WO2001014942A1 - Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides - Google Patents

Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides Download PDF

Info

Publication number
WO2001014942A1
WO2001014942A1 PCT/EP2000/007951 EP0007951W WO0114942A1 WO 2001014942 A1 WO2001014942 A1 WO 2001014942A1 EP 0007951 W EP0007951 W EP 0007951W WO 0114942 A1 WO0114942 A1 WO 0114942A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation
measurement signals
sensors
objects
measurement
Prior art date
Application number
PCT/EP2000/007951
Other languages
German (de)
English (en)
Inventor
Jörg F. WAGNER
Original Assignee
Wagner Joerg F
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner Joerg F filed Critical Wagner Joerg F
Publication of WO2001014942A1 publication Critical patent/WO2001014942A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to a method for navigation and loading control of moving objects, in which measurement signals from a self-sufficient system on the object and measurement signals via antennas from a global satellite or radio navigation system, or also via optical devices, are used to Obtain movement data or location coordinates of the object with high accuracy and as a function of time.
  • the invention also relates to a device for navigation and movement control of objects, comprising sensors of an autonomous system on the object and antennas of a global satellite or radio navigation system, or also corresponding optical devices that supply measurement signals, computer devices to derive movement data from the measurement signals, Comparison devices for comparing movement data with one another and a controller device for minimizing comparison differences.
  • the antennas for the second measurement signals are either in the vicinity of this measurement location, but this inevitably leads to parts of the aircraft that are distant from the measurement location being ignored when navigating unless they are rigidly connected to it, which is not only the case with large aircraft and would be critical in taxi operations at airports.
  • the antennas for the second measurement signals are at a greater distance from the measurement location for the first measurement devices, then elastic deformations of the aircraft can reduce the accuracy of the determined location coordinates to such an extent that safe guidance of the aircraft is made impossible. In the case of larger aircraft, noticeable elastic deformations occur even with less turbulence when one thinks of wing spans of over 30 m.
  • the aircraft In all of the navigation methods known to date and used in practice, the aircraft is regarded as a rigid body despite these elastic deformations and changes in shape.
  • the present invention relates to a method and a device of the type mentioned at the outset, which are each intended to be applied to non-rigid objects.
  • a device for regulating the distances between a plurality of track-guided vehicles traveling in a column is known (DE-PS 24 04 884 C2), to which control circuits are assigned in each case, which track the vehicles to predetermined target positions by influencing the vehicle speeds.
  • the control circuits are connected to a central controller, which controls the target positions and target speeds individual vehicles calculated depending on their distances from one another and transmitted to the control circuits assigned to the vehicles.
  • the control circuits of the vehicles compare the positions of the vehicles assigned to them with the transmitted solo positions and correct the target speed if the difference between the target position and the vehicle position exceeds a predetermined tolerance value.
  • Fig. 1 shows the principle of integration of a known navigation system that could also be used for the present invention.
  • FIG. 2 shows a diagrammatic representation of the relative position of the GPS antenna and inertial measuring unit (IMU).
  • IMU inertial measuring unit
  • the currently most powerful navigation systems for rigid air, water and land vehicles consist of a combination of sensors with high availability (especially inertial sensors, ie gyroscopes and accelerometers) and sensors with high long-term accuracy (so-called support sensors) such as satellite navigation receivers (e.g. for GPS and / or GLONASS), which are integrated into overall systems according to known principles.
  • sensors with high availability especially inertial sensors, ie gyroscopes and accelerometers
  • satellite navigation receivers e.g. for GPS and / or GLONASS
  • Fig. 1 Their mode of operation will be explained below using the example of the combination of inertial sensors with Satellite navigation receivers briefly described, where all symbols used (x, ...) are vectors.
  • the input u of the diagram shown represents accelerations and rotation rates that act on the vehicle under consideration and are measured at the same time by the inertial sensors.
  • the movement caused by u is described using the initially unknown state x.
  • a measuring system in the form of a satellite navigation receiver determines measured variables y derived from x (for example inclined distances J between the vehicle and the navigation satellites, cf. FIG. 2).
  • y derived from x
  • parallel to this process which is shown in the upper part of FIG. 1, building on u in the lower part in the navigation computer, a simulation of the vehicle movement (block "vehicle simulation") is carried out, which leads to an estimate ( ⁇ ) of x.
  • estimates for the measured values y are also generated based on this estimate with the aid of a measurement model (block “measurement simulation”).
  • the estimated and the actual measured values are then compared with one another and their difference is fed to a “controller”, which has the task of keeping the difference between the simulated, known and the actual, unknown quantities of x as small as possible.
  • the relative position of the inertial sensors and the satellite navigation antenna is influenced, for example, by structural vibrations of the vehicle.
  • these additional movements should not be neglected given the measurement resolution of the satellite navigation devices (cm range) that is possible today.
  • the measured ⁇ is not primarily used for navigation Instead, the s determined from this is determined by 1.
  • the sensors for determining u and y are no longer concentrated in a few places, but many sensors are spatially distributed over the object and deliver corresponding sets of measured values.
  • the mechanical model of the moving, non-rigid object or vehicle for the vehicle simulation receives additional elastic degrees of freedom, degrees of joint freedom or the like. and therefore no longer represents a rigid body. This increases the number of differential equations and the components of x, which together describe the vehicle movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Procédé de navigation et de commande de mouvement d'objets qui se déplacent. Ledit procédé consiste à recueillir des signaux de mesure provenant d'un système autonome situé sur l'objet et des signaux de mesure provenant d'un système de radionavigation ou de positionnement par satellite par l'intermédiaire d'antennes, ou par l'intermédiaire de dispositifs optiques (tels que des appareils de poursuite laser) pour obtenir des données de mouvement et plus spécialement des coordonnées de lieu de l'objet avec une grande précision et en fonction du temps. Lorsque ledit procédé est appliqué à des objets non rigides, des signaux de mesure provenant d'une pluralité de capteurs et d'antennes répartis sur l'objet et/ou des signaux supplémentaires de mesure provenant de sondes de mesure qui détectent les modifications d'écartement, les déformations ou les modifications de configuration (jauges extensométriques ou analogues) sont utilisés pour le calcul des données de mouvement et des coordonnées de lieu.
PCT/EP2000/007951 1999-08-19 2000-08-16 Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides WO2001014942A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939345A DE19939345C2 (de) 1999-08-19 1999-08-19 Vorrichtung zur Navigation und zur Bewegungssteuerung von Gegenständen sowie Anwendung einer solchen Vorrichtung auf nicht starre Gegenstände
DE19939345.1 1999-08-19

Publications (1)

Publication Number Publication Date
WO2001014942A1 true WO2001014942A1 (fr) 2001-03-01

Family

ID=7918908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007951 WO2001014942A1 (fr) 1999-08-19 2000-08-16 Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides

Country Status (2)

Country Link
DE (1) DE19939345C2 (fr)
WO (1) WO2001014942A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373110B2 (en) 2009-05-26 2013-02-12 Honeywell International Inc. System and method for linear and angular measurements of a moving object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203413B (zh) * 2021-05-07 2024-02-27 上海伯镭智能科技有限公司 一种位姿融合估计方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050087A (en) * 1989-11-29 1991-09-17 Westinghouse Electric Corp. System and method for providing accurate attitude measurements at remote locations within an aircraft
US5288167A (en) * 1991-11-06 1994-02-22 Laserdot Laser beam guidance device for civil engineering/earthmoving plant
DE19636425C1 (de) * 1996-09-07 1997-11-13 Aero Data Flugmestechnik Gmbh Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden
US5815880A (en) * 1995-08-08 1998-10-06 Minolta Co., Ltd. Cleaning robot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2404884C2 (de) * 1974-02-01 1983-12-15 Standard Elektrik Lorenz Ag, 7000 Stuttgart Vorrichtung zur Regelung eines konstanten Abstandes mehrerer in Kolonne fahrender Fahrzeuge
DE4415419A1 (de) * 1994-05-02 1995-11-09 Horn Wolfgang Positionsmesseinrichtung
DE19823756C2 (de) * 1998-05-27 2000-12-07 Fraunhofer Ges Forschung Eigenbewegliches Robotersystem zum Fräsen und Bohren von Vertiefungen in Wänden, vorzugsweise Rohbauwänden von Gebäuden
DE19830359A1 (de) * 1998-07-07 2000-01-20 Helge Zwosta Räumliche Lage- und Bewegungsbestimmung von Körperteilen und Körpern, mittels einer Kombination von inertialen Orientierungs-Meßaufnehmern und Positionserfassungssensoriken
DE19918140A1 (de) * 1999-04-01 2000-10-12 Deutsch Zentr Luft & Raumfahrt Meßanordnung zur Regelung von Robotern, Werkzeugmaschinen und dergleichen sowie ein mit dieser Meßanordnung durchgeführtes Meßverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050087A (en) * 1989-11-29 1991-09-17 Westinghouse Electric Corp. System and method for providing accurate attitude measurements at remote locations within an aircraft
US5288167A (en) * 1991-11-06 1994-02-22 Laserdot Laser beam guidance device for civil engineering/earthmoving plant
US5815880A (en) * 1995-08-08 1998-10-06 Minolta Co., Ltd. Cleaning robot
DE19636425C1 (de) * 1996-09-07 1997-11-13 Aero Data Flugmestechnik Gmbh Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373110B2 (en) 2009-05-26 2013-02-12 Honeywell International Inc. System and method for linear and angular measurements of a moving object
US8552362B2 (en) 2009-05-26 2013-10-08 Honeywell International Inc. System and method for linear and angular measurements of a moving object

Also Published As

Publication number Publication date
DE19939345A1 (de) 2001-03-29
DE19939345C2 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
DE112006002723B4 (de) Verfahren und vorrichtung zum abschätzen von relativen koordinaten zwischen mindestens zwei teilen eines systems
DE60205851T2 (de) Vorrichtung und Verfahren zur Navigation eines Flugzeugs
EP1913569B1 (fr) Procede de guidage d'avion permettant de guider plusieurs avions volant en formation
EP0856784B1 (fr) Méthode et dispositif pour la détermination de la position d'un satellite à bord
EP3106899B1 (fr) Systeme de commande de vehicule reference
DE19536601A1 (de) Navigationssystem für ein Fahrzeug, insbesondere für ein Landfahrzeug
EP2755868A1 (fr) Système capteur comportant une unité de modèle de véhicule
WO1995009348A1 (fr) Systeme de reperage et de navigation assiste par satellite
EP4021778B1 (fr) Procédé et véhicule de mesure pour déterminer une position réelle d'une voie ferrée
DE102018220782A1 (de) Lokalisierung eines Fahrzeugs anhand von dynamischen Objekten
EP3155454B1 (fr) Procédé et système d'adaptation d'un système de navigation
DE102019132150A1 (de) Verfahren zum automatischen Kalibrieren eines Umfeldsensors, insbesondere eines Lidar-Sensors, eines Fahrzeugs auf Grundlage von Belegungskarten sowie Recheneinrichtung
DE19939345C2 (de) Vorrichtung zur Navigation und zur Bewegungssteuerung von Gegenständen sowie Anwendung einer solchen Vorrichtung auf nicht starre Gegenstände
DE19636425C1 (de) Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden
EP1121605B1 (fr) Procede et dispositif permettant de determiner la position de satellites de communication
WO2020169346A1 (fr) Procédé de commande d'un aéronef multi-rotor pour décollage et atterrissage verticaux et aéronef multi-rotor
EP0474105B1 (fr) Système de navigation inertial avec un filtre de compensation pour son alignement pendant le vol
DE60024835T2 (de) Integriertes inertial/fahrzeugbewegungssensor navigationssystem
DE3406096A1 (de) Bohrlochmesseinrichtung
EP0966652B1 (fr) Dispositif et procede de mesure pour essieux
DE102007030944A1 (de) Regelung von Master/Slave-Satellitenkonstellationen
EP0184632B1 (fr) Dispositif d'initialisation et/ou de recalibrage d'un navigateur inertiel répétiteur
DE102020126564A1 (de) Zustandsbestimmung von objekten in einem objektverbund
WO2019219356A1 (fr) Procédé et système de positionnement pour la transformation d'une position d'un véhicule
DE102008058866B4 (de) Vorrichtung und Verfahren zur Lagebestimmung eines Objekts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP