WO2001014560A1 - GENES PROTEINES CODANT POUR DES PROTEINES REGULANT LE pH DE VACUOLES - Google Patents

GENES PROTEINES CODANT POUR DES PROTEINES REGULANT LE pH DE VACUOLES Download PDF

Info

Publication number
WO2001014560A1
WO2001014560A1 PCT/JP2000/005722 JP0005722W WO0114560A1 WO 2001014560 A1 WO2001014560 A1 WO 2001014560A1 JP 0005722 W JP0005722 W JP 0005722W WO 0114560 A1 WO0114560 A1 WO 0114560A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
amino acid
protein
plant
acid sequence
Prior art date
Application number
PCT/JP2000/005722
Other languages
English (en)
French (fr)
Inventor
Shigeru Iida
Sachiko Tanaka
Yoshishige Inagaki
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/830,123 priority Critical patent/US6803500B1/en
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to AU67295/00A priority patent/AU784725B2/en
Priority to CA2348025A priority patent/CA2348025C/en
Priority to AT00955003T priority patent/ATE491792T1/de
Priority to EP00955003A priority patent/EP1123977B1/en
Priority to DE60045366T priority patent/DE60045366D1/de
Priority to JP2001518873A priority patent/JP4596721B2/ja
Priority to NZ511367A priority patent/NZ511367A/xx
Publication of WO2001014560A1 publication Critical patent/WO2001014560A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Definitions

  • the present invention relates to a gene encoding a protein having an activity of controlling vacuolar pH and a method of using the same.
  • anthocyanins The main component of flower color is a group of flavonoids, collectively called anthocyanins. It is known that a variety of anthocyanins exist in plants, and many of their structures have already been determined. The color of anthocyanin depends in part on its structure.
  • anthocyanin also depends on the pH of the aqueous solution, and even with the same anthocyanin, the pH of the aqueous solution appears neutral to weakly alkaline and blue (Hyundai Kagaku, May 1998) Saito, p.25).
  • Vacuole of plant cells are being mainly controlled by the vacuolar pro Bok emissions transport ATPase and vacuolar pro tons transport Pirofosufa synthetase (The Plant Vacuole, (1997) Leigh et a and Academic Press) force s ,, It is not clear how these proton pumps contribute to flower color.
  • the sodium ion-proton antiporter (hereinafter referred to as Na + 1 H + antiporter) is present in the vacuole of the plant, and the Na + — H + antiporter is located outside the vacuole. It is known that sodium ions are transported into the vacuole depending on the concentration gradient of the protons in the medium, and at that time, the protons are transported out of the vacuole and the gradient of the proton concentration decreases.
  • petunia has seven types of loci that are involved in the control of petal vacuole pH, and one of these loci becomes homogenous inferior, resulting in the formation of petal vacuoles. It is said that the pH increases (Plant J. 13 (1998) van Houwel ingen et al. P39, Trends Plant Sci. 3 (1998) Mol et al. p212). One of them, Ph6, has already been cloned and was found to be a type of transcriptional regulator (Plant Cell 5 (1993) Chuck et al. P371). It is not known whether the pH of the vacuole is controlled by a specific mechanism.
  • the present invention provides a gene for a protein that regulates the pH of the vacuole of a plant cell, preferably a gene that transports proteins in the vacuole, and more preferably a Na + —H + antiporter gene. It is assumed that. By introducing the gene of the present invention into a plant and expressing it, it is possible to regulate the flower color and preferably turn blue.
  • the present invention provides a gene encoding a protein having an activity of controlling vacuolar pH.
  • This gene is preferably a gene encoding Na + —H + antiporter, for example, a gene encoding the amino acid sequence of SEQ ID NO: 2, or an amino acid of SEQ ID NO: 2.
  • SEQ ID NO: 2 An activity of hybridizing under stringent conditions to a part or all of a nucleic acid having a base sequence encoding the described amino acid sequence, and controlling vacuolar pH. It is a gene that encodes a protein having
  • the present invention also provides a vector comprising the above gene.
  • the present invention also provides a host cell transformed with the above vector.
  • the present invention also provides a protein encoded by the above gene.
  • the present invention further provides a method for producing a host cell, comprising culturing or growing the host cell, and collecting a protein having an activity of controlling vacuolar pH from the host cell. I will provide a.
  • the present invention also provides a plant into which the above-mentioned gene or the above-mentioned vector has been introduced, or a progeny thereof or a tissue thereof having the same properties.
  • the present invention also provides a cut flower of the above-mentioned plant or a progeny thereof having the same properties.
  • the present invention further provides a method for controlling vacuolar pH by introducing the gene or the vector into a plant or a plant cell and expressing the gene.
  • the present invention further provides a method for regulating the flower color of a plant by introducing the gene or the vector into a plant or a plant cell, and expressing the gene.
  • FIG. 1 is a diagram showing the structure of plasmid pSPB607.
  • FIG. 2 is a diagram showing the structure of plasmid pSPB608.
  • FIG. 3 is a diagram showing the structure of plasmid pINA145.
  • FIG. 4 is a diagram showing the structure of plasmid pINA147. Embodiment of the Invention
  • the petal color of the morning glory locus Purp le is blue when dominant, and purple when the homozygous is recessive. It is clear that this locus is involved in flower color, but the mechanism is unknown.
  • the p r _ m variant not changed to blue with the bloom, the vacuolar pH of petal cells flowering La, towards the pr-m mutant was lower than the Pr- r. Therefore, the Purple gene is considered to be a gene that controls the pH in the vacuole of petal cells during flowering and regulates flower color. Therefore, using the pr-m mutant and its revertant, the genomic DNA fragment containing the Purple gene sequence specifically present in pr-m was first identified by the transposon display method. Then, the Purple gene was identified.
  • the Purple gene obtained in this study is surprisingly homologous to Na + — H + antibodies such as Arabidopsis, and the pr-m mutation is the 5 'untranslated region of the Purple gene. A transposon was inserted inside.
  • Examples of the gene of the present invention include a gene encoding the amino acid sequence described in SEQ ID NO: 2.
  • a protein having an amino acid sequence modified by addition or deletion of a plurality of amino acids and / or substitution with another amino acid maintains the same activity as the original protein. It is known that Thus, the present invention provides As long as the protein has the activity of controlling the amino acid sequence, addition, deletion and / or addition of one or more amino acid sequences to the amino acid sequence described in SEQ ID NO: 2
  • a protein having an amino acid sequence modified by substitution with an amino acid and a gene encoding the protein also belong to the present invention.
  • the present invention also relates to a nucleotide sequence encoding the nucleotide sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2, or a nucleotide sequence encoding a part of the base sequence thereof.
  • a gene that hybridizes under stringent conditions, for example, 5 ⁇ SSC at 50 ° C., and encodes a protein having an activity of controlling vacuolar PH. is there.
  • the appropriate hybridization temperature depends on the nucleotide sequence and the length of the nucleotide sequence.For example, when a DNA fragment consisting of 18 nucleotides encoding 6 amino acids is used as a probe, 50 Temperatures below ° C are preferred.
  • Genes selected by such hybridization include those derived from natural sources, for example, those derived from plants, for example, genes derived from petunia trennia, but those derived from non-plants. You may use it.
  • the gene selected by the hybridization may be cDNA or genomic DNA.
  • the Na + — H + antiporter gene forms a superfamily (FEBS Lett. 424 (1998) Debrov et al., Pl), and has an amino acid sequence of more than 10%. It has homology (J. Biol. Chem. 272 (1997) Or 1 owsk ieta I., 2237d).
  • the present invention further provides an amino acid having about 20% or more, preferably 50% or more, for example, 60% or 70% or more homology to the amino acid sequence of SEQ ID NO: 2.
  • the present invention relates to a gene encoding a protein having an acid sequence and having an activity of controlling vacuolar pH.
  • a gene having a native nucleotide sequence can be obtained, for example, by screening a cDNA library, as specifically shown in Examples.
  • DNA encoding a protein having a modified amino acid sequence can be synthesized using conventional site-directed mutagenesis or PCR based on DNA having a native nucleotide sequence. it can.
  • a DNA fragment to be modified is obtained by treating a native cDNA or genomic DNA with a restriction enzyme, and the resulting fragment is subjected to site-directed mutagenesis or PCR using a primer into which the desired mutation has been introduced. Then, a DNA fragment into which the desired modification has been introduced is obtained. Thereafter, the DNA fragment into which this mutation has been introduced may be ligated to a DNA fragment encoding another part of the target enzyme.
  • a DNA encoding a protein consisting of a shortened amino acid sequence for example, an amino acid sequence longer than the desired amino acid sequence, for example, a full-length amino acid sequence
  • a DNA to be encoded is cleaved with a desired restriction enzyme and the resulting DNA fragment does not encode the entire amino acid sequence of interest, the DNA fragment comprising the missing sequence is excised. Synthesize and connect.
  • the present invention is not limited to a gene encoding a protein having an activity of controlling PH of vacuolar vacuoles derived from morning glory.
  • the source may be a plant, an animal, or a microorganism. However, it is only necessary to have a topology that pumps out the proton in the vacuole.
  • the obtained gene encodes a protein having the activity of controlling vacuolar pH. Can be confirmed. Furthermore, by expressing the gene, it is possible to obtain a protein having an activity of controlling pH of a vacuole, which is a gene product. Alternatively, a protein having an activity of controlling vacuolar pH can be obtained by using an antibody against the amino acid sequence of SEQ ID NO: 2. Antibodies can be used to clone proteins having the activity of controlling the pH of vacuoles of other organisms using antibodies.
  • the present invention also relates to a recombinant vector containing the above-mentioned gene, in particular an expression vector, and a host cell transformed with the vector.
  • Prokaryote or eukaryote can be used as a host.
  • Prokaryotes include bacteria, for example, bacteria belonging to the genus Escherichia, such as Escherichia coli, Bacillus, and microorganisms belonging to the genus Bacillus, such as Bacillus subti1is. Can be used.
  • As the eukaryotic host lower eukaryotes, for example, eukaryotic microorganisms, for example, fungi such as yeast or filamentous fungi can be used.
  • yeast examples include microorganisms of the genus Saccharorayces, such as Saccharorayces cerevisiae, and examples of the filamentous fungi include those of the genus Aspergillus, such as Aspergillus' o. Aspergillus oryzae, Aspergilus niger and Penici Ilium microorganisms.
  • animal cells or plant cells can be used, and animal cells can be used. For example, cell lines such as mouse, hamster, sal, human, etc. are used, and insect cells such as silkworm cells or silkworm adults themselves are used as hosts.
  • the expression vector of the present invention contains an expression control region, for example, a promoter and a terminator, an origin of replication, and the like, depending on the type of host into which they are to be introduced.
  • Conventional promoters such as trc promoter, tac promoter and lac promoter are used as bacterial expression vector promoters, and yeast promoters such as glyceraldehyde 3 line Acid dehydrogenase promoter, PH05 promoter, etc. are used, and as a promoter for filamentous fungi, For example, an amylase promoter, a trpC promoter, etc.
  • a promoter for animal cell hosts a viral promoter, for example, an SV40 early promoter, an SV40 late promoter, etc. are used.
  • the expression vector can be prepared using a restriction enzyme, a ligase, or the like according to a routine procedure.
  • transformation of the host cell with the expression vector can be performed according to a conventional method.
  • Culture, cultivation or breeding of the host cell transformed by the above-mentioned expression vector is carried out according to a conventional method from the culture or the like, for example, filtration, centrifugation, cell disruption, gel filtration chromatography, ionization.
  • the target protein can be recovered and purified by exchange chromatography.
  • the present invention provides a color that can be obtained by introducing a gene encoding a protein having an activity of controlling vacuolar pH, specifically, a Na + —H + antiporter gene. It is related to the regulated plant or its progeny or these tissues, and the form may be cut flowers.
  • a gene encoding a protein having an activity of controlling the pH of vacuoles obtained in the present invention is used, pumping of proteins into the cytoplasm and pumping of sodium ions in the vacuoles are performed.
  • anthocyanin accumulated in the vacuole can be turned blue, and as a result, the color of the flower can be turned blue.
  • Roses, chrysanthemums, carnations are examples of transformable plants. , Goldfish grass, cyclamen, lan, lisianthus, frigia, gerbera, gladiolus, kasumiso, kalanchoe, lily, pelargo, geranim, petunia, trenia, tulip, rice , Barley, wheat, rapeseed, potato, tomato, poplar, banana, eucalyptus, sweet potato, soybean, alfalfa, lupine, corn, and the like, but are not limited thereto.
  • Example 1 Goldfish grass, cyclamen, lan, lisianthus, frigia, gerbera, gladiolus, kasumiso, kalanchoe, lily, pelargo, geranim, petunia, trenia, tulip, rice , Barley, wheat, rapeseed, potato, tomato, poplar
  • Morning Glory (1ida et al. P870, Plant Cell, 6 (1994) Inagaki et a 1.p 375, Theor. Appl. Genet. 92 (1996) Inagaki et al., Having a genotype (Pr-r / pr-m) p499), sow seeds of progeny, observe the flowers of these progeny progeny, select individuals that bloom blue by reversion, and further select the germ cell revertant. In self-propagated progeny, it is tested whether homozygous or heterozygous by obtaining purple flowering isolates, and those with genotypes (Pr-r / Pr-r) and (pr-m / pr-m) I chose.
  • the anthocyanin contained in morning glory is mainly Heavenly Blue Anne Tosocyanin, plus some other anthocyanins
  • Transposon display method eg, Plant J. 13 (1998) Frey et al. 717, Plant J. 13 (1998) Van den Broeck et al. Pl21) or a similar method (plant cell Using Engineering Series 7 (1997), Tsuchi et al., Pl44, Shujunsha), it is present in the pr-m / pr-ra and Pr-w / pr-m strains.
  • Tpn1-related transposons are thought to be mainly involved in mutability, so we focused here on Tpn1-related transposons.
  • chromosomal DNA was extracted from the pr-m / pr-m strain, and 125 ng was digested with Msel in 20 u1.
  • PCR was performed using Taq polymerase (Takara Shuzo Co., Ltd.) at 94 ° C for 0.5 min, 56t for 1 min, and 72 ° C for 1 min. .
  • PCR was performed in 20 ⁇ 1 using 5′-end labeled with fluorescein (using Amersham Pharmacia Biotech Co., Ltd. Vistra fluorescence 5′-oligo-belling kit).
  • reaction Since the reaction is performed with each combination of primers, perform 16 reactions. In PCR, 0.5 minutes at 94 ° C, 1 minute at 65 ° C (0.7 ° C is decreased by 1 cycle), 1 cycle at 72 ° C is 1 cycle, and 13 cycles of reaction are performed. One cycle consisted of 0.5 minutes at 94 ° C, 1 minute at 56 ° C, and 1 minute at 72 ° C, and the reaction was performed in 13 cycles.
  • a DNA fragment of about 130 bp was specifically expressed in the strain having pr-m.
  • the 130 bp DNA fragment was recovered, and PCR was performed using a 20 praole TIR primer and 20 praole Mse [primer to make one cycle at 94 ° C for 0.5 minute, 56 ° C for 1 minute, and 72 ° C for 1 minute.
  • PGEM-T vector (Promega Corporation), subcloned and determined the base sequence. That
  • the array is a
  • the purple gene of morning glory encodes Na + —H + antiporous—.
  • the Na + — H antiporter obtained from Arabidopsis has been attracting attention as a protein that imparts salt tolerance in yeast, but the relationship between the Na + -H + antiporter and the flower color is also important. This is the first time that has been found.
  • Example 5 Complementation experiment of yeast Na + — H + antiporter mutant The putative amino acid sequence encoded by the morning glory Purple gene is homologous to those of the Na + — H + antiporter of yeast Pararabidopsis. There is. Therefore, it was confirmed in a complementation experiment using a mutant of the yeast Na + — H + antiporter that the morning glory Purple gene product could function as a Na + — H + antiporter overnight protein.
  • Plasmid pINA145 was prepared by inserting the above-mentioned phosphoric acid into the pAI2 vector (Invitrogen Corporation) at the CI aI site according to the standard method such that the BgIII site was located on the URA3 gene side (Fig. 3).
  • the plasmid pJJ250 (Jones and Prakash, 1990, Yeast, 6, 363-366) was digested with BamHI and Sa11, and the 2 kb DNA fragment obtained was digested with Bgin and SalII.
  • Plasmid p [NA147 was ligated with Purple cDNA under the control of the GAL1 promoter to generate plasmid plNA151.
  • P1NA147 and pINA151 were transformed into yeast strain R101, which is a mutant of Na + -H + antiporter, respectively.
  • Asagao Purple cDNA is used as type II, and the synthetic primers PR-5 (5'-GGGATCCAACAAAAATGGCTGTCGGG-3 ') (SEQ ID NO: 10) and PR-3 (5'-GGGTCGACTAAGCATCAAAACATAGAGCC-3,) (SEQ ID NO: 11) PCR was performed using PCR.
  • PR-5 5'-GGGATCCAACAAAAATGGCTGTCGGG-3 '
  • PR-3 5'-GGGTCGACTAAGCATCAAAACATAGAGCC-3,
  • the resulting DNA fragment of about 1.6 kb was ligated into pCR2.Topo (Clontech Co., Ltd.) to obtain pCR-purple. It was confirmed that there was no error by PCR in the base sequence of Purple cDNA on this plasmid.
  • PBE2113-GUS Plant Cell Physiol. 37 (1996) Mitsuhara et al. P49 was digested with Saci, blunt-ended, and Xhol linker (Toyobo Co., Ltd.) was inserted.
  • Saci Saci
  • Xhol linker Toyobo Co., Ltd.
  • This plasmid is a binary vector for plant transformation with Agrobacterium, on which the purple cDNA contains the petunia-derived calconsinase A promoter and the Agrobacterium It is under the control of the original Novalincin Yuichi terminator.
  • the nucleotide sequence of the petunia clone and the corresponding amino acid sequence are shown in SEQ ID NOs: 14 and 15, and the nucleotide sequence of the Neerenberg gear clone and the corresponding amino acid sequence are shown in SEQ ID NOs: 16 and 17
  • the nucleotide sequence of the trainer clone and the corresponding amino acid sequence are shown in SEQ ID NOs: 18 and 19, respectively.
  • Petunia, two —Homologs of the Purp 1 e gene of Lembirgia and Treure showed 75%, 76% and 71% identity at the amino acid level to the purple gene of Asaga, respectively.
  • the amino acid sequence of the Na + H-antiporous enzyme encoded by the morning glory Purple gene and the Na + -H + antiporous enzyme encoded by the Arabidopsis AtNhx1 are approximately 73% identical.
  • the homologues of the Purp1e gene of Petunia, 21 Lenbergia, and Treure obtained here are judged to encode Na + —H + antipoise.
  • the chromosome DNAs of mutant morning glory ( pr- m / pr - m ) and reverting morning glory (Pr-r / Pr-r) are cut with Bgll [, and then electrophoresed on 0.8% agarose gel. Genomics Southern analysis was performed for each probe. As a result, a band of about 7.5 kb, which was present in the reverted morning glory but not in the mutant morning glory, was detected.
  • GENECLEAN 11 I KIT (B10101) DNA was extracted using.
  • This DNA-rasp Zap express vector (Stratagene IA) was ligated and screened with Asagao Purple cDNA as a probe.
  • SEQ ID NO: 20 shows the sequence of this sequence up to the start codon of the Purple gene.
  • Purple gene expression is strongly induced only about 24 hours before flowering of morning glory, and insertion of a transposon into the 5, 1 untranslated region suppresses purple gene expression. This is known. From this, the promoter region of the obtained Purp1e gene contains It contains factors necessary to express the Purple gene in a stage-specific and organ-specific manner in a green petal. If the target gene is located downstream of this promoter region, the expression of the target gene can be controlled in a stage-specific and organ-specific manner.
  • the gene obtained according to the present invention is involved in regulation of vacuolar pH and flower color.
  • the pH of vacuoles can be increased, and the color of flowers can be changed to blue.
  • the pH of the vacuole can be reduced, and the color of the flower can be changed to red.
  • a gene encoding a protein that controls the vacuolar pH not only the morning glory obtained in the present invention but also similar genes of other organisms can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

明 細 書 液胞の pHを制御する蛋白質をコ一 ドする遺伝子 発明の技術分野
本発明は液胞の pHを制御する活性を有する蛋白質をコー ドする遺 伝子およびその利用方法に関する ものである。 背景技術
花き産業においては、 顕花植物の新規なあるいは多様性に富んだ 新品種の開発が重要であ り、 なかでも、 花の色は花きの最も重要な 形質のひとつである。 交配による従来の育種によ り、 さまざまな色 の品種が育種されてきたが、 単一の植物種がすべての色の品種を有 するこ とはまれであ り、 さまざまな色の品種開発が望まれている。 花の色の主な成分は、 アン ト シァニンと総称されるフラボノィ ド の一群の化合物である。 植物には多様なア ン ト シァニンが存在する こ とは知られてお り、 それらの多く の構造が既に決定されている。 ア ン 卜 シァニンの色は、 一部は、 その構造に依存している。 ア ン ト シァニンの生合成に関わる酵素や遺伝子に関しても研究が進んでお り、 分子生物学的手法と植物への遺伝子導入によ り、 アン ト シァニ ンの構造を変換し、 花の色を変えた例もある (Plant Cell, 7 (199 5) Holton and Cornish, p.1071 、 Plant Cell Physiol.39 (1998)
Tanaka et al, pll 19. ) 。 また、 ア ン ト シァニンの色は、 水溶液の pHにも依存し、 同じア ン ト シァニンでも水溶液の pHが中性から弱い アルカ リ性で青く 見える (現代化学、 ( 1998年 5 月) 本田と斉藤、 P.25) 。
ア ン 卜 シァニンは細胞の液胞に存在するため、 液胞の pHが花の色 に大きな影響を与えるこ と も知られている (Plant Cel 1, 7 (1995) Ho 1 ton and Cornish , Trends Plant Sci. ό (1998) Mo 1 et a 1. p212 ) 。 たとえば、 アサガオ(Ipomea tricolor) においては、 赤 紫色のつぼみが開花したと きに青く なるのは、 花弁上皮細胞の液胞 の 1]が6.6 から 7.7 に上昇するためであるこ とが知られている (Na ture, 373 (1995), Yoshida et al. p291) 。
植物細胞の液胞はおもに液胞プロ 卜 ン輸送 ATPaseと液胞プロ ト ン 輸送ピロフォスファ ターゼによって制御されている とされる (The Plant Vacuole, (1997) Leigh et aし Academic Press ) 力 s、、 これら のプロ ト ンポンプが花の色にどのよう に関わっているかは明確では ない。 また、 ナ ト リ ウムイオン- プロ ト ンア ンチポーター (以下、 Na+ 一 H + アンチポーターと記載) が植物の液胞に存在するこ と、 また、 Na+ — H + ア ンチポーターは、 液胞の外と中のプロ 卜 ン濃度 勾配に依存してナ ト リ ゥムイオンを液胞内に輸送し、 その際プロ 卜 ンが液胞外に輸送され、 プロ ト ン濃度勾配が減少するこ とが知られ ていた。
さ らに、 Na+ — H + アンチポーターは、 分子量約 17万の蛋白質で あるこ とが示唆されていた。 しかしながら、 液胞の pHの制御には多 く の未知の要因があ り、 どのよ う にして液胞、 特に花弁液胞の pHが 制御されているのかは、 不明確である (以上 The Plant Vacuole, (1 997) Leigh et al. Academic Press) 。 また、 植物液胞の pHを人為 的に上昇させ、 産業上有用な形質が得られたこ と もなく 、 花の色と の関連も不明である。
また、 分子量約 7 万の Na+ — H + アンチポ一ター遺伝子がァラ ビ ドプシスからク ロ一ユングされ、 この遺伝子を導入した酵母は耐塩 性を獲得したこ とは知られているが (Pro Natl. Acad. Sci. USA 96 (1999) Gaxiola et ai. pl480 〜1485) 、 このアンチポーター が植物細胞の液胞の pHを制御しているかどうか、 あるいは花の色に 関わっているかどうかは知られていない。
一方、 ペチュニアには花弁の液胞の pH制御に関わつている遺伝子 座が 7 種あるこ とがわかっており、 これらのう ちの一つがホモの劣 性になるこ とによ り花弁の液胞の pHが上昇する とされている (Plan t J. 13 (1998) van Houwel ingen et aし P39, Trends Plant Sci. 3 (1998) Mol et al. p212) 。 そのう ちの一つ Ph6 はすでにク ロ ーン化されていて、 転写調節因子の一種であるこ とがわかったが ( Plant Cell 5 (1993) Chuck et al. p371) 、 実際にどのよ うな生化 学的な機構で液胞の pHを制御しているかは不明である。
また、 アサガオ ( Ipomea nil) においては、 変異体の解析から花 と葉の色や形に関わる遺伝子座がいく つかあ り、 これらのう ち 1 9 が易変異性であるこ とが知られている (植物細胞工学シ リ ーズ 5 (1 996) pl32,飯田ら 秀潤社、 Annaし New York Acad. Sci. , (1999) I ida et al. p870) 。 これらの内で、 青色ではなく 紫色の花を咲か せるよう になった劣性の変異によ り規定される 1遺伝子座を Purple 退 1 十座と呼ひ 、 Γ. Hagiwara (1931) The genetics of flower co 1 ours in Phrarb i t i s nil. J. Coll. Agr. Imp. Univ. Tokyo 51, 241-262. ; Y. Imai (1931) Analysis of flower col our in Pharb i tis nil. J. Genet. , 24: 203-224. ) 、 紫の花弁に青いセク タ一を 生じる花を咲かせる易変性変異のァ リ ールは、 purple- mutable (pr -m) と名付けられた(J. Col 1. Agric. Imp. Univ. Tokyo, 12 (193 4) Imai, p479)。 なお、 Purple遺伝子座に由来する遺伝子を Purple 遺伝子と記す。
この青い部分は劣性の purpleからの体細胞復帰突然変異によ り生 じたと考えられ、 さ らに生殖細胞復帰突然変異体も分離できる。 こ れら復帰突然変異体の復帰突然変異によ り生じたァ リ ールをここで は Purp l e- r eve r tan t (Pr )と名付ける。 このような古典遺伝学的解 析は、 この Purp l e遺伝子に関しては行われていたが、 この Purp l e遺 伝子の実体や花弁液胞の pHの調節との関連等は全く不明であった。 液胞の pHを改変できれば、 たとえば液胞の pHを上昇させることに よ り、 花の色を青くすることができるであろう と考えられる。 青い 色のない植物種の代表例と して、 バラ、 キク、 カーネーシ ョ ン、 ガ —ベラなどがあり、 これらはきわめて重要な切り花である。 液胞 pH の改変の重要性は認識されてきたが、 いままでに花弁の液胞の pHを 制御する蛋白質の実態は不明であり、 これをコー ドする遺伝子の単 離が望まれていた。 発明の開示
本発明は、 植物細胞の液胞の pHを制御する蛋白質の遺伝子、 好ま しく は液胞でプロ ト ンを輸送する蛋白質の遺伝子、 よ り好ま しく は Na + — H + アンチポーター遺伝子を提供しょう とするものである。 本発明の遺伝子を植物に導入し、 発現させることで、 花色を調節し 、 好ま しく は青色化することが可能である。
従って、 本発明は、 液胞の p H を制御する活性を有する蛋白質を コー ドする遺伝子を提供する。 この遺伝子は、 好ま しく は Na + — H + ァンチポーターをコ一 ドする遺伝子であり、 例えば、 配列番号 : 2記載のアミ ノ酸配列をコー ドする遺伝子、 あるいは配列番号 : 2 記載のァミ ノ酸配列に対して 1 個又は複数個のァミ ノ酸の付加、 欠 失及び Zまたは他のァミ ノ酸による置換によ り修飾されているァミ ノ酸配列を有し、 且つ液胞の p Hを制御する活性を有する蛋白質を コー ドする遺伝子 ; 配列番号 : 2記載のアミ ノ酸配列に対して 20% 以上の相同性を示すアミ ノ酸配列を有し、 且つ液胞の p H を制御す る活性を有する蛋白質をコー ドする遺伝子 ; あるいは配列番号 : 2 記載のァ ミ ノ酸配列をコー ドする塩基配列を有する核酸の一部また は全部に対して、 ス ト リ ンジヱ ン トな条件下でハイブリ ダイズし、 且つ液胞の p H を制御する活性を有する蛋白質をコー ドする遺伝子 である。
本発明はまた、 前記の遺伝子を含んでなるべク ターを提供する。 本発明はまた、 前記のベク ターによ り形質転換された宿主細胞を 提供する。
本発明はまた、 前記の遺伝子によってコー ドされる蛋白質を提供 する。
本発明はさ らに、 前記の宿主細胞を培養し、 又は生育させ、 そし て該宿主細胞から液胞の P Hを制御する活性を有する蛋白質を採取 するこ とを特徴とする該蛋白質の製造方法を提供する。
本発明はまた、 前記の遺伝子、 または前記のべク ターが導入され た植物も しく はこれと同じ性質を有するその子孫またはそれらの組 織を提供する。
本発明はまた、 前記の植物又はこれと同じ性質を有するその子孫 の切り花を提供する。
本発明はさ らに、 前記の遺伝子、 または前記のベク ターを植物又 は植物細胞に導入し、 該遺伝子を発現せしめるこ とによる、 液胞の p Hを制御する方法を提供する。
本発明はさ らに、 前記の遺伝子、 または前記のベク ターを植物又 は植物細胞に導入し、 該遺伝子を発現せしめるこ とによる、 植物体 の花の色を調節する方法を提供する。 図面の簡単な説明
図 1 は、 プラス ミ ド p SPB 6 0 7 の構造を示す図である。
図 2 は、 プラス ミ ド p SPB 6 0 8 の構造を示す図である。 図 3 は、 プラス ミ ド p I NA 1 4 5 の構造を示す図である。
図 4 は、 プラス ミ ド p I NA 1 4 7 の構造を示す図である。 発明の実施の形態
アサガオの遺伝子座 Purp l eは優性である と花弁の色は青で、 ホモ の劣性となる と青い花弁が紫となる。 この遺伝子座が花の色に関わ つているこ とは明らかではあるが、 その機構については不明である まず、 pr- ra変異体とその復帰突然変異体の花弁色素を化学分析し たところ、 両者の色素組成に差違は認められなかった。 青色花アサ ガオの蕾は赤紫色で開花に伴って青色に変化するのは、 前述のよう に、 花弁細胞液胞の pH変化による と考えられる。
pr_m変異体では、 開花に伴って青色に変化せず、 さ らに開花した 花弁細胞の液胞の pHは、 pr- m変異体のほうが Pr- rに比べて低かった 。 それゆえ、 Purp l e遺伝子は開花時の花弁細胞液胞内の pHを制御し 、 花色を調節する遺伝子と考えられる。 そこで、 pr- m変異体とその 復帰突然変異体を用いて、 ト ラ ンスポゾン · ディ スプレー法によ り 、 まず pr-mに特異的に存在する Purp l e遺伝子配列を含むゲノム DNA の断片を同定し、 ついで Pu rp l e遺伝子を同定した。 今回得られた Pu rp l e遺伝子は驚く べきこ とにァラ ビ ドプシスなどの Na + — H + アン チボー夕一と相同性を持ち、 pr-m変異は Purp l e遺伝子の 5'非翻訳領 域中に ト ラ ンスポゾンが挿入されていた。
本発明の遺伝子と しては、 例えば配列番号 : 2 に記載するァ ミ ノ 酸配列をコー ドする ものが挙げられる。 しかしながら、 複数個のァ ミ ノ酸の付加、 欠失および/または他のア ミ ノ酸との置換によって 修飾されたァミ ノ酸配列を有する蛋白質も、 も との蛋白質と同様の 活性を維持するこ とが知られている。 従って本発明は、 液胞の p H を制御する活性を有している蛋白質である限り 、 配列番号 : 2 に記 載のア ミ ノ酸配列に対して 1 個または複数個のァ ミ ノ酸配列の付加 、 欠失および/または他のアミ ノ酸との置換によって修飾されたァ ミ ノ酸配列を有する蛋白質および当該蛋白質をコー ドする遺伝子も 本発明に属する。
本発明はまた、 配列番号 : 1 に記載の塩基配列または配列番号 : 2 に記載のア ミ ノ酸配列をコー ドする塩基配列、 またはそれらの塩 基配列の一部分をコー ドする塩基配列に対して、 ス 卜 リ ンジヱ ン ト な条件下、 例えば 5xSSC 、 50°Cの条件下でハイブリ ダィ ズし、 且つ 液胞の P H を制御する活性を有する蛋白質をコー ドする遺伝子に関 する ものである。 なお、 適切なハイプリ ダィゼーシ ョ ン温度は塩基 配列やその塩基配列の長さによって異な り、 例えばア ミ ノ酸 6個を コー ドする 18塩基からなる DNA フラグメ ン ト をプローブと した場合 には 50°C以下の温度が好ま しい。
このよ うなハイブリ ダイゼーシ ョ ンによって選択される遺伝子と しては、 天然由来のもの、 例えば植物由来のもの、 例えば、 ペチュ 二ァゃ ト レニァ由来の遺伝子が挙げられるが、 植物以外の由来であ つてもよい。 また、 ハイブリ ダィゼーシ ヨ ンによって選択される遺 伝子は cDNAであつてもよ く 、 ゲノム DNA であってもよい。
また、 Na+ — H + アンチポーター遺伝子はス一パーフア ミ リ ーを 形成してお り (FEBS Le t t. 424 ( 1998) Debrov e t a l . , p l ) 、 ア ミ ノ酸配列で 1 0 % 以上の相同性を有する (J . B i o l . Chem. 272 ( 1997) Or 1 owsk i e t a I . , 2237d ) 。
そこで本発明はさ らに配列番号 : 2 に記載のァ ミ ノ酸配列に対し て約 20%以上、 好ま しく は 50%以上、 例えば 60%または 70%以上、 の相同性を有するア ミ ノ酸配列を有し、 且つ液胞の p H を制御する 活性を有する蛋白質をコー ドする遺伝子に関する ものである。 生来の塩基配列を有する遺伝子は実施例に具体的に示すよ う に、 例えば cDNAラィブラ リ ーのス ク リ ーユングによって得られる。 また 、 修飾されたア ミ ノ酸配列を有する蛋白質をコ一 ドする DNA は生来 の塩基配列を有する DNA を基礎と して、 常用の部位特定変異誘発や PCR 法を用いて合成するこ とができる。 例えば修飾を導入したい DN A 断片を生来の cDNAまたはゲノム DNA の制限酵素処理によって得、 これを鎊型にして、 所望の変異を導入したプライマ ーを用いて部位 特異的変異誘発または PCR 法を実施し、 所望の修飾を導入した DNA 断片を得る。 その後、 この変異を導入した DNA 断片を目的とする酵 素の他の部分をコー ドする DNA 断片と連結すればよい。
あるいはまた、 短縮されたア ミ ノ酸配列からなる蛋白質をコー ド する DNA を得るには、 例えば目的とするア ミ ノ酸配列よ り長いア ミ ノ酸配列、 例えば全長アミ ノ酸配列をコー ドする DNA を所望の制限 酵素によ り切断し、 その結果得られた DNA 断片が目的とするア ミ ノ 酸配列の全体をコー ドしていない場合は、 不足部分の配列からなる DNA 断片を合成し、 連結すればよい。
本発明はアサガオ由来の液胞の P H を制御する活性を有する蛋白 質をコー ドする遺伝子のみに限定される ものではな く 、 起源と して は、 植物でも動物でも微生物であってもよ く 、 液胞においてプロ 卜 ンを汲み出す 卜ポロジーを持っていればよい。
また、 得られた遺伝子を大腸菌または酵母での遺伝子発現系を用 いて発現させ、 活性を測定するこ とによ り、 得られた遺伝子が液胞 の p H を制御する活性を有する蛋白質をコー ドするこ とを確認する こ とができる。 さ らに、 当該遺伝子を発現させるこ とによ り、 遺伝 子産物である液胞の p H を制御する活性を有する蛋白質を得るこ と ができる。 あるいはまた、 配列番号 : 2 に記載のア ミ ノ酸配列に対 する抗体を用いても、 液胞の p H を制御する活性を有する蛋白質を 得るこ とができ、 抗体を用いて他の生物の液胞の p H を制御する活 性を有する蛋白質をクローン化するこ と もできる。
従って本発明はまた、 前述の遺伝子を含む組換えベク ター、 特に 発現べク ター、 及び当該べク ターによって形質転換された宿主細胞 に関するものである。 宿主と しては、 原核生物または真核生物を用 いるこ とができる。 原核生物と しては細菌、 例えばェシヱ リ ヒア ( Escherichia ) 属に属する細菌、 例えば大腸菌 (Escherichia col i ) 、 バシルス (Bacillus) 属微生物、 例えばバシルス. スブシルス (Bacillus subti 1 is ) など常用の宿主を用いるこ とができる。 真 核性宿主と しては、 下等真核生物、 例えば真核性微生物、 例えば真 菌である酵母または糸状菌が使用できる。
酵母と しては例えばサッ カロ ミ セス (Saccharorayces ) 属微生物 、 例えばサッ カロ ミ セス · セレヒシェ (Saccharorayces cerevisiae) 等が挙げられ、 また糸状菌と してはァスペルギルス (Aspergillus ) 属微生物、 例えばァスペルギルス ' ォ リ ゼ (Aspergillus oryzae ) 、 ァスペルキ"ルス. 二ガー ( Aspergi 1 lus niger ) 、 ぺニシ リ ウ ム (Penici Ilium ) 属微生物が挙げられる。 さ らに動物細胞または 植物細胞が使用でき、 動物細胞と しては、 マウス、 ハムスター、 サ ル、 ヒ ト等の細胞系が使用される。 さ らに昆虫細胞、 例えばカイ コ 細胞、 またはカイ コの成虫それ自体も宿主と して使用される。
本発明の発現べク ターはそれらを導入すべき宿主の種類に依存し て発現制御領域、 例えばプロモータ一およびターミ ネータ一、 複製 起点等を含有する。 細菌用発現べク タ一のプロモーターと しては、 常用のプロモ一ター、 例えば trc プロモーター、 tac プロモーター 、 lac プロモーター等が使用され、 酵母用プロモータ一と しては、 例えばグリ セルアルデヒ ド 3 リ ン酸デヒ ドロゲナ一ゼプロモー夕一 、 PH05プロモー夕一等が使用され、 糸状菌用プロモーターと しては 例えばアミ ラ一ゼプロモーター、 t rpCプロモータ一等が使用される また動物細胞宿主用プロモータ一と してはウィルス性プロモータ 一、 例えば SV40ァ一リ ープロモー夕一、 SV40レー 卜プロモーター等 が使用される。 発現ベク ターの作製は制限酵素、 リ ガーゼ等を用い て常用に従って行う こ とができる。 また、 発現ベク ターによる宿主 細胞の形質転換も常法に従って行う こ とができる。
前記の発現べク ターによって形質転換された宿主細胞を培養、 栽 培または飼育し、 培養物等から常法に従って、 例えば、 濾過、 遠心 分離、 細胞の破砕、 ゲル濾過クロマ ト グラフ ィー、 ィォン交換ク 口 マ ト グラフ ィ一等によ り 目的とする タ ンパク質を回収、 精製するこ とができる。
さ らに本発明は、 液胞の p H を制御する活性を有する蛋白質をコ ー ドする遺伝子、 具体的には、 Na + — H + アンチポーター遺伝子を 導入するこ とによ り、 色合いが調節された植物も しく はその子孫又 はこれらの組織に関する ものであ り、 その形態は切り花であっても よい。 本発明で得た液胞の p H を制御する活性を有する蛋白質をコ ー ドする遺伝子を用いる と、 液胞においてプロ ト ンの細胞質への汲 み出しとナ 卜 リ ゥムイオンの汲み入れを行う こ とができ、 液胞内に 蓄積しているアン ト シァニンを青く でき、 結果と して花の色を青く するこ とができる。
また、 本発明の遺伝子の発現を抑制するこ とによ り、 液胞の pHを 下げるこ と も可能である。 現在の技術水準をもってすれば、 植物に 遺伝子を導入し、 その遺伝子を構成的あるいは組織特異的に発現さ せるこ とは可能である し、 またアンチセンス法やコサプレツ シ ョ ン 法によって目的の遺伝子の発現を抑制するこ と も可能である。
形質転換可能な植物の例と しては、 バラ、 キク、 カーネーシ ョ ン 、 金魚草、 シクラメ ン、 ラ ン、 トルコギキ ヨ ウ、 フ リ ージア、 ガ一 ベラ、 グラジオラス、 カス ミ ソゥ、 カラ ンコェ、 ユリ 、 ペラルゴ二 ゥム、 ゼラニゥム、 ペチュニア、 ト レニァ、 チューリ ップ、 イネ、 ォォムギ、 小麦、 ナタネ、 ポテ ト、 トマ ト、 ポプラ、 バナナ、 ユー カ リ 、 サツマィモ、 ダイズ、 アルファルファ、 ルーピン、 ト ウモロ コシなどがあげられるがこれらに限定されるものではない。 実施例
以下実施例に従って、 発明の詳細を述べる。 分子生物学的手法は と く に断らない限り、 Molecular Cloning ( Sarabrook et al., 198
9 ) に依った。
実施例 1 . 生殖細胞復帰突然変異体の取得
生殖細胞復帰突然変異体の取得に関しては、 すでに報告がある ( 植物細胞工学シリーズ 5 (1996) pl32, 飯田ら 秀潤社、 Annal. New York Acad. Sci. , (1999) I ida et al. p870、 Plant Cel 1, 6 (1994) Inagaki et al. p 375、 Theor. Appl. Genet. 92 (1996) I nagak i et a 1. p499 ) 。
遺伝子型 (Pr- r/pr- m ) を有するアサガオ(1 ida et al. p870 、 Plant Cell, 6 (1994) Inagaki et a 1. p 375、 Theor. Appl. Genet . 92 (1996) Inagaki et al. p499 ) を自家受粉し、 後代の種子を 蒔き、 それら自殖後代の花を観察して、 復帰突然変異によ り青花を 咲かせる個体を選抜し、 さ らにこの生殖細胞復帰突然変異体の自殖 後代で、 紫花を咲かせる分離体が得られるか否かでホモかへテロか を検証し、 遺伝子型 (Pr- r/ Pr-r) および(pr-m/pr- m) を有するも のを選択した。
実施例 1 . 復帰変異体花弁のァン ト シァニン
アサガオに含まれるアン ト シァニンはおもにへブン リ ブルーアン ト シァニンであ り 、 その他にいく つかのアン 卜 シァニンが含まれる
(Phytocheraistry 31 (1992) Lu et al. P659 ) 。 実施例 1 で得ら れた Pr- r/ Pr-r株と pr-m/pr- ra 株の開いた花弁を同様に解析したと ころ、 両者に含まれるアン ト シァニンはほぼ同一であった。
セロハンテープを表側の花弁に貼り、 剥がすこ とによ り一層の上 皮細胞だけを回収し、 ここから細胞液をメ スなどで搔き取り遠心し て搾汁を得た。 搾汁をホ リバ B212p H メーター (株式会社堀場製作 所) にて pHを測定した。 Pr- r/ Pr- r株の花弁上皮細胞の pHは約 7.1 であったのに対し、 pr- m/pr- ra 株の花弁上皮細胞の pHは約 6.5 であ つた。 この結果は、 purpleの変異による花色の変化は、 アン ト シァ ニンの構造による ものではなく 液胞の pHの変化によるものであるこ とを示す。
実施例 3 . p r-m に特異的に存在するゲノム断片の単離
遺伝子の単離には ト ラ ンスポゾンディ スプレー法 (たとえば Plan t J. 13 (1998) Frey et al. 717 , Plant J. 13 (1998) Van d en Broeck et al. pl21) あるいは類似の方法 (植物細胞工学シ リ ー ズ 7 ( 1997) 、 土生ら、 pl44, 秀潤社) を用い、 pr- m/pr- ra 株と Pr - w/pr-m 株には存在し、 Pr- r/ Pr- r株と野性株には存在しない DN A のバン ドを探した。 アサガオにおいては Tpn 1関連の ト ラ ンスポゾ ンが主に易変異性に関与している と考えられるので、 ここでも Tpn 1 関連の トラ ンスポゾンに着目 した。
具体的には、 pr- m/pr-m 株から染色体 DNA を抽出し、 125ng を 20 u 1 中で Mselで消化した。 消化した DNA に 80 praole の Mse【ァダプ 夕― (5, -GACGATGAGTCCTGAG-3' (配列番号 : 3 ) と 5' -TACTCAGGACTCA T-3' (配列番号 : 4 ) をァニールしたもの) を 25^ 1 中で 20°Cで 2 時間付加した。 75°Cで 10分間保持した後、 -20 °Cで保管した。 これ を 10倍希釈した後、 2 1 を鐃型と し、 これを 4.8 pmole の TIR プ ライマー(5' - TGTGCATTTTTCTTGTAGTG- 3' (配列番号 : 5 ) 、 ト ラ ンス ポゾン Tpnlの末端逆位繰り返し配列を含む) と 4.8 mole の Mselプ ライマ一 (5' - GATGAGTCCTGAGTAA-3' ) (配列番号 : 6 ) を用いて 20 u 1 中で PCR によ り増幅した。
PCR は、 Taq ポリ メ ラ一ゼ (宝酒造株式会社) 9 4 °C 0.5 分、 56 t 1 分、 72°C 1 分を 1 サイ クルと し、 20サイ クル反応し、 10倍に希 釈した。 このう ち 2 u 1 を銬型と して、 4.8 praole の TIR +N ブラ イマ一(5' - TGTGCATTTTTCTTGTAGN- 3' (配列番号 : 7 ) N=A, C, G ま たは T. 混合ではな く 4 種合成する。 ) と 4.8 pmole の Msel+Nプラ イマ一 (5'-GATGAGTCCTGAGTAAN-3', (配列番号 : 8 ) N=A, G ま たは T.混合ではなく 4 種合成する。 5'端をフルォロセィ ンで標識 ( アマシャムフアルマシアバイオテク株式会社 Vistra fluorescence 5' - オリ ゴラベリ ングキッ ト を使用) ) を用いて 20〃 1 中で PCR を 行った。
反応はそれぞれのプライマーの組み合わせで行うため 1 6反応を おこなう。 PCR は、 94 °C 0.5 分、 65°C 1 分 (1 サイ クルごとに 0. 7 °Cづっ下げる) 、 72°C 1 分を 1 サイ クルと し、 13サイ クル反応し 、 さ らに 94°C 0.5 分、 56°C 1 分、 72°C 1 分を 1 サイ クルと し、 13サ ィ クル反応した。 同様の操作を Pr- r/ Pr- r株から得た染色体 DNA に ついても行い、 DNA シークェンサ一 377 (ピーィ一バイオシステム ズジャパン株式会社) のシークェンスゲルにて電気泳動を行い、 FM BI0II (宝酒造株式会社) を用いてバン ドを検出した。
Pr-r/ Pr- Γ株と pr-m/pr- m 株由来のバン ドを比較したところ、 約 130bp の DNA 断片が pr-mを有する株に特異的に発現していた。 この 130bp の DNA 断片を回収し、 20 praole TIRプライマーと 20 praole M se【 プライマ ーを用いて PCR (94°C 0.5 分、 56°C 1 分、 72°C 1 分を 1 サイ クルと し、 30サイ クル反応) によ り増幅し、 pGEM - Tベク タ一 ( Promega Corporation ) にサブ、クローニングし、 塩基酉己歹リを決定 した。 その
配列は、
5' -TGAGCATTTTTCTTGTAGTG CTGAGATTTTCCTCCATTTGTCTGMGCTCTTCATCCITCAACAC TACCCCCACATCTCACCmCAAG GTCCMTCTTTATCATTCATCT TTACTCAGGACTCATCGTC-3'
(配列番号: 9 )
であつた ( 1本下線部は使用したプライマー、 2本下線はェクソ ン、 その他はイ ン ト ロ ンに対応) 。 配列番号 : 9 に記載の配列をプ ローブと してノザン解析を行ったところ、 Pr- rを有するアサガオの 蕾には約 2.3kb の転写産物が存在したが、 pr- m/pr- m 株には対応す る転写産物は存在しなかった。 従って、 この 2.3kb の転写産物が Pu rp 1 e遺伝子に対応するこ とがわかった。
実施例 4 . c DNA の単離
野生株アサガオ(Pr-w/Pr- w) 由来の cDNAライブラ リ ー(Plant Cel 1, 6 (1994) Inagaki et al. p375)の約 600 万個クローンを 130bpD NA断片をプローブと してスク リ ーニングし、 2 クローンの陽性クロ ーンを得た。 そのう ち 1 クローンは、 2237 bp の cDNAを持ち、 その 中には 1626bpからなるオープン リ 一ディ ングフ レームが見られた ( 配列番号 : 1 ) 。 予測されるアミ ノ酸配列は、 酵母とァラ ビ ドプシ スの Na+ _H+ アンチポーター (それぞれ Nhxl, AtNhxl, Pro Natl . Acad. Sci. USA 96 (1999) Gaxiola et al. pl480 〜 1485) に対 して 29.3 %、 73.4% の同一性を示した。
この結果からアサガオの Purple遺伝子は Na+ — H + アンチポー夕 —をコー ド しているこ とが判明した。 なお、 ァラ ビ ドプシスから得 られた Na+ — H アンチポーターは、 酵母において耐塩性を与える タ ンパク質と して注目されているが、 Na+ -H + アンチポーターと 花の色との関連が見出されたのは今回が初めてである。 実施例 5. 酵母 Na+ — H + アンチポーター変異体の相補実験 アサガオの Purple遺伝子がコー ドする推定ァ ミ ノ酸配列は、 酵母 ゃァラ ビ ドプシスの Na+ — H + アンチポーターのそれらに相同性が ある。 そこで実際に、 アサガオ Purple遺伝子産物が、 Na+ — H + ァ ンチポ一夕一蛋白と して機能できるか酵母 Na+ — H + アンチポータ 一変異体を用いた相補実験で確認した。
まず最初に、 以下の 2 種類の DNA 断片を合成した。
CBSCl-Linker (22mer)5' - CGA TAG ATC TGG GGG TCG ACA T -3'
(配列番号 : 12)
CSBC2- Linker (22mer) 5' - CGA TGT CGA CCC CCA GAT CTA T - 3'
(配列番号 : 13) この 2つの DNA 断片からは、 Cla卜 Bgl 11- Sal卜 Clalという制限酵 素部位をもつ リ ンカ一ができる。 pYES2 ベク ター ( Invitrogen Cor poration) の C I a I部位に Bg I I I サイ 卜が URA3遺伝子側に位置するよ う定法にしたがつて上記のリ ン力一を挿入し、 プラスミ ド pINA145 を作成した (図 3 ) 。 プラス ミ ド pJJ250 (Jones and Prakash, 199 0, Yeast, 6, 363-366) を BamHI と Sa 11で消化して得られる 2kb の DNA 断片を Bgin と Sal ίで消化したプラス ミ ド p【NA145 とライゲ一 シ ヨ ンし、 プラス ミ ド p I NA147 を作成した (図 4 ) 。 プラス ミ ド p【 NA147 の GAL 1 プロモーターの制御下に Purple cDNA を連結してプ ラス ミ ド plNA151 を作成した。 P1NA147 および pINA151 を Na+ - H + ァンチポーターの変異株である酵母 R101株にそれぞれ形質転換した 。 酵母 R101株は Na+ - H+ アンチポ一夕一遺伝子の変異によ り 400mM NaCl添加 APG 培地 (Nass et al. , 1997, J. Biol. Chera. , 272, 26 145; Gaxiola et al. , 1999, 96, 1480-1485) では生育できない。 PINA147 を形質転換した RlOl株も同様に生育できなかったが、 plNA 151 を形質転換した R101株のみ 400mM NaCl添加 APG 培地でも生育が 可能であった。 この結果から、 アサガオ Purple遺伝子産物は Na+ - H + アンチポーター機能を有しているこ とが明らかになった。
実施例 6 . 植物での発現べク ターの構築
アサガオ Purple cDNAlOng を鎊型と して、 合成プライマ一 PR— 5 (5' -GGGATCCAACAAAAATGGCTGTCGGG-3' ) (配列番号 : 10) と PR - 3 (5' -GGGTCGACTAAGCATCAAAACATAGAGCC -3,) (配列番号 : 11) を用い て PCR を行った。 ポリ メ ラ一ゼは、 Taq ポリ メ ラ一ゼ (東洋紡績株 式会社) を使用し、 95°C 45秒反応後、 95°C 45秒、 50°C 45秒、 72°C 45 秒を 1 サイ クルと し、 25サイ クル反応し、 さ らに 72度で 10分反応し た。 得られた約 1.6 kbの DNA 断片を pCR2.卜 Topo ( ク ロ ンテッ ク株 式会社) にライゲ一シ ヨ ンし、 pCR- purpleと した。 このプラス ミ ド 上の Purple c DNA の塩基配列に PCR によるエラ一がないこ とを確認 した。
PBE2113-GUS (Plant Cell Physiol. 37 (1996) Mitsuhara et al . p49)を Saciで消化し、 平滑末端化した後、 Xholリ ンカ一 (東洋紡 績株式会社) を挿入し、 得られたプラス ミ ドを PBE2113- GUSxと した 。 これを EcofU と Hindin で消化して得られる約 2.7 kbの DNA 断片 を pBinPLUSの Hidl I ίと EcoRi 消化物と連結し、 得られたプラス ミ ド を pBEXP と した。
一方、 PCGP484 (特表平 8 — 5 1 1 6 8 3号公報) を Hindi 11 と Xbalで消化して得られる約 1.2kb の DNA 断片と、 pCR- purp 1 eを Xba I と Saliで消化して得られる約 1.6kb の DNA 断片と、 pBEXP を HindH I と Xho 1で消化して得られる約 13kbの DNA 断片をライゲ一シ ョ ン し 、 pSPB607 を得た (図 1 ) 。 このプラス ミ ドは、 ァグロバクテ リ ウ ムによる植物の形質転換用のバイナ リ 一ベク ターで、 このプラスミ ド上で、 Purple cDNA は、 キンギヨ ソゥ由来カルコ ンシンターゼプ 口モーターと、 ァグロパクテ リ ゥム由来のノノ、。 リ ンシン夕一ゼタ— ミ ネーターの制御下にある。
また、 PCGP669 (特表平 8 — 5 1 1 6 8 3号公報) を Hindl l l と BamHI で消化して得られる約 0.8kb の DNA 断片と、 pCR- purp 1 eを Ba mH【 と Sailで消化して得られる約 1.6kb の DNA 断片と、 pBEXP を Ηί ndl 11 と Xho 1で消化して得られる約 13kbの DNA 断片をライゲ一シ ョ ンし、 pSPB608 を得た (図 2 ) 。 このプラス ミ ドは、 ァグロバクテ リ ウムによる植物の形質転換用のバイナ リ ーベク ターで、 このブラ スミ ド上で、 Purple cDNA は、 ペチュニア由来カルコ ンシン夕ーゼ A プロモーターと、 ァグロノくクテ リ ゥム由来のノバリ ンシン夕一ゼ ターミ ネータ一の制御下にある。
このよう にして得られた発現ベク ターを用いて植物の形質転換を 行う こ とによ り、 液胞の pHを制御し、 花色を調節するこ とができる 実施例 7 . Purple遺伝子のホモログの単離
ペチュニア (Petunia hybrida 品種 Old Glory Blue ) 、 ニーレ ンベルギア ( Nierembergia hybrida品種 NB 17 ) 、 ト レニァ (Tore nia hybrida 品種サマーウエーブ · ブル一) の花弁由来 cDNA l ibra ryを cDNA synthesis kit ( Stratagene USA) を用いてそれぞれ作成 した。 作成方法は、 製造者の推奨する方法に従った。 それぞれ約 20 万個のクローンを定法に従って、 ス ク リーニングした。 なお、 メ ン プレ ンの洗浄には、 5 SSC, 0.1% SDS 水溶液を用い、 50°Cで 10分 間、 3回行った。 得られた陽性ク ローンのう ち、 それぞれの最長ク ロ ーンの塩基配列を決定した。 ペチュニアのクローンの塩基配列及び 対応するァ ミ ノ酸配列を配列番号 : 1 4及び 1 5 に、 ニーレンベル ギアのク ローンの塩基配列及び対応するア ミ ノ酸配列を配列番号 : 1 6及び 1 7 に、 そ して ト レニァのク ローンの塩基配列及び対応す るア ミ ノ酸配列を配列番号 : 1 8及び 1 9 に示す。 ペチュニア、 二 —レンベルギア及びト レユアの Purp 1 e遺伝子のホモログは、 アサガ ォの Purple遺伝子に対してァミ ノ酸レベルでそれぞれ 75%、 76%及 び 71%の同一性を示した。
アサガオ Purple遺伝子がコー ドする Na十 一 H + アンチポー夕一と ァラ ビ ドプシスの AtNhx 1 がコー ドする Na+ — H + アンチポー夕一 のアミ ノ酸配列の同一性が約 73%であるこ とから、 ここで得たペチ ュニァ、 二一レンベルギア、 ト レユアの Purp 1 e遺伝子のホモログは 、 Na+ — H + アンチポー夕一をコー ドしている と判断される。
実施例 8 . アサガオ Purple 染色体クローンの単離
変異型アサガオ(pr- m/pr- m) と復帰型アサガオ(Pr- r/Pr- r) の染 色体 DNA を Bgll【 で切断後、 0.8%ァガロースゲルで電気泳動し、 ァ サガオ Purpleの cDNAをプローブにそれぞれゲノ ミ ツ クサザン解析を 行った。 その結果、 変異型アサガオでは無く 、 復帰型アサガオには 存在する約 7.5kbのバン ドを検出した。
野性型アサガオ(Pr- w/Pr-w、 KKZSK2系統) の染色体 DNA 50 i g を Bglll で切断後、 0.8%ァガロースゲルで電気泳動し、 約 7〜9kb の 部分を切り出して GENECLEAN 11 I KIT (B10101) を用いて DNAを抽 出した。 この DNA¾rス Zap express vector ( Stratagene I A) にラ ィゲーシ ヨ ンし、 アサガオ Purple の cDNAをプローブと してスク リ 一ユングした。 得られたポジティブクローンの塩基配列を決定した ところ、 この約 了.5kbの DNA 断片に Purpleのプロモーター上流約 6. 3kb とェキソ ン 3 の途中までの領域が存在した。 この配列のう ち Pu rple遺伝子の開始コ ドンまでの配列を配列番号 : 2 0 に示す。
Purple遺伝子は、 アサガオの開花約 24時間前にのみ強く 発現が誘 導されるこ と、 また、 5 , 一非翻訳領域への ト ラ ンスポゾンの挿入 によ り、 Purple遺伝子の発現が抑制されるこ とが判明している。 こ のこ とから、 得られた Purp 1 e遺伝子のプロモーター領域には、 アサ ガオ花弁で時期特異的、 器官特異的に Purp l e遺伝子を発現させるた めに必要な因子を含んでいる。 このプロモーター領域の下流に目的 遺伝子を配置すれば、 時期特異的、 器官特異的に目的遺伝子の発現 が制御できる。 産業上の利用可能性
本発明によ り得られた遺伝子が液胞の pHおよび花の色の調節に関 わっていることがはじめて明らかとなった。 また、 本発明の遺伝子 を花弁で発現することによ り、 液胞の pHを上昇させ、 花の色を青く 変化させるこ とができる。 また、 本発明の遺伝子の発現を抑制する ことによ り、 液胞の pHを低下させ、 花の色を赤く変化させることが できる。 液胞の pHを制御する蛋白質をコー ドする遺伝子としては、 本発明において得られたアサガオ由来のものだけでなく 、 他の生物 の同様な遺伝子も用いることができる。

Claims

請 求 の 範 囲
1 . 植物細胞の液胞の p H を制御する活性を有する蛋白質をコー ドする遺伝子。
2 . 配列番号 : 2記載のアミ ノ酸配列を有する植物細胞の液胞の p Hを制御する活性を有する蛋白質をコー ドする遺伝子。
3 . 配列番号 : 2記載のアミ ノ酸配列に対して 1 個又は複数個の ァミ ノ酸の付加、 欠失及び/または他のァミ ノ酸による置換によ り 修飾されているアミ ノ酸配列を有し、 且つ液胞の p Hを制御する活 性を有する蛋白質をコー ドする遺伝子。
4 . 配列番号 : 2記載のアミ ノ酸配列に対して 20% 以上の相同性 を示すアミ ノ酸配列を有し、 且つ液胞の p H を制御する活性を有す る蛋白質をコー ドする請求項 1 に記載の遺伝子。
5 . 配列番号 : 2記載のアミ ノ酸配列に対して 70% 以上の相同性 を示すァミ ノ酸配列を有し、 且つ液胞の p H を制御する活性を有す る蛋白質をコー ドする請求項 1 に記載の遺伝子。
6 . 配列番号 : 2記載のアミ ノ酸配列をコー ドする塩基配列を有 する核酸の一部または全部に対して、 ス ト リ ンジヱ ン 卜な条件下で ハイブリ ダイズし、 且つ液胞の p H を制御する活性を有する蛋白質 をコー ドする請求項 1 に記載の遺伝子。
7 . 請求項 1 〜 6 のいずれか 1 項に記載の遺伝子を含んでなるベ ク タ一。
8 . 請求項 7記載のべク ターによ り形質転換された宿主細胞。
9 . 請求項 1 〜 6 のいずれか 1項に記載の遺伝子によってコー ド される蛋白質。
1 0 . 請求項 8記載の宿主細胞を培養し、 又は生育させ、 そして 該宿主細胞から液胞の P Hを制御する活性を有する蛋白質を採取す るこ とを特徴とする該蛋白質の製造方法。
1 1 . 請求項 1 〜 6 のいずれか 1 項に記載の遺伝子、 または請求 項 7記載のベク ターが導入され形質転換された植物も しく はこれと 同じ性質を有するその子孫またはそれらの組織。
1 2 . 請求項 1 1 に記載の植物又はこれと同じ性質を有するその 子孫の切り花。
1 3 . 請求項 1 〜 6 のいずれか 1 項に記載の遺伝子、 または請求 項 7記載のべク ターを植物又は植物細胞に導入し、 該遺伝子を発現 せしめるこ とによる、 液胞の p Hを制御する方法。
1 4 . 請求項 1 〜 6 のいずれか 1 項に記載の遺伝子、 または請求 項 7記載のべク ターを植物又は植物細胞に導入し、 該遺伝子を発現 せしめるこ とによる、 植物体の花の色を調節する方法。
PCT/JP2000/005722 1999-08-24 2000-08-24 GENES PROTEINES CODANT POUR DES PROTEINES REGULANT LE pH DE VACUOLES WO2001014560A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/830,123 US6803500B1 (en) 1999-08-24 1999-08-24 Genes encoding proteins regulating the pH of vacuoles
AU67295/00A AU784725B2 (en) 1999-08-24 2000-08-24 Genes encoding proteins regulating pH of vacuoles
CA2348025A CA2348025C (en) 1999-08-24 2000-08-24 Genes encoding proteins regulating ph of vacuoles
AT00955003T ATE491792T1 (de) 1999-08-24 2000-08-24 Gene, welche für proteine kodieren, die den ph von vakuolen regulieren
EP00955003A EP1123977B1 (en) 1999-08-24 2000-08-24 GENES ENCODING PROTEINS REGULATING pH OF VACUOLES
DE60045366T DE60045366D1 (de) 1999-08-24 2000-08-24 GENE, WELCHE FÜR PROTEINE KODIEREN, DIE DEN pH VON VAKUOLEN REGULIEREN
JP2001518873A JP4596721B2 (ja) 1999-08-24 2000-08-24 液胞のpHを制御する蛋白質をコードする遺伝子
NZ511367A NZ511367A (en) 1999-08-24 2000-08-24 Genes encoding proteins regulating pH of vacuoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23680099 1999-08-24
JP11/236800 1999-08-24

Publications (1)

Publication Number Publication Date
WO2001014560A1 true WO2001014560A1 (fr) 2001-03-01

Family

ID=17005984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005722 WO2001014560A1 (fr) 1999-08-24 2000-08-24 GENES PROTEINES CODANT POUR DES PROTEINES REGULANT LE pH DE VACUOLES

Country Status (9)

Country Link
US (1) US6803500B1 (ja)
EP (1) EP1123977B1 (ja)
JP (1) JP4596721B2 (ja)
AT (1) ATE491792T1 (ja)
AU (1) AU784725B2 (ja)
CA (1) CA2348025C (ja)
DE (1) DE60045366D1 (ja)
NZ (1) NZ511367A (ja)
WO (1) WO2001014560A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016423A2 (en) * 2000-08-25 2002-02-28 Basf Plant Science Gmbh PLANT POLYNUCLEOTIDES ENCODING NOVEL Na+/H+ ANTIPORTERS
JP2009538604A (ja) * 2006-06-01 2009-11-12 フェレニギング フォール クリステリューク ホーゲル オンデルウィース ウェテンシャッペリューク オンデルツォイク エン パティエンテンツォーク 細胞pHに関連する植物核酸およびその使用
CN115058434A (zh) * 2022-05-20 2022-09-16 上海师范大学 一种调控月季花瓣颜色的基因RcNHX2及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936750B2 (en) * 1998-03-18 2005-08-30 Eduardo Blumwald Increasing salt tolerance in plants by overexpression of a vacuolar Na+/H+ transporter[s]
AU2006230803B8 (en) * 2005-04-04 2011-03-17 Suntory Holdings Limited Plant genetic sequences associated with vacuolar pH and uses thereof
US20090217413A1 (en) * 2005-04-04 2009-08-27 Vereniging Voor Christelijk Hoger Onderwijs Wetenschappelijk Onderzoek En Patientenzorg Plant genetic sequences associated with vacuolar ph and uses thereof
US20120167246A1 (en) * 2009-05-01 2012-06-28 Stichting Vu-Vumc PLANT NUCLEIC ACIDS ASSOCIATED WITH CELLULAR pH AND USES THEREOF
EP2593468B1 (en) 2010-07-12 2020-06-10 The State of Israel, Ministry of Agriculture and Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Isolated polynucleotides and methods and plants using same for regulating plant acidity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023561A1 (en) * 1993-04-16 1994-10-27 Dna Plant Technology Corporation Ph genes and their uses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2821499A (en) * 1998-03-18 1999-10-11 Gilad Aharon Genetic engineering salt tolerance in crop plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023561A1 (en) * 1993-04-16 1994-10-27 Dna Plant Technology Corporation Ph genes and their uses

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUKUDA A. ET AL.: "Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sative", BIOCHIM. BIOPHYS. ACTA, vol. 1446, July 1999 (1999-07-01), pages 149 - 155, XP002934306 *
GAXIOLA A.R. ET AL.: "The arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast", PROC. NATL. ACAD. SCI. USA, vol. 96, February 1999 (1999-02-01), pages 1480 - 1485, XP002934307 *
LU P.Y. ET AL.: "AtMRP1 gene of arabidopsis encodes a glutathione S-conjugate pump: Isolation and functional definition of a plant ATP-binding cassette transporter gene", PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 8243 - 8248, XP002934308 *
MARRS A.K. ET AL.: "A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2", NATURE, vol. 375, no. 6530, 1995, pages 397 - 400, XP002934309 *
TANAKA S. ET AL.: "Colour-enhancing protein in blue petals", NATURE, vol. 407, October 2000 (2000-10-01), pages 581, XP002934310 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016423A2 (en) * 2000-08-25 2002-02-28 Basf Plant Science Gmbh PLANT POLYNUCLEOTIDES ENCODING NOVEL Na+/H+ ANTIPORTERS
WO2002016423A3 (en) * 2000-08-25 2003-06-26 Basf Plant Science Gmbh PLANT POLYNUCLEOTIDES ENCODING NOVEL Na+/H+ ANTIPORTERS
US7186561B2 (en) 2000-08-25 2007-03-06 Basf Plant Science Gmbh Plant polynucleotides encoding novel Na+/H+ antiporters
JP2009538604A (ja) * 2006-06-01 2009-11-12 フェレニギング フォール クリステリューク ホーゲル オンデルウィース ウェテンシャッペリューク オンデルツォイク エン パティエンテンツォーク 細胞pHに関連する植物核酸およびその使用
CN115058434A (zh) * 2022-05-20 2022-09-16 上海师范大学 一种调控月季花瓣颜色的基因RcNHX2及其应用
CN115058434B (zh) * 2022-05-20 2024-03-12 上海师范大学 一种调控月季花瓣颜色的基因RcNHX2及其应用

Also Published As

Publication number Publication date
JP4596721B2 (ja) 2010-12-15
AU784725B2 (en) 2006-06-01
EP1123977B1 (en) 2010-12-15
ATE491792T1 (de) 2011-01-15
CA2348025C (en) 2011-07-19
US6803500B1 (en) 2004-10-12
AU6729500A (en) 2001-03-19
EP1123977A1 (en) 2001-08-16
CA2348025A1 (en) 2001-03-01
DE60045366D1 (de) 2011-01-27
EP1123977A4 (en) 2005-09-21
NZ511367A (en) 2004-01-30

Similar Documents

Publication Publication Date Title
AU2021225142B2 (en) Generation of haploid plants
US6207881B1 (en) Control of fruit ripening through genetic control of ACC synthase synthesis
JP3149951B2 (ja) イネ種子中のグルテリン量の低減方法
US6734019B1 (en) Isolated DNA that encodes an Arabidopsis thaliana MSH3 protein involved in DNA mismatch repair and a method of modifying the mismatch repair system in a plant transformed with the isolated DNA
WO1998022593A1 (en) P gene promoter constructs for floral-tissue preferred gene expression
CN101218347A (zh) 产率增加的植物及其制备方法
US20050193443A1 (en) Transcription factors, DNA and methods for introduction of value-added seed traits and stress tolerance
WO2001014560A1 (fr) GENES PROTEINES CODANT POUR DES PROTEINES REGULANT LE pH DE VACUOLES
CN105695466B (zh) 一种水稻花粉强特异表达启动子OsPoll3及其应用
CN109721649A (zh) 一种水稻株型调控相关基因、蛋白质与应用
KR102026764B1 (ko) 안토시아닌 생합성을 증진시키기 위한 재조합 벡터 및 이의 용도
JP5610440B2 (ja) sh4遺伝子を含む、植物体の穀粒サイズを増大させた植物体
JP2005518805A (ja) 花組織においてトランスジーンを発現させるためのlisプロモーター
EP0967278A2 (en) Flowering regulating gene and its use
JPH08509122A (ja) 熟成する果実において異種遺伝子e.g.5−アデノシルメチオニンヒドロラーゼを発現するためのトマトe8由来プロモーターの使用
AU721012B2 (en) Gene expression regulatory DNA, expression cassette, expression vector and transgenic plant
CN112961842A (zh) 大豆光敏色素生色团合成基因GmHY2及其编码蛋白和应用
CA2226945A1 (en) Method for expressing foreign genes and vectors therefor
CN107058351B (zh) 一种水稻核酸酶基因OsGEN-L的突变基因及其应用
Wang et al. Two single-base substitutions involved in altering in a paired-box of AAATAC in the promoter region of soybean lipoxygenase L-3 gene impair the promoter function in tobacco cells
CN114736278B (zh) 一种马铃薯花色素苷生物合成负调控基因、转录因子及应用
AU2004219816A2 (en) Genes controlling plant cell wall formation
JP2681253B2 (ja) ペルオキシダ−ゼ転写調節遺伝子及びその利用方法
Mishra Construction of gene cassette harboring HMW glutenin gene of wheat driven by γ-kafirin promoter of sorghum
EP4408162A1 (en) Plants with improved properties

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2001 518873

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2348025

Country of ref document: CA

Kind code of ref document: A

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 67295/00

Country of ref document: AU

Ref document number: 09830123

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 511367

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2000955003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000955003

Country of ref document: EP