenmodulierten Sendesignals

Publications (2)

Publication Number Publication Date
WO2001015314A2 true WO2001015314A2 (fr) 2001-03-01
WO2001015314A3 WO2001015314A3 (fr) 2001-06-14

Family

ID=7919083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008132 WO2001015314A2 (fr) 1999-08-20 2000-08-21 Dispositif et procede permettant d'envoyer un signal d'emission a modulation d'amplitude en quadrature

Country Status (2)

Country Link
DE (1) DE19939588A1 (fr)
WO (1) WO2001015314A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10000958B4 (de) 2000-01-12 2004-04-29 Infineon Technologies Ag Schaltungsanordnung zur Erzeugung eines quadraturamplitudenmodulierten Sendesignals
NL1031482C2 (nl) * 2006-03-31 2007-10-05 Stn B V Kabeltelevisiesysteem met uitgebreide kwadratuuramplitudemodulatiesignaaluitwisseling, zendmiddelen en een beheercentrum daarvoor.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493057A1 (fr) * 1990-12-20 1992-07-01 Motorola, Inc. Synthétiseur à résolution de fréquence améliorée
EP0632369A1 (fr) * 1993-06-29 1995-01-04 Stichting voor de Technische Wetenschappen Algorithmes et architectures CORDIC
EP0658975A1 (fr) * 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Système à prédistorsion pour signaux en bande de base pour la linéarisation adaptative d'amplificateurs de puissance
WO1996021305A1 (fr) * 1994-12-29 1996-07-11 Motorola Inc. Emetteur et recepteur numeriques a acces multiple
EP0809195A2 (fr) * 1996-05-22 1997-11-26 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Processeur à jeu d'instructions réduit pour la communication analogique
US5802111A (en) * 1997-02-24 1998-09-01 Motorola, Inc. Complex constellation point multiplier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493057A1 (fr) * 1990-12-20 1992-07-01 Motorola, Inc. Synthétiseur à résolution de fréquence améliorée
EP0632369A1 (fr) * 1993-06-29 1995-01-04 Stichting voor de Technische Wetenschappen Algorithmes et architectures CORDIC
EP0658975A1 (fr) * 1993-12-14 1995-06-21 ALCATEL ITALIA S.p.A. Système à prédistorsion pour signaux en bande de base pour la linéarisation adaptative d'amplificateurs de puissance
WO1996021305A1 (fr) * 1994-12-29 1996-07-11 Motorola Inc. Emetteur et recepteur numeriques a acces multiple
EP0809195A2 (fr) * 1996-05-22 1997-11-26 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Processeur à jeu d'instructions réduit pour la communication analogique
US5802111A (en) * 1997-02-24 1998-09-01 Motorola, Inc. Complex constellation point multiplier

Also Published As

Publication number Publication date
DE19939588A1 (de) 2001-03-01
WO2001015314A3 (fr) 2001-06-14

Similar Documents

Publication Publication Date Title
DE68925638T2 (de) Kabelfernseh-spreizspektrum-datenübertragungsgerät
DE69929013T2 (de) Phasenschätzung bei Trägerrückgewinnung für QAM-Signale
DE69434734T2 (de) Modemanwendungen von gleichzeitiger analoger und digitaler Kommunikation
DE68923634T2 (de) Entzerrer für Radioempfänger.
DE69531020T2 (de) Verfahren und Einrichtung zur sequentiellen Unterdrückung von Vielfachzugriffstörungen in einem CDMA-Empfänger
DE19540652C2 (de) Vorrichtung und Verfahren zum Dekodieren eines kohärenten, differenziell codierten, mehrstufig phasenumtastungsmodulierten (DEPSK) Signals
DE4480172C2 (de) Vorrichtung und Verfahren zum digitalen Verarbeiten von Signalen in einem Funkfrequenz-Kommunikationssystem
DE60031142T2 (de) Tuner für digitalen Empfänger mit mehreren Eingangskanälen und Ausgangskanälen
DE69720712T2 (de) Schaltung zur Rückbildung von QAM-Symbolen
EP1216516B1 (fr) Procede et dispositif de production de signaux codes par etalement
DE69826415T2 (de) Einseitenbandübertragung von QPSK-, QAM- und sonstigen Signalen
EP1250752B1 (fr) Emetteur destine a emettre des signaux par des canaux radio et procede d'emission de signaux par des canaux radio
DE4344811B4 (de) Faltungscodierer und gittercodierte Modulationsvorrichtung mit einem Faltungscodierer
DE69013524T2 (de) Parallel arbeitender adaptiver Transversalentzerrer für digitales Hochgeschwindigkeitsübertragungssystem.
DE10124782A1 (de) Übermittlung und Erkennung der Modulationsart in digitalen Kommunikationssystemen mittels eines der Trainingssequenz aufgeprägten Phasenrotationsfaktors
DE3417404C2 (fr)
DE2718087C3 (de) Digitaldemodulator für linear amplitudenmodulierte Datensignale
DE4310031A1 (de) Verfahren zur Korrektur von Phase und Amplitude eines breitbandigen Empfangssignals mit Hilfe von Referenzsignalen
DE69829096T2 (de) Rahmenstruktur mit einer Mehrzahl von Modulationsarten
DE69211859T2 (de) Digitaler fsk-demodulator
WO2001015314A2 (fr) Dispositif et procede permettant d'envoyer un signal d'emission a modulation d'amplitude en quadrature
DE2845166C2 (fr)
DE69826913T2 (de) Übertragungs-und Empfangsverfahren zur Reduzierung einer Gleichkanalstörung in einem zellularen Funk-Kommunikationsnetzwerk sowie Sender und Empfänger für ein solches Netzwerk
DE19944558C2 (de) Verfahren zum Senden von Funksignalen und Sender zum Versenden eines Funksignals
DE2752451C2 (de) Anpassende Phasenauswertung für Phasentastmodulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP