WO2001014942A1 - Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides - Google Patents
Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides Download PDFInfo
- Publication number
- WO2001014942A1 WO2001014942A1 PCT/EP2000/007951 EP0007951W WO0114942A1 WO 2001014942 A1 WO2001014942 A1 WO 2001014942A1 EP 0007951 W EP0007951 W EP 0007951W WO 0114942 A1 WO0114942 A1 WO 0114942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- navigation
- measurement signals
- sensors
- objects
- measurement
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims description 2
- 238000012986 modification Methods 0.000 abstract 2
- 230000004048 modification Effects 0.000 abstract 2
- 230000036962 time dependent Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 6
- 230000005489 elastic deformation Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Definitions
- the invention relates to a method for navigation and loading control of moving objects, in which measurement signals from a self-sufficient system on the object and measurement signals via antennas from a global satellite or radio navigation system, or also via optical devices, are used to Obtain movement data or location coordinates of the object with high accuracy and as a function of time.
- the invention also relates to a device for navigation and movement control of objects, comprising sensors of an autonomous system on the object and antennas of a global satellite or radio navigation system, or also corresponding optical devices that supply measurement signals, computer devices to derive movement data from the measurement signals, Comparison devices for comparing movement data with one another and a controller device for minimizing comparison differences.
- the antennas for the second measurement signals are either in the vicinity of this measurement location, but this inevitably leads to parts of the aircraft that are distant from the measurement location being ignored when navigating unless they are rigidly connected to it, which is not only the case with large aircraft and would be critical in taxi operations at airports.
- the antennas for the second measurement signals are at a greater distance from the measurement location for the first measurement devices, then elastic deformations of the aircraft can reduce the accuracy of the determined location coordinates to such an extent that safe guidance of the aircraft is made impossible. In the case of larger aircraft, noticeable elastic deformations occur even with less turbulence when one thinks of wing spans of over 30 m.
- the aircraft In all of the navigation methods known to date and used in practice, the aircraft is regarded as a rigid body despite these elastic deformations and changes in shape.
- the present invention relates to a method and a device of the type mentioned at the outset, which are each intended to be applied to non-rigid objects.
- a device for regulating the distances between a plurality of track-guided vehicles traveling in a column is known (DE-PS 24 04 884 C2), to which control circuits are assigned in each case, which track the vehicles to predetermined target positions by influencing the vehicle speeds.
- the control circuits are connected to a central controller, which controls the target positions and target speeds individual vehicles calculated depending on their distances from one another and transmitted to the control circuits assigned to the vehicles.
- the control circuits of the vehicles compare the positions of the vehicles assigned to them with the transmitted solo positions and correct the target speed if the difference between the target position and the vehicle position exceeds a predetermined tolerance value.
- Fig. 1 shows the principle of integration of a known navigation system that could also be used for the present invention.
- FIG. 2 shows a diagrammatic representation of the relative position of the GPS antenna and inertial measuring unit (IMU).
- IMU inertial measuring unit
- the currently most powerful navigation systems for rigid air, water and land vehicles consist of a combination of sensors with high availability (especially inertial sensors, ie gyroscopes and accelerometers) and sensors with high long-term accuracy (so-called support sensors) such as satellite navigation receivers (e.g. for GPS and / or GLONASS), which are integrated into overall systems according to known principles.
- sensors with high availability especially inertial sensors, ie gyroscopes and accelerometers
- satellite navigation receivers e.g. for GPS and / or GLONASS
- Fig. 1 Their mode of operation will be explained below using the example of the combination of inertial sensors with Satellite navigation receivers briefly described, where all symbols used (x, ...) are vectors.
- the input u of the diagram shown represents accelerations and rotation rates that act on the vehicle under consideration and are measured at the same time by the inertial sensors.
- the movement caused by u is described using the initially unknown state x.
- a measuring system in the form of a satellite navigation receiver determines measured variables y derived from x (for example inclined distances J between the vehicle and the navigation satellites, cf. FIG. 2).
- y derived from x
- parallel to this process which is shown in the upper part of FIG. 1, building on u in the lower part in the navigation computer, a simulation of the vehicle movement (block "vehicle simulation") is carried out, which leads to an estimate ( ⁇ ) of x.
- estimates for the measured values y are also generated based on this estimate with the aid of a measurement model (block “measurement simulation”).
- the estimated and the actual measured values are then compared with one another and their difference is fed to a “controller”, which has the task of keeping the difference between the simulated, known and the actual, unknown quantities of x as small as possible.
- the relative position of the inertial sensors and the satellite navigation antenna is influenced, for example, by structural vibrations of the vehicle.
- these additional movements should not be neglected given the measurement resolution of the satellite navigation devices (cm range) that is possible today.
- the measured ⁇ is not primarily used for navigation Instead, the s determined from this is determined by 1.
- the sensors for determining u and y are no longer concentrated in a few places, but many sensors are spatially distributed over the object and deliver corresponding sets of measured values.
- the mechanical model of the moving, non-rigid object or vehicle for the vehicle simulation receives additional elastic degrees of freedom, degrees of joint freedom or the like. and therefore no longer represents a rigid body. This increases the number of differential equations and the components of x, which together describe the vehicle movement.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Procédé de navigation et de commande de mouvement d'objets qui se déplacent. Ledit procédé consiste à recueillir des signaux de mesure provenant d'un système autonome situé sur l'objet et des signaux de mesure provenant d'un système de radionavigation ou de positionnement par satellite par l'intermédiaire d'antennes, ou par l'intermédiaire de dispositifs optiques (tels que des appareils de poursuite laser) pour obtenir des données de mouvement et plus spécialement des coordonnées de lieu de l'objet avec une grande précision et en fonction du temps. Lorsque ledit procédé est appliqué à des objets non rigides, des signaux de mesure provenant d'une pluralité de capteurs et d'antennes répartis sur l'objet et/ou des signaux supplémentaires de mesure provenant de sondes de mesure qui détectent les modifications d'écartement, les déformations ou les modifications de configuration (jauges extensométriques ou analogues) sont utilisés pour le calcul des données de mouvement et des coordonnées de lieu.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939345.1 | 1999-08-19 | ||
DE19939345A DE19939345C2 (de) | 1999-08-19 | 1999-08-19 | Vorrichtung zur Navigation und zur Bewegungssteuerung von Gegenständen sowie Anwendung einer solchen Vorrichtung auf nicht starre Gegenstände |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001014942A1 true WO2001014942A1 (fr) | 2001-03-01 |
Family
ID=7918908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2000/007951 WO2001014942A1 (fr) | 1999-08-19 | 2000-08-16 | Procede et dispositif de navigation et de commande de mouvement pour des objets non rigides |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19939345C2 (fr) |
WO (1) | WO2001014942A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373110B2 (en) | 2009-05-26 | 2013-02-12 | Honeywell International Inc. | System and method for linear and angular measurements of a moving object |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113203413B (zh) * | 2021-05-07 | 2024-02-27 | 上海伯镭智能科技有限公司 | 一种位姿融合估计方法、装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5050087A (en) * | 1989-11-29 | 1991-09-17 | Westinghouse Electric Corp. | System and method for providing accurate attitude measurements at remote locations within an aircraft |
US5288167A (en) * | 1991-11-06 | 1994-02-22 | Laserdot | Laser beam guidance device for civil engineering/earthmoving plant |
DE19636425C1 (de) * | 1996-09-07 | 1997-11-13 | Aero Data Flugmestechnik Gmbh | Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden |
US5815880A (en) * | 1995-08-08 | 1998-10-06 | Minolta Co., Ltd. | Cleaning robot |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2404884C2 (de) * | 1974-02-01 | 1983-12-15 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Vorrichtung zur Regelung eines konstanten Abstandes mehrerer in Kolonne fahrender Fahrzeuge |
DE4415419A1 (de) * | 1994-05-02 | 1995-11-09 | Horn Wolfgang | Positionsmesseinrichtung |
DE19823756C2 (de) * | 1998-05-27 | 2000-12-07 | Fraunhofer Ges Forschung | Eigenbewegliches Robotersystem zum Fräsen und Bohren von Vertiefungen in Wänden, vorzugsweise Rohbauwänden von Gebäuden |
DE19830359A1 (de) * | 1998-07-07 | 2000-01-20 | Helge Zwosta | Räumliche Lage- und Bewegungsbestimmung von Körperteilen und Körpern, mittels einer Kombination von inertialen Orientierungs-Meßaufnehmern und Positionserfassungssensoriken |
DE19918140A1 (de) * | 1999-04-01 | 2000-10-12 | Deutsch Zentr Luft & Raumfahrt | Meßanordnung zur Regelung von Robotern, Werkzeugmaschinen und dergleichen sowie ein mit dieser Meßanordnung durchgeführtes Meßverfahren |
-
1999
- 1999-08-19 DE DE19939345A patent/DE19939345C2/de not_active Expired - Lifetime
-
2000
- 2000-08-16 WO PCT/EP2000/007951 patent/WO2001014942A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5050087A (en) * | 1989-11-29 | 1991-09-17 | Westinghouse Electric Corp. | System and method for providing accurate attitude measurements at remote locations within an aircraft |
US5288167A (en) * | 1991-11-06 | 1994-02-22 | Laserdot | Laser beam guidance device for civil engineering/earthmoving plant |
US5815880A (en) * | 1995-08-08 | 1998-10-06 | Minolta Co., Ltd. | Cleaning robot |
DE19636425C1 (de) * | 1996-09-07 | 1997-11-13 | Aero Data Flugmestechnik Gmbh | Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373110B2 (en) | 2009-05-26 | 2013-02-12 | Honeywell International Inc. | System and method for linear and angular measurements of a moving object |
US8552362B2 (en) | 2009-05-26 | 2013-10-08 | Honeywell International Inc. | System and method for linear and angular measurements of a moving object |
Also Published As
Publication number | Publication date |
---|---|
DE19939345C2 (de) | 2001-10-18 |
DE19939345A1 (de) | 2001-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112006002723B4 (de) | Verfahren und vorrichtung zum abschätzen von relativen koordinaten zwischen mindestens zwei teilen eines systems | |
DE69216766T2 (de) | Flugzeugvorrichtungen zur Gelände - und Hindernisvermeidung | |
DE69420418T2 (de) | Navigationssystem mit Umschaltung, wenn ein Radiosignal nicht empfangen werden kann | |
EP1913569B1 (fr) | Procede de guidage d'avion permettant de guider plusieurs avions volant en formation | |
EP0856784B1 (fr) | Méthode et dispositif pour la détermination de la position d'un satellite à bord | |
EP3106899B1 (fr) | Systeme de commande de vehicule reference | |
DE102016113902A1 (de) | Feldbasierte Drehmoment-Lenkregelung | |
DE69102048T2 (de) | Anordnung für die Ausrichtung des Inertialsystems eines getragenen Fahrzeugs auf das eines Trägerfahrzeuges. | |
EP0852000A1 (fr) | Systeme de navigation pour un vehicule, notamment pour un vehicule routier | |
EP0721570A1 (fr) | Systeme de reperage et de navigation assiste par satellite | |
DE102018220782A1 (de) | Lokalisierung eines Fahrzeugs anhand von dynamischen Objekten | |
DE69513364T2 (de) | Optoelektronische Vorrichtung zur Unterstützung der Führung eines Flugzeuges | |
EP3155454B1 (fr) | Procédé et système d'adaptation d'un système de navigation | |
WO2021037476A1 (fr) | Procédé et véhicule de mesure pour déterminer une position réelle d'une voie ferrée | |
DE102019132150A1 (de) | Verfahren zum automatischen Kalibrieren eines Umfeldsensors, insbesondere eines Lidar-Sensors, eines Fahrzeugs auf Grundlage von Belegungskarten sowie Recheneinrichtung | |
DE19939345C2 (de) | Vorrichtung zur Navigation und zur Bewegungssteuerung von Gegenständen sowie Anwendung einer solchen Vorrichtung auf nicht starre Gegenstände | |
DE19636425C1 (de) | Verfahren zur Navigation unter Verwendung unterschiedlicher Meßmethoden | |
EP1121605B1 (fr) | Procede et dispositif permettant de determiner la position de satellites de communication | |
EP0474105B1 (fr) | Système de navigation inertial avec un filtre de compensation pour son alignement pendant le vol | |
DE19919249A1 (de) | Koppelnavigationssystem | |
EP0966652B1 (fr) | Dispositif et procede de mesure pour essieux | |
DE3019743A1 (de) | System mit einer plattform mit kardanischer aufhaengung als geraetetraeger in verbindung mit einem fahrzeug und einem inertialsystem | |
DE102021104935A1 (de) | Vertrauenswürdige Bewegungseinheit | |
DE102007030944A1 (de) | Regelung von Master/Slave-Satellitenkonstellationen | |
EP0184632B1 (fr) | Dispositif d'initialisation et/ou de recalibrage d'un navigateur inertiel répétiteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |