WO2001007618A1 - Genes de boite homeotique codant des proteines participant a la differentiation - Google Patents

Genes de boite homeotique codant des proteines participant a la differentiation Download PDF

Info

Publication number
WO2001007618A1
WO2001007618A1 PCT/JP2000/004904 JP0004904W WO0107618A1 WO 2001007618 A1 WO2001007618 A1 WO 2001007618A1 JP 0004904 W JP0004904 W JP 0004904W WO 0107618 A1 WO0107618 A1 WO 0107618A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
protein
sequence
amino acid
differentiation
Prior art date
Application number
PCT/JP2000/004904
Other languages
English (en)
French (fr)
Inventor
Tatsuo Kakimoto
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to EP00946451A priority Critical patent/EP1116793A4/en
Priority to AU60230/00A priority patent/AU784169C/en
Priority to US09/787,737 priority patent/US6870076B1/en
Priority to CA002343714A priority patent/CA2343714A1/en
Priority to NZ510725A priority patent/NZ510725A/xx
Publication of WO2001007618A1 publication Critical patent/WO2001007618A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8295Cytokinins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to a gene that is involved in differentiation and encodes a protein having a home domain-like sequence. Specifically, the present invention relates to a gene encoding a protein having an ability to induce adventitious buds and branches and having a homeodomain-like sequence.
  • Plants generally have totipotency and can regenerate plant individuals through regeneration of adventitious buds or adventitious embryos from undifferentiated tissues derived from somatic cells, for example. This capacity is used for producing seedlings in shoot culture. In addition, after introducing genes into plant somatic tissues and cultured cells,
  • the home box genes of higher plants that have been reported so far have been classified into five broad types, based on the similarity of the amino acid composition of the home domain: structures other than the home box portion (Tasaka, Protein Nucleic Acid Enzyme 40 (8): 1033-1042, 1995).
  • the first type is typified by the maize KN1 gene, and the second type is where the homebox is located almost at the center of the protein and forms a dimer of the protein adjacent to its C-terminal side. There is a regular repeating structure (leucine zipper) of the involved leucine residues.
  • the third type has a home domain near the C-terminus of the protein, and has a metal-binding finger structure at the N-terminus.
  • the fourth type contains, in addition to the structure common to the third type, a repeating structure of some amino acid sequences.
  • the fifth type is strong with a home box on the N-terminal side, and no other well-known characteristic structure has been found.
  • the homology of the amino acid sequence throughout each type is The third helix in the home domain, when the protein containing the home domain of the animal, which is 32 to 58% within the domain, binds to the DNA, vigorously. As can be inferred from the report that humans regulate the transcription by inserting into the main groove of the double helix of the target DNA, even the homeobox gene products of plants exceed this type.
  • the third helix shows the highest homology. This region is said to be essential for the home domain protein to bind to DNA as a transcription factor.
  • a home box gene IUS CHEL that does not belong to these five groups was reported (Cell, vol. 95, p805-815, 1998). WUS CHEL gene-deficient mutants do not allow normal development of shoot apical meristem, but there are no experimental reports of overexpression of SCHEL gene, and when WUSCHEL gene expression is artificially increased It is unclear what changes will take place.
  • Homeobox genes in plants are powerful, suggesting that they may play a role in regulating organ formation and development, as well as preventing infection and controlling substance transport in plants, and details are not clear. .
  • proteins that have homeboxes are considered to function as transcription factors.
  • Target genes that regulate the transcription of each homedomain protein have not yet been elucidated.
  • overexpression of a type of homeobox gene causes severe morphological abnormalities in plants, but it is unclear whether it will form adventitious buds on the callus.
  • genes involved in differentiation and having a homeodomain-like sequence more specifically, a gene encoding a protein capable of inducing adventitious bud and branching, and a protein encoded by the gene, It is intended to provide a use for
  • the present inventors performed activation tagging using Arabidopsis thaliana and obtained a gene encoding a protein having an ability to induce adventitious buds and branches.
  • Activation tagging is the insertion of a random enhancer sequence into a plant genomic, whereby mutations in which the transcription of the gene near the artificial enhancer has been activated are activated. It is a method of separating.
  • the present invention provides a gene that is involved in differentiation and encodes a protein having a homeodomain-like sequence. Specifically, the present invention provides a gene that has the ability to induce adventitious buds and branches and encodes a protein having a homeodomain-like sequence.
  • the present invention provides a gene having the amino acid sequence of SEQ ID NO: 2, which is involved in differentiation and encodes a protein having a homeodomain-like sequence.
  • the present invention further relates to an amino acid sequence obtained by modifying the amino acid sequence of SEQ ID NO: 2 by adding or deleting one or more amino acids and substituting the amino acid sequence with Z or another amino acid.
  • the present invention provides a gene which has a phosphoric acid and is involved in differentiation and encodes a protein having a home domain-like sequence.
  • the present invention further relates to a gene that hybridizes with the nucleic acid set forth in SEQ ID NO: 1, particularly DNA, or a portion thereof, and that is involved in differentiation and encodes a protein having a homeodomain-like sequence. I will provide a.
  • the present invention further provides a gene having the amino acid sequence of SEQ ID NO: 4, which encodes a protein involved in differentiation and having a homeodomain-like sequence.
  • the present invention further relates to an amino acid sequence represented by SEQ ID NO: 4, in which one or more amino acids are added, deleted and / or deleted.
  • the present invention provides a gene which has a modified amino acid by the substitution with and which is involved in differentiation and encodes a protein having a home domain-like sequence.
  • the present invention further relates to a nucleic acid represented by SEQ ID NO: 3, in particular, a protein which hybridizes with DNA or a part thereof and is involved in differentiation and has a home domain-like sequence. Provide a gene to be used.
  • a protein having a homeodomain-like sequence involved in differentiation refers to a process in which cells differentiate into cells having morphological and functional differences, such as adventitious buds, branches, leaves, and flowers.
  • the present invention also provides a vector comprising the above gene.
  • the present invention further provides a host transformed with the above vector. This host may be a plant cell or a plant.
  • the present invention also provides a method for producing a protein having a homeodomain-like sequence, which is involved in differentiation by culturing and cultivating the host.
  • the present invention also provides a method for inducing the differentiation of a plant or a plant cell by introducing the gene into a plant or a plant cell and expressing the gene.
  • the present invention also provides a method for inducing adventitious bud formation in a plant or plant cell by introducing the above gene into a plant or plant cell and expressing the gene.
  • the present invention also provides a method for inducing branch formation of a plant by introducing the gene into a plant and expressing the gene.
  • the inventor has proposed that genes involved in differentiation, such as inducing adventitious bud formation on callus when overexpressed by activism shot tagging. Therefore, the site of the Arabidopsis transformant, which was introduced through the activation vector p PCV lCE n4HPT via the agrobacterium, was introduced. Screening was performed on a medium containing no kainin, and mutants that did not normally form adventitious buds in the absence of cytokinin but formed adventitious buds in the absence of cytokinin were isolated. Among them, the mutant named many shoot (msh) formed adventitious shoots in the absence of cytokinin.
  • the ⁇ IL gene is involved in differentiation and encodes a protein having a home box-like sequence. Can be expected to improve.
  • Examples of the gene of the present invention include a gene encoding the amino acid sequence described in SEQ ID NO: 2 or 4. However, a protein having an amino acid sequence modified by addition or deletion of a plurality of amino acids and / or substitution with another amino acid is also similar to the original protein. Te What is the array number
  • Amino acid modified by addition or deletion of one or more amino acids to the amino acid sequence described in 2 or 4 and / or substitution with another amino acid A protein having a noic acid sequence and a gene encoding the protein also belong to the present invention.
  • the degree of this modification is possible by means known in the art prior to the present application, for example, site-directed mutagenesis, PCR method and the like.
  • the number of amino acids to be modified while maintaining adventitious shoot / branch inducing activity is, for example, 50 or less, preferably 25 or less, for example, 10 or less.
  • the present invention is also capable of hybridizing with a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 or 3, for example, DNA, or a portion thereof under stringent conditions, and further comprising differentiation. And provide a gene encoding a protein having a home domain-like sequence.
  • the stringent condition refers to, for example, a condition under which the solution is hybridized under the condition of 5 ⁇ SSC at 50 ° C.
  • the appropriate hybridization temperature varies depending on the base sequence and the length of the base sequence, and thus can be appropriately selected and performed.
  • nucleic acid portion is a portion that encodes at least several consecutive amino acid sequences, and preferably several consecutive amino acid sequences in the home domain. This part encodes the amino acid sequence. More preferably, of the sequence described in SEQ ID NO: 1 or 3, it includes part or all of the sequence of the home domain, and the entire coding sequence described in SEQ ID NO: 1 or 3. Parts or fragments having a length of at least 25%, for example at least 50%, more preferably at least 75%.
