WO2001014942A1 - Method and device for the navigation and motion control of non-rigid objects - Google Patents

Method and device for the navigation and motion control of non-rigid objects Download PDF

Info

Publication number
WO2001014942A1
WO2001014942A1 PCT/EP2000/007951 EP0007951W WO0114942A1 WO 2001014942 A1 WO2001014942 A1 WO 2001014942A1 EP 0007951 W EP0007951 W EP 0007951W WO 0114942 A1 WO0114942 A1 WO 0114942A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation
measurement signals
sensors
objects
measurement
Prior art date
Application number
PCT/EP2000/007951
Other languages
German (de)
French (fr)
Inventor
Jörg F. WAGNER
Original Assignee
Wagner Joerg F
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner Joerg F filed Critical Wagner Joerg F
Publication of WO2001014942A1 publication Critical patent/WO2001014942A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the invention relates to a method for navigation and loading control of moving objects, in which measurement signals from a self-sufficient system on the object and measurement signals via antennas from a global satellite or radio navigation system, or also via optical devices, are used to Obtain movement data or location coordinates of the object with high accuracy and as a function of time.
  • the invention also relates to a device for navigation and movement control of objects, comprising sensors of an autonomous system on the object and antennas of a global satellite or radio navigation system, or also corresponding optical devices that supply measurement signals, computer devices to derive movement data from the measurement signals, Comparison devices for comparing movement data with one another and a controller device for minimizing comparison differences.
  • the antennas for the second measurement signals are either in the vicinity of this measurement location, but this inevitably leads to parts of the aircraft that are distant from the measurement location being ignored when navigating unless they are rigidly connected to it, which is not only the case with large aircraft and would be critical in taxi operations at airports.
  • the antennas for the second measurement signals are at a greater distance from the measurement location for the first measurement devices, then elastic deformations of the aircraft can reduce the accuracy of the determined location coordinates to such an extent that safe guidance of the aircraft is made impossible. In the case of larger aircraft, noticeable elastic deformations occur even with less turbulence when one thinks of wing spans of over 30 m.
  • the aircraft In all of the navigation methods known to date and used in practice, the aircraft is regarded as a rigid body despite these elastic deformations and changes in shape.
  • the present invention relates to a method and a device of the type mentioned at the outset, which are each intended to be applied to non-rigid objects.
  • a device for regulating the distances between a plurality of track-guided vehicles traveling in a column is known (DE-PS 24 04 884 C2), to which control circuits are assigned in each case, which track the vehicles to predetermined target positions by influencing the vehicle speeds.
  • the control circuits are connected to a central controller, which controls the target positions and target speeds individual vehicles calculated depending on their distances from one another and transmitted to the control circuits assigned to the vehicles.
  • the control circuits of the vehicles compare the positions of the vehicles assigned to them with the transmitted solo positions and correct the target speed if the difference between the target position and the vehicle position exceeds a predetermined tolerance value.
  • Fig. 1 shows the principle of integration of a known navigation system that could also be used for the present invention.
  • FIG. 2 shows a diagrammatic representation of the relative position of the GPS antenna and inertial measuring unit (IMU).
  • IMU inertial measuring unit
  • the currently most powerful navigation systems for rigid air, water and land vehicles consist of a combination of sensors with high availability (especially inertial sensors, ie gyroscopes and accelerometers) and sensors with high long-term accuracy (so-called support sensors) such as satellite navigation receivers (e.g. for GPS and / or GLONASS), which are integrated into overall systems according to known principles.
  • sensors with high availability especially inertial sensors, ie gyroscopes and accelerometers
  • satellite navigation receivers e.g. for GPS and / or GLONASS
  • Fig. 1 Their mode of operation will be explained below using the example of the combination of inertial sensors with Satellite navigation receivers briefly described, where all symbols used (x, ...) are vectors.
  • the input u of the diagram shown represents accelerations and rotation rates that act on the vehicle under consideration and are measured at the same time by the inertial sensors.
  • the movement caused by u is described using the initially unknown state x.
  • a measuring system in the form of a satellite navigation receiver determines measured variables y derived from x (for example inclined distances J between the vehicle and the navigation satellites, cf. FIG. 2).
  • y derived from x
  • parallel to this process which is shown in the upper part of FIG. 1, building on u in the lower part in the navigation computer, a simulation of the vehicle movement (block "vehicle simulation") is carried out, which leads to an estimate ( ⁇ ) of x.
  • estimates for the measured values y are also generated based on this estimate with the aid of a measurement model (block “measurement simulation”).
  • the estimated and the actual measured values are then compared with one another and their difference is fed to a “controller”, which has the task of keeping the difference between the simulated, known and the actual, unknown quantities of x as small as possible.
  • the relative position of the inertial sensors and the satellite navigation antenna is influenced, for example, by structural vibrations of the vehicle.
  • these additional movements should not be neglected given the measurement resolution of the satellite navigation devices (cm range) that is possible today.
  • the measured ⁇ is not primarily used for navigation Instead, the s determined from this is determined by 1.
  • the sensors for determining u and y are no longer concentrated in a few places, but many sensors are spatially distributed over the object and deliver corresponding sets of measured values.
  • the mechanical model of the moving, non-rigid object or vehicle for the vehicle simulation receives additional elastic degrees of freedom, degrees of joint freedom or the like. and therefore no longer represents a rigid body. This increases the number of differential equations and the components of x, which together describe the vehicle movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention relates to a method for the navigation and motion control of moving objects. In said method, measurement signals from an autonomous system located in the object and measurement signals via antennae from a global satellite or radio navigation system, or via optical devices (such as laser-tracking systems) are collected, in order to obtain time-dependent motion data or location co-ordinates for the object with a high degree of accuracy. In order to use the method for non-rigid objects, measurement signals from a multitude of measurement sensors which are distributed over the object and from antennae and/or additional measurement signals from measurement sensors (strain gauges or similar) which detect distance modifications, deformations or configuration modifications are used to calculate the motion data and location co-ordinates.

Description

Verfahren und Vorrichtung zur Navigation und Bewegungssteuerung von nicht starren Gegenständen Method and device for navigation and movement control of non-rigid objects
Die Erfindung bezieht sich auf ein Verfahren zur Navigation und Be egungssteuerung von sich bewegenden Gegenständen, bei welchem Messsignale von einem autarken System an dem Gegenstand und Messsignale über Antennen von einem globalen Satelliten- bzw. Funknavigationssystem, oder auch über optische Einrichtungen, herangezogen werden, um Bewegungsdaten bzw. Ortskoordinaten des Gegenstandes mit hoher Genauigkeit und in zeitlicher Abhängigkeit zu erhalten.The invention relates to a method for navigation and loading control of moving objects, in which measurement signals from a self-sufficient system on the object and measurement signals via antennas from a global satellite or radio navigation system, or also via optical devices, are used to Obtain movement data or location coordinates of the object with high accuracy and as a function of time.
Die Erfindung bezieht sich auch auf eine Vorrichtung zur Navigation und Bewegungssteuerung von Gegenständen, umfassend Sensoren eines autarken Systems am Gegenstand und Antennen eines globalen Satelliten- oder Funknavigationssystems , oder auch entsprechende optische Einrichtungen, die Messsignale liefern, Rechnereinrichtungen, um aus den MessSignalen Ξewegungsdaten herzuleiten, Vergleichseinrichtungen, um Ξewegungεdaten miteinander zu vergleichen sowie eine Reglereinrichtung, um Ver- gleichssdifferenzen zu minimieren.The invention also relates to a device for navigation and movement control of objects, comprising sensors of an autonomous system on the object and antennas of a global satellite or radio navigation system, or also corresponding optical devices that supply measurement signals, computer devices to derive movement data from the measurement signals, Comparison devices for comparing movement data with one another and a controller device for minimizing comparison differences.
Bei bekannten Navigationsverfahren für sich bewegende Gegenstände, also z. B. Flugzeuge werden sowohl ständig zur Verfüσunσ stehende Messsiσnale von einem autarken bordeiσenen System als auch über Antennen empfangene und daher störanfällige Messsignale von einem globalen Satelliten-Navigationssystem herangezogen, um Bewegungsdaten bzw. Ortskoordinaten mit hoher Genauigkeit und innerhalb kürzester Zeit zu erhalten. (DE-PS 196 36 425 (1)) Inertialsensoren (IMU), und zwar nur wenige für einen gemeinsamen Messort am Rumpf des Flugzeugs, liefern die ersten Messsignale zur Bestimmung der Beschleunigungen und der Drehraten, und zwar hinsichtlich der sechs Freiheitsgrade des Flugzeuges . Die Antennen für die zweiten Messsignale befinden sich entweder in der Nähe dieses Messortes, was aber zwangsläufig dazu führe, dass vom Messort beabstandete Teile des Flugzeuges bei der Navigation unberücksichtigt bleiben, wenn sie nicht starr mit diesem verbunden sind, was nicht nur bei großen Flugzeugen und im Taxibetrieb auf Flughäfen durchaus kritisch wäre. Befinden sich die Antennen für die zweiten Messsignale hingegen in größerem Abstand von dem Messort für die ersten Messgeräte, so können elastische Verformungen des Flugzeuges die Genauigkeit der ermittelten Ortskoordinaten so stark herabsetzen, dass eine sichere Führung des Flugzeuges unmöglich gemacht wird. Bei größeren Flugzeugen treten im Flugbetrieb auch schon bei geringerer Turbulenz merkliche elastische Verformungen auf, wenn man an FlügelSpannweiten von über 30 m denkt. Es kommt jedoch noch hinzu, dass beim Aufsetzen eines Flugzeuges der Abstand zwischen den Laufflächen der aufsetzenden Räder zum Rumpf des Fahrzeuges sich kurzzeitig erheblich verringert, so dass die ermittelten Messdaten ohne einen Ausgleich dieser Abstandsänderung, zu unbrauchbaren Ergebnissen führen können.In known navigation methods for moving objects, e.g. B. Aircraft are both constantly available measurement signals from an autarkic on-board vehicle System as well as measurement signals received via antennas and therefore susceptible to interference are used by a global satellite navigation system in order to obtain movement data or location coordinates with high accuracy and within a very short time. (DE-PS 196 36 425 (1)) inertial sensors (IMU), and only a few for a common measurement location on the fuselage of the aircraft, deliver the first measurement signals for determining the accelerations and the rotation rates, specifically with regard to the six degrees of freedom of the aircraft. The antennas for the second measurement signals are either in the vicinity of this measurement location, but this inevitably leads to parts of the aircraft that are distant from the measurement location being ignored when navigating unless they are rigidly connected to it, which is not only the case with large aircraft and would be critical in taxi operations at airports. On the other hand, if the antennas for the second measurement signals are at a greater distance from the measurement location for the first measurement devices, then elastic deformations of the aircraft can reduce the accuracy of the determined location coordinates to such an extent that safe guidance of the aircraft is made impossible. In the case of larger aircraft, noticeable elastic deformations occur even with less turbulence when one thinks of wing spans of over 30 m. However, there is also the fact that when an aircraft touches down, the distance between the treads of the touching wheels and the fuselage of the vehicle is considerably reduced for a short time, so that the measured data obtained without compensating for this change in distance can lead to unusable results.
Bei allen bislang bekannten und in der Praxis eingesetzten Navigationsverfahren wird das Flugzeug trotz dieser elastischen Verformungen und Gestaltsänderungen als starrer Körper betrachtet .In all of the navigation methods known to date and used in practice, the aircraft is regarded as a rigid body despite these elastic deformations and changes in shape.
Wenn es um die Steuerung von Robotern beispielsweise geht, so ist die Annahme, dass es sich hierbei um einen starren Gegenstand handelt, jedenfalls bei solchen Objekten, die ein bislang übliches Navigationsbewegungssystem haben, unzutreffend. Ein derartiger Roboter hat über Gelenke mit dem Korpus verbundene Manipulatoren, und es gilt nun gerade, diese Manipulatoren an ihren Eingriffsteilen genauestens zu steuern. Die Annahme, dass ein solches Objekt ein starrer Gegenstand sei, ist also schon vom prinzipiellen Ansatz her falsch.When it comes to controlling robots, for example, the assumption is that this is a rigid one The object is acting, at least in the case of those objects which have a navigation movement system which has been customary to date. A robot of this type has manipulators connected to the body via joints, and the task now is precisely to control these manipulators with their engagement parts. The assumption that such an object is a rigid object is therefore wrong in principle.
Die vorliegende Erfindung beschäftigt sich mit einem Verfahren und einer Vorrichtung der eingangs genannten Art, die jeweils auf nicht starre Gegenstände angewendet werden sollen.The present invention relates to a method and a device of the type mentioned at the outset, which are each intended to be applied to non-rigid objects.
Erreicht wird dies durch die in den Ansprüchen angegebenen Merkmale, nämlich bei dem Verfahren dadurch, dass für den Einsatz an nicht starren Gegenständen Messsignale einer Mehrzahl von über den Gegenstand verteilten Sensoren und Antennen und ggfs. weitere Messsignale von Abstandsänderungen, Verformungen oder Gestaltsänderungen erfassende Messsonden (Dehnungsmessstreifen oder dergl . ) für die Berechnung der Bewegungsdaten und Ortskoordinaten eingesetzt werden und bei der Vorrichtung dadurch, dass zur Navigation und Bewegungssteuerung nicht starrer Gegenstände eine Mehrzahl von Sensoren und Antennen über den Gegenstand verteilt angeordnet s nd und dass ggfs. weitere Abstandsänderungen, Verformungen oder Gestaltsänderungen erfassende Messsonden (Dehnungsmessstreifen oder dgl . ) über den Gegenstand verteilt sind und Messsignale zur Berechnung der Eewegungsdaten und Ortskoordinaten liefern.This is achieved by the features specified in the claims, namely in the method in that, for use on non-rigid objects, measurement signals from a plurality of sensors and antennas distributed over the object and possibly further measurement signals from distance changes, deformations or shape changes measuring sensors ( Strain gauges or the like.) Are used for the calculation of the movement data and location coordinates and in the device in that a plurality of sensors and antennas are arranged over the object for navigation and movement control of non-rigid objects and that further distance changes, deformations or Measurement probes that detect changes in shape (strain gauges or the like) are distributed over the object and provide measurement signals for calculating the movement data and location coordinates.
Es ist eine Vorrichtung zur Regelung der Abstände zwischen mehreren in Kolonne fahrenden spurgeführten Fahrzeugen bekannt (DE-PS 24 04 884 C2 ) , denen jeweils Regelschaltungen zugeordnet sind, welche durch Beeinflussung der Fahrzeuggeschwindigkeiten die Fahrzeuge vorgegebenen Sollpositionen nachführen. Die Regelschaltungen sind mit einer zentralen Steuerung verbunden, welche die Sollpositionen und Sollgeschwindigkeiten der einzelnen Fahrzeuge in Abhängigkeit von deren Abständen untereinander errechnet und an die den Fahrzeugen zugeordneten Regelschaltungen übermittelt. Die Regelschaltungen der Fahrzeuge vergleichen die Positionen der ihnen zugeordneten Fahrzeuge mit den übermittelten Solipositionen und nehmen eine Korrektur der Sollgeschwindigkeit vor, wenn die Differenz zwischen Sollposition und Fahrzeugposition einen vorgegebenen Toleranzwert überschreitet.A device for regulating the distances between a plurality of track-guided vehicles traveling in a column is known (DE-PS 24 04 884 C2), to which control circuits are assigned in each case, which track the vehicles to predetermined target positions by influencing the vehicle speeds. The control circuits are connected to a central controller, which controls the target positions and target speeds individual vehicles calculated depending on their distances from one another and transmitted to the control circuits assigned to the vehicles. The control circuits of the vehicles compare the positions of the vehicles assigned to them with the transmitted solo positions and correct the target speed if the difference between the target position and the vehicle position exceeds a predetermined tolerance value.
Eine solche einfache Regelschaltung lässt sich jedoch nicht an einem nicht starren Körper einsetzen, weil dessen Verformungen und Gestaltsänderungen sich wechselseitig beeinflussen und nicht völlig vermeidbar sind und daher nicht nur punktuell ausgeregeit werden sollen und können.However, such a simple control circuit cannot be used on a non-rigid body because its deformations and changes in shape mutually influence one another and are not completely avoidable and therefore should not and cannot only be selectively adjusted.
Die Erfindung wird nachstehend an Band der Zeichnung beispielsweise erläutert.The invention is explained below on the basis of the drawing, for example.
Fig. 1 zeigt das Integrationsprinzip eines bekannten Navigationssystems , das auch für die vorliegende Erfindung eingesetzt werden könnte.Fig. 1 shows the principle of integration of a known navigation system that could also be used for the present invention.
Fig. 2 zeigt eine schaubiidliche Darstellung der relativen Lage von GPS-Antenne und inertialer Messeinheit (IMU) .2 shows a diagrammatic representation of the relative position of the GPS antenna and inertial measuring unit (IMU).
Die derzeit leistungsfähigsten Navigationssysteme für starre Luft-, Wasser- und Landfahrzeuge bestehen aus einer Kombination von Sensoren hoher Verfügbarkeit (insbes. Inertialsensoren, d.h. Kreisel und Beschleunigungsmesser) und Sensoren hoher Langzeitgenauigkeit ( sog. Stützsensoren) wie Satelliten- Navigationsempfänger (z.B. für GPS und/oder GLONASS) , die nach bekannten Prinzipien zu Gesamtsystemen integriert werden. Eine Variante ist in Fig. 1 dargestellt. Ihre Funktionsweise wird nachfolσend am Beispiel der Kombination von Inertialsensoren mit Satellitennavigationsempfängern kurz beschrieben, wobei es sich bei allen verwendeten Symbolen (x, ... ) um Vektoren handelt.The currently most powerful navigation systems for rigid air, water and land vehicles consist of a combination of sensors with high availability (especially inertial sensors, ie gyroscopes and accelerometers) and sensors with high long-term accuracy (so-called support sensors) such as satellite navigation receivers (e.g. for GPS and / or GLONASS), which are integrated into overall systems according to known principles. A variant is shown in Fig. 1. Their mode of operation will be explained below using the example of the combination of inertial sensors with Satellite navigation receivers briefly described, where all symbols used (x, ...) are vectors.
Der Eingang u des gezeigten Schemas repräsentiert Beschleunigungen und Drehraten, die auf das jeweils betrachtete Fahrzeug einwirken und gleichzeitig durch die Inertialsensoren gemessen werden. Die durch u verursachte Bewegung (Geschwindigkeit, Ort, Winkellage) wird mittels des zunächst einmal unbekannten Zustands x beschrieben. Ein Messsystem in Form eines Satellitennavigationsempfängers ermittelt aus x abgeleitete Messgrößen y (z.B. Schrägentfernungen J zwischen dem Fahrzeug und den Navigationssatelliten, vgl. Fig. 2). Parallel zu diesem Vorgang, der im oberen Teil von Fig. 1 dargestellt ist, wird aufbauend auf u im unteren Teil im Navigationsrechner eine Simulation der Fahrzeugbewegung (Block "Fahrzeug- Simulation") vorgenommen, die zu einer Schätzung (Λ) von x führt. In einer zweiten Simulation werden basierend auf dieser Schätzung mit Hilfe eines Messmodells (Block "Mess-Simulation" ) auch Schätzungen für die Messwerte y erzeugt. Die geschätzten und die tatsächlichen Messwerte werden anschließend miteinander verglichen und ihre Differenz einem "Regler" zugeführt, der die Aufgabe hat, den Unterschied zwischen den simulierten, bekannten und den tatsächlichen, , unbekannten Größen von x möglichst gering zu halten.The input u of the diagram shown represents accelerations and rotation rates that act on the vehicle under consideration and are measured at the same time by the inertial sensors. The movement caused by u (speed, location, angular position) is described using the initially unknown state x. A measuring system in the form of a satellite navigation receiver determines measured variables y derived from x (for example inclined distances J between the vehicle and the navigation satellites, cf. FIG. 2). Parallel to this process, which is shown in the upper part of FIG. 1, building on u in the lower part in the navigation computer, a simulation of the vehicle movement (block "vehicle simulation") is carried out, which leads to an estimate ( Λ ) of x. In a second simulation, estimates for the measured values y are also generated based on this estimate with the aid of a measurement model (block "measurement simulation"). The estimated and the actual measured values are then compared with one another and their difference is fed to a “controller”, which has the task of keeping the difference between the simulated, known and the actual, unknown quantities of x as small as possible.
Betrachtet man eine Konfiguration wie in Fig. 2 dargestellt, so ist zu erkennen, dass die relative Lage der Inertialsensoren und der Satellitennavigationsantenne beispielsweise durch Strukturschwingungen des Fahrzeuges beeinflusst wird. Für die oben dargestellte Simulation der Messwerte (hier Schrängentfernungen Jp ) sollten diese zusätzlichen Bewegungen bei der heutzutage möglichen Messauflösung der Satellitennavigationstgeräte (cm- Bereich) auch nicht vernachlässigt werden. Dabei ist zu beachten, dass für die Navigation nicht primär das gemessene ^ sondern das daraus mittels 1 bestimmte s maßgeblich ist.If one looks at a configuration as shown in FIG. 2, it can be seen that the relative position of the inertial sensors and the satellite navigation antenna is influenced, for example, by structural vibrations of the vehicle. For the simulation of the measured values shown above (oblique distances Jp), these additional movements should not be neglected given the measurement resolution of the satellite navigation devices (cm range) that is possible today. It should be noted that the measured ^ is not primarily used for navigation Instead, the s determined from this is determined by 1.
Prinzip der vorliegenden Erfindung ist nun die Aufhebung von Einschränkungen auf starre Körper. Dies erfolgt im wesentlichen durch zwei Merkmale :The principle of the present invention is now the removal of restrictions on rigid bodies. There are two main characteristics:
Die Sensoren zur Ermittlung von u und y sind nicht mehr an wenigen Stellen konzentriert, sondern viele Sensoren werden räumlich über dessen Gegenstand verteilt und liefern entsprechend Sätze von Messwerten.The sensors for determining u and y are no longer concentrated in a few places, but many sensors are spatially distributed over the object and deliver corresponding sets of measured values.
Das mechanische Modell des sich bewegenden, nicht starren Gegenstandes oder Fahrzeuges für die Fahrzeug-Simulation erhält zusätzliche elastische Freiheitsgrade, Gelenkfreiheitsgrade oder dgl . und stellt damit keinen starren Körper mehr dar. Damit erhöht sich die Zahl der Differentialgleichungen und der Komponenten von x, die gemeinsam die Fahrzeugbewegung beschreiben. The mechanical model of the moving, non-rigid object or vehicle for the vehicle simulation receives additional elastic degrees of freedom, degrees of joint freedom or the like. and therefore no longer represents a rigid body. This increases the number of differential equations and the components of x, which together describe the vehicle movement.

Claims

Patentansprüche claims
1. Vorrichtung zur Navigation und zur BewegungsSteuerung von Gegenständen, umfassend Sensoren eines autarken Systems am Gegenstand und Antennen eines globalen Satelliten- oder Funknavigationssystems oder auch entsprechende optische Einrichtungen, die Messsignale liefern, und Rechnereinrichtungen, um aus den Messsignalen Bewegungsdaten herzuleiten, dadurch gekennzeichnet, dass Vergleichseinrichtungen, um Bewegungsdaten miteinander zu vergleichen, sowie eine Reglereinrichtung vorgesehen sind, um Vergleichsdifferenzen zu minimieren, und dass für die Anwendung der Navigation und der BewegungsSteuerung auf nicht starre Gegenstände eine Mehrzahl von Sensoren und Antennen über den Gegenstand verteilt sind.1.Device for navigation and motion control of objects, comprising sensors of an autonomous system on the object and antennas of a global satellite or radio navigation system or corresponding optical devices that deliver measurement signals, and computer devices to derive movement data from the measurement signals, characterized in that Comparison devices for comparing movement data with one another, as well as a controller device for minimizing comparison differences, and that a plurality of sensors and antennas are distributed over the object for the application of navigation and movement control to non-rigid objects.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Abstandsänderungen, Verformungen oder Gestaltsänderungen erfassende Messsonden (Dehnungsmess- streifen oder dgl . ) über den Gegenstand verteilt sind und weitere Messsignale zur Berechnung der Bewegungsdaten und der Ortskoordinaten liefern.2. Device according to claim 1, characterized in that distance changes, deformations or shape changes measuring probes (strain gauges or the like.) Are distributed over the object and deliver further measurement signals for calculating the movement data and the location coordinates.
3. Anwendung einer Vorrichtung nach einem der Ansprüche 1 oder 2 auf die Navigation und die BewegungsSteuerung von nicht starren Gegenständen wie Flugzeuge, Gelenkroboter und dgl. 3. Application of a device according to one of claims 1 or 2 to the navigation and movement control of non-rigid objects such as airplanes, articulated robots and the like.
PCT/EP2000/007951 1999-08-19 2000-08-16 Method and device for the navigation and motion control of non-rigid objects WO2001014942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939345A DE19939345C2 (en) 1999-08-19 1999-08-19 Device for navigation and movement control of objects and application of such a device to non-rigid objects
DE19939345.1 1999-08-19

Publications (1)

Publication Number Publication Date
WO2001014942A1 true WO2001014942A1 (en) 2001-03-01

Family

ID=7918908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007951 WO2001014942A1 (en) 1999-08-19 2000-08-16 Method and device for the navigation and motion control of non-rigid objects

Country Status (2)

Country Link
DE (1) DE19939345C2 (en)
WO (1) WO2001014942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373110B2 (en) 2009-05-26 2013-02-12 Honeywell International Inc. System and method for linear and angular measurements of a moving object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203413B (en) * 2021-05-07 2024-02-27 上海伯镭智能科技有限公司 Pose fusion estimation method, device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050087A (en) * 1989-11-29 1991-09-17 Westinghouse Electric Corp. System and method for providing accurate attitude measurements at remote locations within an aircraft
US5288167A (en) * 1991-11-06 1994-02-22 Laserdot Laser beam guidance device for civil engineering/earthmoving plant
DE19636425C1 (en) * 1996-09-07 1997-11-13 Aero Data Flugmestechnik Gmbh Navigation method using complementary measurement methods for motor vehicle
US5815880A (en) * 1995-08-08 1998-10-06 Minolta Co., Ltd. Cleaning robot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2404884C2 (en) * 1974-02-01 1983-12-15 Standard Elektrik Lorenz Ag, 7000 Stuttgart Device for regulating a constant distance between several vehicles traveling in a convoy
DE4415419A1 (en) * 1994-05-02 1995-11-09 Horn Wolfgang Precision position measurement appts. for robotic container high-lift truck
DE19823756C2 (en) * 1998-05-27 2000-12-07 Fraunhofer Ges Forschung Self-propelled robot system for milling and drilling recesses in walls, preferably unfinished walls of buildings
DE19830359A1 (en) * 1998-07-07 2000-01-20 Helge Zwosta Spatial position and movement determination of body and body parts for remote control of machine and instruments
DE19918140A1 (en) * 1999-04-01 2000-10-12 Deutsch Zentr Luft & Raumfahrt Measuring arrangement for controlling robots, machine tools and the like as well as a measuring method carried out with this measuring arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050087A (en) * 1989-11-29 1991-09-17 Westinghouse Electric Corp. System and method for providing accurate attitude measurements at remote locations within an aircraft
US5288167A (en) * 1991-11-06 1994-02-22 Laserdot Laser beam guidance device for civil engineering/earthmoving plant
US5815880A (en) * 1995-08-08 1998-10-06 Minolta Co., Ltd. Cleaning robot
DE19636425C1 (en) * 1996-09-07 1997-11-13 Aero Data Flugmestechnik Gmbh Navigation method using complementary measurement methods for motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373110B2 (en) 2009-05-26 2013-02-12 Honeywell International Inc. System and method for linear and angular measurements of a moving object
US8552362B2 (en) 2009-05-26 2013-10-08 Honeywell International Inc. System and method for linear and angular measurements of a moving object

Also Published As

Publication number Publication date
DE19939345C2 (en) 2001-10-18
DE19939345A1 (en) 2001-03-29

Similar Documents

Publication Publication Date Title
DE112006002723B4 (en) METHOD AND DEVICE FOR ASSESSING RELATIVE COORDINATES BETWEEN AT LEAST TWO PARTS OF A SYSTEM
EP1913569B1 (en) Method for flight control of a plurality of aircraft flying in formation
DE102006029148B4 (en) Method for checking an inertial measuring unit of vehicles, in particular of aircraft, in the stationary state
DE3418081C2 (en)
EP0856784B1 (en) Method and device for the on-board determination of a satellite s position
EP3106899B1 (en) Referenced vehicle control system
DE102016113902A1 (en) Field-based torque control
DE19536601A1 (en) Navigation system for a vehicle, in particular for a land vehicle
EP2755868A1 (en) Sensor system comprising a vehicle model unit
EP0721570A1 (en) Position-finding and navigation equipment with satellite back-up
EP4021778B1 (en) Method and measuring vehicle for determining an actual position of a track
DE102018220782A1 (en) Localization of a vehicle based on dynamic objects
EP3155454B1 (en) Method and system for adapting a navigation system
DE102019132150A1 (en) Method for automatically calibrating an environment sensor, in particular a lidar sensor, of a vehicle on the basis of occupancy cards and computing device
DE19939345C2 (en) Device for navigation and movement control of objects and application of such a device to non-rigid objects
DE19636425C1 (en) Navigation method using complementary measurement methods for motor vehicle
EP1121605B1 (en) Method and device for determining the position of communication satellites
WO2020169346A1 (en) Method of controlling a vertical take-off and landing multirotor aircraft, and multirotor aircraft
EP0474105B1 (en) Inertial navigation system with a compensation filter for its alignment during flight
DE3406096A1 (en) HOLE HOLE MEASURING DEVICE
EP0966652B1 (en) Axle measuring device and method
DE3019743A1 (en) Gyroscopic platform for inertial guidance system - has gimbal mounted platform with motor-driven gyroscopic stabilisation system
DE102007030944A1 (en) Control of master / slave satellite constellations
EP0184632B1 (en) Arrangement for initializing and/or recalibrating a repeating inertial navigator
DE102020126564A1 (en) DETERMINING THE STATUS OF OBJECTS IN AN OBJECT COMPOSITION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP