WO2004081204A1 - 細胞増殖、発生分化が改変された植物細胞及び植物体 - Google Patents

細胞増殖、発生分化が改変された植物細胞及び植物体 Download PDF

Info

Publication number
WO2004081204A1
WO2004081204A1 PCT/JP2004/003228 JP2004003228W WO2004081204A1 WO 2004081204 A1 WO2004081204 A1 WO 2004081204A1 JP 2004003228 W JP2004003228 W JP 2004003228W WO 2004081204 A1 WO2004081204 A1 WO 2004081204A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
protein
seq
amino acid
acid sequence
Prior art date
Application number
PCT/JP2004/003228
Other languages
English (en)
French (fr)
Inventor
Masaki Ito
Satoshi Araki
Hiroaki Kodama
Yasunori Machida
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to EP04719645.6A priority Critical patent/EP1602717B1/en
Priority to NZ542274A priority patent/NZ542274A/en
Priority to CA2518811A priority patent/CA2518811C/en
Priority to BRPI0408254-0A priority patent/BRPI0408254A/pt
Priority to US10/548,484 priority patent/US7563947B2/en
Priority to CN2004800128495A priority patent/CN1788078B/zh
Priority to AU2004219801A priority patent/AU2004219801B2/en
Priority to ES04719645.6T priority patent/ES2531479T3/es
Priority to DK04719645.6T priority patent/DK1602717T3/en
Publication of WO2004081204A1 publication Critical patent/WO2004081204A1/ja
Priority to IL170789A priority patent/IL170789A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • Plant cells and plants with altered cell growth and development Plant cells and plants with altered cell growth and development
  • the present invention relates to a method for controlling cell growth and Z or development / differentiation in a plant, and a molecule used for the method. Furthermore, the present invention relates to a plant produced by controlling a gene involved in cell proliferation and / or development and differentiation, and a technique for using the plant. Background art
  • Plants have unique embryological characteristics that differ from other eukaryotes. Because plant cells do not migrate, cell division, elongation, and programmed cell death are thought to determine morphogenesis. Cells proliferate in meristems at the poles of the shoot apex and root tip, and while the proliferating cells differentiate, the individual develops and differentiates by stacking. The size of the plant depends on the number and cells Is defined by the size of By changing the cell cycle in response to changes in environmental conditions, the cell growth is modified, and the size of the individual plant is adapted to the environment. It is also important to control the cell cycle in the differentiation of individual plants.
  • cells are arrested at a specific stage of the cell cycle (G2 phase), and the differentiation of lateral roots is determined by whether or not these cells start dividing.
  • G2 phase a stage of the cell cycle
  • the number of cells is defined in the hypocotyl of a plant, the cell cycle changes in a dark place, and the size of the cells changes due to endonuclear doubling (endoduplication).
  • G1 phase G1 phase
  • S phase MA synthesis phase
  • G2 phase G2 phase
  • M phase mitosis
  • cyclin represented by cyclin B binds to CM (Cycl in dependent kinase) to form an activation complex, and promotes chromosome aggregation and nuclear membrane collapse.
  • CM Cycl in dependent kinase
  • the M phase ends through a process called cytokinesis, which bisects the cytoplasm after chromosome distribution.
  • a phragmoplast In plant cells, its specific structure, a phragmoplast, is known. Are formed and cytokinesis proceeds. The formation of this phragmoplast is controlled by kinesin-like proteins NACK1 and NACK2.
  • Cyclin 8, NACK1 and NACK2 which show important functions in the process from plant cell entry to the M phase to termination, show G2 / M phase-specific gene expression patterns. It has been reported that time-specific expression of these genes is performed by a specific regulatory sequence called M-specific activator (MSA) present in one region of the promoter (Non-patent Document 1).
  • M-specific activator M-specific activator
  • CMB CMB
  • CM plant-specific CM
  • genes with high similarity to cyclin-specific E2 enzymes among E2 enzymes involved in the degradation of protein there are many genes with unknown functions. Is known to exhibit an M-phase specific expression pattern.
  • the MSA sequence is often present in the promoter, and the G2 / M phase-specific gene expression control mechanism by the MSA sequence is universally conserved in plants. Is believed to be.
  • NtmyMl, NtmybA2, and NtmybB have been identified from tobacco as factors that bind to the MSA sequence (Ntmyb is used hereinafter as a generic term for these).
  • Ntmyb is used hereinafter as a generic term for these.
  • One of the major features of the amino acid sequence of the Ntmyb protein is the myb DM-binding domain composed of incomplete three repeats present in animal c-myb and the like (the protein having this domain is hereinafter abbreviated as 3Rmyb). High Showing similarities. In plants, there are many genes that have a myb-like MA binding region, but most consist of two repeats or a myb region without repeats.
  • Ntmyb has a myb MA binding region with high homology to c-myb.
  • c-myb binds the EVES motif present in the protein to the myb MA-binding region, and is in a transcriptionally inactive state. It is thought that P100, which is a coactivator, is able to bind to the myb MA binding region, and transcriptional activity is activated (Non-patent Document 6).
  • Ntmyb has no similarity to c-myb except for the myb MA binding region, and its regulatory sequences such as the EVES motif are not conserved.Therefore, the regulatory mechanism of C-myb protein transcriptional activation and Ntmyb The regulation mechanism is thought to be different. To date, the existence of a region that regulates the transcriptional activation ability of Ntmyb has not been reported.
  • colchicine treatment has been widely used as a polyploid production technique. It has been selected by applying colchicine treatment to plant seeds, seedlings, or tissue culture cells of organs, and then regenerating the plants. The cells that have completed MA replication and have been multiplied are inhibited from forming spindle fibers by colchicine, and can skip the mitotic phase and obtain multiplied cells.
  • Non-Patent Document 1 Ito et al., Plant Cell, 10: 331 (1998)
  • Non-Patent Document 2 Stracke et al., Curr. Opin. Plant Biol. 4: 447. (2001)
  • Non-Patent Document 3 Ito et al., Plant Cell, 13: 1891 (2001)
  • Non-Patent Document 4 Doerner et al., Ature, 380: 520 (1996)
  • Non-Patent Document 5 Nishihama et al., Cell, 109: 87 (2002)
  • Non-Patent Document 6 Dash et al., Genes Dev., 10: 1858 (1996)
  • an object of the present invention is to provide a novel technique for modifying the growth of plant cells. That is, an object of the present invention is to provide a technique for modifying the development and differentiation of plant individuals by modifying the growth of plant cells, and a plant gene used for the technique.
  • Another object of the present invention is to provide a method for drastically modifying the function of the 3Rmyb gene of a plant, and a novel 3Emyb protein molecule having a modified function.
  • the present inventors have conducted intensive studies to elucidate that the plant 3 Eniyb gene is an essential factor for the growth of plant cells, and have developed a technique for modifying the growth of plant cells targeting the gene and development and differentiation of plant individuals. Modification technology has been completed. They also found that these technologies could be applied to a wide range of plants.
  • a plant cell or a plant in which the activity of the plant 3 Rmyb protein was modified was produced, and it was clarified that the cell growth, Z, or development / differentiation in the plant cell or the plant was modified. .
  • Plant 3 Rmyb (represented by NtmybA2) having a specific amino acid sequence is a positive regulator of cell cycle and cell division, while plant 3 Rmyb (NtmybB has a different amino acid sequence). (Representative) is a negative regulator of cell cycle and cell division for the first time using plant cells or plants in which the activity of the above-mentioned plant 3 Emyb protein has been modified.
  • the present inventors have created a new mutant of the plant 3 Rmyb protein, which is a transcription factor, and found that its function has been modified. Using these mutants, they found that the activity of plant 3 Rmyb protein in plant cells and plants was altered. That is, they found a region in the amino acid sequence of the plant 3 Rmyb protein that regulates the activity of transcribing the downstream gene, and succeeded in producing a molecule having a modified transcriptional activation ability.
  • the present inventors isolated MA, which encodes a novel plant 3Rmyb gene, 0s3Rray bAl protein, from rice, a monocotyledonous plant. It has been found that it shows an equivalent function.
  • the present invention has been completed based on the above findings.
  • the present invention relates to the control of cell proliferation in plants targeting the plant 3 Bmyb gene and / or the control of development and differentiation of plant individuals, the 0s3I? MybAl gene involved in plant cell division, and the like. Similar genes and proteins encoded by these genes.
  • the present invention provides the following.
  • DNA which, when expressed in a plant cell, codes for suppressing the expression of DM encoding a 3Rmyb protein in a plant by a co-suppression effect, and has a homology of 900 or more with said DM DNA having
  • Plant 3 Rmyb protein a transcription factor that activates G 2 / M phase-specific transcription via the MSA sequence, is SILX 1 KRXEXLXsX4PX2XX 6 XiRXX 5 KK (SEQ ID NO: 94, where X is any
  • An amino acid, a ⁇ ⁇ ⁇ or R, chi 2 is L, I or V, X 3 is L or
  • V, X 4 is S or T, and X 5 is]) or E).
  • the plant 3 Kmyb protein has the amino acid sequence of any one of SEQ ID NO: 32, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 75 or SEQ ID NO: 76. (1) to (4) The plant cell according to one of the above.
  • Plants 3 Rmyb evening protein is a transcription factor that suppresses G 2 / M phase-specific transcription mediated by the MSA sequence, SCSSXSX 6 (SEQ ID NO: 95, X is any amino acid, X 6 is The plant cell according to (1) or (2), which is a protein comprising an amino acid sequence represented by (K, R, D, E or H).
  • Plant 3 with increased transcriptional activation compared to the corresponding wild-type protein 3 Ikyb protein MA that codes for Parkin.
  • the plant 3 with increased transcriptional activation ability The Emyb protein is a protein characterized in that the function of the regulatory region that regulates transcriptional activation ability is lost. .
  • the DM according to any one of (15) to (19), which encodes a plant 3 Rmyb protein in which the loss of function is caused by amino acid substitution, deletion, and / or insertion.
  • DM which encodes a KNA that suppresses the expression of DM according to any of (a) to (e) by a co-suppression effect when expressed in plant cells, and (a) Any of ⁇ (e) DNA having a homology of 90% or more with DM according to
  • MA which encodes MA that suppresses the expression of MA according to any one of (a) to (e) by an RM interference effect when expressed in plant cells, and (a) MA which is the same as DM according to any one of (a) to (e) for 20 bases or more continuously.
  • the plant 3 Emyb protein is a protein characterized in that the c-myb-like myb region contains an amino acid sequence containing a DNA binding region that is incompletely repeated three times, and is preferably a human ciyb protein.
  • myb DNA binding domain amino acid sequence from amino acid 43 to amino acid 192 in SEQ ID NO: 88
  • amino acid sequence described in SEQ ID NO: 92 which is conserved in the ciy b-like myb MA binding region, is W [S, T] XXE [D, E] XX [L, I, V] (this In the sequence, X represents any amino acid, and [J indicates that any one amino acid is selected], but it repeats 3 times with any 42 amino acids in between. It is protein containing amino acid sequence.
  • SEQ ID NO: 93 SEQ FfTXEEDXXLXXXVXXUXGX 7 represented by the following 15 0 Amino acids that are described in XffKXIAXXXXXK0X 5 JQCLHEWQ 'LXPXLJKG XWOXEEDXXJXXJXX 7 XGXXK SXJOXXXGEIGKQCRERIUNHLXPXIXX 7 XXWTXXEX 5 XXLXXXHXXXGN X 7 EJXX 7 XLXGX 7 0DN0nNXKS0XKKX 7 ( in this sequence X is any amino acid, J is I, V
  • L is any one amino acid
  • 0 is G, S, T, C.
  • A is any one amino acid
  • X is any one amino acid
  • the sequence represented by the 150 amino acids is nXEEDXXLXX [A, V] VXX [F, Y] XG [, R] [N, S, R], R, N] IAXXXXXE [S, T] [ D, E] [V, L] QCLHRlfQKVL [N, D, H] P [D, E, N] L [V, I] KG [P, S, A] ff [S, T] XEED [D, E , N] X [I, L] X [E, D, Q] [L, M] [V, I] X [, R] [Y, N, L] G [P, A, C] XKffS X [ I, V] [A, S] XX [L, M] [P, A] GRIGKQCRERff [H, Y] NHL [D, N] PXI [K, N, R] [K, E] [D, E] [S
  • An even more desirable plant 3 Rmyb protein is any of SEQ ID NO: 32, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77 or SEQ ID NO: 78 And the protein represented by the amino acid sequence described above. Still more desirable plant 3 Rmyb protein includes a protein represented by the amino acid sequence of any one of SEQ ID NO: 32, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55. Therefore, the present invention also provides the following.
  • (c) DM that encodes an MA having ribozyme activity that specifically cleaves the transcript of ⁇ described in any of SEQ ID NO: 31, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54 ,
  • DNA which suppresses the expression of DM according to any of SEQ ID NO: 31, SEQ ID NO: 50, SEQ ID NO: 52, or SEQ ID NO: 54 by co-suppression effect when expressed in plant cells MA having a homology of 90% or more with DM according to any one of SEQ ID NO: 31, SEQ ID NO: 50, SEQ ID NO: 52, and SEQ ID NO: 54.
  • (e) D which suppresses the expression of the DNA of any one of SEQ ID NO: 31, SEQ ID NO: 50, SEQ ID NO: 52, and SEQ ID NO: 54 when expressed in plant cells by an interference effect Code A, and SEQ ID NO: 31, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54 DM, which is the same as MA for 20 bases or more consecutively,
  • a transformed plant comprising the transformed plant cell according to (2) to (4).
  • (e) MA which encodes a protein having an amino acid sequence having an amino acid sequence of SEQ ID NO: 32 and an amino acid sequence having an Aligned Score of 60 or more, and each of which encodes the amino acid sequence of SEQ ID NO: 32 DNA that encodes a protein having a function equivalent to that of a sequence protein.
  • a DM encoding an antisense RM complementary to the DNA transcript according to any one of (a) to (e) in (1).
  • MA which encodes ⁇ which suppresses the expression of the DNA according to any one of (a) to (e) in (14) by a co-suppression effect when expressed in plant cells, and , (14 A) MA having 90% or more homology with the DM according to any one of (a) to (e).
  • a DM which is continuously identical to the DM according to any of (: a) to (e) in 20) or more.
  • a transgenic plant cell which carries the DM according to any one of (1) to (19) or the recombinant DM or the vector according to (21).
  • a transformed plant comprising the transformed plant cell according to (25) to (27).
  • the C-terminal region of NtinyM2 protein is a region that negatively regulates the transcription activation ability, and that a region that activates transcription exists in the middle of the NtmybA2 protein.
  • the present inventors have modified the function of the MmybA2 protein to increase the transcriptional activation ability of the MmybA2 mutant, the NtmyM2 mutant having the decreased transcriptional activation ability, that is, the NtmyM2 mutant that functions as a dominant negative Was successfully created.
  • the present invention also provides the following.
  • a DM encoding the amino acid sequence of positions 1 to 412 of the amino acid sequence represented by SEQ ID NO: 53, as a molecule in which the function of the NtmybA2 protein represented by SEQ ID NO: 53 is modified.
  • (67) MA which encodes the 1- to 640-th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 51 as a molecule having a modified function of the MmybAl protein represented by SEQ ID NO: 51.
  • SEQ ID NO: shown features NtmybM protein that as the modified molecules with 51, SEQ ID NO: ⁇ 0 you encoding 1-298 amino acid sequence of the amino acid sequence represented by 51
  • SEQ ID NO: MA encoding the amino acid sequence of a molecule that has lost the function of the regulatory region that regulates the transcriptional activation ability of 0s3EmybAl protein represented by 32.
  • MA which, when expressed in plant cells, encodes a plant 3Emyb protein by the effect of ⁇ 1000]) DNA that encodes MA that suppresses NA expression and that encodes a plant 3Rmyb protein DM which is the same for consecutive bases or more.
  • (101) A trait that carries the DNA described in any one of (a) to (: 0) of (100) or the recombinant DM or vector described in (g) of (100) Converted plant cells.
  • a transformed plant comprising the transformed plant cell according to (101) to (103).
  • (111) A nucleic acid produced from the plant cell according to (10 :! to (103) or the plant according to any of (104) to (108). Further, the present invention includes the ability to include a plant 3 Emyb protein having an increased transcriptional activation ability ⁇ Specifically, the following protein is included. MAs encoding these proteins are also included in the present invention.
  • the 3Rmyb protein of the plant is any of the amino acid sequences of SEQ ID NO: 32, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 75, or SEQ ID NO: 76 (11 3) The protein according to any one of (1) to (; 122).
  • the plant 3Kmyb protein has any one of the amino acid sequences of SEQ ID NO: 32, SEQ ID NO: 51, or SEQ ID NO: 53, according to any one of (1 13) to (1 2 2) Protein.
  • the invention's effect is any one of the amino acid sequences of SEQ ID NO: 32, SEQ ID NO: 51, or SEQ ID NO: 53, according to any one of (1 13) to (1 2 2) Protein.
  • the present invention provides a plant cell having an altered cell growth. It is also possible to obtain plants with altered development and differentiation using these plant cells, and to obtain plants having favorable properties such as enlargement of specific organs, improvement of male sterility or stress tolerance. New methods are provided. Other objects, features, excellence and aspects of the present invention will be apparent to those skilled in the art from the following description. However, it is understood that the description of the present specification, including the following description and the description of the specific examples, shows preferred embodiments of the present invention, and is given only for explanation. I want to. Various changes and / or alterations (or modifications) within the spirit and scope of the invention disclosed herein will be made by the following description and knowledge of the remainder of this specification. It will be readily apparent to the trader. All patents and references cited in this specification are cited for explanatory purposes, and they are to be construed as being incorporated herein by reference. is there. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a comparison between the amino acid sequence of the rice hypothetical protein registered with DDBJ as Acsession no. BAB78687 and the amino acid sequence of the 0s3RmybA protein arranged in an optimal manner. The sequence is continuous in FIGS.
  • FIG. 2 shows a comparison between the amino acid sequence of the hypothetical protein of rice registered as BAB78687 and the amino acid sequence of the 0s 3KmybAl protein arranged in an optimal manner.
  • the sequence is a continuation of Figure 1 and a continuation of Figure 3.
  • FIG. 3 shows a comparison of the amino acid sequence of the rice hypothetical protein registered as BAB78687 and the amino acid sequence of the 0s 3RmybAl protein arranged in an optimal manner. The sequence is a continuation of Figures 1 and 2.
  • FIG. 4 shows the ability to activate the transcription of the CYM promoter-LUC fusion gene using the CYM promoter-LUC plasmid of 0s3KmybAl and NtmybA2 as the reporter plasmid as the LUC specific activity increase rate. Values are the average of 5 replicates, error bars indicate standard deviation.
  • Figure 5 shows NACK1 promoter-LUC plasmids of various C-terminal deletion mutants of NtmyM2 and Ni; mybA2.
  • the transcription activation ability of the fusion gene of MCK1 promoter and LUC using Sumid as a reporter plasmid is shown as LUC specific activity increase rate. The values are the average of 5 replicates, and the error bars indicate the standard deviation.
  • Fig. 6 shows the transcriptional activation ability of the CYM promoter-LUC fusion gene using NtmybA2 and NtmybA2T5 or CYM promoter-LUC plasmid by co-expression of NtmybB and NtmybA2T5 as a reporter plasmid. Shown as the rate of increase. Values are the average of 5 replicates, error bars indicate standard deviation.
  • Figure 7 shows that the transformed calli transformed with PP2P211-35S: A2ENAi and reduced in the expression level of endogenous N1; mybA2 due to the effect of RNA interference and the calli transformed with PP2P211 and PPZP211. It is a photograph shown.
  • the vector indicates pPZP211 and A2 RMi indicates callus transformed with pPZP211-35S: A2RNAi.
  • Fig. 8 shows the measurement of nuclear DNA content in transformed BY2 calli and pPZP211-transformed calli transformed with PPZP211-35S: A2 RMi and reduced in expression of endogenous Ntiny bA2 due to the effect of interference. The results are shown.
  • vector and vector control indicate pPZP211 and A2 RNAi indicate PPZP211-35S: transformation ability by ⁇ 2 ⁇ .
  • FIG. 9 is a photograph showing the size of transformed BY2 calli and pPZP211 transformed calli transformed with PPZP211-35S: BBNAi and reduced in the amount of endogenous NtmybB due to the effect of Chihiro.
  • Vector and vector control show the transformed callus with pPZP211 and BRMi show the transformed callus with pPZP211-35S: BMAi.
  • Figure 10 shows the results of the transformation using PPZP211 and PPZP211-35S: BRN, and the reduction of the expression level of endogenous NtmybB due to the effect of interference. The result of measuring the content is shown.
  • the vector and vector control show the transformed callus with pPZP211, and BRNAi show the transformed callus with pPZP211-35S: BRNAi.
  • Figure 1 1 is, PPZP211- 35S: A2 or, pPZP211- 35S: A2T2 transformed with, a constitutively callus transformed with the transformed BY2 calli and P PZP211 which M MybA2 or NtmyM2T2 expresses magnitude Indicates
  • the vector is pPZP211, 35S: A2 is pPZP211-35S: A2, and 35S: A2T2 is the callus transformed with pPZP21 1-35S: A2T2.
  • Fig. 12 shows the transformation of calli transformed with PPZP211-35S: A2 or pPZP211-35S: A2T2 and transformed with the transformed BY2 callus expressing Nt mybA2 or NtmyM2T2 constitutively and pPZP211.
  • the cell number is shown.
  • the vector is pPZP211, 35S: A2 is pPZP211-35S: A2, and 35S: A2T2 is the callus transformed with PPZP211-35S: A2T2.
  • Fig. 13 shows calli obtained by transforming pPZP2111 35S: A2 or pPZP211-35S: A2T2 and transforming the transformed BY2 callus and pPZP211 which constantly express ⁇ mybA2 or NtmyM2T2.
  • Control shows the callus transformed with pPZP211
  • 35S: A2 shows the transformed callus with pPZP211-35S: A2
  • 35S: A2T2 shows the transformed callus with pPZP211-35S: A2T2.
  • Fig. 14 shows the transgenic tobacco in which NtmybB transformed with PPZP211-35S: B is constantly expressed, and the endogenous NtmybB due to the effect of ⁇ transformed with pPZP21 35S: B.BNAi.
  • 1 is a photograph showing the growth of a transformed tobacco in which the expression of S. pombe was suppressed or a transformed tobacco transformed with pPZP211.
  • Vector indicates pPZP211
  • 35S: B indicates pPZP211-35S: B
  • BKMi indicates pPZP211-35S: B. Transformed tobacco using IJNAi.
  • FIG. 15 shows the results of optimally aligning the amino acid sequences of the NtmybAl, MmybA2, and 0s3RmybAl proteins.
  • Arrows in Figs. 15 to 17 indicate the regions in which various C-terminal region deletion mutants of MmybA2 were created and the corresponding amino acid regions of NtmybAl and 0s3EmyMl.
  • “.” And “:” indicate the amino acid similarity by the CLUST J program. In the output result, the amino acid similarities are completely conserved, and “:” is the highly conserved amino acid. The ".” Indicates a moderately conserved amino acid site.
  • the sequence continues from Figures 16 to 18.
  • FIG. 16 shows the results of optimally arranging the amino acid sequences of the NtmybA NtmybA2 and 0s3RmybAl proteins. The sequence is a continuation of FIG. 15 and continues to FIGS. 17 and 18.
  • Figure 1 ⁇ shows the optimal arrangement of the amino acid sequences of MmybM, NtmybA2, and 0s3RmybAl proteins. The results are shown below. The region enclosed by a square in the figure indicates the conserved sequence position between NtmybA1 and 0s3RmybAl found near the deletion region of NtmybA2. The amino acid sequence shown above the square indicates a conserved sequence, and X indicates any amino acid. The sequence is a continuation of FIGS. 15 and 16 and continues to FIG. .
  • Figure 18 shows the results of optimal alignment of the amino acid sequences of NtmyMl, NtmybA2 and OsSEmybM proteins. The sequence is a continuation of FIGS. 15 to 17. ⁇
  • Figure 19 shows the optimal arrangement of the amino acid sequences of tmybAK NtmybA2.0s3EmybM, AtMYB3Rl (described as MYB3E-1 ⁇ in Figures 19 to 25), and At MYB3R4 (described as AtMYB3R-4 in Figures 19 to 25).
  • the results are shown below.
  • “.” And “:” indicate the amino acid similarity according to the CLUSTA program.
  • “*” Indicates the completely conserved amino acid size 1, and ":” indicates the highly conserved amino acid. Amino acid sites, "No 'indicates moderately conserved amino acid sites.
  • the sequence is shown in Figures 20-25.
  • FIG. 20 shows the results of optimally arranging the amino acid sequences of the NtmybA NtmybA2, 0s3RmybAK AtMYB3R-1 and AtMYB3R-4 proteins.
  • the sequence is as shown in Fig. 19, and is continued from Fig. 21 to Fig. 25.
  • Figure 2 1 shows the results obtained by arranging optimally the NtmybAl, NtmybA2 0s3RmybAK AtMYB3R-l N AtMYB3R- 4 protein ⁇ amino acid sequence. The sequence is a continuation of FIGS. 19 and 20 and continues to FIGS. 22 to 25.
  • FIG. 22 shows the results of optimally aligning the amino acid sequences of the tmybAK NtmybA2, 0s3BmybAl, AtMYB3H, and AtMYB3E-4 proteins.
  • the sequence is as shown in FIGS. 19 to 21 and continues from FIGS. 23 to 25.
  • FIG. 23 shows the results of optimally arranging the amino acid sequences of NtmybAl, NtmybA2 N 0s3RmybAK A YB3R-1, and AtMYB3K-4 proteins.
  • the bold line in the figure indicates a region where the amino acid sequence is particularly highly conserved except for the myb MA binding region.
  • the conserved sequence found in the region indicated by the bold line is shown in bold type.
  • One amino acid, X! Any one of the amino acid K, R's, Y of V, any one amino acid of L, and chi 5 shows that any one of ⁇ amino acids D, E.
  • the sequence is a continuation of Fig. 19 force, et al. 22, and continues to Fig. 24 force, et al. 25.
  • FIG. 24 shows the results of optimally arranging the amino acid sequences of the NtmybAK NtniybA2, 0s3RmybA AtMYB3R-1 and AtMYB3R-4 proteins.
  • the sequence is a continuation of Figures 19 to 23 and is linked to Figure 256.
  • FIG. 25 shows the results of optimally arranging the amino acid sequences of tmybAl ⁇ NtmybA2, 0s3RmybAK AtMYB3E-1 and ⁇ 3 ⁇ -4 proteins.
  • the sequence is a continuation of FIGS. 19 to 24.
  • Fig. 26 shows the results of optimal alignment of the amino acid sequences of tmybB, MYB3R3 (described as AtMYB3K-3 in Figs. 26 to 28) and A "tMYB3R5 (described as MMYB3E-5 in Figs. 26 to 28).
  • “no” and “:” indicate amino acid similarity according to the CLUSTALW program.
  • “*” indicates a completely conserved amino acid site, and “:” indicates a highly conserved amino acid.
  • the amino acid site, "No” indicates the site of moderately conserved amino acids.
  • the bold line in the figure indicates the region where the amino acid sequence is particularly high except for the myb MA 'binding region.
  • the conserved sequence found in the region shown in bold is shown in bold, and in this sequence, X is any amino acid, X "or any one of K, E, D, E, and II. It is shown that.
  • the sequence is continuous in FIGS. 27 and 28.
  • FIG. 27 shows the results of optimally aligning the amino acid sequences of NtmybB and At YB3R-3,5 proteins. The sequence is a continuation of Figure 26 and continues to Figure 28.
  • FIG. 28 shows the results of optimally aligning the amino acid sequences of NtmybB, AtMYB3E-3, and AtMYB3E-5 proteins.
  • the sequence is a continuation of FIGS. 26 and 27.
  • Fig. 29 shows MYB3K-1 isolated from Physcomitrella patens (described as PhpMYB3R-1 in Figs. 29 to 31) and MYB3R-1 isolated from Adiantum raddianum (AdrMYB3R-1 in Figs. 29 to 31).
  • MYB3R-1 isolated from Hordeum vulgare (described as HvMYB3K-1 in FIGS. 29 to 31), MYB3R-1 isolated from Secale cereale (described as ScMYB3R-l in FIG. 2931), putative Myb-related domain isolated from Papaver rhoeas (described as ParMYB3R-1 in FIG.
  • AtMYB3IU (described as AtMYB3E-1 in Figure 2931), A «YB3E3 (described as AtMYB3 ⁇ -3 in Figure 2931), AtMYB3M (described as A YB3R-4 in Figure 2931), MYB3R5 ( Figure 29 described as AtMYB3R- 5 is in 31), NtmybAl NtmybA2, NtmybB s 0s3BmybAl protein 3 consisting repeat myb-like MA binding region constituting the amino acid sequence optimally in side-by-side results 13 kinds of amino acid sequence shown an in The conserved amino acid sites are shown as conserved sequences in the figure.
  • X is any amino acid in the conserved sequence
  • J is any amino acid of IVL
  • Fig. 31 shows three repeats of a DNA-like region consisting of a three amino acid-linked region consisting of a P-MYB3R-l, AdrMYB3R-1 I YB3R-1 ScMYB3R-1 ParMYB3 -K At YB3Rl AtMYB3R3. The results are shown in the optimal arrangement. The sequence is a continuation of FIGS. 29 and 30.
  • FIG. 32 shows the growth status (plant height) of the cultivated NtmyM2 gene-introduced plant (MmyM2 high-expressing tobacco) compared with a plant in which the NtmyM2 gene was not introduced.
  • FIG. 33 shows the growth status (number of true leaves) of a cultivated NtniybA2 gene-introduced plant (NtmybA2-overexpressing tobacco) compared with a plant without the introduced NtmybA2 gene.
  • a predetermined nucleic acid can be isolated and sequenced, a recombinant can be prepared, and a predetermined peptide can be obtained by using “gene recombination technology”.
  • gene recombination technology examples include those known in the art. For example, J. Sambrook, EF Fritsch & T. Maniatis, Molecular Cloning: A Laboratory Manual (2nd edition) ", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989) DM G lover et al. Ed., "DM Cloning", 2nd ed., Vol.
  • the present invention provides a plant cell in which the activity of the plant 3 Rmyb protein has been modified and a plant containing the plant cell, wherein the modification of the activity of the plant 3 Bmyb protein in the present invention comprises the expression of the plant 3 Rmyb gene. Or the function of plant 3 Bmyb protein.
  • the above-mentioned modification of the expression of the plant 3 Bmyb gene includes constitutive expression, overexpression, ectopic expression, inducible expression, or suppressing the expression of the gene. Constitutive expression, overexpression, or suppression of the expression.
  • the present invention also provides a molecule capable of suppressing the expression of a plant 3 Rmyb gene in a plant. “Suppression of plant 3 Rmyb gene expression” includes suppression of gene transcription and suppression of protein translation. It also includes a complete cessation of expression of the plant 3 Kmyb gene as well as a decrease in expression.
  • the action of the antisense nucleic acid to suppress the expression of the target gene has several factors as follows. In other words, inhibition of transcription initiation by triplex formation, suppression of transcription by formation of a hybrid with a site where a local open loop structure was formed by RM polymerase, and formation of a hybrid with RNA that is undergoing synthesis Inhibition of transcription, suppression of splicing by hybrid formation at the junction of intron and exon, suppression of splicing by hybridization with spliceosome formation site, suppression of translocation from nucleus to cytoplasm by hybridization with mMA, Inhibition of splicing by forming a hybrid with a capping site or poly (A) addition site, suppression of translation initiation by forming a hybrid with a translation initiation factor binding site, hybridization with a ribosome binding site near the initiation codon Translation inhibition by the formation of the ⁇ translation region with the polysome binding site Ipuri head formed outgrowth inhibitory peptide chain by, and hybrid formation by gene silencing of
  • the antisense sequence used in the present invention may suppress the expression of the target gene by any of the actions described above.
  • designing an antisense sequence complementary to the untranslated region near the 5 'end of the gene's mMA will be effective in inhibiting gene translation.
  • sequences complementary to the coding region or the 3 'untranslated region may also be used.
  • the antisense sequence of the untranslated region as well as the translated region of the gene is included in the antisense]) NA used in the present invention.
  • the antisense used is ligated downstream of an appropriate promoter, and preferably a sequence containing a transcription termination signal is ligated on the 3 'side.
  • MA thus prepared can be transformed into a desired plant by a known method.
  • the sequence of the antisense DNA is preferably a sequence complementary to the endogenous gene or a part thereof in the transformed plant, but is not completely complementary as long as gene expression can be effectively inhibited. You may.
  • the transcribed A has preferably 90% or more, and most preferably 95% or more complementarity to the transcript of the target gene. Sequence complementarity can be determined by the search described above.
  • the length of the antisense DNA should be at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more. More than a base. Usually the antisense used)) NA is shorter than 5 kb, preferably shorter than 2.5 kb. Suppression of endogenous gene expression can also be achieved using MA encoding ribozymes.
  • Ribozyme is an A molecule having catalytic activity. Ribozymes have various activities. Among them, research on ribozymes as enzymes that cleave UNA has made it possible to design ribozymes for site-specific cleavage of RNA. There are ribozymes with a size of 400 bases or more, such as the group I intron type and M1EM included in RNaseP, but an active domain of about 40 bases called a hammerhead type or a hairpin type. Some have.
  • the self-cleaving domain of the hammerhead ribozyme cleaves the 3 'side of C13 of G13U14C15, but it is important that U14 forms a base pair with A at position 9 for its activity.
  • the base has been shown to be cleaved by A or ⁇ ⁇ in addition to C (M. Koizumi et al., (1988) FEBS Lett. 228: 225).
  • the ribozyme substrate binding region to be complementary to the RNA sequence near the target site, it is possible to create a KNA-cut ribozyme that is a restriction enzyme that recognizes the sequence TO, UU, or M in the target RNA. It is possible (M.
  • Hairpin ribozymes are also useful for the purpose of the present invention. Hairpin ribozymes are found, for example, in the minus strand of satellite A of tobacco ring spot virus (JM Buzayan, Nature, 323: 349, 1986). It has been shown that this ribozyme can also be designed to cause target-specific A cleavage (Y. Kikuchi and N.
  • the ribozyme designed to cleave the target is linked to a promoter and transcription termination sequence, such as the 35S promoter of the force-reflecting mosaic virus, to be transcribed in plant cells.
  • a promoter and transcription termination sequence such as the 35S promoter of the force-reflecting mosaic virus
  • ribozyme activity may be lost.
  • another trimming cis for trimming is performed on the 5 'or 3' side of the ribozyme portion.
  • the transcript of the gene targeted in the present invention can be specifically cleaved to suppress the expression of the gene.
  • Suppression of endogenous gene expression can also be achieved by co-suppression caused by transformation of DNA having a sequence identical or similar to the target gene sequence. This refers to a phenomenon in which, when a gene having the same or similar sequence as a gene is introduced by transformation, the expression of both the introduced foreign gene and the target endogenous gene is suppressed.
  • the details of the mechanism of co-suppression are not clear, but are often observed in plants (Curr. Biol., 7: E793, 1997; Curr. Biol., 6: 810, 1996).
  • the target plant in order to obtain a plant in which the NtmybA2 gene is co-suppressed, can be obtained by transforming the MmybA2 gene or a vector DM prepared to express a DM having a similar sequence to the target plant. What is necessary is just to select the plant whose growth has been suppressed from the plant which has grown.
  • the gene used for co-suppression need not be exactly the same as the target gene, but it should have at least 70% or more, preferably 80% or more, and more preferably 90% or more (eg, 95% or more) sequence. Have identity. Sequence identity can be determined using the above search.
  • RNA interference means that when a plant is introduced by transformation with a MA in which the same or similar sequence as the target endogenous gene is placed in an inverted repeat, double-stranded RNA derived from foreign DM is expressed and the target gene It refers to a phenomenon in which expression is suppressed.
  • a complementary RNA is synthesized using the sequence in which mBNA of the target gene and a double-stranded BM derived from the introduced sequence form a complex and associate as a primer, and
  • the complex is fragmented by endogenous RNase, and in the third step, the double-stranded RM fragmented to 20-30 base pairs functions as a signal for secondary ENA interference, and then becomes endogenous. It is thought to degrade the target gene mMA. (Curr. Biol., 7: R793, 1997; Curr. Biol., 6: 810, 1996).
  • a vector prepared to express DM in which NAs are arranged in inverted repeats. May be transformed into a target plant, and a plant having enhanced growth may be selected from the obtained plant.
  • the gene used for RM interference does not need to be completely the same as the target gene, but at least 10 bases or more are consecutively identical, and preferably 20 to 100 bases are consecutively identical. More preferably, 50 bases are continuously the same.
  • the gene used for RM interference may be a gene having at least 70% or more, preferably 80% or more, more preferably 90% or more (eg, 95% or more) sequence identity with the target gene. . Even more preferably, a gene having at least 70% or more, preferably 80% or more, even more preferably 90% or more (eg, 95% or more) sequence identity with the target gene is arranged in an inverted repeat. Are mentioned. In particular, it is desirable that the gene having the sequence identity with the target gene is arranged in inverted repeat with the spacer sequence interposed therebetween. Sequence identity can be determined using the above search. As the length of the gene used for ENA interference, the entire length of the target gene may be used, but at least 25 bases may be used, preferably 50 bases, more preferably 100 bases, and further preferably 500 bases is fine.
  • RMi can also be achieved by plant virus infection.
  • Plant viruses that have single-stranded ENA as their genome take the form of double-stranded RNA during the replication process. Therefore, when a target gene sequence is inserted into a plant virus genome together with an appropriate promoter, and a plant is infected with this recombinant virus, double-stranded KM of the target gene sequence is generated along with replication of the virus. Will be.
  • the effect of Ai can be obtained (Angell et al., Plant J. 20, 357-362, (1999)).
  • the suppression of the expression of the endogenous gene in the present invention can also be achieved by transforming a gene having a dominant negative trait of the target gene into a plant.
  • MA encoding a protein having a dominant negative trait refers to the expression of the arousal to eliminate or reduce the activity of a protein encoded by the endogenous gene of the present invention inherent in a plant.
  • a protein that has the function of causing it to]]) NA NA.
  • Whether the target DM has a function of eliminating or reducing the activity of the endogenous gene of the present invention depends on whether the target DM is a plant cyclin B gene, NACK1 gene, The determination can be made based on whether or not the transcription amount of the ortholog gene is suppressed.
  • Reduction of the function of endogenous plant 3Emyb protein by dominant negative molecule may be transformed into a plant species different from the plant species from which MmybAl protein, MmybA2 protein, and 0s3RmyMl protein are isolated.
  • a plant in which the activity of the plant 3 Bmyb protein is altered is a plant in which the expression of the plant 3 Rmyb gene or the function of the protein is changed, and the expression level of the gene or the function of the expressed protein is wild. Plants that change at a detectable level compared to the type are desirable, and the change in expression level includes constitutive expression, inducible expression, overexpression, ectopic expression, and suppression of expression.
  • the present invention also provides a recombinant DM or vector into which a DNA that suppresses the expression of the MA of the present invention or the DNA of the present invention or the expression of a protein encoded by the MA of the present invention has been inserted.
  • a recombinant MA or vector include the vector described above for use in the production of recombinant proteins, and the expression of DM of the present invention or A of the present invention in plant cells for producing transformed plants.
  • a vector for expressing DM which suppresses the expression of the protein encoded by DM of the present invention is also included.
  • Such a recombinant DM or vector is particularly limited as long as it contains a promoter sequence that can be transcribed in plant cells and a terminator sequence that contains a polyadenylation site necessary for stabilizing the transcript.
  • the plasmids “pBI121”, “PBI221J, ⁇ all manufactured by Cloivech), ⁇ 7001”, ⁇ 7002 J (Aoyama et al. (1997) Plant J. 11: 605), “pPZP211” (Hajdukiewicz et al. ., Plant Mol. Biol. 25: 989 (1994).
  • the recombinant DM or vector of the present invention may contain a promoter for constitutively or inducibly expressing the protein of the present invention.
  • promoters that can be expressed in cells are preferably those listed below.
  • promoters for constitutive expression include, for example, the 35S promoter of Cauliflower mosaic virus (Odell et al., Nature, 313: 810 (1985)) and the actin promoter of rice (Zhang et al., Plant Cell, 3: 1155 (1991)), corn ubiquitin promoter (Cornejo et al., Plant Mol. Biol., 23: 567 (1993)).
  • Promoters for inducible expression include, for example, exogenous expression such as infection or invasion of filamentous fungi or bacteria, low temperature, high temperature, drying, irradiation with ultraviolet light, or spraying of specific compounds. And known promoters.
  • Such promoters include, for example, rice chitin expressed by filamentous fungi and bacteria 'virus infection and invasion, and a promoter of the zebra gene (Xu et al., Plant Mol. Biol., 30: 387U996). ) And the promoter of the tobacco ⁇ protein gene (Ohshima et al., Plant Cell 2: 95 (1990)), and the promoter of the rice “lipl9” gene induced by low temperature (Aguan et al., Mol.
  • the promoter of the rice chitinase gene and the promoter of the PI? Protein gene of tobacco are induced by specific compounds such as salicylic acid, and "rabl6" is also induced by spraying the plant hormone abscisic acid. It may also include the use of a vector system having a system that allows for inducible gene expression in plants by treatment with dalcocorticoid estrodidin.
  • PTA7001 and pTA7002 are examples of vectors that can be induced by glycocorticoid treatment, and pEE10 (Zuo et al., Plant J., 24: 265 2000)).
  • Examples of a promoter for expression in a proliferating cell-specific manner include, for example, a promoter of the tobacco NP K1 gene expressed in the S to M phases (Nishihanm et al., Genes Dev., 15: 352 (2000)), Promoters of the tobacco NACK1 gene (Nishihama et al., Cell, 109: 87 (2002)) and Nitinichi ⁇ CYM gene promoter (Ito et al., Plant J., 11: 983 (1997) )), A promoter of the periwinkle CYS gene expressed in S phase (Ito et al., Plant J., 11: 983 (1997)), a promoter of the Arabidopsis thaliana cdc2a gene that is observed throughout the cell cycle in proliferating cells ( Chung et al., FEBS Lett., 362: 215 (1995)). Examples of tissue-specific promoters can be found in the following patent documents.
  • Arabidopsis AtHB8 promoter (Baima et al. Development 121: 4171 (1995)), which is a vascular pro- cambium-specific promoter, and Arabidopsis ACL5 promoter (Hanzawa et al. The EMBO Journal, 19: 4248 (2000)), a tomato-specific tomato RBCS3A promoter (Meier et al. Plant Physiol. 107: 1105 (1995)) and the like can also be used.
  • Promoters that exhibit high gene expression in male reproductive system organs or cells include Arabidopsis A "tNACK2 ⁇ promoter (PCT / JP02 / 12268) and Arabidopsis AVP1 gene promoter (Mitsuda et al., Plant Mol. Biol, 46: 185 (2001)), Arabidopsis thaliana MD1 gene promoter (Ishiguro et al., Plant Cell, 13: 2191 (2001)), tobacco TA20, TA29 gene promoter (Goldberg et al., Science, 240: 1460) (1988)), rice 0sg6B gene motor (Tuchiya et al., Plant Mol.
  • the present invention also provides a transformed plant cell into which the recombinant DM or the vector of the present invention has been introduced.
  • plant cells used for producing plant bodies there is no particular limitation on plant cells used for producing plant bodies, and any known plant, for example, cultivated plant, useful plant, etc., can be applied to the plant cell, and cereals, beans, potatoes, seeds, etc. Examples include plants known as foreheads, vegetables, and fruits, as well as those derived from horticultural flowers, trees, etc. Examples of the plant cells include Solanaceae, Brassicaceae, Poaceae, Legume, and Lily. And so on, preferably tobacco, Arabidopsis, oilseed rape, soybean, azuki, endu, fava bean, laccasei, sesame, rice, wheat, o Oats, rye, Enbak, corn, potato, tomato, pepper, cabbage, broccoli, ha.
  • the plant cell of the present invention includes cells in a plant as well as cultured cells. It also includes protoplasts, shoot primordia, multiple shoots, and hairy roots.
  • the introduction of a vector into a plant cell can be performed, for example, by a method using an agrobacterium (Hood et al., Transgenic Res., 2: 218 (1993); Hiei et al., Plant J., 6, : 271 (1994)), the electroporation method (Tada et al., Theor. Appl. Genet, 80: 475 (1990)), the polyethylene glycol method (Lazzeri et al., Theor. Appl. Genet, 81: 437). (1991)) and the particle gun method (Sanford et al., J. Part. Sci. Tech., 5:27 (1987)), among which methods known in the art can be used.
  • an agrobacterium Hood et al., Transgenic Res., 2: 218 (1993); Hiei et al., Plant J., 6, : 271 (1994)
  • the electroporation method Tada et al., Theor
  • Transformed plant cells can regenerate plants by redifferentiation.
  • the method of regeneration differs depending on the type of plant cell.For example, for rice, the method of Fuj imura et al. (Plant Tissue Culture Lett., 2:74 (1995)) can be mentioned.For corn, Shillito (Bio / Technology, 7: 581 (1989)) and Gorden-Kamm et al. (Plant Cell, 2: 603 (1990)). For potatoes, Visser et al. (Theor. Appl. Genet, 78: 594 (1989)). ), For tobacco, Nagata and Takebe (Planta, 99:12 (1971)). For Arabidopsis, Akanm et al. (Plant Cell Reports, 12: 7-11 (1992)). ).
  • progeny can be obtained from the plant by sexual or asexual reproduction. It is possible. In addition, obtaining a propagation material (for example, seeds, fruits, cuttings, tubers, tubers, roots, strains, calli, protoplasts, etc.) from the plant, its progeny or clone, and mass-producing the plant based on them. Is also possible.
  • a propagation material for example, seeds, fruits, cuttings, tubers, tubers, roots, strains, calli, protoplasts, etc.
  • the present invention provides a plant cell into which the DNA of the present invention or the DNA for suppressing the expression of DM of the present invention has been introduced, a plant containing the cell, progeny and clone of the plant, and the plant, progeny thereof, And clonal propagation material.
  • cell growth and development / differentiation can be changed as compared to normal individuals by regulating the expression of DM of the present invention.
  • alteration of cell proliferation means, for example, shortening or delaying the time required for the cell cycle, shortening the time required for each of the G1, S, G2, and M phases constituting the cell cycle, or Delay, suppression of entry into G1, S, G2, and M phases that constitute the cell cycle, and termination of G1, S, G2, and M phases that constitute the cell cycle Suppression, suppression of the presence of the G1, S, G2, and M phases that constitute the cell cycle, changes in cell size, changes in the formation of phragmoplasts, changes in the formation of phloemforms, Causing a change in cell plate expansion, a change in cell plate formation, a change in the number of cell divisions, a change in the number of nuclei contained in the cell, or a change in the DNA content in the nucleus.
  • the change in the DM content in the nucleus includes a change in ploidy, and preferably includes an increase in ploidy.
  • modification of development / differentiation refers to, for example, an increase in the number of cells constituting a plant due to promotion of cell proliferation, and an increase in the number of cells constituting a plant due to suppression of cell proliferation.
  • a change in the size of a plant due to promotion or suppression of cell growth means that a plant increases in size due to promotion of cell growth, or that the growth of a plant is suppressed.
  • a plant having a reduced gene expression level of endogenous MmybAl and NtmybA2 when produced, it is possible to obtain a plant in which growth and growth accompanied by cells in which cell division and cytokinesis are suppressed are obtained.
  • the production of cultured cells with reduced NtniyM2 gene expression resulted in altered cell cycle, indicating that NtmybAl and NtmybA2 are positive regulators of cell cycle and cell division. This indicates that suppressed plants can be produced.
  • the enhanced growth and proliferation in transformed plants and cultured cells in which the level of endogenous NtniybB gene expression was reduced indicate that NtmybB is a negative regulator of the cell cycle and cell division.
  • growth was suppressed in plants that constantly express NtmybB, which indicates that MmybB negatively regulates cell cycle and cell division in the present invention. It indicates that it is a factor and that it is possible to produce plants whose growth has been suppressed.
  • the present invention provides a rice 0s3Rmyb gene which is a transcription activator of a cyclin B gene and a NACK-related gene.
  • the cDNA of the plant 3Rmyb gene 0s3RmybAl
  • the nucleotide sequence of the cDNA of 0s3RmyMl is shown in SEQ ID NO: 31, and the amino acid sequence of the 0s3RmybAl protein encoded by this gene is shown in SEQ ID NO: 32.
  • the present invention provides monocotyledonous 3Rmyb proteins that are functionally equivalent to 0s3EmybAl.
  • “having the same function” or “functionally equivalent” means that the protein functions as a transcription activator of cyclin B gene or NACK-related gene.
  • Whether a protein is a transcriptional regulator of the cyclin B gene or NACK-related gene or not is determined by a functional capture test using the expression of the protein in a mutant strain or by a protein transiently expressed in plant cells. Can be determined by the transcriptional activation of the cyclin B gene or the NACK 1 gene.
  • a plant for isolating a protein functionally equivalent to the 0s3KmybAl protein characterized in the present invention it can be used by selecting from monocotyledonous plants. These can also be used as gene sources. Acquisition of a functionally equivalent protein as described above.
  • a method for introducing a mutation into an amino acid in a protein is well known to those skilled in the art.
  • the protein of the present invention has an amino acid sequence in which one or more amino acids have been substituted, deleted, or added in the native ⁇ 0s33 ⁇ 4y bAlj protein, '' and has a function equivalent to that of the native protein.
  • the modification of amino acids in the protein is usually within 50 amino acids, preferably within 30 amino acids, more preferably within 10 amino acids, more preferably within 3 amino acids of all amino acids.
  • Amino acid modification can be performed using, for example, “Transformer Site-directed Mutagenesis Kit J or rExSite PGR-Based Site-directed Mutagenesis Kit J (manufactured by Clontech) for mutation or substitution.
  • the deletion can be performed using “Quairtum leap Nested Deletion KitJ (Clontech)” or the like.
  • site-directed mutagenesis using a synthetic oligonucleotide (site-directed mutagenesis) (Zoller et al., Nucl. Acids Res., 10: 6487, 1987; Carter et al., Ucl. Acids Res. , 13: 4331, 1986), cassette mutagenesis (Wells et al., Gene, 34: 315, 1985), restriction selection mutagenesis: Wells et al., Philos. Trans.. Soc.
  • substitution, deletion, or insertion of an amino acid may cause a favorable change, and may cause a change in the physiological or chemical properties of the polypeptide constituting the protein. May be.
  • the polypeptide with the substitution, deletion, or insertion may be one that is considered to be substantially the same as that without such substitution, deletion, or insertion.
  • Substantially the same amino acid substitution in the amino acid sequence may be selected from other amino acids of the class to which the amino acid belongs.
  • non-polar (hydrophobic) amino acids include alanine, phenylalanine, leucine, isofucine, valine, proline, tributofan, methionine, and the like, and polar (neutral) glycine, serine Amino acids, threonine, cysteine, tyrosine, asparagine, glutamine, etc .
  • basic amino acids include arginine, lysine, histidine, etc.
  • negatively charged amino acids acidic amino acids
  • cystine may be replaced with serine, glycine with alanine or leucine, or leucine with alanine, isoleucine, palin, or the like.
  • the amino acid residues contained therein can be modified by a chemical method, and peptidases such as pepsin, chymotrypsin, papain, promelain, It can be modified using enzymes such as endopeptidase and exopeptidase, or partially degraded to obtain derivatives or mutants thereof.
  • peptidases such as pepsin, chymotrypsin, papain, promelain
  • enzymes such as endopeptidase and exopeptidase, or partially degraded to obtain derivatives or mutants thereof.
  • it is expressed as a fusion protein at the time of production by a genetic recombination method, and converted and processed into a substance having a biological activity substantially equivalent to that of a predetermined natural protein of the present invention in vivo or in vitro. You may.
  • fusion protein can also be purified by affinity chromatography using the fusion portion.
  • fusion proteins include those fused to a histidine tag, or / 3-galactosidase ( ⁇ -gal), maltose-binding protein (MBP), glutathione-S-transferase (GST), and thioredoxin. (TRX) or Cre
  • the polypeptide may be tagged with a heterogeneous epitope so that it can be purified by immunoaffinity chromatography using an antibody that specifically binds to the epitope. it can.
  • the epitope tag includes, for example, AU5, c-Myc, CruzTag 09, CruzTag 22, CruzTag 41, Glu-Glu, HA, Ha. 11, T3, FL AG (registered trademark, Sigma- Aldrich), Omni-probe, S-probe, T7, Lex A, V5, VP16, GAL4, VSV-G and the like.
  • the fusion protein may be a protein with a marker that can be a detectable protein.
  • the detectable marker may be a biotin Avi Tag based on the biotin nostreptavidin system, a fluorescent substance, or the like.
  • the fluorescent substance examples include green fluorescent protein (GFP) derived from a luminescent jellyfish such as jellyfish (Aequorea victorea) and a mutant (GFP variant) obtained by modifying the green fluorescent protein, such as EGFP (Enhanced- humanized GFP), rsGFP (red-shift GFP), yellow fluorescent protein (YFP), green fluorescent protein (GFP), cyan fluorescent protein (CFP), Blue fluorescent protein (BFP) and others (Atsushi Miyawaki, edited by Experimental Medical Science, Experimental Lectures in the Post-Genome Era 3-GFP and Bioimaging, Yodosha (2000)). Detection can also be performed using an antibody (including a monoclonal antibody and its fragment) that specifically recognizes the fusion tag.
  • an antibody including a monoclonal antibody and its fragment
  • the protein of the present invention can be prepared by a method known to those skilled in the art as a natural protein or as a recombinant protein prepared by using gene recombination technology.
  • a natural protein is obtained by immunizing a small animal such as a heron with a recombinant protein prepared by the following method, and binding the antibody to an appropriate adsorbent (CNBr-activated agarose or tosyl-activated agarose). And extract the protein from rice leaves using the obtained column. It can be prepared by purifying the effluent.
  • the recombinant protein can be obtained by a conventional method, for example, by introducing DNA encoding the protein of the present invention into an appropriate expression vector, introducing the vector into appropriate cells, It can be prepared by purification.
  • Cells used for producing the recombinant protein include, for example, plant cells, microbial cells such as Escherichia coli and yeast, animal cells, insect cells and the like.
  • Examples of vectors for expressing a recombinant protein in cells include plasmids pBI121 and pBI101 (Clontech) for plants and yeast cells, and plasmids for Escherichia coli.
  • DM DM into the vector
  • the introduction of DM into the vector can be performed by a conventional method, for example, the method described in Molecular Cloning (Maniatis et al., Cold Spring harbor Laboratry Press).
  • the introduction can be performed by a conventional method according to the host cell, such as an electroporation method, a microinjection method, or a particle gun method.
  • Purification of the recombinant protein of the present invention from the obtained transformed cells may be carried out by salting out, precipitation with an organic solvent, ion exchange chromatography, affinity chromatography, or a column using an immunoadsorbent, depending on the properties of the protein. Chromatography, gel filtration, SDS electrophoresis, isoelectric focusing and the like can be performed in an appropriate combination. Further, when the recombinant protein of the present invention is expressed as a fusion protein with a label such as glutathione S-transferase, it can be purified by affinity chromatography with the label. .
  • the present invention also provides a DNA encoding the protein of the present invention.
  • the [) NA of the present invention is not particularly limited as long as it can encode the protein of the present invention, and includes genomic DNA, cDNA, and chemical synthesis]) NA.
  • the genomic MA is, for example, a genomic DM prepared according to the method described in the literature (Rogers and Bendich, PIant Mol. Biol. 5:69 (1985)), as type III, the nucleotide sequence of the DM of the present invention, for example, SEQ ID NO: It can be prepared by performing a polymerase 'chain' reaction (polymerase chain reaction; PCR) using a primer prepared based on the base sequence described in (31).
  • cMA the mwake is prepared from the plant by a conventional method (Maniatis et al.
  • genomic DM and cDNA a genomic DNA library or cDNA library is prepared by a conventional method, and the base sequence of the DM of the present invention (for example, the nucleotide sequence of It can also be prepared by screening using a protein synthesized based on the sequence).
  • the method for isolating a functionally equivalent protein the method described in Hydride-Shion Technology (Southern, J. Mol. Biol. 98: 503 (1975); Maniatis et al., "Molecular Cloning") , Cold Spring harbor Laboratry Press) and PCK technology (H.
  • nucleotide sequence of the “0s3EmybAl” gene (SEQ ID NO: 31) or a part thereof is used as a probe to hybridize to a part of the nucleotide sequence of the “0s3EmyMl” gene (SEQ ID NO: 31). It is usually possible to isolate a DM having high homology to the oligo base as a primer and obtain a protein having a function equivalent to that of the 0s3EmybAlJ protein from the DM.
  • the protein of the present invention also includes a protein having a function equivalent to that of the “0s3RmybAl” protein encoded by the DNA isolated by the hybridization technique or the PCB technique.
  • PCR generally refers to a method as described in Saiki et al., Science, 239: 487 (1988); US Pat. No. 4,683,195, and the like. Refers to a method for enzymatically amplifying a desired nucleotide sequence in vitro. In general, PCR involves repetitive cycles, such as primer extension synthesis, using two oligonucleotide nucleotide primers that can preferentially hybridize with type I nucleic acid.
  • primers used in the PCB method can use primers that are complementary to the nucleotide sequence to be amplified within the template, for example, the nucleotide to be amplified. Those which are complementary at the sequence and at both ends or which are adjacent to the nucleotide sequence to be amplified can be preferably used.
  • the primer at the 5 'end is selected so as to contain at least an initiation codon or to be able to extend including the initiation codon, and as a primer at the 3' end, It is preferable to select at least a stop codon so that it can be amplified so as to include the stop codon.
  • the primer is preferably an oligonucleotide consisting of 5 or more bases, more preferably 10 bases or more, and more preferably an oligonucleotide consisting of 18 to 35 bases.
  • PCR can be performed by a method known in the art or a method substantially similar thereto or a modified method.
  • a method known in the art for example, in addition to the above-mentioned documents, L Saiki, et al., Science, 230: 1350, 1985; HA Erlich ed., PCR Technology, Stockton Press, 1989; DM Glover et al. ed "DNA Cloning", 2nd ed., Vol. 1, (The Practical Approach Series), IRL Press, 0xford University Press (1995); MA Innis et al. ed., 'PCR Protocols: a guide to methods and applications ", Academic Press,-New York (1990)); MJ McPherson, P.
  • PCR Quirke and GR Taylor (Ed.), PCR: a practical approach, ARL Frohman et al., Proc. Natl. Acad. Sci. USA, 85, 8998-9002 (1988), or a method modified or modified from the method described in IRL Press, Oxford (1991); PCR can be performed using a commercially available kit suitable for the PCR, and can be performed by a kit manufacturer or a kit distributor. It can be implemented according to the protocol specified by the public.
  • the PCE is a 10x reaction buffer between, for example, type I (eg, DM synthesized with ⁇ as type I; 1st strand DNA) and a primer designed based on the gene.
  • type I eg, DM synthesized with ⁇ as type I; 1st strand DNA
  • a primer designed based on the gene eg, a primer designed based on the gene.
  • the mixture is cycled 25 to 60 times under typical PCR cycling conditions using an automated thermal cycler such as the GeneAmp 2400 PCR system, Perkin-Elmer / Cetus, but the number of cycles for amplification is The number can be set appropriately according to the purpose.
  • PCR cycle conditions include, for example, denaturation 90-95 ° C for 5-100 seconds, annealing 40-60 ° C for 5-150 seconds, extension 65-75 ° C for 30-300 seconds, preferably denaturation.
  • a cycle of 94 ° C for 15 seconds, annealing at 58 ° C for 15 seconds, and extension at 72 ° C for 45 seconds can be mentioned.
  • the reaction temperature and time for annealing can be selected as appropriate by appropriate experiments, and denaturation. Appropriate values can also be selected for the reaction and extension times depending on the expected chain length of the PCE product.
  • the annealing reaction and temperature are preferably changed according to the Tin value of the hybrid between the primer and the type I DNA.
  • the time for the extension reaction is generally about 1 minute per 1000 bp chain length, but a shorter time can be selected in some cases.
  • the nucleotide sequence of the obtained DM can be easily determined by using, for example, “Sequencer-1 Model310” (manufactured by ABI).
  • the DNA of the present invention can be used, for example, for preparing a recombinant protein as described above.
  • Hybridization for isolating a gene encoding a protein functionally equivalent to 0s3RmybAl was performed by hybridization at 55 ° C, followed by 2XSSC containing 0.1% SDS (3M NaCl, Wash for 10 minutes at 55 ° C in 0.3 M sodium citrate) or 2XSSPE 3.6 M NaCl, 0.2 M sodium phosphate solution (pH 7.7), 0.02 M Na 2 -EDTA. It can be performed on the condition that it is performed twice. For more stringent hybridization, after hybridization at 65 ° C, wash 3 times at 65 ° C for 10 minutes in 2XSSC or 2XSSPE solution containing 0.13 ⁇ 4SDS for a total of 3 times. Good.
  • washing is performed for 10 minutes at 65 ° C in 2XSSC or 2XSSPE solution containing 0.1% SDS, and then In a 1XSSC or 1XSSPE solution containing 0.1% SDS, washing may be performed twice at 65 C for 10 minutes.
  • hybridization solution "Molecular cloning (Maniatis T. et al., The one described in Cold Spring Harbor Laboratory Press; J, etc.) may be used.
  • the related proteins disclosed herein, The fragments, and also nucleic acids and oligonucleotides including MA) are used singly or organically, and are appropriately combined with antisense technology, antibodies including monoclonal antibodies, transgenic plants, etc.
  • RNA interference RNA interference
  • dsRNA double-stranded EM
  • the signal may be a label such as a fluorescent dye (eg, Cy3, Cy5, B0DIPY, FITC, Alexa Fluor dyes (trade name), Texas red ( It is also possible to use a laser-scanner for detection, and the obtained data is processed by a computer system equipped with a program according to an appropriate algorithm.
  • protein array technology may utilize tagged recombinant expressed protein products, including two-dimensional electrophoresis (2-DE), mass spectrometry (MS) including enzyme digestion fragments (MS Includes technologies such as electrospray ionization (ESI), matrix-assisted laser desorption / ionization (MALM), MALDI-TOF analyzers, and ESI-3 quadrants.
  • ESI electrospray ionization
  • MALM matrix-assisted laser desorption / ionization
  • MALDI-TOF analyzers MALDI-TOF analyzers
  • ESI-3 quadrants A quadrupole analyzer, ESI-ion trap analyzer, etc. may be used), staining technology, isotope labeling and analysis, image processing technology, etc. can be used . Therefore, the present invention may also include software, databases, and the like relating to MCK2 or the like obtained or usable above and antibodies thereto.
  • antibody may be used in a broad sense and refers to a single monoclonal antibody against the desired 0s3EmybAl protein, its constituent polypeptides and related peptide fragments. Or an antibody composition having specificity for various epitopes, including monovalent or polyvalent antibodies, polyclonal and monoclonal antibodies, and naturally-occurring ntact) molecules and fragments thereof.
  • Particularly preferred antibodies of the present invention include those that can specifically identify a polypeptide selected from the region from positions 53 to 202 of SEQ ID NO: 32.
  • Monoclonal antibodies raised against the antigenic material are produced using any method that can provide for the production of antibody molecules by a series of cell lines in culture.
  • the modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and assumes that the antibody needs to be produced by some particular method. Must not.
  • Each monoclonal antibody contains a population of antibodies that are identical, except that only small amounts of naturally occurring variants may be present.
  • Monoclonal antibodies are highly specific, being directed against a site with a single antigenicity.
  • monoclonal antibodies In contrast to a conventional (polyclonal) antibody preparation, which typically contains various antibodies directed against different antigenic determinants (epitopes), each monoclonal antibody has It is directed against a single determinant.
  • monoclonal antibodies are synthesized by hybridoma cultivation and are superior in that they are free or low in contaminants of other immunoglobulins.
  • Monoclonal antibodies include hybrid antibodies and recombinant antibodies. They may replace a variable region domain with a constant region domain, replace a light chain with a heavy chain, or replace a certain region, regardless of its origin or type of immunoglobulin class or subclass, as long as it exhibits the desired biological activity.
  • Examples of suitable methods for producing monoclonal antibodies include the Hypri-doma method (G. Kohler and C. Milstein, Nature, 256, pp. 495-497 (1975)); et al., Immunology Today, 4, pp. 72-79 (1983); Kozbor, J. Immunol., 133, pp. 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Appliestions, pp. 51-63, Marcel Dekker, Inc., New York (1987); Trioma method; EBV-hybrid method (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp.
  • the antibody of the present invention can be used for analysis, detection, and the like of the gene expression product, as well as various uses.
  • the above-described method by hybridization or the method by PCR may be used.
  • dicotyledonous plants can be selected and used. These can also be used as gene sources.
  • the dicotyledonous plants and monocotyledonous plants characterized by the present invention are not particularly limited, and can be used by selecting from those widely known as cultivated plants or useful plants. Cereals, beans, potatoes, seeds and seeds Plants known as vegetables, fruits, and horticultural flowers and trees.
  • the plant includes, for example, solanaceae, cruciferous, gramineous, leguminous, lily, apiaceae, crocodile, and the like, and preferably, tobacco, Arabidopsis, soybean, azuki, endo, broad bean, Laccasey, rice, wheat, oats, rye, embak, bento dalas, corn, oilseed rape, potato, satsimo, taroim, konnyaku, kyassaba.
  • the present invention provides a method for modifying the functions of the NtmybAl protein, N "tmyM2 protein, 0s3RmybAl protein, ⁇ 3R1 protein, and MMYB3R4 protein to produce a molecule having an increased transcriptional activation ability of these proteins.
  • At least one molecule selected from the group consisting of
  • At least one molecule selected from the group consisting of
  • the present invention also relates to a molecule in which the function of the NtmybAl protein, the NtmyM2 protein, the 0s3EmybAl protein, the AtMYB3R1 protein, and the Ai: MYB3R4 protein is modified, and the transcriptional activation ability of these proteins is reduced or eliminated as compared to the wild type, that is, Provided is a method for producing a molecule that functions as a dominant negative molecule for an endogenous plant 3Bniyb molecule.
  • NtraybAl protein MmybA2 protein, 0s3RmybAl protein, At MYB3R1 protein, and AtMYB3R4 protein to function as a dominant negative with respect to the endogenous plant 3Rmyb gene
  • AtMYB3E4 protein shown in SEQ ID NO: 76 is 18 :! A molecule deleted from the amino acid sequence of position ⁇ 961;
  • Cystine N Asparagine (Asn)
  • R 1-: guanine or adenine Y, y: thymine uracil or cytosine
  • H, h adenine or cytosine or thymosine
  • V, v adenine or guanine or cytosine
  • the cMA encoding 3Einyb was isolated from rice and its nucleotide sequence was determined.
  • cDNA prepared from rice calli using a degenerate primer designed with reference to the amino acid sequence in the myb DNA binding region of tobacco 3Emyb, NtmybM, MmybA2, and NtmybB, is considered as a prominent type.
  • a PCE reaction was performed.
  • nested PCR was performed to successfully isolate a cDNA fragment showing the myb DNA-binding region of three repeats.
  • the terminal sequence of full-length cMA was determined by the 5 ′ CE method and the 3 ′ RACE method. Using a primer designed with reference to the 5′-end sequence and the 3′-end sequence, cDNA including the full length of the structural gene was successfully isolated. The details are described below.
  • a PCR reaction was performed using 2 ⁇ l of 50 ⁇ l of the synthesized cDNA.
  • Primers used for the PCK reaction were DEGmybF (5, -GAIGTICARTGYYWICAY GNTGG-3 '; SEQ ID NO: 1) and DEGmybR (5'-YTTYTTDAVIGAISWRTKCCA-3'; SEQ ID NO: 2).
  • the reaction was performed using Ex taq (Takara), using a reaction buffer attached to Ex taq, 200 / M each of dATP, dTTP, dCTP, dGTP, 10 / M each of DEGmybF and DEGmybR, 50; Performed with a liquid volume of Using GeneAmp PCE system 9700 (PE Applied Biosystems), 35 cycles of X steps at 94 ° C for 30 seconds, 42 ° C for 30 seconds, and 72 ° C for 30 seconds were repeated. After the completion of the reaction, the PCR reaction solution was purified using QIAquick PCR Purification Kit (QIAGEN).
  • Nested PCR was performed using ⁇ PCR of the purified PCR reaction solution as type ⁇ .
  • the primers used for the second PC ⁇ reaction were degenerate primers designed for the region inside DEGmybF and DEGmybE-DEGmybF2 (5 '-CARTGYYTICAYMGITGGCAEAARG -3'; SEQ ID NO: 3) and DEGmybE2 (5 '-ACIS ISWRTTCCARTTRTGYTT- 3 ′; SEQ ID NO: 4) was used.
  • the reaction was performed using Ex taq (Takara), using a reaction buffer attached to the Ex tag, 200 / M each of dATP, dTTP, dCTP, dGTP, and 10 ⁇ each of DEGmybF2 and DEGmybB2. I went in.
  • a step of 94 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 30 seconds was repeated 35 cycles.
  • the PCE reaction solution was purified using QIAquick PCR Purification Kit (QIAGEN).
  • Nested PCE was further performed using the purified second PCB reaction solution with ⁇ ⁇ ⁇ ⁇ as type ⁇ .
  • the primer used in the third PCR was the degenerate primer DEGmybF3 (5 '-CAYMGITGGCARAARGTIYTIRAYCC-3'; SEQ ID NO: 5) designed in the region inside DEGmy bF2 and DEGmy bK2.
  • HIGCRTTITCISfflCKICCIKGIA -3 '; SEQ ID NO: 6 was used.
  • the reaction was performed using Ex taq (Takara), a reaction buffer attached to Ex taq, 200 M each dATP, dTTP, dCTP , DGTP, DEGmybF3 of each, and]) EGmybR3 in a liquid volume of 501.
  • Ex taq (Takara)
  • 200 M each dATP, dTTP, dCTP , DGTP, DEGmybF3 of each, and]) EGmybR3 in a liquid volume of 501.
  • a GeneAmp PCR system 9700CPE Applied Biosystems the steps of 94 ° C for 30 seconds, 56 ° C for 30 seconds, and 72 ° C for 30 seconds were repeated 30 cycles.
  • the PCE reaction solution was purified using QIAquick PCR Purification Kit (QIAGEN).
  • the PCE reaction mixture was analyzed using agarose gel, and it was confirmed that about 300 bp of MA had been amplified. This A fragment was TA-cloned into pCM-T0P0 (Invitrogen :).
  • the nucleotide sequence of MA introduced into plasmids obtained from the three clones was determined using T7 primer (5'-TAATACGACTCACTATAGGG-3 '; SEQ ID NO: 7), and SEQ ID NO: 8, SEQ ID NO: : 9, SEQ ID NO: 10.
  • CMA was synthesized with GeneRacer Kit (Invitrogen) using 3 ig of the extracted total MA as type I.
  • a primer designed based on SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 78687-R1 5'-CAGCTCGGCCCATTTATTTCCATACATT
  • PCE reaction was performed using -3 '; SEQ ID NO: 11) and a primer attached to GeneRacer Kit (Invitrogen) GeneRacer 5' Primer (5'-CGACTGGAGCACGAGGACACTGA-3 '; SEQ ID NO: 12). The reaction was performed using Ex i; a (i (Takara)) in a liquid volume of 501.
  • PCE reaction was performed using -3 '; SEQ ID NO: 13) and a primer attached to GeneRacer Kit (Invitrogen) GeneRacer 5' Nested Primer (5, -GGACACTGACATGGACTGAAGGAGTA -3 '; SEQ ID NO: 14).
  • the reaction was performed using Extaq Takara) in a liquid volume.
  • the DM introduced into the obtained plasmid was used.
  • the nucleotide sequence of clone # 26 is shown in SEQ ID NO: 16
  • the nucleotide sequence of clone # 27 is shown in SEQ ID NO: 17.
  • the 3 ′ end of cMA was isolated.
  • the 3 ′ end sequence was determined by the 3 ′ EACE method using a GeneRacer Kit (Invitrogen).
  • Total ⁇ was extracted from 130 mg of callus derived from rice scutellum induced by the method described in (1) above using a Measy plant mini kit (QIAGEN).
  • cMA was synthesized from GeneRacer Kit (Invitrogen, Inc.).
  • the DNA inserted into the obtained plasmid was purified using T7 primer (5'-TAATACGACTCACTATAGGG-3 '; SEQ ID NO: 7) and T3 primer (5'-MTT CCCTCACTAAAGGG-3'; SEQ ID NO: 15).
  • T7 primer 5'-TAATACGACTCACTATAGGG-3 '; SEQ ID NO: 7
  • T3 primer 5'-MTT CCCTCACTAAAGGG-3'; SEQ ID NO: 15.
  • the 5'-side and 3'-side nucleotide sequences of the inserted DM fragment were determined.
  • the nucleotide sequence on the 5 'side of clone # 31 is shown in SEQ ID NO: 22, and the nucleotide sequence on the 3' side is shown in SEQ ID NO: 23.
  • PCK reaction was performed using one of the synthesized cMA 50 «1.
  • Primers used for the PCR reaction are OsAl-1F (5'-TGTCTTCAGTCATGATGACAAGCGA-3 '; SEQ ID NO: 24) and OsAl-2R (5'-CAAGCTATCTAAAACTTTTCAGAAGATGG-3'; SEQ ID NO: 25).
  • the reaction was performed using PfuTurbo Hotstart DNA Polymerase (Stratagene) .PfuTurbo Hotstart DNA Polymerasei, the reaction buffer included, 200 ⁇ ⁇ each of dATP, dTTP, dCTP, dGTP, ⁇ each of OsAl-IF and 0sAl This was carried out using -2R at a liquid volume of 501. Using GeneAmp PCR system 9700 (PE Applied Biosystems), 95 ° C for 2 minutes, 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 4 minutes, 40 cycles Repeated. Finally, the reaction was performed at 72 ° C for 10 minutes.
  • PfuTurbo Hotstart DNA Polymerasei the reaction buffer included, 200 ⁇ ⁇ each of dATP, dTTP, dCTP, dGTP, ⁇ each of OsAl-IF and 0sAl This was carried out using -2R at a liquid volume of
  • the PCR reaction solution was purified using QIAquick PCR Purification Kit (QIAGEN).
  • QIAGEN QIAquick PCR Purification Kit
  • T7 primer (5′-TAATACGACTCACTATAGGG-3 ′; SEQ ID NO: 7),
  • T3 primer (5, -AATTAACCCTCACTAAAGGG -3 '; SEQ ID NO: 15),
  • Primer-78687-F1 (5 '-AGGAGGCATGGACACAAGAAGAGGAAAT-3'; SEQ ID NO: 18), Primer
  • Primer 0sAl-6F (5, -TACTCATGATGAAAGCACGG-3 'SEQ ID NO: 29),
  • SEQ ID NO: 31 The encoded amino acid sequence is shown in SEQ ID NO: 32.
  • the amino acid sequence of SEQ ID NO: 32 contains a myb-binding region of three repeats, and the gene encoded by this sequence was designated as 0s3EniybAl.
  • 0s3RmyMl cDM Shows high similarity in the N-terminal region to the amino acid sequence of MB78687, but differs in the C-terminal region.
  • BAB78687 is different from 0s3RmybAl after the amino acid at the 783rd position.
  • 0s3RmybAl is composed of 993 amino acids. This is thought to be due to the difference in the prediction of the splicing site when predicting the structural region of BAB78687 from the genome sequence ( Figures 1, 2, and 3).
  • the function of the isolated 0s3EmybAl was confirmed as its ability to activate transcription of the CYM gene containing the MSA regulatory sequence in the promoter region.
  • pCR4-0s3RmybM was digested with EcoRI, and the excised MA fragment containing 0s3RmybM was inserted in the sense direction into a site generated by digesting pEXP35S with EcoRI to construct pEXP_0s3RmybAl.
  • pE XP-0s3RmybAl is a plasmid that expresses the full length 0RF of 0s3RmyM1 by the cauliflower mosaic virus (CaMV) 35S promoter.
  • a plasmid having substantially the same function as pEXP-0s3RraybAl can be constructed as follows. Cut pBI221 (Clontech) with EcoEI and Sacl, blunt the protruding end of the cut DNA with Klenow fragment, cut pBluescript (SK-) with Xhol and smooth it with Klenow fragment. Upon insertion, plasmid pTN is constructed. Cleavage pBI221 with Pstl, blunt the protruding end using Klenow fragment, further cut with Xbal, cut out MA fragment, cut pTN with Notl, blunt the protruding end with Klenow fragment, and further Xbal When inserted into the site generated by cleavage with, PP35S plasmid is constructed.
  • pP35S plasmid is a plasmid having a plurality of restriction enzyme cleavage sites between one CaMV 35S promoter and one terminator of nopaline synthase.
  • pCR4-0s3RmybM is digested with EcoRI, and the excised DM fragment containing 0s3EmybAl is inserted in the sense direction into a site generated by digesting pP35S with EcoRI to construct pP35S-0s3RmybAl.
  • pP35S-0s3IybAl is a plasmid that expresses the entire 0RF of 0s3RmybAl by the CaMV 35S promoter.
  • pEXP-GUS is a plasmid that expresses GUS by the CaMV 35S promoter.
  • pBI221 (manufactured by Clontech) can be used as a plasmid having substantially the same function as pEXP-GUS.
  • the pEL-null Vector plasmid (Promega) is cut with BamHI and Nhel, and the generated fragment is cut into the site generated by cutting pBI-221 (Clontech) with Xba! [and BamHI. I entered. After cutting this plasmid with Xbal and Sacl, the protruding end was blunted using a Klenow fragment, and the cut-out DM fragment was removed. Then, self-ligation was carried out to construct B-LUC plasmid.
  • R-LUC Plasmid is a plasmid that expresses Luciferase (E-LUC) derived from Renilla by the CaMV 35S promoter.
  • the PD0432 plasmid (Nishiuchi et al., Plant Mol. Biol., 29: 599 (1995)) was cleaved with Hindlll and Sacl, and the resulting DM fragment was cleaved with pBI221 (Clontech) using Hindlll and Sacl.
  • PUC-LUC was constructed by inserting into the site excluding the DM fragment containing the CaMV 35S promoter region.
  • One region of the CYM promoter was adjusted by PCR using genomic MA prepared from Catharanthus roseus by a conventional method for Type I.
  • CYM3 (5'-CCGGATCCTTCAATAGAATTTCTTCCA 3 '; SEQ ID NO: 56) and CYM51 (5'-CCAAGC TTACCCATAAATTGTTGGTAAA-3'; SEQ ID NO: 57).
  • CYM promoter-LUC plasmid is a plasmid in which luciferase (LUC) is expressed by a CYM promoter containing three MSA sequences as control sequences.
  • Protoplasts were prepared by the method of Evans et al. From the tobacco cultured cells BY2 on day 3 after subculture into a new 100 ml LSD liquid medium (Nagata et al. (1981) Mol. Gen. Genet. 184: 161) (J vans et al.). (1983) Int. Eev. Cytol. 33:53). That is, BY2 cells were centrifuged at room temperature at 2,000 rpm, and the cells were collected from the LSD liquid medium. 100 ml of N2 medium (12 Cellulase “0N0ZU A” RS (manufactured by Yakult), 0.5% Hemicellurase (SIGMA) Ltd.), 0.
  • the cells were collected by centrifugation at 500 rpm and at room temperature, and mixed with 40 ml of M medium (4.6 g / l Murashige Sukug medium mixed salt (Wako Pure Chemical Industries, Ltd.), 100 mg / l casamino acid, lOOmg / 1 myo inositol 2.8 g / l L-proline, 97.6 mg / l MES ⁇ lmg / 1 Thiamin-HC1, 357 mg / l KH 2 P0 "102.6 g / l Sue rose, pH 5.7). Spinning and centrifugation were performed at room temperature for 10 minutes to recover protoplasts present in the upper layer of the medium.
  • M medium 4 g / l Murashige Sukug medium mixed salt (Wako Pure Chemical Industries, Ltd.)
  • 100 mg / l casamino acid 100 mg / lOOmg / 1 myo inositol 2.8 g / l L-pro
  • Plasmid DM was introduced into the obtained protoplasts by the PEG method (Bilang et al. (1994). In Plant Molecular Biology Manual, pp. Al, 116.). That is, the obtained protoplasts were washed with 40 ml of W5 (15 mM NaCl, 124 mM CaCl 2 , 5 mM KC1, 5 mM glucose. PH 5.8), and then collected by centrifugation at room temperature, 500 rpm, and 3 minutes. This washing operation was repeated three times. After washing, the protoplasts were adjusted to a concentration of 2 ⁇ 10 5 / ml using MMM (15 mM MgCl 2 , 0.1% MES, 0.5 M Mannito pH 5.8).
  • Protoplast 250 1 suspended in MMM was dispensed into a test tube, and 201 of a plasmid DM solution was added. Gently stirred for Chi the PEG solution (0. 4M mannitoK 0. 1M Ca ( N0 3) 2 solution added PEG4000 to be 40% w / v, adjusted to pH 8, autoclave) 250/1 In addition, the mixture was gently stirred. Finally, 5 ml of a medium containing 0.4 M mannitol was added to the LSD liquid medium, and the cells were cultured in the dark for 20 hours. After the culture, the cells were collected by centrifugation at room temperature, 500 rpm, and 3 minutes, and the LUC and R-LUC activities were measured. These substrates were measured using a Luminometer-LB955 (Berthold) using a Dual-Lucif erase Reporter assay system (Promega).
  • Standardization of the transfection efficiency between transfected samples was performed by simultaneously introducing R-LUC plasmid expressed by Renilla luciferase by the CaMV 35S promoter and detecting LUC activity by the activity of Renilla luciferase.
  • PEXP-0s3RmybAl a plasmid expressing the full length of 0s3BmybAl by the CaMV 35S promoter
  • pEXP-GUS a plasmid expressing GUS by the CaMV 35S promoter
  • the CYM promoter-LUC plasmid and R-LUC plasmid described above were used.
  • the introduction was performed in 5 replicates. About the combination of plasmides
  • the nucleotide sequence of the MA encoding N1: mybAl used in the present invention is shown in SEQ ID NO: 50, and the amino acid sequence is shown in SEQ ID NO: 51.
  • the nucleotide sequence of MA encoding NtmybA2 is shown in SEQ ID NO: 52, and the amino acid sequence is shown in SEQ ID NO: 53.
  • the nucleotide sequence encoding NtmybB is shown in SEQ ID NO: 54, and the amino acid sequence is shown in SEQ ID NO: 55.
  • NtmybA DNA encoding NtmybA2 and NtmybB was isolated using the Yeast One-hybrid system (Clontech) (Ito et al., Plant Cell, 13: 1891 (2001)).
  • CMA prepared from BY 2 cells on the second day of culture was inserted into pGADIO plasmid to construct a cDNA library.
  • a histidine synthase (HIS) -deficient yeast strain in which a reporter gene in which a histidine synthase (HIS3) is functionally fused with the MCKl promoter, which is a promoter containing the MS ⁇ sequence, was inserted into the chromosome was created.
  • the cMA library was transformed.
  • the transformed yeast was selected using a histidine-free medium, and the nucleotide sequences of cMA inserted into three plasmids (0H53, 0H60, 0H88) recovered from the growing colonies were determined, and NtmybAl, NtmybA2, A DM encoding NtmybB was obtained.
  • OH53 plasmid encodes NtmybAl]) NA fragment
  • 0H60 plasmid contains DNA encoding full-length NtmybA2
  • 0H88 plasmid contains MA encoding full-length MmybB.
  • the 3 ′ end sequence was determined using the 3 ′ EACE method, and pGEMe-0H53i6 plasmid into which the full-length cDNA of NtmyMl was inserted was obtained.
  • MAs can be more easily isolated using PCK or hybridization.
  • hybridization screening of the library constructed on plasmid phage may be performed using cMA prepared from BY2 cells in the logarithmic growth phase.
  • the probe used can be prepared with reference to DM described in SEQ ID NO: 50 for NtraybAl, MA described in SEQ ID NO: 52 for mybA2, and DM described in SEQ ID NO: 54 for NtmybB. I can do it.
  • cMA prepared from BY2 cells in logarithmic growth phase is used for type III.
  • the primer can be designed with reference to the DNA described in SEQ ID NO: 50 for NtmybM, the DNA described in SEQ ID NO: 52 for NtmyM2, and the DM described in SEQ ID NO: 54 for NtmybB.
  • a DNA fragment obtained by cutting NtmybA2 or NtmybB from 0H60 or 0H88 using a restriction enzyme can be obtained by appropriately adding a restriction enzyme recognition sequence to a PCR primer. is there.
  • PEXP-NtmybA2 and pEXP-NtmybB plasmids expressing NtmybA2 and NtmybB were constructed by the cauliflower mosaic virus (CaMV) 35S promoter. At the site generated by cutting pEXP35S with Sail, the MA fragment cut out by cutting 0H60 and 0H88 with Sail is sent.
  • a plasmid having substantially the same function as these plasmids can be constructed as follows.
  • PP35S-NtmybA2 and pP35S-NtniybB are constructed by providing a DM fragment cut out by cutting 0H60 or 0H88 with Sail on a site generated by cutting pP35S plasmid with Sail. That is, pP35S-NtmybA2 and pP35S-NtniybB are plasmids in which NtniybA2 or NtmybB is expressed by the CaMV 35S promoter.
  • NtmybA2 is a transcriptional activator of the NACK1 and CYM genes.
  • the functional region involved in the ability of MisybA2 protein to activate transcription is unknown. Therefore, in order to search for this functional region, mutants in which the NtmybA2 protein was deleted from the C-terminal side were created, and the ability of these mutants to activate transcription of the NACK1 gene was measured. The functional area that regulates the function was determined.
  • a deletion MA fragment was prepared by PCR using pEXP-NtmybA2 as type III.
  • the primer used for PCR was primer 35S0 (5'-TATCCTT CGCAAGACCCTTC-3 '; SEQ ID NO: 48) and (i) primer A2-T1-TAG (5'-CCGTCGACTATGCA GCCTCGTCAAACATAA-3'; SEQ ID NO: 43)
  • the primer is A2-T2-TAG (5,-CCGTCGACTA CCACAGCCTAAATGGAGTA-3 '; SEQ ID NO: 44).
  • the primer is A2-T3-TAG (5'-CCGTCG ACTATATGCTCGAATTTTCGTTCAC-3 '; No. 45), (v) for primer A2-T4-TAG (5'-CC GTCGACTAGCATTCTGAAGCTTCCTCC -3 '; SEQ ID NO: 46), (vi) for primer A2-T5-TAG (5'-CCGTCGACTACTTTTTGACGGAACTATTCC-3'; SEQ ID NO: 47) was used.
  • plasmid having substantially the same function as the plasmids (i) to (vi) can be constructed as follows.
  • the plasmids (viii), (ix), (xi), and (xii) form a deletion DNA fragment using PCK using pP35S-N "tmyM2 as type III.
  • primer 35S0 5'-TATCCTTCGCAAGACCCTTC-3 '; SEQ ID NO: 48
  • primer (A2-T1-TAG 5, -CCGTCGACTATGCAGCCTCGTCAAACATAA-3') for (vii);
  • primer A2-T2-TAG 5, -CCGTCGACTACCACAGCCTAAATGGAGTA-3 '; SEQ ID NO: 44
  • primer A2-T3-TAG 5'-CCGTCGACTATATGCTCGAATTTTCGTT CAC-3) '; SEQ ID NO: 45
  • (xi) for primer A2-T4-TAG 5'-CCGTCGACTAGCATTCTGAAGCTT CCTCC-3 '; SEQ ID NO: 46
  • primer A2-T5-TAG 5'-CCGTCGACTACTTTTTGACG GAACTATTCC-3 '; SEQ ID NO: 47) is used.
  • the genomic MA prepared from tobacco cultured cells BY-2 by a conventional method was transformed into type III.
  • the primers used in the PCB reaction were NM1P-3 (5'-, CCGGATCCTCTAGATTTGCGCCTGAGATCTGAG-3 '; SEQ ID NO: 58) and NAK1P-5 (5'-CCAAGCTTCA TAAGCCGATAGAATTCACC-3'; SEQ ID NO: After cutting the amplified NACK1 promoter region with BamHI and Hindlll, insert it into the site generated by cutting BamHI and Hindlll of pUC-LUC to construct the MCK1 promoter-LUC plasmid. That is, the NiVCKl promoter-LUC plasmid was used as a control sequence. This is a plasmid in which LUC is expressed by the NACK1 promoter containing two MSA sequences.
  • Plasmid was introduced into BY-2 protoplasts by the method described in (3) of Example 3.
  • As the effector plasmid a plasmid expressing the NtmyM2 deletion mutant from (i) to (vi) of the above (1) and a plasmid expressing pEXP-NtciyM2, a plasmid expressing full-length NtmybA2, and GUS PEXP-GUS was used.
  • MCK1 promoter-LUC plasmid was used as a reporter.
  • the transcriptional activation of the reporter gene was measured as LUC activity.
  • the method for measuring LUC and B-LUC activities was the same as in Example 3.
  • the value obtained by standardizing LUC activity with R-LUC activity was defined as LUC specific activity.
  • the LUC specific activity of pEXP-NtmyM2 was about 4-fold.
  • the LUC specific activity is higher than that of pEXP-NtmyM2.
  • the LUC specific activity is increased by about 45 times.
  • the plasmid (iv) was introduced, the LUC specific activity was reduced to about the same level as that of pEXP-NtmybA2 as compared with (iii).
  • the LUC activity was lower than in pEXP-NtmybA2.
  • the C-terminal region from amino acid 631 of the MmybA2 protein is a region that negatively regulates the NtmybA2 transcriptional activation ability
  • the amino acid sequence from 413 to 630 is a region that promotes the transcriptional activation ability It is clear that it works as Furthermore, the ability to activate transcription of NtmybA2 can be dramatically improved by deleting the sequence from the 569th amino acid to the C-terminal side, especially from the 631th to the C-terminal. It was shown that deletion of amino acids up to 243 and deletion of amino acids from position 243 to the C-terminus can reduce the ability to activate transcription of NtmybA2 (FIG. 5).
  • NtmybA2T4 using amino acids 1-242 of the NtmybA2 protein and NtmyM2T5 using amino acids 1-187 of the NtmybA2 protein had lower transcriptional activation ability than full-length NtDiybA2. This is because the ability to activate transcription decreases or disappears, and NtmybA2T4 or NtmyM2T5 binds to the MSA sequence of the target promoter. To work negatively Is shown. To more clearly demonstrate the dominant negative function of NtmyM2T5, we quantified the transcriptional activation of the CYM promoter by co-expression of NtmyM2 and NtmybA2T5 and IrtmybB and NtmyM2T5.
  • the BY-2 protoplast adjusted by the method described in (2) of Example 3 was added to the NACK1 promoter 1: LUC plasmid (10 ⁇ g / sample) and E-LUC plasmid (.1 ⁇ / sample).
  • LUC plasmid (10 ⁇ g / sample)
  • E-LUC plasmid (.1 ⁇ / sample)
  • pE XP-NtmybA2 (10 g / sample + pEXP-NtmybA2T5 (10 g / sample)
  • iipEXP-Ntmyb g / sample) + pEXP-GUS (10 g / sample) were introduced into (3) in Example 3.
  • LUC activity and IHiJC activity were measured by the method described. Plasmid introduction was performed in 5 replicates.
  • Luc-plasmid (_iog / sample) and K-LUC plasmid ( ⁇ ⁇ g / sample), EXP-NtmybB (10 ⁇ g / sample) + pEXP-MmybA2T5 (10 ⁇ g / sample) Sample) or pEXP-NtmybB IO ⁇ g / sample) + pEXP-GUS (10 ⁇ g / sample), and measure LUC activity and R-LUC activity by the method described in Example 3, (4). It was measured.
  • pBIHm-NtmybA2T2 is cleaved with Sail, and the DM fragment containing NtmybA2T2 to be excised is removed and the DM fragment generated by cleaving pEXP NtmybB or pEXP-MmyM2 with Sail is inserted into the site to be generated, and ⁇ -N "tmybB, pBIHm-N" tmybA2 were constructed.
  • Plasmid pTH2 (Chiu et al., Curr Biol 1996 Mar 1; 6 (3): 325-30) was digested with Notl, sGFP produced by blunting the protruding ends using Klenow fragment and then digesting with Sail.
  • the contained DM fragment was cut from pBIHm-NtmyM2T2 with Sail and Smal, and NtmybA2T2 was included.)) The NA fragment was removed and inserted into the site generated to construct pBIHm-GFP.
  • pBIHm-NtmybA2T2 (i) pBIHm-NtmybB, (iii) pBIHm-NtmybA2 and (iv) pBIHm-GFP are each driven by a CaMV 35S promoter, and! It is a plasmid vector that expresses itmybA2T2, NtmybB, Ntmy M2, and sGFP, and is a binary vector that can be used to transform plants by the agrobacterium method. Plants transformed with these plasmids can select transformants by using hygromycin.
  • a plasmid having substantially the same function as the above (i) to (iv) can be constructed as shown below. After cutting PP35S-NtmyM2T2 with Sacl and Apal, the DNA fragment generated by blunting the protruding end with Klenow fragment, cutting pBI-KHL described in International Application No.PCT / JP02 / 12268 with Sail, and enow fragment The site generated by blunting the protruding ends is used to construct pBIHni35S-NtniyM2T2.
  • pBIHm35S-MmyM2T2 is cleaved with Sail, the cut-out MA fragment containing NtmybA2T2 is removed, and the MA fragment generated by cutting pP35S-NtmybB or pP35S-NtmybA2 with Sail is inserted into the generated site, and pBIHm35S -Construct NtmybB, pBIHm35S-N1; myM2.
  • DNA containing sGFP generated by cutting plasmid pTH2 (Chiu et al., Curr Biol 1996 Mar 1; 6 (3): 325-30) with ⁇ and Sail and blunting the protruding ends using Klenow fragment Fragment to pBIH After cleaving DI35S MmybA2T2 with Sail, the protruding end is blunted using a Klenow fragment, and the DM fragment containing Ntmy bA2T2 is removed to enter a site generated to construct pBIHm35S-GFP.
  • pBIHm35S-NtmybA2T2 N (vi) pBIHm35S-NtmybB, (vii) pBIHm35S-Ntm ybA2 and PBIHm35S- GFP, respectively by CaMV 35S promoter one Ku, a plasmid Dobekuta one expressing Mm yM2T2, NtmybB, NtmybA2, sGFP , This is a binary vector capable of transforming plants by the agrobacterium method. Plants transformed with these plasmids can select transformants by using hygromycin.
  • Agrobacterium tumefacience EHA101 strain was transformed using the binary vectors (i) to (iv) constructed in the above (1), and these plasmids were retained.
  • Arabidopsis thaliana co-type Col-0 was transformed using the bacterium by the Floral dip method (Clough et al. (1998) Plant J. 16: 735).
  • the seeds obtained from the flower buds infected with the agrobacterium were sterilized using hypochlorous acid and sterile water, and sown on MS medium containing 25 ⁇ / ⁇ 1 of hygromycin and lOO ⁇ g / ml of carpenicillin. Transformed plants capable of growing on a medium supplemented with hygromycin were selected.
  • the selected transformed plants were transplanted to a solidified MS medium (MS inorganic salt, 30% sucrose, 0.4% gellan gum) in a square type No. 2 petri dish (manufactured by Eiken Chemical Co., Ltd.), and allowed to stand vertically.
  • the plants were cultivated under the conditions of 16 hours of illumination, 8 hours of darkness, and 21 ° C. Twenty-five days after sowing, the length of the main root was measured.
  • the control root transformed with pBIHm-GFP had a root length of 31mn!
  • Reading Frame A A DNA fragment of Reading Frame A commercially available from Invitrodin was introduced into a site obtained by cutting pUC19 (Takara) with Smal to generate pUC- ⁇ .
  • Insert Reading Frame A which is obtained by cutting pUC-RFA by cutting BamHI and Spel into a site obtained by cutting the plasmid pBI-ML described in International Application No.PCT / JP02 / 12268 with BamHI and Spel, and inserting pDESTBI_l It was constructed.
  • Plasmid pENra2B (manufactured by Invitrogen) was cut with Kpnl and Xhol, and a DNA fragment cut out with Kpnl and Xhol was inserted into a site generated by cutting pEXP-NtmyM2T5 to construct pENTE-NtmyM2T5.
  • pDESTBI-1 and pENTE_N1; mybA2T5 were mixed, and pDBIHnNtmybA2T5 was constructed by site-specific recombination reaction using Gateway LR Clonase mix (Invitrogen). The reaction using Gateway LE Clonase mix was performed according to the protocol attached to the reagent.
  • pDBIHm-NtmyM2T5 is a plasmid vector expressing NtmybA2T5 by the CaMV 35S promoter, and is a binary vector capable of transforming plants by the agrobacterium method. Plants transformed with these plasmids can select for transformants by using hygromycin. You.
  • a plasmid having substantially the same function as pDBIHm-NtmybA2T5 can be constructed as follows. After cutting the plasmid pP35S-NtmybA2T5 with SacII and Apal, the protruding ends are blunt-ended using a Klenow fragment. The excised DM fragment is digested with pENTE2B (manufactured by Invitrogen) using Kpnl and Xhol, and the protruding end is blunted using a Klenow fragment, and inserted into a site generated to construct pENTR35S-MmyM2T5.
  • pENTE2B manufactured by Invitrogen
  • pDESTBI-1 and pENTR35S-NtraybA2T5 are mixed, and pDBIHm35S-MmybA2T5 is constructed by a site-specific recombination reaction using Gateway LE Clonesase mix (manufactured by Invitrogen)
  • the reaction using Gateway LR Clonase mix is a reagent
  • PDBIHm35S-NtmybA2T5 is a plasmid vector that expresses NtmybA2T5 ′ with the CaMV 35S promoter, and is a binary vector that can be used to transform plants by the agrobacterium method. Plants transformed with the plasmid can be used to select transformants by using hygromycin.
  • the CYM promoter-Yuichi region was adjusted by PCR using the genomic DM prepared from Nitinii perforatum in a conventional manner for type I.
  • the primers used for the PCR reaction are CYM3Pst (5'-AACTGCAGTCTTCAAT AGAATTTCTTCCAG-3 '; SEQ ID NO: 60) and CYM5-1 (5, -CCAAGCTTACCCATAAATTGTTGGTAAA-3'; SEQ ID NO: 57).
  • pPCYM-NtmybA2T2 is a plasmid vector that expresses N1; myM2T2 by the CYM promoter, and is a binary vector capable of transforming plants by the agrobacterium method. Plants transformed with this plasmid can be used to select transformants by using kanamycin.
  • pPCYM-Ni; DiybA2T2 plasmid can be constructed as follows. It can be constructed by inserting a DM fragment cut out by cutting pP35SNtmybA2T2 with Sail into a site generated by cutting PPZP211-CYM with Sail.
  • the Arabidopsis thaliana ecotype Col-0 was transformed by the method shown in Example 5, and the transformation was carried out. Plants were selected. Selection of transgenic plants transformed with [pDBIHm-NtD] ybA2T5 and pBIHm-GFP was performed using pPCYM-NtmyM2T2 on an MS medium containing 25 / J g / ml of hygromycin and 100 g / ffll of carbenicillin.
  • transformed plants containing kanamycin 50 / g / ml and carbenicillin 100 g / ml and capable of growing on MS ground were selected. Transformation lines were transplanted to soil mixed with vermiculillat and peat moss in a ratio of 1: 1. After cultivation, cultivation was performed under the conditions of 16 hours of light, 8 hours of darkness, and 21 ° C. From these lines, next-generation seeds obtained by selfing were obtained and used for analysis.
  • Next-generation seeds obtained by self-propagation of plants obtained by transformation are sterilized using hypochlorous acid and sterilized water, and solidified in a square No. 2 petri dish (manufactured by Eiken Chemical Co., Ltd.). Salt, 30% sucrose, 0.4% gellan gum) and subjected to vernalization at 4 ° C in the dark for 4 days. After the vernalization treatment, the plants were allowed to stand vertically and cultivated under the conditions of 16 hours of illumination, 8 hours of darkness, and 21 ° C. Three days after vernalization, the root length was measured.
  • LgJ and LGFPJ plasmids used for VIGS were provided by Assistant Professor Yuichiro Watanabe of the Department of Life and Environmental Sciences, graduate School of Arts and Sciences, The University of Tokyo.
  • LgJ is a plasmid containing MA, which encodes a virus that is a modification of the plant virus, Tomato mosaic virus (ToMV).
  • the modification points of ToMV are that amino acid substitution is introduced into the region that encodes the replication enzyme to reduce the symptoms by reducing the amount of virus growth, and that a new promoter sequence is introduced to introduce foreign MA. That the recognition sequence of Gateway system is inserted downstream of the promoter for exogenous DNA expression, and that foreign MA can be inserted using the LR reaction marketed by Invitrogen. Is mentioned.
  • In vitro ENA Transcription from LgJ Plasmid provides recombinant infectious virus ENA that is infectious to plants.
  • a double-stranded DNA derived from the foreign DM is expressed in the plant as a replication intermediate, and when the DNA derived from the infected plant is used as the foreign DM, the endogenous plant in the corresponding plant is expressed. Sex gene expression is suppressed.
  • LGFPJ DNA encoding GFP has been inserted into LgJ, and virus infection can be confirmed by expression of GFP.
  • a DM fragment containing a portion of tmybA2 cMA was amplified. PyrobesKTakara) was used for these PCR reactions. These MA fragments were inserted into a site generated by cutting pBluescripi; (Stratagene) with EcoRV to construct pBS-VA1 and pBS-.
  • the PBS-VA2 was cut with Smal and Sail, the cut DNA fragment was cut with pBS-Ml with Hindlll, blunted with Klenow fragment, and further cut with Sail and inserted into the resulting site.
  • pBS-VA1A2 was constructed.
  • pBS-VMA2 as a type II primer B1T3 (5'-GGGGCACAAGTTTGTACAAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG-3 '; SEQ ID NO: 41) and a primer B2T7 (5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAATACGACTCACTATAGGGC-3';
  • the DM fragment containing a part of NtmybAl and the DM fragment containing a part of NtmybA2 were connected to evening dem to obtain a DNA fragment having attBl and ai: tB2 sequences of a Gateway system (Irwi trogen) added to both ends.
  • This MA fragment and the plasmid pD0NR201 were mixed, and a BP reaction was performed using BP Clonase (Invitrogen) to obtain pDON OR ⁇ .
  • pD0Nl__VAlA2 was mixed with LgJ and subjected to LR Clonase (Invitrogen) reaction to obtain.
  • the reaction using BP Clonase and Clonase was performed according to the instructions attached to the reagent.
  • 141 sterile water, 10 ⁇ 1 linearized LA1A2J were mixed and incubated at 37 ° C for 5 minutes.
  • 10 ⁇ l of ⁇ 7 RNA Polymerase (20 units / ⁇ K Roche) was added, and the mixture was incubated at 37 ° C. for 25 minutes.
  • 20 mM GTP was added and incubated at 37 ° C. for 35 minutes.
  • the reaction mixture was subjected to electrophoresis using agarose gel, and it was confirmed that RNA was transcribed.
  • LA1A2J RM was inoculated into Nicotiana benthamiana. Cultivated at 25 ° C, sprinkle lightly on the top two leaves of Nicoti ana benthamiana at the 4-5 leaf stage, and apply 5 ⁇ 1 per leaf Of LA1A2J RNA. After inoculation, the inoculated leaves were washed with sterilized water within 5 minutes. Five individuals were inoculated and cultivated at 23 ° C after inoculation. As a control, LGFPJ was subjected to in vitro RNA transcription in the same manner as LA1A2J, and inoculated with LGFPJ fflA.
  • primers to detect NtmyMl and NtmyM2- A2-583F (5'-GTACAATGCTTGCACCGGTGG-3 '; SEQ ID NO: 33) and primer A2-1089R (5'-TGTAGACTGGGAACAGCCAGC-3'; SEQ ID NO: 34) are used.
  • primers to detect NtmyMl and NtmyM2- A2-583F 5'-GTACAATGCTTGCACCGGTGG-3 '; SEQ ID NO: 33
  • primer A2-1089R 5'-TGTAGACTGGGAACAGCCAGC-3'; SEQ ID NO: 34
  • EFF 5'-AGACCACCAAGTACTACTGC-3 '; SEQ ID NO: 35
  • primer EF R 5, -GTCAAGAG CCTCAAGGAGAG-3'; SEQ ID NO: 36
  • Epidermal cells and stomatal guard cells in the leaves of tobacco plant individuals in which the expression of the endogenous NtmybAl and NtmybA2 of (2) is suppressed are observed.
  • the epidermal cells are peeled off using forceps, and nuclear staining is performed with an equal mixture of lactic acid and propionic acid containing 1% olcein.
  • these cells are observed using a differential interference microscope, multinucleated cells having multiple nuclei are observed.
  • large and small nuclei are observed in nuclei present in multinucleated cells.
  • Multinucleated cells indicate that nuclear division progresses and cytokinesis is inhibited, and the presence of nuclei of different sizes indicates abnormal fission and doubling of the nuclear chromosome due to the skipping of the M phase.
  • NtmybAl and Nt; inybA2 are suppressed have an effect on the steps of entry, progression, and termination of M phase. From the above, it becomes clear that NtmybAl and NtmybA2 are genes essential for normal progression of M phase.
  • the DM content in the nucleus in the leaf of the tobacco plant individual in which the expression of the endogenous KmyMl and NtmybA2 of (2) is suppressed is measured. Cut the leaf three upper layers from the inoculated leaf, add nuclei extraction buffer contained in 1 ml of Cystain UV Precise P (High Resolution DNA staining kit> Pratec) in a petri dish, and use a razor blade. And shred for 1 minute. After maintaining at room temperature for 10 minutes, the solution was filtered using Partec Cell Tries Disposable filter units (50 mesh, manufactured by Pi; atec), and the filtrate was added to Cystain UV Precise P (High Resolution DNA staining kit, manufactured by Pratec). Add 2 ml of the included staining buffer. The measurement is performed using Ploi dy Analyzer PA (Pratec).
  • pBI121 (manufactured by Clontech) is shown as type II and shown as SEQ ID NO: 61 (5'-GGAATTCGTGTGATATCTACCCGCT TCG-3 '; SEQ ID NO: 61) and SEQ ID NO: 62 (5'-CGGGATCCGTTTTTCACCGAAGTTCATGC-3'; SEQ ID NO: 62) PCR was performed using the primers to amplify the MA fragment containing the GUS 0RF. After digesting this DNA fragment with EcoRI and BamHI, pBluescrip1; II (SK +, manufactured by Stratagene) was inserted into the site generated by digestion with EcoRI and BamHI to construct pGUSl.0.
  • a PCR reaction was performed using OH60 as a type II primer A2ia3 (5, -TTGAATTCCAAGTCTTGGGCTTGACAGAAGAG-3 '; SEQ ID NO: 63) and primer A2ia5 (5'-TTCTCGAGAAGCTTCGTCAAGAATCATTCTCTGATCTG-3'; SEQ ID NO: 64).
  • the obtained DM fragment encoding a part of NtmybA2 was digested with EcoI and Xhol. This DNA fragment was inserted into a site generated by cutting pGUSl.0 with EcoKI and Xhol to construct PGUS-A2.RNM-a.
  • a PCR reaction was carried out using the primer A2ib3 (5'-TTGGATCCAAGTCTTGGGCTTGACAGAAGAG 3 '; SEQ ID NO: 65) and the primer A2ib5 (5, -CCTCTAGACTAGTGTCGACCGTCAAGAATCATTCTCTGATCTG-3'; SEQ ID NO: 66) with 0H60 as the type II.
  • a DM fragment encoding a portion of NtniybA2 was cut with BamHI and Xbal. This DNA fragment was inserted into a site generated by cutting pGUS-A2. MAi-a with BamHI and Xbal to construct GUS-A2.Ki.
  • PCR reaction was carried out using primer Bia3 (5'-TTGAATTCTTGTTGCCTGATAAGGTCGTCTC-3 '; SEQ ID NO: 67) and primer -Bia5 (5'-TTTCTCGAGAAGCTTGAATTTGCCTAGTAGGTTAGTGC-3'; SEQ ID NO: 68) with 0H88 as type I,
  • primer Bia3 5'-TTGAATTCTTGTTGCCTGATAAGGTCGTC-3 '; SEQ ID NO: 67
  • primer -Bia5 5'-TTTCTCGAGAAGCTTGAATTTGCCTAGTAGGTTAGTGC-3'; SEQ ID NO: 68) with 0H88 as type I
  • the obtained MA fragment encoding a part of NtmybB was digested with EcoRI and Xhol. This MA fragment was inserted into a site generated by cutting pGUSl.O with EcoBI and Xhoi to construct pGUS-B.RNAi_a.
  • PCR reaction was carried out using primer 1 Bib3 (5′_TTGGATCCTTGTTGCCTGATAAGGTCGTCTC-3 ′; SEQ ID NO: 69) and primer Bib5 (5′-CCTCTAGACTAGTGTCGACGAATTTGCCTAGTAGGTTAGTGC-3 ′; SEQ ID NO: 70) with 0H88 as type I,
  • primer 1 Bib3 5′_TTGGATCCTTGTTGCCTGATAAGGTCGTCTC-3 ′; SEQ ID NO: 69
  • primer Bib5 5′-CCTCTAGACTAGTGTCGACGAATTTGCCTAGTAGGTTAGTGC-3 ′; SEQ ID NO: 70
  • This DM fragment was inserted into a site generated by digesting pGUS-B.RMi-A with BamHI and Xbal to construct pGUS-B.RMi.
  • RMi was digested with Hindlll and the MA fragment cut out was inserted into the site generated by digesting pPZP211-35S with Hindlll to construct PPZP211-35S: A2RMi.
  • pGUS-B The pGUS-B. ENAi was cleaved with Hindlll and Sail and the MA fragment cut out was inserted into the site generated by cutting pPZP211_35S with HindIII and Sail to construct pPZP211-35S: B: RNAi.
  • pPZP211-35S: A2RNAi, and pPZP211-35S: B: NAi are expressed by the CaMV 35S promoter, in which the partial sequence of mybA2 or the partial sequence of NtmybB is expressed in inverted repeats, and the partial sequence of NtmybA2 in the plant, or
  • This is a plasmid vector in which the partial sequence of NtmybB takes the form of a double-stranded KM, and is a binary vector capable of transforming a plant by the agrobacterium method. Plants transformed with these plasmids can select transformants by using kanamycin.
  • the double-stranded RNA expressed can produce an RNAi effect on MmyM2 or MmybB.
  • PPZP211-35S A2 intestine i
  • pPZP211-35S B: Plasmid that is substantially equivalent in function to RNAi Can be constructed as follows. PP35S is cleaved with SacII and Kpnl and cut out after blunting the protruding ends using ⁇ 4 MA Polymerase.]) M fragment is generated by cutting PPZP211 with EcoRI and Hindlll and then blunting the protruding ends using the Klenow fragment. PGUS-A2. Construction of pPZP211-P35S PGUS-A2.
  • pPZP211-P35S A2 thigh i
  • A1 is a CaMV 35S promoter that expresses a partial sequence of NtmybA2 or a partial sequence of NtmybB in an inverted repeat, and a partial sequence of NtmyM2 in a plant.
  • it is a plasmid vector in which the partial sequence of NtmybB is in the form of a double-stranded RNA, and is a binary vector capable of transforming a plant by the Agrobacterium method. Plants transformed with these plasmids can select for transformants by using kanamycin.
  • PPZP21 1-35S A2RMi
  • pPZP21 35 35S: B: RNAi or pGZ211 as a vector control agronocterium tmmeffaciens LBA4404
  • the tobacco cultured cell BY2 was transformed via the strain (Agorbacterium tumefacience LB A4404 strain).
  • ummefasciens LBA4404 in YEB medium for 2 days was mixed, and co-cultured at 25 ° C in the dark. Two days later, the tobacco cultured cells BY2 are washed with LSD liquid medium, and then seeded on LSD-0.2 gel light medium containing kanamycin SOO g / ml and carbenicillin 300 g / mL. C. Culture was performed in the dark. The expression levels of NtmybA2 and MybB in kanamycin-resistant calli obtained 22 days later were confirmed by RT-PCE. From these calli, total RNA was extracted using Imdtrogen Trizol reagent (Invitrogen).
  • cDM was synthesized using Superscript First-strand synthesis system for ET-PCR (Invitrogen? ⁇ ).
  • a primer was used to detect the primer: 0H60DB1 (5'-CCGGATCCTTCCAGTTCAGCACCATGCTCTG-3 '; SEQ ID NO: 73) and primer OH60DS6 (5'-CCGTCGACCTAAGAGATCTGATAGTTCGATG-3') SEQ ID NO: 74) was used.
  • the primer 0H88Bam5 (5'-CCGGATCCTTCCTCAGTAAAGAAAAGATTG AACTTG-3 '; SEQ ID NO: 71) and the primer 0H88DS2 (5'-CCGTCGACTTAACAGTTAGGATCATTAA CAG-3'; SEQ ID NO: 72) were used to detect and detect NtmybB cMA.
  • a PCR reaction was performed using 1 ⁇ l of 50 ⁇ l of the synthesized cDM. The reaction was performed using Ex taq (Takara), using the reaction buffer attached to Ex taq, 0 ⁇ 1? Of 20011, dTTP, dCTP, dGTP, and each primer at 1 ⁇ M, and The test was performed with a liquid volume of 1.
  • the nuclear DNA content was measured.
  • the method is as follows: For each callus stored frozen, use Cystain UV Precise P (High Resolution DNA staining kii, manufactured by Pratec) i. Was added and mixed after dissolving. After maintaining at room temperature for 10 minutes, the solution was filtered using Partec Cell Tries Disposable filter units (50 ⁇ mesh, manufactured by Pratec), and the filtrate was added with Cys: ain UV Precise P (High Resolution DNA staining kit Pratec). 2 ml of the staining buf fer contained in Pico was added. The measurement was performed using Ploidy Analyzer PA (Pratec).
  • the PPZP21 35 S: A2 Ai transformed callus has an increased 4 C peak indicating the chromosome in S phase and G2 phase, and is further recognized in the vector control. 8C peak showing nucleus with doubled chromosome not found
  • the callus transformed with pPZP211-35S: BI-NAi in which the expression of NtmybB was suppressed, had a decreased 4C peak indicating the chromosome in S phase and G2 phase (Fig. 10).
  • the decrease in 4C indicates that the S and G2 phases have been shortened, that is, the entry into the M phase has been accelerated.
  • Suppressing NtmybB expression accelerates the expression of genes essential for M-phase entry, or increases the expression level, thereby promoting entry into M-phase, resulting in a shorter cell cycle.
  • cell proliferation was promoted and the callus became large.
  • the MA fragment obtained by cleaving OH60 with Sail was inserted into the site generated by cleaving pPZP211-35S with Sail to construct PPZP211-35S: A2.
  • the MA fragment obtained by cutting pEXP-NtmybA2T2 with Sail was inserted into the site generated by cutting pPZP211-35S with Sail to construct PPZP211-35S: A2T2.
  • PPZP211-35S: A2 and pPZP211-35S: A2T2 are plasmid vectors that express NtniyM2 and N3 ⁇ 4yM2T2, respectively, by the CaMV 35S promoter, and are binary plasmids that can be used to transform plants by the agrobacterium method. Vector. Plants transformed with these plasmids can select for transformants by using kanamycin.
  • PPZP211-35S A plasmid having substantially the same function as A2T2 can be constructed as follows. P35S-NtmybA2T2, or the MA fragment obtained by cleaving OH60 with Sail, is inserted into the site generated by cleaving PZP211-P35S with Sail, and pPZP21 to P35S: A2T2 and pPZP211-P35S: A2 To construct. 2) Transformation of cultured tobacco cell BY2
  • pPZP211-35S A2
  • pPZP211-35S Agrobacterium carrying pZP211 as a vector control or pZP211 as a vector control strain 'L. Transformation of cultured tobacco cell BY2 was performed through Agorbacterium tumefacience L BA4404 strain). Transformation of BY2 cells was performed by the method described in Example 11 (2). The expression levels of ⁇ of MmybA2 and NtmybA2T2 of kanamycin-resistant calli obtained after 22 days were confirmed by ⁇ -PCK.
  • CDNA was synthesized using Superscript; First-strand syntesis system for RT-PCR (Invitrogen) with waking as type II.
  • detection of NtmybA2 and MmybA2T2 was performed using primer OH60DB1 (5, -CCGGATCCTTCCAGTTCAGCACCATGCTCTG-3 '; SEQ ID NO: 73) and primer 0H60DS6 (5, -CCGTCGACCTAAGAGATCTGATAGTTCGATG-3'; SEQ ID NO: 74) was used.
  • a PCK reaction was performed using 11 of the synthesized cDNAs 501.
  • the reaction was performed using Extaq (Taliara), using a reaction buffer attached to Extaq, 200 M each of dATP, dTTP, dCTP, dGTP, and each of the primers in a volume of 501. .
  • the steps of 93 ° C for 30 seconds, 56 ° C for 1 minute, and 73 ° C for 1 minute were repeated 24 cycles.
  • the expression of NtniyM2 was higher in the calli obtained by transforming PPZP211-35 S: A2 compared to the vector control.
  • pPZP211-35S Expression of NtmybA2T2 was confirmed in calli obtained by transforming A2T2.
  • the nuclear MA content was measured to examine the cell cycle of the cells constituting these calli.
  • the method was performed in the same manner as (3) in Example 11 described above.
  • the callus constantly expressing NtmybA2 showed a decrease in the peak of 4 C indicating the chromosome in S phase and G2 phase. This tendency was more pronounced in calli that constantly expressed N1 ⁇ 4ybA2T2, a mutant with improved transcriptional activation of NtmybA2 (Fig. 13).
  • the MA fragment obtained by cleaving 0H88 with Sail was inserted into the site generated by cleaving pPZP211 with Sail to construct PPZP211-35S: B.
  • PPZP211-35S: B.RMi plasmid described in (3) of Example 11 was used.
  • PPZP211-35S: B plasmid was used to produce transgenic tobacco in which NtmybB is constantly expressed. Nicotiana bacterium by the leaf-disc method via pPZP211-35S: B. RNAi, pPZP211-35S: B, or Agrobacterium ppmefaciens LBA4404 strain gorbacterium tumefacience LBA4404 strain carrying pPZPSll as a vector control or pPZPSll, respectively. Cultivar SRKNico tiana tabacum ver. SRI) was transformed.
  • the obtained kanamycin-resistant individuals were cultivated to obtain self-fertilized seeds.
  • the obtained seeds are sterilized with ethanol and hypochlorous acid, and then cultured in MS-0.2% gel light containing kanamycin 50 Cig / mL.
  • the seeds were sown on the ground and grown under continuous lighting at 28 ° C.
  • Kanamycin-resistant individuals obtained 12 days after cultivation were transplanted into soil, and plants were grown under continuous lighting at 28 ° C for 25 days. Changes in the expression level of NtmybB ⁇ in the obtained kanamycin-resistant individuals were confirmed by -PCE.
  • Invitrogen Trizol from the plant fresh weight 0.5 to 0.8 g) on day 22 after seeding
  • EM was extracted using reagent (Invitrogen).
  • the cDM was established using the Superscript First-strand syntesis system (RT-PCI Invitrogen).
  • RT-PCI Invitrogen the Superscript First-strand syntesis system
  • NtmybB cDNA was detected using primers 0H88Bam5 (.5'-CCGG ATCCTTCCTCAGTAAAGAAAAGATTGAACTTG-3 '; SEQ ID NO: 71) and primer 1 0H88DS2 (5'-CCGT CGACTTAACAGTTAGGATCATTAACAG-3'; No .: 72) was used.
  • transgenic tobacco (# 6) line that constantly expresses NtmybB the growth was suppressed compared to the vector control, and the transgenic tobacco in which endogenous NtmybB was suppressed by RNAi (# 2) ) Promoted growth compared to the vector control (Fig. 14). Because NtmybB suppresses the expression of genes required for progression to the M phase, in transgenic plants overexpressing NtmybB, the delay in entry and progression to the M phase leads to suppression of cell division and the time required for the cell cycle. It is considered that the phenotype of growth was suppressed as a result of prolonged expression.
  • the amino acid sequences of the MmybAl protein, NtmybA2 protein, and 0s3KmybAl protein are optimally aligned and the results of comparison are shown in FIGS.
  • the region (631-1042 amino acid) that negatively regulates the transcription activation ability of the NtmybA2 protein shown in Example 6 and the transcription activation ability The amino acid sequence also showed high similarity in the region (413-630 amino acids) that promotes motility.
  • NtmybAl, NtmybA2, and 0s3EmybAl which function as transcription activators, have high amino acid similarity in the region that regulates the transcription activation ability, indicating that they have the same control mechanism.
  • the positions of various deletion regions of N'traybA2 shown in Example 6 and the corresponding regions of NtrayMl and 0s3RmybAl protein are indicated by arrows in FIGS.
  • NtmyM2 It is a mutant of NtmyM2, which shows high transcriptional activation ability.
  • NtmybA2Tl, NtmybA2T2, and NtmybA2T3 a particularly high amino acid similarity to NtmybAl and 0s3RmybAl was observed, and amino acids conserved in the three proteins.
  • the sequence is ⁇ myM2Tl, the sequence shown by TPSM! Offl! Near the deletion region is MmyM2T2 or NXXTPXRL (SEQ ID NO: 90), and if NtmybA2T3 is PPRFPSXDXPF (SEQ ID NO: 90) No .: 91) (X represents an arbitrary amino acid).
  • a mutant having the same function as N1; mybA2Tl, NtmybA2T2, or NtrayM2T3 can be produced by deleting the C-terminal side from these conserved sequences.
  • FIGS. 19 to 25 show the results of comparing the amino acid sequences with the amino acid sequences in an optimal manner and comparing the similarities of the amino acid sequences.
  • AtMYB3El and AtMYB3R4 show high similarity to the amino acid sequences of NtmybAl, NtmybA2, and 0s3EmybM in the myb-like DM binding region, and are important for controlling the transcriptional activation ability of Ntmy2. High similarity was also observed in certain areas.
  • SILX! KEXR XLUOPnXsX XXsKK SEQ ID NO: 94, where X is any amino acid, J is I, V,
  • L is any one amino acid
  • 0 S
  • T is any one amino acid
  • U is V, any one amino acid of L
  • chi 5 shows that any one of Amino acids D, E.
  • a unique conserved sequence consisting of 22 amino acids was identified. This 0 conserved sequence indicates that AtMYB3Rl and ⁇ 3 ⁇ 4 function as transcription activators of the cyclin B gene and NACK1 gene, like NtmybAl, NtmybA2, and 0s3RmybA1.
  • the amino acid sequences of AtMY B3K3 and AtMYB3R5 show high similarity to the amino acid sequence of NtmybB in the myb-like DM binding region, and the presence of many similar amino acids in other regions. from binding region four N-terminal Ser to the center SCSSXSX 6 (SEQ ID NO: 95, X in the sequence is any amino acid, X 6 is K, E, D, E, any one of amino H
  • the characteristic conserved sequence consisting of 7 amino acids was identified. This conserved sequence is not found in the amino acid sequences of AtMYB3Rl, A «YB3B4, NtmybA NtmybA2, and 0s3BmyMl. It is shown that.
  • 3Emyb is structurally present in the myb superfamily of plants It occupies a special position in function, and is apparently a factor that regulates transcription of the cyclin B ⁇ gene and the NACK1 gene. It was also found that within the 3Rmyb family, it was possible to separate the transcription-activating subfamily and the transcription-repressing subfamily based on the sequence similarity.
  • 3Emyb used for the amino acid sequence comparison was isolated from Physcomitrella patens, MYB3E-KGenBank accession no. AAF78888, SEQ ID NO: 79, and described as PhpMYB3E-1 in FIGS. 29 to 31) and Adiantum r addianum. AAF67053, SEQ ID NO: 80, described as AdrMYBSR-1 in Figures 29-31) ', MYB3E-KGenBank accession no.
  • AAF78890 isolated from Hordeum vulgare, SEQ ID NO: 81, Figure 29- 31 described as ⁇ 3 ⁇ -1), MYB3E-GenBank accession no. AAF67050 isolated from Secale cereale, SEQ ID NO: 82, described as Sc MYB3E-1 in FIGS. 29-31), isolated from Papaver rhoeas putative Myb-related domain CGenBank accession no. AAF43043.
  • SEQ ID NO: 83 described as ParMYB3R-l in Figures 29-31, AtMYB3Rl (described as ⁇ 3 ⁇ -1 in Figures 29-31), AtMYB3E3 (33 ⁇ in Figures 29-31) -3), AtMY B3R4 (A «YB3R-4 in Figures 29-31), At MYB3E5 (described as A1; MYB3E-5 in FIGS. 29 to 31), MmybAl NtmybA2 MmybB 0s3RmybAl ⁇ hen h c-myb (swissprot accession no. P10242 ⁇ distribution 'J number: 88) o Adiantum raddianunu Hordeum vulgare Since the cMA isolated from cereale is a fragment, the first repeat constituting the myb DNA binding region is not shown in full length.
  • the human c_myb protein (swissproi; accession no. P10242; SEQ ID NO: 88) is encoded by the amino acid sequence from position 43 to position 192, and the amino acid sequence of 3Rniyb isolated from the aforementioned plant. Are arranged in the optimal form. In plant 3Rmyb, the full length of the myb DNA binding region was included, but not Adiairtum raddiaminu Hordeum vulgare ⁇ except for Secale cerealeii. The Aligned Score indicating the similarity of the amino acid sequence by comparison with C-myb is shown below.
  • the Aligned Score is 62 for NtmybAl, 65 for mybA2, 60 for MmybB, 64 for MMYB3E1, 64 for A1: MYB3R3, 63 for AtMYB3R4, 66 for ⁇ 3 ⁇ 5, 66 for PhpMYB3R-1, 66 for PhpMYB3R-1, 66 for ParMYB3R-1, and 60 for 0s3RmybAl.
  • the value was shown. From the above, it became clear that the myb D binding region of plant 3Rmyb is highly conserved with c-myb. In addition, it was revealed that plant 3Rmyb showed an Aligned Score of 60 or more compared to c_myb in the myb MA binding region.
  • MYB # l Myb DNA-binding domain repeat signature in the search results using the MOTIF program (http: // motif. Geno me. Ad.jp/) 1.
  • the three repeats of c myb (consensus sequence that constitutes the myb DNA-binding region shown in parentheses, the sequence shown by the bold black line in the figure) are repeated three times across any 42 amino acids. (The number of amino acids between the arrows in the figure)
  • X is any amino acid
  • J is any one of I, V and L
  • 0 is any one of G, S, T, C and A.
  • One of ⁇ Mi Amino acids, X 7 is K, R, H
  • Any one amino acid, U is H, W, Y, any one of the amino acids F, X 5 is D,
  • E indicates any one of the amino acids.
  • PCE using degenerate primers and nested PCR are combined.
  • the degenerate primer to be used perform the first PCR with the primer set shown in SEQ ID NO: 1 and SEQ ID NO: 2.
  • the first reaction solution is used as the second PCK type II.
  • the primer set shown in SEQ ID NO: 3 and SEQ ID NO: 4. Use the second PCR reaction mixture as the third PCR reaction.
  • the primer set shown in SEQ ID NO: 5 and SEQ ID NO: 6 can be used to obtain DNA encoding a part of the my b MA binding region. It is possible.
  • the 5 ′ RACE method and the 3 ′ RACE method with reference to the base sequence of the obtained DM fragment, it is possible to determine the base sequences of the 5 ′ end and 3 ′ end of full-length cMA.
  • By designing a primer with reference to the terminal sequence obtained by the RACE method and performing a PCE reaction it is possible to obtain full-length cMA.
  • tissues and cells in which cell proliferation is active include callus and cultured cells derived from a target plant, or a budding plant, a shoot tip, a root tip, and the like.
  • Plant 3Rmyb plasmid (10 ⁇ g / sample), NAC 1 promoter-LUC plasmid (10 g / sample), R-LUC plasmid (lg / sample)
  • the plasmid (i) or the combination of (ii) shown in the above is introduced into a protoplast prepared from tobacco cultured cell BY2, and the LUC activity and B-LUC activity are measured. If the LUC activity (LUC specific activity) normalized by K-LUC activity is increased in the combination of (i) compared to (ii), it shall be specified that the plant 3Rmy b used is a transcriptionally activated form Can be. In addition, when the LUC specific activity decreases in (i), it is possible to determine that the plant 33 ⁇ 4iyb used is a transcription-repressing type, as compared with (ii). LUC activity and K-LUC activity can be measured by the method described in Example 3. Example 19
  • NtmybB Suppresses transcription of G2 / M phase-specific expressed gene using a promoter specifically expressed in the male reproductive organ.
  • plasmids described in International Application No.PCT / JP02 / 12268, pENTEAVP1 and pENTR0.6 are plasmids into which the promoter of the Arabidopsis AtNACK2 gene or the Arabidopsis AVP1 gene has been inserted, respectively.
  • the primer is Hindlll-NACK2-575S (5, -CCCAAGCTTCTCGTTAAGA ACCCTTGATC-3 '; SEQ ID NO: 86), and the primer CK2 + 3A + 2 (5, -GCCATCTTCTACACACAAA ATCGAAACC-3'; SEQ ID NO: Perform PCR using 87). ⁇ A site generated by cutting the broadened DM fragment with Hindlll and cutting pEXP-NtmybB with Sail and EcoRV simultaneously with the NtmybB MA fragment and pUC18 (Takara) with Sail and Hindlll And construct pUC-P1-NtmybB and pUC-0.6-MmybB.
  • pBI-PAVP1-MmybB is a binary vector capable of transforming a plant by the agrobacterium method in which NtmybB is expressed by the P1 promoter.
  • pBI-NO.6-MmybB is a plasmid vector capable of transforming plants by the Agrobacterium method in which NtmybB is expressed by the AACK2 promoter. Plants transformed with these plasmids can be selected using kanamycin.
  • Agrobacterium turaefacience (Agrobacterium turaefacience) is transformed using the two types of binary vectors constructed in the above (1), and each agrobacterium holding these plasmids is used.
  • Arabidopsis thaliana type Col-0 is transformed by the Floral dip method (similar to Example 8 above). Seeds obtained from flower buds infected with Agrobacterium are sterilized using hypochlorous acid and sterile water, and kanamycin 50 Seed on MS medium containing 100 g / ml carpenicillin. Select transformed plants that can grow on kanamycin-supplemented media.
  • a promoter specifically expressed in the male reproductive organ to suppress transcription of G2 / M-phase-specific expressed genes
  • a brasmid that expresses the NtmybB gene By transforming plants with a brasmid that expresses the NtmybB gene, cells in the male reproductive organ It is possible to create plants with altered growth, suppressed normal pollen formation and reduced seed fertility.
  • plasmid As a gene having specific expression in the male reproductive organ, Arabidopsis thaliana AVP1 gene or Arabidopsis thaliana AtMCK2 gene is used, and the promoter region of these genes is used for plasmid construction.
  • the DNA encoding the promoter region of these genes includes the promoter region incorporated in the plasmid of pENTRAVPi VPl described in International Application No.PCT / JP02 / 12268) and pENTRO.6 (AtNK2). Can be used. Code NtmybB]) NA can be adjusted from 0H88.
  • Fragments were inserted into the pBI121i (Clontech) region from which the CaMV 35S promoter and GUS gene had been removed, and a plasmid in which the AVP1 promoter, NtmybB, and Nos terminator were functionally fused, or AtNACK2 Construct a plasmid in which the promoter, NtmybB and Nos terminator are functionally fused.
  • These plasmids are binary vectors capable of transforming plants via Agrobacterium, in which NtmybB is expressed by the AVP1 promoter or AtNACKl promoter, and the resulting transformed plants are selected using kanamycin. It is possible.
  • Agrobacterium tumef science was transformed using the plasmid obtained in the above (1), and the Floral dip method (Example 8 described above) was performed using each agrobacterium carrying these plasmids.
  • NtmybA Growth modification of transgenic tobacco with suppressed expression of NtmybA2
  • DM in which the sequence of a part of the DNA of NtmybAK or MmyM2, or both MmyMl and MmybA2 is connected so as to form an inverted repeat. If you are hitting the inversion, insert a MA that codes the GUS as a spacer between the iterations.
  • the DNA in which the CaMV 35S promoter, ENAi MA, and Nos evening promoter are functionally fused is inserted into pBI-RHL plasmid, using the MA arranged in the inverted repeat as EMi DM.
  • plasmids are plasmids that can be transformed by the CaMV 35S promoter into NtmybAl or MmybA2, or an agrobacterium expressing RM encoding both NtmybAl and NtmybA2 in a double-stranded form. Converted plants can be selected for hygromycin. In the resulting transformed plant, the expression of the two proteins UNA was triggered, and the expression of NtmyMl or NtmybA2, or both NtmybAl and NtmybA2, which are endogenous in the plant, was reduced, that is, the effect of RNAi was obtained. It is possible.
  • transgenic tobacco in which the expression of the transcriptionally active endogenous MmyMl, endogenous NtmyM2, and both endogenous NtmybM and NtmyM2 using RMi is suppressed is suppressed.
  • Plasmid pBHL described in International Application No. PCT / JP02 / 12268 was digested with Apal, and the protruding end was blunted using T4 DM polymerase, followed by self-ligation to construct pBHL2.
  • pML2 was cut with Xhol, and the protruding end was blunt-ended using a Klenow fragment, followed by self-ligation to construct pL3.
  • pRHL4 was constructed by cutting pML3 with Spel, blunting the protruding ends using the Klenow fragment, and then performing self-ligation.
  • pENTK2B (Invitrogen) is cut with EcoRI, and the DM fragment containing the ccdB force set is cut out. The protruding ends are blunted using the Klenow fragment, and pD0NR201 (Invitrogen) is purified using Xmnl and BsaAI. The site to be generated was inserted to construct pDONR201A Cml. The plasmid in which the inserted DM fragment was opposite to pDONR201A Cml was designated as pD0NE201-Cm3.
  • PD0NE201 ⁇ Cml was digested with Apal and Smal, and the cut out MA fragment was digested with Apal and Smal into the site generated by digestion with Apal and Smal to construct pBS-aHatsuP.
  • pMu1 (acquired by Yoshihisa Ueno, Assistant Professor, graduate School of Science, Nagoya University) is cut with EcoM, the protruding end of the excised MA is blunted using a Klenow fragment, and pEHL4 is cut with Smal to generate PMGUSRiL was constructed at the site to be inserted.
  • PDMGNE201 ⁇ Cm3 was cut with Apal and Nrul, and the cut out MA fragment was inserted into a site generated by cutting pGUSEiL with Apal and Smal to construct pMGUSEiPl.
  • pBS-aHatsuP is cut with Apal
  • the protruding end is blunted with DNA polymerase
  • the MA fragment cut out by cutting with Spel is cut with pGUSRiPl with Xhol
  • the protruding end is cut with Klenow fragment.
  • the site generated by blunting and further cutting with Spel was inserted to construct PKHGUSMP2.
  • pRHGUSRiP2 was cut with Bglll to cut out the DM fragment, and pBI121 was cut with Bglll to remove the cut out DNA fragment. The resulting DNA fragment was removed to construct pBI-GUSI P1.
  • the PBS-VMA2 described in (1) of Example 10 was used as a primer to form a primer B1T3 (5′-GGGGAACAAGGTTTGT ACAAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG-3 ′; SEQ ID NO: 41) and a primer B2T7 (5′-GGGG ACCACTTTGTACAGGGATAGAAGGCTGGACTGACTGGGATAC PCR was performed using No. 42) .
  • the DM fragment containing a part of NtmybAl and the MA fragment containing a part of NtmybA2 were connected in tandem, and the attBl and attB2 sequences of Gateway system (Invitrogen) were added to both ends. A DNA fragment was obtained.
  • the M fragment and the plasmid pBI-GUSRiPl (Invitrogen) were mixed, and a BP reaction was performed using BP Clonasednvitrogen) to obtain a DM fragment containing a part of NtmybAl and a DM fragment containing a part of NtmybA2.
  • the DM connected to is inserted into pBI-GUSBiPl so that it is located at the inverted repeat, and pBIHm-A2RMi is constructed.
  • the pBS-Ml described in (1) of Example 10 was primed into a type II primer B1T3 (5′-GGGGAACAGGTTTGTAC AAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG-3 ′; SEQ ID NO: 41) and a primer B2T7 (5′-GGGGAC CACTTTGTACGAGGATAGGACTGACTGACTGATAGGACTA) PCE is performed using SEQ ID NO: 42) to obtain a DM fragment containing the attB1 and attB2 sequences of the Gateway system (Invitrogen) added to both ends of the DM fragment containing a part of NtmybAl.
  • This MA fragment and plasmid pBI-GUSRiPl (I nvitrogen), perform BP reaction using BP Clonase (Invi1: rogen), insert DM containing a part of NtmybAl into pBI-GUSEiPl so that it is located at the inverted repeat, and add pBIHm-MBMi. To construct.
  • pBS VA2 described in (1) of Example 10 as a type II primer B1T3 (5, -GGGGGACAAGTTTGTAC AAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG -3 '; SEQ ID NO: 41) and a primer B2T7 (5'-GGGGAC CACTTTGTACAAGAAAGCTGGGTCGGGCGATAGAGATACGATAGATACGATAGCGATACGATAGAGATACGAGCGCTCGATACGAGGCTGGGTCGATACG : 42) to obtain a DNA fragment obtained by adding the ati; B1, attB2 sequence of the Gateway system (Invitrogen) to both ends of the MA fragment containing a part of NtmybA2.
  • This DM fragment and plasmin pBI-GUSRiPl are mixed, and BP reaction is performed using BP Clonase (Invi1; rogen), and DM containing a part of NtmybA2 is located at the inverted repeat in pBI-GUSEiPl. And construct pBIHm-A2EMi.
  • pBIHnrAlA2BMi is RNA encoding both NtmybAl and NtmybA2
  • pBIHm-AlEMi is EM encoding MmybAl
  • pBIHm- is RNA encoding NtmybA2
  • the CaMV 35S promoter is RNA. It is a binary vector that can be transformed by the Globacterium method, which expresses in a more double-stranded form, and the transformed plant can be selected with hygromycin.
  • the expressed double strand is a trigger, and in the plant body, both the endogenous MmybAl and NtmybA2 in (i), (ii ), The expression level of endogenous NtmyMl is decreased, and (i ii), the expression level of endogenous NtmyM2 is decreased. It is possible to obtain the effect of Mi.
  • Agrobacterium tumeiacience was transformed with the plasmid of (i) to (xiii), and Nicotiana tabacum cultivar SRKNicotiana tabacuni ver. was transformed with each of the agrobacterium carrying the plasmid.
  • SR1 is transformed by the leaf disk method.
  • a mutant whose transcriptional activity is increased due to deletion of the amino acid sequence at positions 579 to 1003, deletion of the amino acid sequence at positions 641 to 1003, and deletion of the amino acid sequence at positions 715 to 1003 Can be created. If 0s3EmybAl, a mutant with increased transcriptional activity due to deletion of the amino acid sequence from 575 to 993, deletion of the amino acid sequence from 635 to 993, or deletion of the amino acid sequence from 709 to 993 You can do it.
  • transcriptional activation was increased by deletion of the amino acid sequence at positions 583 to 776, deletion of the amino acid sequence at positions 621 to 776, and deletion of the amino acid sequence at positions 691 to 776. Mutants can be created.
  • AtMYB3E4 a mutant with increased transcriptional activation due to deletion of the amino acid sequence from 570 to 961, amino acid sequence from 608 to 961, and deletion of amino acid sequence from 667 to 961 You can do it.
  • MmybM a mutant whose transcriptional activation ability has been reduced by deletion of the amino acid sequence at positions 186 to 1003 and deletion of the amino acid sequence at positions 299 to 1003 can be produced.
  • 0s 3RmyMl a mutant having a reduced transcriptional activation ability can be created by deletion of the amino acid sequence at positions 203 to 993 and deletion of the amino acid sequence at positions 257 to 993.
  • ⁇ 3 ⁇ it is possible to produce a mutant whose transcriptional activity is reduced due to deletion of the amino acid sequence at positions 187 to 776 and deletion of the amino acid sequence at positions 241 to 776.
  • iVtMYB3R4 a mutant whose transcriptional activity is reduced by deletion of the amino acid sequence at positions 181 to 961 or deletion of the amino acid sequence at positions 235 to 961 can be produced.
  • the ability of the above mutant to activate transcription can be determined by measuring the transcription of the NACK1 promoter during transient expression in BY2 protoplasts by the method described in Examples 3 and 18. These deletion mutants have increased or decreased transcription activation ability as compared to the wild type.
  • the resulting hygromycin-resistant individual was cultivated to obtain selfed seeds.
  • the self-inoculated seeds obtained from the NtmybA2 transformation lines AW3, AW23, and the GFP transformation line G # 3 were seeded on 13 cm polypots filled with Kureha horticulture soil (Kureha Chemical Co., Ltd.). Cultivation was carried out at 27 ° C. Lighting conditions were 18 hours of illumination and 6 hours of darkness.
  • the expression of the introduced parasite in these lines was confirmed by the RT-PCE method.
  • the undeveloped apical lobe was sampled from 5 individuals per line, and frtmyM2 was amplified by the method of Example 10 (2) described above.
  • the expression level of Ntniy bA2 was increased in the AW23 line compared to the G # 3 line, and overexpression of the introduced gene was confirmed.
  • the size of the AW23 transformation line cultivated in (3) above and the true leaf size and epidermal cells of wild-type tobacco were compared.
  • the leaves used for the observation were completely developed leaves of the same leaf position for both wild type and AW23. Comparing these leaf sizes, ⁇ 1 ⁇ # 23 was about 80% smaller than the wild type.
  • a leaf disk was prepared for observing epidermal cells in this leaf, and decolorization and fixation were performed using a 9: 1 mixture of ethanol and acetic acid. These leaf disks were photographed using a differential interference microscope, and the area of each of 50 epidermal cells was measured. As a result, it became clear that the cell area was reduced by about 45% in # 23 compared to the wild type, and the cell size was reduced in # 23.
  • the size of the cells constituting the leaf is 45% smaller in fragile 3, but the size of the leaf is higher and the size of the leaf is 80% smaller. It is considered that the cause of the transformation is that the number of cells is decreasing in addition to the smaller cells. The decrease in cell number is thought to be due to a delay in the cell cycle.
  • the Arabidopsis thaliana genome DM extracted by a conventional method was designated as type I, and the primer PAtHB8_lF (5'-AACTGCAGCGGATAAACCAATTTTCAAATGATA-3 '; SEQ ID NO: 96) and the primer PHB8-1700E (5'-CGGGATCCCTTTGATCCTCTCCGATCTCTAT-3'; SEQ ID NO: 97; )
  • PAtHB8_lF 5'-AACTGCAGCGGATAAACCAATTTTCAAATGATA-3 '; SEQ ID NO: 96
  • PHB8-1700E 5'-CGGGATCCCTTTGATCCTCTCCGATCTCTCTAT-3'; SEQ ID NO: 97;
  • SEQ ID NO: 98 AtHB8 promoter GenBank Accession # region using AL161582 89580-91279
  • AtHB8 promoter-DM obtained by the PCR reaction was cut with Pstl and BamHI. It also contains a part of Mmy bA2]) M. fragment was cut with BamHI and Ncrtl. These two]) M fragments were inserted into sites generated by cutting pBlues cript (manufactured by S "tratagene) with Pstl and Notl to construct a plasmid pBS-PAtHB8-NtmybA2T2.
  • Plasmid pTH2 (Chiu et al., Curr Biol 1996 Mar 1; 6 (3): 325-30) was cut with EcoRI, the protruding ends were blunted with Klenow fragment, and further cut with Notl to cut the N0S terminator. The contained DNA fragment was cut out. This DM fragment was inserted into a site generated by digesting plasmid pENTR2B (manufactured by Invitrogen) with ⁇ and EcoRV to construct plasmid pENTR-NOSTl.
  • Plasmid pENTK-PA'tIlB8-NtmybA2T2 was constructed by inserting the DNA fragment cut out by cutting pBS-PAtIIB8-NtmybA2T2 with Sail and Notl into the site generated by cutting pENTR-NOSTl with Sail and Notl. .
  • M fragment was ⁇ the site to be generated by cutting the P ENTR-PAtHB8- tm ybA3 ⁇ 4T2 with Spel and smal, to construct plasmid FpENTR-PAtHB8-Ntmyb A2.
  • pDBIHm-HB8-Ntmy2 is a plasmid vector that expresses full-length NtmybA2 using the AB8 promoter, and is a binary vector that can be used to transform plants by the agrobacterium method. Plants transformed with these plasmids can select transformants by using hygromycin.
  • the above-mentioned plasmid pDBIHni-HB8-NtmybA2 is used to transform an Agrobacterium tumefacience EHA101 strain, and an agrobacterium carrying these plasmids is used.
  • transformation was performed on Nicotiana evening Bacum cultivar SEK Nicotiana tabacum ver. SE1) and Nicotiana bensamia (Nicotiana beirtamiana).
  • This plasmid controls the expression of the inserted DNA by the CaMV 35S promoter, and the transformant is a binary vector capable of transforming Arabidopsis thaliana by the agrobacterium method of selecting with kanamycin.
  • the effect of Ai is obtained by ENA expressed from the transgene, and the expression levels of Atmyb3IU and Atmyb3R4 decrease.
  • Arabidopsis thaliana type Col-0 is transformed by the floral dip method (similar to Example 8) using the agrobacterium carrying the plasmid constructed in the above (1).
  • Automatic seeds obtained from plants infected with Agrobacterium are sterilized with ethanol and hypochlorous acid, and washed well with sterile distilled water. These seeds are sown and cultivated on MS agar medium supplemented with kanamycin at a concentration of 50 g / ml. Transformed plants are selected as kanamycin resistant individuals.
  • the transformants selected in (2) above are raised in pots and cultivated.
  • the seeds obtained from these transformed plants are sterilized with ethanol and hypochlorous acid, and washed well with sterile distilled water. Inoculate these seeds on MS agar medium supplemented with kanamycin at a concentration of 50 ⁇ g / ml and cultivate them.
  • the DM content of the nucleus is measured in the same manner as described in Example 11 using rosette leaves of individuals grown as kanamycin resistant. Since the Arabidopsis thaliana is diploid, when the DM content of wild-type Arabidopsis is measured, peaks indicating 2C and 4C, and 8C and 16C whose endogenous DM content is increased by enduriduplication are observed.
  • the present invention provides a plant gene useful for controlling the plant cell proliferation and controlling the development and differentiation of a plant individual, and a technique for using the same. Development of new plants using this technology ⁇ Development of plant breeding technology.
  • a function modification of the plant 3 Eniyb gene • A novel 3 Bmyb gene whose control technology and function are modified, the gene product and related molecules are provided.
  • plants 3 Roiyb protein variants ability to activate transcription was significantly improved, molecules that function in a dominant negative Tipu to a transcript of a plant 3 R m yb gene is also provided, can be developed also its use technology.