  • the gene sources for the hybridization described above include cDNA libraries prepared from plants, microorganisms, etc., and genomic DNA libraries. Can be used, and examples of plants include Arabidopsis thaliana, petunia, goldfish, rice, corn, tobacco, poplar, and the like.
  • the nucleotide sequence of the gene thus obtained which codes for a protein having a homeodomain-like sequence involved in differentiation, is at least 50% of the nucleotide sequence shown in SEQ ID NO: 1 or 3. It has a homology of 60% or more, preferably 70% or more or 80% or more, for example, 90% or more.
  • the gene of the present invention encoding a protein having the amino acid sequence shown in SEQ ID NO: 2 or 4 can be obtained from Arabidopsis thaliana as cDNA or genomic DNA.
  • a gene having a native nucleotide sequence can be obtained, for example, by screening a cDNA library, as specifically shown in Examples.
  • DNA encoding a protein having a modified amino acid sequence should be synthesized using conventional site-directed mutagenesis or PCR based on DNA having a native nucleotide sequence.
  • a DNA fragment to which a modification is to be introduced is obtained by restriction enzyme treatment of native cDNA or genomic DNA, and the resulting DNA is cross-linked, and site-directed mutagenesis or PCR is performed using primers that have introduced the desired mutation. The method is performed to obtain a DNA fragment into which the desired modification has been introduced. Then, the DNA fragment into which this mutation has been introduced may be ligated to a DNA fragment encoding another part of the target protein.
  • a DNA encoding a protein consisting of a shortened amino acid sequence for example, an amino acid sequence longer than the desired amino acid sequence, for example, a full-length amino acid sequence, is used. If the resulting DNA fragment does not encode the entire amino acid sequence of interest, the DNA fragment consisting of the missing part is digested with the desired restriction enzyme. Synthesize and connect.
  • MSH protein can be obtained.
  • MSH protein can be obtained by using an antibody against the protein encoded by the amino acid sequence described in either SEQ ID NO: 2 or 4, and other organisms can be obtained using the antibody.
  • a gene for a protein having a function similar to that of MSH can be cloned.
  • the present invention also relates to a recombinant vector containing the above-mentioned gene, in particular, an expression vector, and a host transformed with the vector.
  • Prokaryote or eukaryote can be used as a host.
  • Prokaryotes include bacteria, such as bacteria belonging to the genus Escherichia, such as Escherichia coli, and microorganisms belonging to the genus Bacillus, such as Bacillus subtilis. Conventional hosts such as 1 lus subtilis) can be used.
  • yeast examples include microorganisms belonging to the genus Saccharomyces ( ⁇ _ccharomyces), such as Saccharomyces cerevisiae (Saccharomyces cer cer evisiae), and filamentous fungi. and Asuperugirusu (Aspergi 1 lus) a microorganism belonging to the genus is, for example, ⁇ scan Bae Noreginoresu O Li Ze (Aspergillus oryzae), ⁇ scan Bae Noreginoresu two moths -..
  • animal cells or plant cells can be used, and as animal cells, cell lines such as mice, hamsters, monkeys, and humans are used, and specifically, COS cells, Vero cells, CH0 cells, L cells, C127 cells, BALBZc3T3 cells, Sp-2 / 0 cells and the like can also be used.
  • plant cells cultured cells of tobacco, cultured cells of the genus Populus, Eucalyptus, and Acanthamus are used.
  • insect cells such as silkworm cells, or silkworm adults themselves, are also used as hosts.
  • insect cells such as yoga cells Vesicles (Spodoptera f rugiperda), silkworm cells (Bombvx mori) and the like can be used.
  • Expression vectors include plasmid, phage, phagemid, virus (baculovirus (insect cell expression system), vaccinia virus (vaccine) Animal cell expression system))) can be used.
  • the expression vector of the present invention contains an expression control region, for example, a promoter and a terminator, an origin of replication, and the like, depending on the type of host to which they are to be introduced.
  • a promoter for an expression vector for bacteria a common promoter, for example, a trc promoter, a tac promoter, a lac promoter, or the like is used.
  • a yeast promoter for example, glyceraldehyde (3) Phosphate dehydrogenase promoter, PH05 promoter, adhl promoter, pqk promoter, etc. are used, and as the promoter for filamentous fungi, for example, amylase, trpC, etc. are used. .
  • Insect promoters such as Baculovirus spp.Helin promoter, and animal cells Simian Virus 40 early and late bromoter, CMV promoter, HSV-TK promoter or SR promoter and the like.
  • plant promoters examples include CaMV35S promoter, nopaline synthase promoter, and inducible promoter such as glutathione-S-transferase II gene promoter. And hsp80 promoter, promoter of ribulose-2-phosphate canoleboxylase small subunit gene, and the like.
  • expression vectors also include enhancers, splicing signals, polyA addition signals, selectable markers (eg, dihydrofolate reductase gene (metrexate resistance), neo gene (G418-resistant). It is also a preferable embodiment to use the compound containing the compound of the present invention.
  • an enhancer for example, an SV40 enhancer upstream or downstream of the gene.
  • Transformation of the host with the expression vector can be carried out by conventional methods well known to those skilled in the art. These methods are described, for example, in Curent Protocols In Molecular Biology, John Wiley & Sons. Inc., 1995.
  • the transformant can be cultured according to a conventional method. Purification from the culture is performed according to a conventional method for isolating and purifying proteins, for example, ultrafiltration, various column chromatography, for example, chromatography using sepharose, etc. This can be done by When expressed in a host as a fusion protein with GST or polyhistidine, the protein can be easily purified by appropriate affinity chromatography.
  • this cDNA or genomic clone is linked under the control of a constitutive or inductive type motor, and a system using agrobacterium is used.
  • the form of a horticultural plant can be changed.
  • a plant of a standard type can be changed to a spray type, and as a result, the number of flowers and leaves can be changed. It is thought that the number can be increased.
  • Example 1 Site Kinin-Responsive Mutation ⁇ : Increases Transcription of Genes Involved in Skelet-Lineage Differentiation, eg, Adventitious Bud / Branch Formation, In order to obtain a mutant that exhibits a site kinase response even in the presence of Arabidopsis, activation tagging was performed using Arabidopsis thai i ana.
  • a mutant having a high adventitious bud formation ability and forming many adventitious shoots was named a ⁇ (many shoot) mutant.
  • a ⁇ (many shoot) mutant When seeds obtained from the msh mutant were sown on an agar medium for Arabidopsis thaliana culture, many adventitious shoots were also observed on the cotyledons.
  • Genomic DNA was extracted from the IL mutant obtained in Example 1. After treating the genomic DNA with the restriction enzyme ⁇ _, the DNA was purified and the DNA fragment was circularized with T4 ligase. Introduce this into E. coli Plasmids were recovered from E. coli that had acquired ampicillin resistance. Thus, the recovered plasmids contained most of the T-DNA tmsh mutant genomics. It contains a genomic sequence adjacent to the right border (RB) of T-DNA in the system.
  • RB right border
  • the base sequence of the genomic DNA 56i0bp adjacent to this RB was determined, and the obtained base sequence was subjected to GENSCA '7 algorithm (ht tp: //CCR-081.mit.edu/GE SCA.html). As predicted, the gene closest to RB was found to start transcription at the 882nd base from RB, and this gene was named ⁇ JL.
  • the full length sequence of this coding region is contained in the ⁇ gene, and M6 is ⁇ It turned out to be cDNA corresponding to the gene.
  • the protein encoded by the gene showed significant homology to the home domain protein, and the home domain was conserved among the home domain proteins. It was found that the sequence corresponding to the third ⁇ -helix of the gene was well conserved in the protein encoded by the gene.
  • the amino acid sequence of the protein encoded by the SH_ gene showed the highest homology with the sequence of WUSCHEL among the homeodomain proteins.
  • the ⁇ gene was removed from 113GUS (Plant Cell Physiology, 37. p49-59, 1996, manually from NIAR) by treatment with the restriction enzyme liHI / Sacl.
  • CTCATCATGTCCTCCTCAAAC-3 ' (SEQ ID NO: 5) and primer # 172 (SEQ ID NO: 5)
  • PBE2113GUS and pBE2113MSH were introduced into wild-type Arabidopsis thaliana callus via Agrobacterium. Transformed cells were selected using kanamycin resistance as an index. Transgenic virulents transfected with PBE2113GUS required cytokinin for adventitious bud formation, whereas calli transformed with PBE2113MSH were able to regenerate adventitious shoots with or without cytokinin. In the presence of cytokinin, calli transformed with either plasmid regenerated adventitious buds, but calli transformed with pBE2113MSH regenerated adventitious buds more quickly than calli transformed with PBE2113GUS did.
  • PBE2113MSH was introduced into germ cells of Arabidopsis thaliana using Agrobacterium vacuum infiltration method (Bechtold et al., CR Acad. Sci. Paris, Life Sciences, 316, pll94_1199, 1993; Takashi Araki, plant cells Engineering series 4, Experimental protocol for model plants, pl09-113, 1996), and the seedlings in which the gene was introduced were selected using kanamycin resistance as an index. It was observed that the transformant Arabidopsis thaliana thus obtained had more branches than the wild-type strain.
  • the obtained binary vector pBE2113M8GUS was transfected into germ cells of Arabidopsis thaliana using a vacuum infiltration method, and seedlings into which the gene was introduced were selected using kanamycin resistance as an index.
  • the transformant Arabidopsis thus obtained had more branches, as did the Arabidopsis mutant overexpressing MSHM6 cDNA.
  • the gene ⁇ _ obtained from Arabidopsis thaliana by activation tagging is considered to be a homeobox gene involved in adventitious bud formation. It is speculated that The results of overexpression of MSH cDNA under the control of the 35S promoter indicate that, regardless of the presence or absence of cytokinin, promotes adventitious bud formation and is also involved in plant branching. Was suggested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

分化に関わる蛋白質をコー ドするホメ オボッ ク ス遺伝子
発明の分野
本発明は分化に関わり ホメ ォ ドメ イ ン様配列を持つ蛋白質をコ 一 ドする遺伝子に関する。 具体的には、 本発明は不定芽 · 分枝誘導 能を有し、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝子 明
ならびにその利用方法に関する ものである。
田 背景技術
植物は一般に分化全能性を持ち、 例えば体細胞に由来する未分化 組織から不定芽、 あるいは不定胚の再生を経て植物個体を再生する こ とができる。 この能力は苗条培養における苗の生産等に利用され ている。 また、 植物の体細胞組織や培養細胞に遺伝子を導入した後
、 不定芽や不定胚の再生を経て形質転換植物を再生する こ とは、 近 年、 植物バイオテク ノ 口 ジ一分野においては不可欠の重要な技術で ある。 一般に未分化細胞塊であるカルスや、 葉 · 茎等の植物組織か らの不定根や不定芽の再生は植物ホルモ ンであるオーキ シ ンやサイ トカイニ ンの相互作用によって制御される と言われている。 また、 植物の形態形成については、 植物ホルモ ン以外に、 ホメ ォ ボッ ク スを含む一連の遺伝子群が関わっている こ とが報告されてい る。 ホメ オボッ ク スはシ ョ ゥ ジ ョ ゥバエの発生を制御するい く つか の遺伝子に共通して存在する、 よ く 保存された 1 83 塩基対の DNA 配 列と して見出された。 この領域から翻訳される 6 1ァ ミ ノ酸配列はホ メ ォ ドメ イ ンと呼ばれ、 3 つの αヘリ ッ ク ス力、らなるへリ ッ ク ス一 ター ン一へ リ ッ ク ス構造をと り、 特異的な塩基配列を認識して DNA に結合する。
動物のホメ ォボッ ク ス遺伝子は発生過程を調節する転写因子であ る こ とが明ら力、にされてきたが、 高等植物のホメ オボッ クス遺伝子 は 1991年、 ト ウモ ロ コ シの KNOTTED 1 (KN1 ) 遺伝子と して単離され たのが最初である (Vol lbrecht et al. 、 ature 350 : 241 - 243 、 1991) c ト ゥモ ロ コ シの葉の葉脈は平行脈であるが Knottedl変異 株は葉脈が乱れ、 葉脈に沿って結び目 (knot) のよ う な突起を作る こ とから Knotted という名前がつけ られた。
一方、 多く の動物で見つかつていたホメオボッ ク ス内の特に保存 性の高いア ミ ノ酸配列に対応する合成 DNA を用いて、 双子葉植物の シロイ ヌ ナズナのゲノ ム DNA が検索され、 い く つかのホメ ォボッ ク ス遺伝子が報告された (Ruberti et al.、 EMBO J. 10: 1787- 1791 、 1991) 。
これまでに報告された高等植物のホメ オボッ ク ス遺伝子は、 ホメ ォ ドメ イ ンのァ ミ ノ酸組成の類似性ゃホメ オボッ クス部分以外の構 造から大き く 5 つのタイプに分類されてきた (田坂, 蛋白質核酸酵 素 40 ( 8 ) : 1033-1042、 1995) 。 第 1 のタイプは ト ウモロ コ シの KN1 遺伝子に代表される タイプ、 第 2 のタイプはホメォボッ ク スが 蛋白質のほぼ中央に位置し、 その C 末端側に隣接して蛋白質の 2 量 体形成に関与する ロイ シ ン残基の規則的な繰り返し構造 (ロ イ シ ン ジ ッパー) が存在する ものである。 第 3 のタイプは蛋白質の C 末端 付近にホメ ォ ドメ イ ンを有し、 さ らに N 末端側に金属結合型のフ ィ ンガー構造を有する。 第 4 のタイプは、 第 3 のタイプと共通の構造 に加えて、 い く つかのァ ミ ノ酸配列の繰り返し構造を含むものであ る。 第 5 のタイプは N 末端側にホメ ォボッ クスを有する力く、 それ以 外によ く 知られた特徴的な構造は見出されていない。
それぞれのタイプ間の全体を通したァ ミ ノ酸配列の相同性はホメ ォ ドメ ィ ン内で 32〜 58 %である力く、 動物のホメ ォ ドメ ィ ンを含む蛋 白質が DNA に結合する際に、 ホメ ォ ドメ イ ン中の 3 番目のへリ ッ ク スがタ一ゲッ 卜 となる DNA の 2 重らせんの主溝に人り込み転写を調 節する という報告から も推測でき るよ う に、 植物のホメ オボッ ク ス 遺伝子産物でも、 タイプを超えて、 この 3 番目のへ リ ッ ク スが最も 高い相同性を示す。 この領域は、 ホメ ォ ドメ イ ン蛋白質が転写因子 と して DNA に結合するために必須といわれている。 なお、 最近、 こ れら 5 つのグループに属さないホメ オボッ ク ス遺伝子 IUS CHE L が報 告された (C e l l , v o l . 95, p805 - 815, 1998 ) 。 WUS CHEL 遺伝子の機 能欠損突然変異体では茎頂分裂組織の正常な発達ができないが、 S CHE L 遺伝子を過剰発現させた実験報告はな く 、 WUSCHEL 遺伝子の 発現を人為的に上昇させた場合、 どのような変化が起こ るのかは不 明である。
植物のホメ オボッ クス遺伝子については、 器官形成や発生過程の 調節、 また感染防御や植物体内での物質輸送の制御に関与する可能 性が示唆されている力く、 その詳細は明らかになっていない。 また、 一般にホメ ォボッ ク スを持つ蛋白質は転写因子と して機能する と考 えられる力 それぞれのホメ ォ ドメ ィ ン蛋白質が転写調節を行う タ ーゲッ 卜遺伝子も未だ明らかになっていない。 さ らに、 ホメ オボッ クス遺伝子のう ち、 タイプのものを過剰発現させると植物体に 激しい形態異状が引き起こされるが、 カルス上で不定芽を形成する かどうかは不明である。
また、 農業への利用という観点から考えれば、 組織培養系で、 例 えばカルス等の培養組織の上に不定芽や分枝を誘導する能力の高い 遺伝子が有用である と考えられる力 、 そのようなものはない。
発明の開示 そこで、 分化に関わり、 ホメ ォ ドメ イ ン様配列を持つ蛋白質、 具 体的には不定芽 · 分枝誘導能を有する蛋白質をコー ドする遺伝子及 びそれによ り コ ー ドされる蛋白質並びにこれらの用途を提供しょ う とする ものである。
本発明者は、 シロイ ヌ ナズナ (Arab_idopsis thai iana) を用いて アクティ ベーシ ョ ン夕ギング (activation tagging) を行い、 不定 芽 · 分枝誘導能を有する蛋白質をコー ドする遺伝子を得た。 ァ クテ ィ ベー シ ョ ンタ ギングとは、 植物ゲノ ムにラ ンダムにェ ンハ ンサ一 配列を挿入する こ とによ り、 揷人工ンハ ンサー近く の遺伝子の転写 が活性化された突然変異体を分離する方法である。
従って、 本発明は、 分化に関わり 、 ホメ ォ ドメ イ ン様配列を持つ 蛋白質をコー ドする遺伝子を提供する。 詳し く は、 不定芽 · 分枝誘 導能を有し、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝 子を提供する。
より具体的には、 本発明は配列番号 : 2 に記載のァ ミ ノ酸配列を 有し、 分化に関わり、 ホメ ォ ドメ ィ ン様配列を持つ蛋白質をコ一 ド する遺伝子を提供する。 本発明はさ らに、 配列番号 : 2 のア ミ ノ酸 配列において、 1 〜複数個のァ ミ ノ酸の付加 · 欠失及び Z又は他の ァ ミ ノ酸による置換により修飾されたァ ミ ノ酸を有し且つ分化に関 わり、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝子を提 供する。 本発明はさ らに、 配列番号 : 1 に記載する核酸、 特に DNA 、 又はその部分とハイブリ ダィ ズし、 且つ分化に関わり、 ホメ ォ ド メ イ ン様配列を持つ蛋白質をコー ドする遺伝子を提供する。
本発明はさ らに、 配列番号 : 4 に記載のァ ミ ノ酸配列を有し、 分 化に関わり、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝 子を提供する。 本発明はさ らに、 配列番号 : 4 のア ミ ノ酸配列にお いて、 1 〜複数個のァ ミ ノ酸の付加 . 欠失及び/又は他のァ ミ ノ酸 による置換によ り修飾されたア ミ ノ酸を有し且つ分化に関わり、 ホ メ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝子を提供する。 本発明はさ らに、 配列番号 : 3 に記載する核酸、 特に DNA 、 又はそ の部分とハイ ブリ ダィ ズ し、 且つ分化に関わり、 ホ メ ォ ドメ イ ン様 配列を持つ蛋白質をコー ドする遺伝子を提供する。
なお、 分化に関わり 、 ホメ ォ ドメ イ ン様配列を持つ蛋白質とは、 細胞が形態的 · 機能的に違いを持った細胞、 例えば不定芽、 枝、 葉 、 花などに分化する過程に関わり、 DNA 結合 ドメ イ ンと して機能す るホメ ォ ドメ ィ ンに類似の配列を持つ蛋白質であり、 具体的には、 不定芽の形成を誘導する蛋白質、 分枝を誘導する蛋白質等を示す。 本発明はまた、 上記遺伝子を含んでなるベク ターを提供する。 本発明はさ らに、 上記ベク ターによ り形質転換された宿主を提供 する。 この宿主は植物細胞であっても、 植物体であってもよい。 本発明はまた、 上記宿主を培養、 栽培する こ とによる、 分化に関 わり、 ホメ ォ ドメ イ ン様配列を持つ蛋白質の製造方法を提供する。 本発明はまた、 上記遺伝子を植物又は植物細胞に導入し、 該遺伝 子を発現せしめるこ とによる植物又は植物細胞の分化を誘導する方 法を提供する。
本発明はまた、 上記遺伝子を植物又は植物細胞に導人し、 該遺伝 子を発現せしめる こ とによる植物又は植物細胞の不定芽形成を誘導 する方法を提供する。
本発明はまた、 上記遺伝子を植物に導人し、 該遺伝子を発現せし める ことによ り植物の分枝形成を誘導する方法を提供する。 発明の実施の形態
発明者は、 ァ ク テ ィ べ一 シ ョ ンタギングによ って過剰発現した時 に、 カルスの上に不定芽形成を誘導するよ うな分化に関わる遺伝子 を同定でき るのではないかと考えた: そこで、 アクティ ベー シ ョ ン 夕ギング用ベク ター p PCV l CE n4HPTをァグロパク テ リ ゥムを介して導 入したシロイ ヌ ナズナ形質転換体力ルスをサイ ト カイニンを含まな い培地上でスク リ ーニングし、 通常は、 サイ ト カイニン非存在下で は不定芽が形成されないが、 サイ ト カイニン非存在下でも不定芽を 形成した突然変異体を分離した。 この う ち、 many s h o o t ( ms h ) と 名付けた変異体は、 サイ トカイニン非存在下において不定芽を形成 した。
ίϋ ]ΐ_変異体の表現型の原因となつている 遺伝子とそれに対応 する MSH cDNAを単離し解析した結果、 遺伝子にコ ー ドされる蛋 白質はホメ ォ ドメ ィ ンと有意な相同性を示すァ ミ ノ酸配列を有し、 中でも、 一連のホメ ォ ドメ イ ン蛋白質で保存されているホメ ォ ドメ イ ンの第 3 番目の αヘリ ッ ク ス部分の相同性が高かった。 また、 MS H cDNAのコ一 ド領域をシロイ ヌ ナズナカルスに導入し過剰発現させ たところ、 変異体の表現型から も推測されるよ う に、 形質転換 されたカルスは培地中のサイ ト カイニンの有無に関わらず不定芽を 形成した。 さ らに、 MSH cDNAを過剰発現させたシロイ ヌ ナズナ形質 転換体では、 野性型シロイ ヌ ナズナと比べて分枝が多く なる場合が 多く 、 葉の上に不定芽が形成される こ と もあった。
以上のこ とから、 ^IL遺伝子は分化に関わり、 ホメ ォボッ ク ス様 配列を持つ蛋白質をコー ドする こ とが明らかになり、 これを過剰発 現させる こ とによって不定芽 · 分枝形成能が向上する こ とが期待で きる。
本発明の遺伝子と しては、 例えば配列番号 : 2 又は 4 に記載のァ ミ ノ酸配列をコー ドする ものが挙げられる。 しかしながら、 複数個 のァ ミ ノ酸の付加、 欠失および/または他のァ ミ ノ酸との置換によ つて修飾されたア ミ ノ酸配列を有する蛋白質も もとの蛋白質と同様 の て 。 って 明は、 配列 号
: 2 又は 4 に記載のア ミ ノ酸配列に対して 1 個または複数個のア ミ ノ酸の付加、 欠失および / または他のァ ミ ノ酸との置換によ り修飾 されたァ ミ ノ酸配列を有する蛋白質および当該蛋白質をコー ドする 遺伝子も本発明に属する。
こ こで、 この修飾の程度は、 本件出願の前に周知技術となってい る手段、 例えば部位特定変異誘発、 P C R 法等によ り可能な程度であ る。 不定芽 · 分枝誘導活性を維持しながら修飾の対象となるア ミ ノ 酸の数は、 例えば 50個以下、 好ま し く は 25個以下、 例えば 10個以下 での o
本発明はまた、 配列番号 : 1 又は 3 に記載の塩基配列を有する核 酸、 例えば DNA 、 又はその部分と、 ス ト リ ンジェン ト条件下でハイ ブリ ダィ ズする こ とができ、 且つ分化に関わり、 ホメ ォ ドメ イ ン様 配列を持つ蛋白質をコー ドする遺伝子を提供する。 こ こでス ト リ ン ジェン ト条件とは、 例えば 5 x S S C、 50 °Cの条件下でハイプリ ダィズ する条件をいう 。 なお適切なハイブリ ダィゼ一シ ョ ンの温度は塩基 配列やその塩基配列の長さによって異なるため、 適宜選択して行う こ とができる。
また、 上記の核酸の部分とは、 少な く と も数個の連続するァ ミ ノ 酸配列をコー ドする部分であり、 好ま し く はホメ ォ ドメ イ ン内の連 続する数個のア ミ ノ酸配列をコー ドする部分である。 より好ま し く は、 配列番号 : 1 又は 3 に記載の配列のう ち、 ホメ ォ ドメ イ ンの配 列の一部又は全部を含み、 かつ配列番号 : 1 又は 3 に記載の全コー ド配列に対して、 25 %以上、 例えば 50 %以上、 さ らに好ま し く は 75 %以上の長さを有する部分又は断片を意味する。
上記ハイブリ ダィゼーシ ヨ ンの対象と しての遺伝子源と しては、 植物、 微生物などから調製される c DNAライブラ リ 一、 ゲノ ム DNA ラ ィブラ リ ー等を使用する こ とができ、 植物と して例えばシロイ ヌ ナ ズナ、 ペチ ュニア、 キ ンギ ヨ ソ ゥ、 イ ネ、 ト ウモ ロ コ シ、 タバコ、 ポプラ等が挙げられるつ
このよう に して得られる、 分化に関わり、 ホメ ォ ドメ イ ン様配列 を持つ蛋白質をコー ドする遺伝子の塩基配列は、 配列番号 : 1 又は 3 に示す塩基配列に対して、 50 %以上、 60 %以上、 好ま し く は 70 % 以上又は 80 %以上、 例えば 90 %以上の相同性を有する。
配列番号 : 2 又は 4 に示すア ミ ノ酸配列を有する蛋白質をコー ド する本発明の遺伝子は、 cDNAまたはゲノ ム DNA と して、 シロイ ヌナ ズナから得る こ とができる。
生来の塩基配列を有する遺伝子は実施例に具体的に示すよう に、 例えば c DNAライブラ リ ーのスク リ ーニ ングによって得られる。 また 、 修飾されたァ ミ ノ酸配列を有する蛋白質をコ一 ドする DNA は生来 の塩基配列を有する DNA を基礎と して、 常用の部位特定変異誘発や PC R 法を用いて合成する こ とができる。 例えば修飾を導入したい DN A 断片を生来の c DNAまたはゲノ ム DNA の制限酵素処理によって得、 これを鋒型に して、 所望の変異を導人したプライマーを用いて部位 特異的変異誘発または PCR 法を実施し、 所望の修飾を導入した DNA 断片を得る。 その後、 この変異を導入した DNA 断片を目的とする蛋 白質の他の部分をコー ドする DNA 断片と連結すればよい。
あるいはまた、 短縮されたア ミ ノ酸配列からなる蛋白質をコー ド する DNA を得るには、 例えば目的とするア ミ ノ酸配列より長いア ミ ノ酸配列、 例えば全長ア ミ ノ酸配列をコ一 ドする DNA を所望の制限 酵素により切断し、 その結果得られた DNA 断片が目的とするア ミ ノ 酸配列の全体をコ一ドしていない場合は、 不足部分の配列からなる DNA 断片を合成し、 連結すればよい。
得られた遺伝子を大腸菌および酵母での遺伝子発現系を用いて発 現させる こ とにより、 遺伝子産物である MSH 蛋白質を得る こ とがで き る。 あるいはまた、 配列番号 : 2 又は 4 のいずれかに記載のア ミ ノ酸配列がコー ドする蛋白質に対する抗体を用いても、 MSH の蛋白 質を得る こ とができ、 抗体を用いて他の生物から MSH と同様の機能 を有する蛋白質の遺伝子をク ロー ン化する こ と もでき る。
従って本発明はまた、 前述の遺伝子を含む組換えベク ター、 特に 発現ベク ター、 及び当該ベク ターによって形質転換された宿主に関 する ものである。 宿主と しては、 原核生物または真核生物を用いる こ とができる。 原核生物と しては細菌、 例えばェシ ヱ リ ヒア ( Esch erichia)属に属する細菌、 例えば大腸菌 (Escherichia col i ) 、 バ シルス (Baci 1 lus) 属微生物、 例えばノく シルス . スブ シルス ( ci_ 1 lus subtilis)など常用の宿主を用いる こ とができる。
真核性宿主と しては、 下等真核生物、 例えば真核性微生物、 例え ば真菌である酵母または糸状菌が使用できる。 酵母と しては例えば サッ カ ロ ミ セス (^_ccharomyces)属微生物、 例えばサッ カ ロ ミ セス . セ レ ヒ シェ ( Sacchar omy ces cer ev i s i ae) 等力く挙げられ、 ま た糸 状菌と してはァスペルギルス (Aspergi 1 lus)属微生物、 例えばァ ス ぺノレギノレス . ォ リ ゼ (Aspergillus oryzae) 、 ァ スぺノレギノレス. 二 ガ— (Aspergillus n i ger) s ぺニ シ リ ウム ( Pen i c i i 1 i um)属微生物 が挙げられる。 さ らに動物細胞または植物細胞が使用でき、 動物細 胞と しては、 マウス、 ハムスター、 サル、 ヒ ト等の細胞系が使用さ れ、 具体的には COS 細胞、 Vero細胞、 CH0 細胞、 L細胞、 C127細胞 、 BALBZc3T3細胞、 Sp— 2/0 細胞等を用いる こ と もできる。 植物細 胞と しては、 タバコの培養細胞、 ポプルス属、 ユーカ リ属、 ア カ ン ァ属の培養細胞等が使用される。
さ らに昆虫細胞、 例えばカイ コ細胞、 またはカイ コの成虫それ自 体も宿主と して使用される。 具体的には、 昆虫細胞、 例えばヨガ細 胞 (Spodoptera f rugiperda), カイ コ細胞 ( Bombvx mori)等を用い る こ とができ る。
発現べク タ 一 と しては、 プラ ス ミ ド、 フ ァ ー ジ、 フ ァ ー ジ ミ ド、 ウ ィ ルス (バキュ ロ ウ ィ ルス (昆虫細胞発現系) 、 ワ ク シニア ウ イ ルス (動物細胞発現系) ) 等が使用でき る。
本発明の発現ベク ターはそれらを導人すべき宿主の種類に依存し て発現制御領域、 例えばプロ モーターおよびター ミ ネータ一、 複製 起点等を含有する。 細菌用発現べク タ一のプロモーターと しては、 常用のプロモータ一、 例えば trc プロモ一夕一、 tac プロモータ一 、 lac プロモーター等が使用され、 酵母用プロモータ一と しては、 例えばグリ セルアルデヒ ド 3 リ ン酸デヒ ドロゲナ一ゼプロモータ一 、 PH05プロモータ一、 adhlプロモータ一、 pqk プロモータ一等が使 用され、 糸状菌用プロモ一夕一と しては例えばア ミ ラーゼ、 trpC等 が使用される。
また、 昆虫用プロモーターと してはバキュ ロウ ィ ルスポ リ へ ドリ ンプロモータ一等、 動物細胞と しては Simian Virus 40 の early お よび lateブロモ一ター、 CMV プロモーター、 HSV- TKプロモータ一ま たは SRひプロモーター等が挙げられる。
また、 植物用プロモータ一と しては、 例えば CaMV35S プロモータ 一、 ノ パリ ン合成酵素のプロモータ一、 誘導型プロモータ一と して は、 グルタチオン— S — ト ラ ンスフ ェラ一ゼ I I系遺伝子のプロモー タ一、 hsp80 プロモーター、 リ ブロース 2 リ ン酸カノレボキシラーゼ 小サブュニッ ト遺伝子のプロモーター等が挙げられる。 また、 発現 ベク ターには、 以上の他にェンハンサー、 スプライ シングシグナル 、 ポ リ A付加シグナル、 選択マーカー (例えばジヒ ドロ葉酸還元酵 素遺伝子 (メ ト ト レキセー ト耐性) 、 neo 遺伝子 ( G 418 耐性) 等 ) 等を含有しているのを用いるのも好ま しい一態様である。 なお、 ェ ン ハ ンサー 用 る 、 例えば SV40のェ ンハ ンサ一等を遺伝 子の上流または下流に揷入する。
発現ベク ターによる宿主の形質転換は、 当業者においてよ く 知ら れている常法によ り行う こ とができ、 これらの方法は例えば、 Curr en t Protocols I n Molecular Biology, John Wi ley & Sons 社、 19 95年、 に記載されている。 形質転換体の培養も常法に従って行う こ とができ る。 培養物からの精製は、 蛋白質を単離 · 精製するための 常法に従って、 例えば、 限外ろ過、 各種カラムク ロマ ト グラ フ ィ ー 、 例えばセフ ァ ロ一スを用いる ク ロマ ト グラフ ィ 一等によ り行う こ とができ る。 また、 GST やポ リ ヒ スチジ ン との融合タ ンパク質と し て宿主中で発現させた場合、 適切なァフ ィ 二ティ 一ク ロマ ト グラフ ィ 一によ り容易に精製できる。
現在の技術水準をも ってすれば、 さ らに、 この cDNAあるいはゲノ ムク ロ一 ンを構成的なあるいは誘導型のプ口モータ一の制御下に連 結し、 ァグロバクテ リ ウムを用いる システムあるいはパーティ クル ガン、 エ レ ク ト 口 ポー レー シ ヨ ンを用いる システムで、 この遺伝子 を植物に導人し発現させるこ とで、 植物ホルモ ンによる人為調節に よっても個体再生が困難な植物、 例えばバラなどにおいて、 不定芽 の形成や分枝形成等の分化を促進するこ とが可能である。
さ らに、 本発明の遺伝子の発現を制御するこ とで、 園芸植物の形 態を変化させる こ と、 例えばスタ ンダー ドタイプの植物をスプレー タイプに変化させ、 その結果と して花数や葉数の増加させる こ とが できる と考えられる。 実施例
以下実施例に従って発明の詳細を述べる。 分子生物学的手法は特 に断らない限り、 Molecular Cloning (Sambrook et al.、 1989) に 従っ た。
実施例 1 . サイ ト カ イ ニ ン応答突然変異^:のス―ク リ 一二ン グ 分化、 例えば不定芽 · 分枝の形成に関与する遺伝子の転写量を增 大させ、 サイ トカイニ ン非存在下でもサイ ト カイニ ン応答を示す突 然変異体を得るため、 シロイ ヌ ナズナ (Arabidopsis thai i ana) を 用いてァ クティべーシ ョ ンタギングを行った。
約 50, 000個のシロイ ヌ ナズナのカルスを赤間らの方法 (Akama et al., Plant Cell Rep. , 12, 7, 1992) に従い、 ァ クティべーシ ョ ン夕ギング用ベク ター pPCVICEn4HPT (Hayashi et al.、 Science, 2 58, P1350-1353, 1992) を用いて形質転換を行った。 なお、 pPCVIC En4HPTには CaMV35S プロモータ一に由来する強力なェンハンサ一配 列が存在するので、 植物のゲノ ムに挿人された後に、 このェ ンハ ン サー配列に隣接する遺伝子の転写が活性化される。 形質転換後、 形 質転換されたカルスをサイ トカイニンを含まない培地上で培養した 野生型 (非形質転換) シロイ ヌナズナカルスはサイ トカイニンを 含まない培地上では細胞増殖が抑えられ、 不定芽形成を行う こ とが できないが、 形質転換カルスの中には、 サイ ト カ イ ニ ンが存在しな いにも関わらず、 不定芽を形成するカルスが存在した。 その中でも
、 不定芽形成能が高く 多く の不定芽を形成する突然変異体を^ ( many shoot) 突然変異体と名付けた。 msh 変異体から得られた種子 を通常シロイ ヌナズナ培養用寒天培地に播種したと ころ、 子葉の上 にも多く の不定芽が観察された。
実施例 2 . msh 突然変異体の原因遺伝子 MSH の単離
実施例 1 で得られた lL突然変異体からゲノ ム DNA を抽出 した。 このゲノ ム DNA を制限酵素^ _で処理した後、 DNA を精製し、 T4リ ガーゼにより DNA 断片の環状化をおこなった。 これを大腸菌に導入 し、 ア ン ピ シ リ ン耐性を獲得した大腸菌よ り プラス ミ ドを回収した このよ う :こ して回収されたプラ ス ミ ドは T-DNA のほとんどの領域 t msh 突然変異体のゲノ ム内で T - DNA の Right border (RB) に隣接 しているゲノ 厶配列を含んでいる。
この RBに隣接するゲノ ム DNA 56i0bpの塩基配列を決定し、 得られ た塩基配列について GENSCA ' 7ルゴリ ズム (ht tp: //CCR-081. mi t. ed u/GE SCA . html) で遺伝子の存在を予測したと ころ、 RBに最も近い 遺伝子は RBから 882 番目の塩基から転写が始ま る こ とが明らかとな り、 本遺伝子を ^JLと名付けた。
実施例 3. MSH cDNA の単離
^L突然変異体な らびに野生型シロイ ヌ ナズナの植物体全体から RNA を抽出 し、 oligotex dT30 (日本ロ ッ シュ社) を用いて mRNAを 精製した。 これを铸型と し、 ラムダ ZAP II cDNAライ ブラ リ ー合成キ ッ ト(Stratagene 社) を用いて、 S tratagene社の推奨する方法によ り cDNAライブラ リ ーを作製した。 これら 5^突然変異体並びに野生 型シロイ ヌナズナの cDNAライブラ リ 一を実施例 2で得られた MSH 遺 伝子をプローブと してスク リ ーニングした。 野性株由来の cDNAライ ブラ リ ーは、 約 300, 000 ク ロー ンをスク リ ーニングしても MSH 遺伝 子に対応する cDNAは得られず、 このこ とから、 野生型シロイ ヌ ナズ ナにおいて 遺伝子の発現は非常に弱い、 あるいは特定の細胞で のみ発現している と考えられる。
一方、 msh 突然変異体由来の cDNAラィブラ リ ー約 20, 000ク ロー ン をスク リ ーニングしたと ころ、 31個の陽性ク ローンが得られ、 この う ち、 M6と名付けたク ロー ンをその後の解析に用いた。 M6ク ロー ン の塩基配列を決定し、 その配列を配列表の配列番号 : 1 に示す。 ま た、 その塩基配列に対応するア ミ ノ酸配列を配列番号 : 2 に示す。
このコ一 ド領域全長の配列は ^^遺伝子に含まれており、 M6は ^ 遺伝子に対応する cDNAである こ とが判明 した。 cDNAの塩基配列を 解析した結果、 遺伝子にコ — ドされる蛋白質はホメ ォ ドメ イ ン 蛋白質と有意な相同性を示し、 中でもホメ ォ ドメ イ ン蛋白質間で保 存されているホメ ォ ドメ イ ンの第 3 番目の αヘリ ッ ク スに相当する 配列が、 遺伝子にコ 一 ドされる蛋白質においてもよ く 保存され ている こ とがわかった。 また、 SH_遺伝子にコ 一 ドされるタ ンノ ク 質のァ ミ ノ酸配列は、 ホメ ォ ドメ ィ ン蛋白質の中でも WUSCHEL の配 列と最も高い相同性を示した。
ただし、 報告されている中で MSH と最も相同性の高い SCHEL と 比較した場合でも、 ホメ ォ ドメ ィ ン内の同一ァ ミ ノ酸の割合は 42 % 、 タ ンパク質全体では約 20%であり、 配列からは WUSCHEL と類似の 機能を持つかどうかは判断できない。 ホメ ォ ドメ イ ン蛋白質の中で 、 WUSCHEL の次に相同性が高かったのは KN1 タイプの蛋白質である が、 これらを MSH とホメ ォ ドメ イ ン内で比較した場合の相同性は、 同一ア ミ ノ酸の割合が 20%以下であった。 また、 ク ローニ ングの過 程で、 MSH cDNAとホメ ォ ドメ ィ ン内で 86%、 全領域で 40%の同一性 のある配列を有する cDNAク ロー ンも単離され、 M8と名付けた。 その 塩基配列を配列表の配列番号 : 3 に示し、 対応するア ミ ノ酸配列を 配列番号 : 4 に示す。
実施例 4. MSH cDNAの過剰発現による不定芽形成
実施例 2で予測されたよ う に、 MSH 遺伝子の過剰発現が不定芽の 形成を引き起こすのかどうかを解析した。 バイナ リ 一ベク タ一 pBE2
113GUS (Plant Cell Physiology, 37. p49- 59, 1996 、 NIARより人 手) から、 制限酵素 li H I / Sacl 処理によって ^^遺伝子を除き
、 替わり に MSHM6 cDNAのコー ド領域をプライマ一 #170(5' - GAAGAT
CTCATCATGTCCTCCTCAAAC-3' ) (配列番号 : 5 ) とプライマー #172 (
5 ' - CGGAGCTCTAAATAAGATAATAGATTGCGC-3' ) (配列番号 : 6 ) を 用いた PCR で増幅し、 その後制限酵素^ Πし で処理した DNA 断 片を組み込んだ。 この操作により、 バイナ リ ーベク ターに揷入され た \1SH cDNAは CaMV35S プロモータ一由来の人工プロモーターの制御 下に置かれている c このプラス ミ ドを PBE2113MSHと名付けた。
PBE2113GUSと pBE2113MSHをァグロバクテ リ ゥ厶を介して野生型シ ロ イ ヌ ナズナカルスに導入した。 カナマイ シ ン耐性を指標と して形 質転換細胞を選別した。 PBE2113GUSを導入した形質転換体力ルスは 不定芽形成にサイ トカイニンを要求したが、 PBE2113MSHで形質転換 されたカルスはサイ トカイニ ンの有無に関わらず不定芽を再生する こ とができた。 サイ トカイニン存在下では、 どち らのプラス ミ ドで 形質転換したカルスも不定芽を再生したが、 pBE2113MSHで形質転換 されたカルスは、 PBE2113GUSで形質転換されたカルスより も速やか に不定芽を再生した。 また、 既に報告されている 2成分制御系 (tw 0 - component system) のセ ンサ一 ' ヒ スチ ジ ンキナーゼである CK II cDNA を過剰発現する シロ イ ヌ ナズナカルス もサイ ト カ イニ ン非存 在下で不定芽を形成できるが、 形成される不定芽の数は MSH cDNAを 過剰発現しているカルスのほうが多かった。
一方、 PBE2113MSHをァグロバクテリ ウム減圧浸潤法を用いてシロ ィ ヌナズナの生殖細胞に導人し (Bechtold et al. , C. R. Acad. Sci. Paris, Life Sciences, 316, pll94_1199, 1993 、 荒木崇, 植物細 胞工学シ リ ーズ 4, モデル植物の実験プロ ト コール, pl09- 113, 19 96) 、 遺伝子が導人された芽生えをカナマイ シ ン耐性を指標と して 選択した。 このよう に して得られた形質転換体シロ イ ヌ ナズナでは 、 野性株と比べて分枝が多いこ とが観察された。
さ らに、 実施例 3 で得られた、 MSH cDNAと相同な蛋白質をコー ド する M8 cDNA にコー ドされる蛋白質の機能に関しても、 M8c DNA に コー ドされる蛋白質と GUS の融合タ ンパク質をシロイ ヌナズナ植物 体で過剰発現させる こ とによって解析した。 M8 cDNA のコー ド領域 をプライマー #224 ( 5' - GCTCTAGAACAATGGCTTCTTCGAATAGACAC-3' )
(配列番号 : 7 ) とプライマ— #225 ( 5 ' - TCCCCCGGGCTGATCAGATA GTACGAGGCTCC-3' ) (配列番号 : 8 ) を用いて PCR によ って增幅後 、 制限酵素^ 処理によって得られる遺伝子断片を、 P BE21 13GUS の Xbal/Smal 認識部位の間に揷入した。
得られたバイナ リ ーベク ター pBE2113M8GUSを了グロ ノくクテ リ ウム 減圧浸潤法を用いてシロイ ヌナズナの生殖細胞に導入し、 遺伝子が 導入された芽生えをカナマイ シ ン耐性を指標と して選択した。 この よ う に して得られた形質転換体シロイ ヌ ナズナでは、 先の MSHM6 cD NAを過剰発現したシロイ ヌ ナズナ変異株と同様、 分枝が多 く なつた
産業上の利用可能性
以上のよう に、 ァクティべ一シ ョ ンタギングによってシロイ ヌナ ズナから得られた遺伝子^ _は、 不定芽形成に関与するホメ オボッ クス遺伝子と考えられ、 不定芽形成に関わる遺伝子の転写因子をコ — ドすると推測される。 MSH c DNA を 35S プロモーターの制御下で 過剰発現させた結果から、 サイ トカイニ ンの有無に関わらず、 が不定芽形成を促進する こ と、 加えて、 植物体の分枝にも関与する こ とが示唆された。
このこ とから、 遺伝子の発現を制御する こ とによって、 植物 又は植物細胞からの不定芽 · 分枝形成を制御する こ とが可能となつ た。

Claims

請 求 の 範 囲
1 . 配列番号 : 2 に記載のァ ミ ノ酸配列を有し、 分化に関わり、 ホメ ォ ドメ ィ ン様配列を持つ蛋白質をコー ドする遺伝子。
2 . 配列番号 : 2 に記載のア ミ ノ酸配列において 1 個又は複数個 のア ミ ノ酸の付加、 欠失及び Z又は他のア ミ ノ酸による置換によ り 修飾されているア ミ ノ酸配列を有し、 且つ分化に関わり、 ホメ ォ ド メ イ ン様配列を持つ蛋白質をコー ドする遺伝子。
3 . 配列番号 : 1 に記載の塩基配列を有する核酸又はその部分と 、 ス ト リ ン ジェ ン 卜条件下でハイプリ ダイズし、 且つ分化に関わり
、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝子。
4 . 配列番号 : 4 に記載のア ミ ノ酸配列を有し、 分化に関わり、 ホメ ォ ドメ ィ ン様配列を持つ蛋白質をコ一 ドする遺伝子。
5 . 配列番号 : 4 に記載のア ミ ノ酸配列において 1 個又は複数個 のァ ミ ノ酸の付加、 欠失及び Z又は他のァ ミ ノ酸による置換によ り 修飾されているア ミ ノ酸配列を有し、 且つ分化に関わり、 ホメ ォ ド メ イ ン様配列を持つ蛋白質をコー ドする遺伝子。
6 . 配列番号 : 3 に記載の塩基配列を有する核酸又はその部分と 、 ス ト リ ン ジェ ン ト条件下でハイプリ ダイズし、 且つ分化に関わり 、 ホメ ォ ドメ イ ン様配列を持つ蛋白質をコー ドする遺伝子。
7 . 前記蛋白質が、 不定芽誘導能を有する蛋白質である請求項 1 〜 6 のいずれか 1 項に記載の遺伝子。
8 . 前記蛋白質が、 分枝誘導能を有する蛋白質である請求項 1 〜 6 のいずれか 1 項に記載の遺伝子。
9 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子を含んでなるベ ク タ一。
1 0 . 請求項 9 に記載のベク タ一により形質転換された宿主。
1 1 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子によ ってコー ドされる蛋白質。
1 2 . 請求項 1 0 に記載の宿主を培養し、 又は成育させ、 そ して 該宿主から分化に関わり、 ホメ ォ ドメ イ ン様配列を持つ蛋白質を採 取する こ とを特徴とする該蛋白質の製造方法。
1 3 . 前記蛋白質が、 不定芽誘導能を有する蛋白質である請求項 1 2 に記載の蛋白質の製造方法。
1 4 . 前記蛋白質が、 分枝誘導能を有する蛋白質である請求項 1 2 に記載の蛋白質の製造方法。
1 5 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子が導入された 植物又は植物細胞。
1 6 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子を植物又は植 物細胞に導人し、 該遺伝子を発現せしめる こ とによる植物又は植物 細胞から分化を誘導する方法。
1 7 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子を植物又は植 物細胞に導入し、 該遺伝子を発現せしめる こ とによる植物又は植物 細胞から不定芽形成を誘導する方法。
1 8 . 請求項 1 〜 8 のいずれか 1 項に記載の遺伝子を植物体に導 入し、 該遺伝子を発現せしめる こ とによる植物体の分枝を誘導する 方法。
PCT/JP2000/004904 1999-07-22 2000-07-21 Genes de boite homeotique codant des proteines participant a la differentiation WO2001007618A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00946451A EP1116793A4 (en) 1999-07-22 2000-07-21 HOMEOTIC BOX GENES ENCODING DIFFERENTIATION PARTICIPATING PROTEINS
AU60230/00A AU784169C (en) 1999-07-22 2000-07-21 Homeobox gene encoding a protein involved in differentiation
US09/787,737 US6870076B1 (en) 1999-07-22 2000-07-21 Homeobox genes encoding proteins participating in differentiation
CA002343714A CA2343714A1 (en) 1999-07-22 2000-07-21 Homeobox gene encoding a protein involved in differentiation
NZ510725A NZ510725A (en) 1999-07-22 2000-07-21 A gene with a homeodomain-like sequence encoding a protein that can induce adventitious shoot formation and branching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/207995 1999-07-22
JP20799599A JP4428763B2 (ja) 1999-07-22 1999-07-22 分化に関わる蛋白質をコードするホメオボックス遺伝子

Publications (1)

Publication Number Publication Date
WO2001007618A1 true WO2001007618A1 (fr) 2001-02-01

Family

ID=16548944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004904 WO2001007618A1 (fr) 1999-07-22 2000-07-21 Genes de boite homeotique codant des proteines participant a la differentiation

Country Status (7)

Country Link
US (1) US6870076B1 (ja)
EP (1) EP1116793A4 (ja)
JP (1) JP4428763B2 (ja)
AU (1) AU784169C (ja)
CA (1) CA2343714A1 (ja)
NZ (1) NZ510725A (ja)
WO (1) WO2001007618A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078753A2 (en) 2002-12-26 2009-07-15 Syngenta Participations AG Cell proliferation-related polypeptides and uses therefor
JP2018071802A (ja) * 2016-10-24 2018-05-10 住友重機械工業株式会社 凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094762A2 (en) 2006-02-13 2007-08-23 Temasek Life Sciences Laboratory Novel plant homeodomain protein-encoding genes and their uses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9801129D0 (sv) * 1998-03-31 1998-03-31 Olof Olsson Pre-harvest modification of fibrous raw material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO S. ET AL.: "Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain", PLANT MOL. BIOL.,, vol. 40, no. 3, June 1999 (1999-06-01), pages 419 - 429, XP002931726 *
D. WAGNER ET AL.: "Transcriptional activation of APETALA1 by LEAFY", SCIENCE,, vol. 285, no. 5427, 25 July 1999 (1999-07-25), pages 582 - 584, XP002931727 *
KLAUS F.X. MAYER ET AL.: "Role of WUSCHEL in regulating stem cell fate in the arabidopsis shoot meristem", CELL,, vol. 95, no. 6, 1998, pages 805 - 815, XP002931728 *
R.D. SCHNEEBERGER ET AL.: "Ectopic expression of the knox homeo box gene rough sheathl alters cell fate in the maize leaf", GENES & DEVELOPMENT,, vol. 9, no. 18, 1995, pages 2292 - 2304, XP002931729 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078753A2 (en) 2002-12-26 2009-07-15 Syngenta Participations AG Cell proliferation-related polypeptides and uses therefor
JP2018071802A (ja) * 2016-10-24 2018-05-10 住友重機械工業株式会社 凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物

Also Published As

Publication number Publication date
JP4428763B2 (ja) 2010-03-10
AU784169C (en) 2007-09-06
AU784169B2 (en) 2006-02-16
CA2343714A1 (en) 2001-02-01
AU6023000A (en) 2001-02-13
NZ510725A (en) 2002-12-20
JP2001029081A (ja) 2001-02-06
US6870076B1 (en) 2005-03-22
EP1116793A4 (en) 2005-11-30
EP1116793A1 (en) 2001-07-18

Similar Documents

Publication Publication Date Title
JP4091114B2 (ja) 開花遺伝子
RU2458132C2 (ru) Регулирующий высоту растений ген и его применения
EP1044279A1 (en) Plants with modified growth
JP2004527201A (ja) アルフィン1の発現、ならびに根の生長および根の特定の遺伝子活性化の増大したトランスジェニック植物を生産する方法
WO2008020645A1 (fr) Plante transformée à maturation précoce
JP6836904B2 (ja) シマツナソおよびコウマ由来のwuschel関連ホメオボックス4(wox4)タンパク質をコードするヌクレオチド配列および使用方法
US6639130B2 (en) Plant sterol reductases and uses thereof
CN111500619B (zh) 一种bxl基因或其编码蛋白的应用
CN110295175B (zh) 一个大豆NAC转录因子家族基因Glyma08g41995的应用
JP2002505109A (ja) 植物における病原体抵抗性の誘導のための方法
US20030093835A1 (en) Chimeric genes controlling flowering
EP2090650B1 (en) Grain incomplete filling gene (gif1) and uses thereof
JP2000507443A (ja) 植物の糖センサーおよびその使用
JP3357907B2 (ja) ペチュニアの転写因子PetSPL2の遺伝子の導入によって花序の節間を短縮させる方法
WO2001007618A1 (fr) Genes de boite homeotique codant des proteines participant a la differentiation
WO2021155753A1 (zh) 抗除草剂基因、多肽及其在植物育种中的应用
KR101112703B1 (ko) 식물의 뿌리털 발달 조절 유전자 rhs1 및 이를 이용한 식물의 뿌리털 발달 조절 방법
WO2004081204A1 (ja) 細胞増殖、発生分化が改変された植物細胞及び植物体
AU782201B2 (en) Gene coding for protein involved in cytokinin signal transduction
KR101112673B1 (ko) 식물의 뿌리털 발달 조절 유전자 rhs10 및 이를 이용한 식물의 뿌리털 발달 조절 방법
KR101028113B1 (ko) 생장 증진, 내염성 및 노화 조절에 관여하는 고추의 CaHB1 유전자 및 그의 용도
CN110982825B (zh) 一种grf8基因及其应用
KR101779875B1 (ko) 식물체의 개화시기를 조절하는 무 유래의 flc 유전자 및 이의 용도
AU768139B2 (en) Plant lesion formation suppressing gene, Sp17 and use thereof
JPH05199885A (ja) ナス科植物の酵母ste11ホモログタンパク質リン酸化酵素遺伝子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Kind code of ref document: A

Ref document number: 2343714

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 510725

Country of ref document: NZ

Ref document number: 60230/00

Country of ref document: AU

Ref document number: 09787737

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000946451

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000946451

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 60230/00

Country of ref document: AU