  • n stands for inosine in positions 3, 6 and 15 and for any base in position 21
  • SEQ ID NO 42 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 44 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 45 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 46 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 47 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 48 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO: 54 DDBJ Acsession # AB056124, NtmybB (DDBJ Acsession # BAB70512)
  • SEQ ID NO 56 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 64 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 65 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO 70 Oligonucleotide to act as a primer for PCR
  • SEQ ID NO: 93 Designed amino acid sequence
  • X stands for H, ⁇ Y or F in 18 & 93, for K, H or E in 19, 67, 102, 123, 129, 134 & 150, for S,
  • SEQ ID NO: 94 Designed amino acid sequence, X stands for K or R in 4 & 17, for
  • SEQ ID NO: 95 Designed amino acid sequence
  • X stands for K or R or D or E or H in position 7 and for any amino acid residue in position 5

Abstract

細胞周期の制御は植物育種において重要で、該制御により植物細胞の増殖を改変する技術、さらには植物個体の発生分化を改変する技術およびそれに用いる植物遣伝子の開発が求められている。植物3Rmyb遺伝子が植物細胞の増殖に必須の因子であることを解明することに成功し、該遺伝子を標的とした植物細胞の増殖を改変する技術および植物個体の発生分化を改変する技術が提供され、改変細胞増殖、発生分化を保持した植物細胞及び植物体が得られ、特定の器官の肥大、雄性不稔またはストレス耐性の改善等、好ましい性質をもつ植物体の開発ができる。

Description

明 細 書
細胞増殖、 発生分化が改変された植物細胞及び植物体 技術分野
本発明は、 植物における細胞増殖の制御及び Z又は発生分化の制御法、 並びにそのため に用いられる分子に関する。 さらに本発明は、 細胞増殖及び/又は発生分化に関与する遺 伝子を制御して作出された植物及びその利用技術に関する。 背景技術
植物は、 他の真核生物と異なる独特の発生学的特徴を有している。 植物細胞は移動しな いため、 細胞分裂、 伸張およびプログラム細胞死が形態形成を決定していると考えられて いる。 茎頂と根端の両極に存在する分裂組織において細胞が増殖し、 増殖した細胞が分化 しながら、 積み重なることによって個体が発生分化し、 植物の大きさは個体を形成する細 胞の数と細胞の大きさによって規定される。 環境条件の変化などに対しても細胞周期を変 化させることによって、 細胞増殖を改変し、 植物個体の大きさを環境に適応させている。 また植物個体の分化の場面においても細胞周期の制御が重要である。 例えば、 根の内鞘細 胞では細胞周期の特定の時期 (G2期) で細胞が停止しており、 この細胞が分裂を開始する か否かによって側根の分化が決定される。 また、 植物の胚軸においては細胞数が規定され ているが、 暗所においては細胞周期が変化し、 核内倍化 (エン ドリデュプリケーシヨ ン) によつて細胞の大きさが変化する。
そこで植物の成長、 形態、 ストレス対応などの課題を総括的に扱う植物育種の新しい方 法として、 植物の細胞分裂の調節、 特に細胞周期を制御する方法が重要と考えられている 一つの細胞は G1期 (ギャップ 1 ) 、 S期(MA合成期) 、 G2期 (ギャップ 2 ) 、 M期 ( 分裂期) の 4つの時期からなる細胞周期と呼ばれる一連の過程を経て、 2つの娘細胞に分 裂する。 この細胞周期の Sおよび M期の制御に関連する機構が注目され研究されてきた。 このうち M期は有糸分裂期とも呼ばれ S期で複製された染色体が娘細胞に正確に分配され る時期である。 M期への進入についてはサイクリン Bに代表されるサイクリンが CM(Cycl in dependent kinase)と結合し活性化複合体を形成し、 染色体の凝集、 核膜の崩壌を促す 。 そして M期は、 染色体の分配後に細胞質を二分する細胞質分裂と呼ばれている過程を経 て終了するが、 植物細胞の場合、 その特異的な構造体である隔膜形成体 (フラグモプラス ト) が形成され、 細胞質分裂が進行する。 この隔膜形成体はキネシン様タンパク質である NACK1, NACK2によって、 その形成を制御されている。
植物細胞の M期への進入から終了に至る過程において重要な機能を示すサイクリン8、 NACK1および NACK2は G2/M期特異的な遺伝子発現パタ一ンを示す。 これらの遺伝子の時期 特異的な発現はプロモータ一領域に存在する M- specific activator (MSA)と呼ばれる特定 の制御配列によって行われていることが報告されている(非特許文献 1 ) 。 また、 これま でに植物特有の CMである CMBや、 夕ンパク質の分解に関わっている E2酵素のうちサイク リン特異的な E2酵素と類似性の高い遺伝子以外に、 多くの機能未知の遺伝子が M期特異的 な発現パターンを示すことが知られている。 プロモー夕一領域が解析されたこれらの遗伝 子にはプロモータ一に MSA配列が存在している場合が多く、 MSA配列による G2/M期特異的 遺伝子発現制御機構は植物において普遍的に保存されていると考えられている。
MSA配列に結合する因子として、 これまでに、 タバコより NtmyMl、 NtmybA2、 Ntm y bBが同定されている (以下これらの総称として Ntmybを使用する) 。 Ntmybタンパク質の 了ミノ酸配列上の大きな特徴として動物の c - myb等に存在する不完全な 3反復配列から構 成される myb DM結合領域(この領域を有するタンパク質を以下 3Rmybと略称する)と高 い類似性を示すことが挙げられる。 植物では myb様 MA結合領域を持つ遺伝子は多数存在 するが、 ほとんどが 2反復、 または反復のない myb領域から構成される。 例えばゲノムの 解読が終了したシロイヌナズナにおいては全ゲノム中に myb様 DNA結合領域を持つ遺伝子 は 100種以上存在するが、 前記の 3反復から構成される myb MA結合領域(3Rmyb)を示す 遺伝子は 5種のみであり、 植物の myb様タンパク質を構成するスーパ一フアミ リ一の中で 一部の特殊な存在であることが知られている(非特許文献 2 0
Ntmybの機能については植物細胞内での一過的発現の実験において、 レポ一夕一遺伝子 の転写調節の実験が行なわれており、 NtmybMと NtmybA2は CYM (ニチニチソウサイクリン B )プロモータ一、 MCK1 プロモーターの転写を活性化すること、 逆に mybBはこれらの 転写を抑制することより、 Ntmybは MSA配列に結合し、 G2/M期特異的発現を示す遺伝子の 転写調節因子であることが報告されている(非特許文献 3 )。 しかしながら、 これらの報 告は、 多数の遺伝子が周期的に発現して制御される細胞周期において、 細胞周期の一点で —時的に発現した Ntmybによるレポーター遺伝子の転写活性化の結果に過ぎない。 細胞周 期や細胞分裂における Ntmybの機能を示した例は未だ無い。 これまでに、 G2/M期特異的発現を示す遺伝子を形質転換して植物の生育を改変した例は 報告されている。 例えば、 サイク リ ン Bを異所的に発現する形質転換植物では根の伸張が 促進され(非特許文献 4 )、 また、 M期の終了に必須な遺伝子である NACK1の発現を抑制 した植物やドミナントネガティブ型の NACK1の形質転換植物では、 細胞質分裂が不完全で あり、 草丈が抑制された(非特許文献 5 )。 しかしながら、 これらは M期の進行に関与す る個別の遺伝子を利用して細胞増殖を制御する試みであり、 MSA配列によつて発現が制御 されている機能が未知な遺伝子も含む G2/M期特異的遺伝子を一括して発現制御した形質転 換植物は報告されていない。
Ntmybは c- mybと相同性の高い myb MA結合領域を有す。 c- mybはタンパク質中に存在 する EVESモチーフが myb MA 結合領域と結合し、 転写能が不活性な状態にあるが、 EVESモ チーフがプロティンキナーゼによりリン酸化を受けることでタンパク質内の立体構造が変 化し、 コアクティべ一ターである P100が myb MA結合領域に結合可能となり、 転写能が活 性化すると考えれている(非特許文献 6 )。 Ntmybは myb MA結合領域以外では c- mybと 類似性は認められず、 EVESモチーフ等の制御配列も保存されていないことより、 C- myb夕 ンパク質の転写活性化能の調節機構と Ntmybの調節機構は異なると考えられる。 これまで に、 Ntmybの転写活性化能力を調節する領域の存在は報告されていない。
これまでに植物の 3Rmybで全長をコ一ドする MAの報告は双子葉植物であるタバコ、 シ ロイヌナズナのみであり、 単子葉植物においては全長 3Rmybの報告例は無い。 このことよ り、 MSA配列と 3Emybによる G2/M期特異的遺伝子発現制御機構が単子葉植物と双子葉植物 で保存されているかについて明らかにされた例は無い。 多くが 2倍体の動物とは異なり、 植物では様々な倍数性を示す例が広く知られている。 コムギ属では 6倍体であり、 キク属では 10倍体となっている。 これらの倍数性を示す植物 は一般的に農業上、 有用な形質を示す場合が多く倍数性植物の作出は一つの育種手段とし て用いられている。 これまでの、 倍数体の作出技術としてはコルヒチン処理が広く用いら れてきた。 植物の種子や幼植物、 あるいは器官の組織培養細胞にコルヒチン処理を行い、 その後植物体を再生することによって選抜されてきた。 MA複製を終え倍数化した細胞が コルヒチンによつて紡錘糸形成を阻害され、 分裂期をスキップし倍数化した細胞を得るこ とが出来る。 しカヽし、 コルヒチン処理を行う器官や処理時期の検討が必要であり、 全ての 植物で容易に実施できるものではない。
【非特許文献 1】 Ito et al. , Plant Cell, 10 : 331(1998)
【非特許文献 2】 Stracke ら、 Curr. Opin. Plant Biol. 4 : 447. (2001)
[非特許文献 3】 Ito et al. , Plant Cell, 13 : 1891(2001)
【非特許文献 4】 Doerner et al., ature, 380: 520 (1996) 【非特許文献 5】 Nishihama et al. , Cell, 109 : 87(2002)
【非特許文献 6】 Dash et al. , Genes Dev. , 10 : 1858(1996)
_明の |B示
上述のとおり、 植物育種において細胞周期の制御は重要であることから、 本発明は、 植 物細胞の増殖を改変する新規な技術を提供することを課題としている。 即ち、 本発明は、 植物細胞の増殖を改変することにより、 植物個体の発生分化を改変する技術およびそれに 用いる植物遺伝子を提供することを課題としている。
また、 本発明は、 植物の 3 Rmyb遺伝子の機能を飛躍的に改変する方法、 お'よび機能が改 変された新規な 3 Emyb夕ンパク分子を提供することを課題としている。 本発明者らは鋭意検討を行い植物 3 Eniyb遺伝子が植物細胞の増殖に必須の因子であるこ とを解明し、 該遺伝子を標的とした植物細胞の増殖を改変する技術および植物個体の発生 分化を改変する技術を完成した。 また、 これらの技術は広範な植物に応用できる技術であ ることを見出した。
即ち、 植物 3 Rmybタンパク質の活性が改変された植物細胞や植物体を作出し、 これらの 植物細胞や植物体において、 細胞増殖および Zまたは発生分化が改変されていることを明 らカ、にした。
また、 特定のアミノ酸配列を有する植物 3 Rmyb (NtmybA2などに代表される) は細胞周 期および細胞分裂に関して正の制御因子であること、 一方これらとは異なるアミノ酸配列 を有する植物 3 Rmyb (NtmybBに代表される) は細胞周期および細胞分裂に関して負の制御 因子であることを、 前記の植物 3 Emybタンパク質の活性が改変された植物細胞や植物体を 用いて初めて明らかにした。
また、 本発明者らは、 転写因子である植物 3 Rmybタンパク質の変異体を新たに作出し、 その機能が改変されていることを見出した。 それらの変異体を用いて植物細胞や植物体内 の植物 3 Rmybタンパク質の活性が改変されることを見出した。 即ち、 植物 3 Rmybタンパク 質のアミノ酸配列中に、 下流遺伝子を転写する活性を調節する領域を見出し、 転写活性化 能を改変した分子を作出することに成功した。 転写活性化能が飛躍的に向上した植物 3 Ik ybタンパク質変異体や、 植物 3 Bmyb遺伝子の転写産物に対してドミナントネガティブに機 能する分子の作出に成功した。
また本発明者らは、 単子葉植物であるイネより、 新規な植物 3Rmyb遺伝子である 0s3Rray bAl夕ンパク質をコ一ドする MAを単離し、 0s3RmybAlタンパク質がタバコ 3Emybタンパ ク質である NtmybA2タンパク質と同等の機能を示すことを見出した。 以上の知見に基づき本発明は完成されたものである。
即ち、 本発明は、 植物 3 Bmyb遣伝子を標的とした植物における細胞増殖の制御、 及び/ 又は植物個体の発生分化の制御、 植物の細胞分裂に関わる 0s 3 I?mybAl遺伝子、 それらの類 似逍伝子およびこれら遺伝子がコードするタンパク質に関する。
本発明において、 あるアミノ酸またはアミノ酸配列との類似性を示すスコア (Aligned Score) とは、 CLUSTAUプログラム(http:〃 www. ddbj . nig. ac. jp/E-mail/clustalw-j . ht ml)を使用し、 アミノ酸配列を比較した結果において同一または類似なアミノ酸の割合を 指す。 更に、 前記アミノ酸配列の比蛟は、 対象となるアミノ酸配列を最適な形で並べて行 われる。 以下の説明中、 特に断らない場合、 二つのアミノ酸配列を最適な形で並べて行わ れたことを示す。 パラメ一夕一はデフォルトである、 OUTPUT=clustal、 0UT0RDEE=aliged 、
Figure imgf000004_0001
Fで行なつた。 より具体的には、 本発明は、 次なるものを提供するものである。
( 1 ) 対応する野生型の植物細胞に比べて、 植物 3 Rmybタンパク質の活性が改変されてい る植物細胞。 (2 ) 植物細胞が、 下記(a)〜( のいずれか一に記載の MAまたは(g)に記載の組換え MA若しくはべクタ一を、 保持するか或いはそれらにより形質転換された植物細胞である
( I ) の植物細胞:
(a) 植物 3Emybタンパク質のアミノ酸配列をコードする!) M、
(b) 植物 SRmybタンパク質のァミノ酸配列をコ一ドする MAとスト リ ンジヱン卜な条件 下でハイプリダイズする DNAであって、 植物 3&nyb夕ンパク質と同等の機能を有する夕ン パク質をコ一ドする DNA、
(c) 植物の 3 Emyb夕ンパク質をコードする DNAの転写産物を特異的に開裂するリボザィ ム活性を有する EMをコードする MA、 '
(d) DNA であって、 植物細胞における発現時に、 共抑制効果により、 植物の 3Rmybタ ン パク質をコードする DMの発現を抑制させる をコードし、 かつ、 該 DMと 90 0以上の 相同性を有する DNA、
(e) DNA であって、 植物細胞における発現時に、 BNA干渉効果により、 植物の 3 Rmyb タンパク質をコードする D の発現を抑制させる RNAをコ一ドする MA、
(f) 植物 3Rmybタンパク質をコ一ドする MAの転写産物と相捕的なアンチセンス Aを コードする]) NA、
(g) 下記の(i)から(iii)を含む組換え MAまたはべクタ一:
(i )細胞内で転写可能なプロモータ一、
(ii)該プロモータ一配列にセンス方向またはアンチセンス方向で結合した前記(a)〜( のいずれか一に記載の DNA、
(iii) RNA分子の転写終結おょぴポリアデニル化に関するシグナル。
( 3) 植物 3Rmybタンパク質が、 MSA配列を介した G 2 /M期特異的転写を活性化する転 写因子である (1 ) または (2 ) に記載の植物細胞。
( ) MSA配列を介した G 2 /M期特異的転写を活性化する転写因子である植物 3 Rmybタ ' ンパク質が、 SILX1KRXEXLXsX4PX2XX6XiRXX5KK (配列番号: 94、 Xは任意のァ
ミノ酸であり、 Χ^άΚまたは Rであり、 Χ2は L、 Iまたは Vであり、 X3は Lまたは
Vであり、 X4は Sまたは Tであり、 X5は])または Eである) で表されるアミノ酸配列 を含むタンパク質である (1 ) または (2 ) に記載の植物細胞。
( 5 ) 植物 3 Kmybタンパク質が、 配列番号: 32、 配列番号: 51、 配列番号: 53、 配列番号 : 75または配列番号 76のいずれかのアミノ酸配列である (1 ) から (4 ) のいずれか一に 記載の植物細胞。
( 6 ) 植物 3Rmybタンパク質が MSA配列を介した G 2 ZM期特異的転写を抑制する転写因 子である (1 ) または (2 ) に記載の植物細胞。
( 7 ) MSA配列を介した G 2 /M期特異的転写を抑制する転写因子である植物 3 Rmyb夕 ンパク質が、 SCSSXSX6 (配列番号: 95、 Xは任意のアミノ酸であり、 X6は K、 R、 D 、 Eまたは Hである) で表されるアミノ酸配列を含むタンパク質である (1 ) または (2 ) に記載の植物細胞。
( 8 ) 植物 3 Rmybタンパク質が、 配列番号: 55、 配列番号: 77または配列番号: 78のアミ ノ酸配列である ( 1 ) 、 ( 2 ) 、 ( 6 ) または ( 7 ) に記載の植物細胞。
( 9 ) 対応する野生型の植物細胞に比べて、 植物 3 Kmybタンパク質の発現量が改変されて いる (1 ) から (8 ) のいずれか一に記載の植物細胞。
(10) 対応する野生型の植物細胞に比べて、 細胞増殖が改変されている ( 1 ) から ( 8 ) のいずれか一に記載の植物細胞。
(II) 前記 (1 ) から 〔10) のいずれか一に記載の植物細胞を含む植物体。
(12) 前記 (11) に記載の形質転換植物体の子孫またはクローンである植物体。
(13) 対応する野生型の植物体に比べて、 細胞増殖及び Zまたは発生分化が改変されてい る (11) または (12) に記載の植物体。
(14) 細胞増殖及び Zまたは発生分化の改変のために用いられる (11) または (12) に記 載の植物体。 .
(15) 対応する野生型タンパク質に比べて、 転写活性化能が増大している植物 3 Ikybタン パク質をコ一ドする MA。
(16) 転写活性化能が増大している植物 3 Emybタンパク質が、 転写活性化能を調節する調 節領域の機能が消失していることを特徴とするタンパク質である (15) に記載の DM。
(17) 機能を消失した該調節領域が配列番号: 89に記載のアミノ酸配列 TPSILKKRHRより C 末端側であることを特徴とする (16) に記載の]) M。
18) 機能を消失した該調節領域が配列番号: 90に記載のアミノ酸配列 NXXTPXEUX (Xは 任意のアミノ酸を示す) 中の)'/より C末端側であることを特徴とする (16) に記載の DNA
(19) 機能を消失した該調節領域が配列番号: 91に記載のァミノ酸配列 PPRFPSXMPF CX は任意のァミノ酸を示す) から C末端までの領域であることを特徴とする植物 3 Kmybタン パク質をコードする (16) に記載の DM。
(20) 機能の消失がアミノ酸の置換、 欠失及び/又は挿入によって生じたものである植物 3 Rmybタンパク質をコードする (15) から (19) のいずれか一に記載の DM。
(21) 機能の消失がアミノ酸の欠失によって生じたものである植物 3 Emyb夕ンパク質をコ —ドする .(15) から (19) のいずれか一に記載の MA。
(22) 内在性の植物 3 Emybタンパク質に対してドミナントネガティブ活性を示すタンパク 質をコ一ドする DM。
(23) 植物 3 Rmybの MA結合領域のァミノ酸配列を含むことを特徴とするタンパク質をコ —ドする (22) に記載の]) NA。
(24) 下記の(i)から(iii)を含む組換え DNAまたはベクター:
(i)細胞内で転写可能なプロモータ一、
(ii)該プロモータ一配列にセンス方向またはアンチセンス方向で結合した (15) から (23 ) のいずれか一に記載の DNA、
(iii) RNA分子の転写終結およびポリアデニル化に関するシグナル。
(25) 前記 (15) から (24) のいずれか一に記載の MAまたは組換え MA若しくはベクタ ―を、 保持するか或いはそれらにより形質転換された植物細胞。
(26) 対応する野生型の植物細胞に比べて、 細胞増殖が改変されている (25) に記載の植 物細胞。
(27) 前記 (25) に記載の植物細胞を含む植物体。
(28) 前記 (27) に記載の植物体の子孫またはクローンである植物体。
(29) 対応する野生型の植物体に比べて、 細胞増殖及び/"または発生分化が改変されてい る (27) または (28) に記載の植物体。
(30) 下記(a)〜(: I)のいずれかに記載の DM :
(a) 配列番号: 32に記載のァミノ酸配列からなるタンパク質をコ一ドする!) NA、
(b) 配列番号: 31に記載の塩基配列からなる賺、
(c) 配列番号: 32に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠 失、 もしくは付加したアミノ酸配列を有し、 それぞれ配列番号: 32に記載のアミノ酸配列 からなるタンパク質と同等の機能を有するタンパク質をコ一ドする DM、
(d) 配列番号: 31に記載の塩基配列からなる]) NAとストリ ン^ヱントな条件下でハイプ リダイズする MAであって、 それぞれ配列番号: 32に記載のァミノ酸配列からなるタンパ ク質と同等の機能を有するタンパク質をコードする DN八、
(e) 配列番号: 32に記載のアミノ酸配列とスコア (Aligned Score) が 60以上であるァ ミノ酸配列を有するタンパク質をコー I、"する DNAであって、 それぞれ配列番号: 31に記載 のアミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコードする DNA、
(f)前記(a)〜(e)のいずれかに記載の DNAの転写産物と相捕的なアンチセンス Aを コ ドする DM、
(g; 前記(a)〜(e)のいずれかに記載の DMの転写産物を特異的に開裂するリボザィム 活性を有する ENAをコ一ドする DNA、
( ) DMであって、 植物細胞における発現時に共抑制効果により、 前記(a)〜(e)のい ずれかに記載の DMの発現を抑制させる KNAをコ一ドし、 かつ前記(a)〜(e)のいずれか に記載の DMと 90%以上の相同性を有する DNA、
(i) MAであって、 植物細胞における発現時に RM干渉効果により、 前記(a)〜(e)の いずれかに記載の MAの発現を抑制させる MAをコ一ドし、 かつ前記(a)〜(e)のいずれ かに記載の DMと 20塩基以上連続して同一である MA。
本発明において、 植物 3 Emybタンパク質とは、 c- myb様 myb領域が不完全に 3反復する DNA結合領域を含むァミノ酸配列を含むことを特徵とするタンパク質であり、 望ましくは 、 ヒト ciybタンパク質の myb DNA結合領域(配列番号 88の 43番目から 192番目までの アミノ酸配列)のアミノ酸配列と比較した場合にアミノ酸配列の類似性を示すスコア αι igned Score) が 60以上のアミノ酸配列を含むタンパク質であり、 さらに望ましくは ciy b様 myb MA結合領域に保存されている配列番号: 92に記載のァミノ酸配列である W[S, T] XXE[D, E]XX[L, I, V] (本配列中で Xは任意の Ύミノ酸を、 [ Jはその中のいずれか一つのァミ ノ酸が選択されることを示す)が、 間に任意の 42アミノ酸を挟み、 3反復しているアミノ 酸配列を含む夕ンパク質である。 より望ましくは配列番号: 93に記載されている以下の 15 0ァミノ酸で示される配列 ffTXEEDXXLXXXVXXUXGX7XffKXIAXXXXXK0X5 JQCLHEWQ 'LXPXLJKG XWOXEEDXXJXXXJXX 7 XGXXK SXJOXXXXGEIGKQCRERIUNHLXPXIXX 7 XXWTXXEX 5 XXLXXXHXXXGN X7 EJXX7XLXGX70DN0nNXKS0XKKX7(本配列中で Xは任意のアミノ酸、 Jは I、 V
、 Lのいずれか一つのァミノ酸、 0は G、 S、 T、 C. Aのいずれか一つのァミノ酸、 X
7は K、 Κ、 Ηのいずれか一つのァミノ酸、 ϋは H、 W、 Y、 Fのいずれか一つのァミノ 酸、 X5は D、 Eのいずれか一つのアミノ酸であることを示している。 )、 を含むタンパ ク質である。 さらに望ましくは、 前記 150アミノ酸で示される配列が、 nXEEDXXLXX[A, V] VXX[F, Y]XG[ , R] [N, S, R]確, R, N]IAXXXXXE[S, T] [D, E] [V, L]QCLHRlfQKVL[N, D, H]P[D, E, N]L [V, I]KG[P, S, A]ff [S, T]XEED[D, E, N]X[I, L]X[E, D, Q] [L, M] [V, I]X[ , R] [Y, N, L]G[P, A, C]XKffS X[I, V] [A, S]XX[L, M] [P, A]GRIGKQCRERff[H, Y]NHL[D, N]PXI[K, N, R] [K, E] [D, E, N] [A, P]WTX[E, Q]E[E, D]XXL[I, M, C]X[A, S, Y]H[Q, E]X[N, Y, H]GN[K, R] AE[I, L]X[K, R]XL[P, H]G[R, K] [S, T]D N[S, A, G]I寒, L]ff[H, N]S[S, T] [L, V, M] K[K, R] (本配列中で Xは任意のァミノ酸、 []はそ の中のいずれか一つのアミノ酸が選択されることを示し、 例えば、 [K, R]の場合では、 K 又は Eのいずれか一つのアミノ酸であることを示す)であるタンパク質である。 さらによ り望ましい植物 3 Rmybタンパク質として配列番号: 32、 配列番号: 51、 配列番号: 53、 配列番号: 55、 配列番号: 75、 配列番号 76、 配列番号 77または配列番号 78のいずれかに記 載のァミノ酸配列で表されるタンパク質が挙げられる。 またさらにより望ましい植物 3 Rm ybタンパク質としては、 配列番号: 32、 配列番号: 51、 配列番号: 53、 配列番号: 55、 の いずれかに記載のアミノ酸配列で表されるタンパク質が挙げられる。 したがって本発明は 以下のものも提供する。
( 1 ) 下記(a)〜(: f)のいずれか一に記載の DNA、 または(g)に記載の組換え MAま たはべクタ一を保持する形質転換細胞:
(a) 配列番号: 31、 配列番号: 50、 配列番号: 52、 配列番号: 54のいずれかに記載の MAヽ
(b) 配列番号: 31 、 配列番号: 50、 配列番号: 52、 配列番号: 54のいずれかに記載の D の転写産物と相捕的なアンチセンス RMをコードする ΜΛ、
(c) 配列番号: 31、 配列番号: 50、 配列番号: 52、 配列番号: 54のいずれかに記載の ΜΛの転写産物を特異的に開裂するリボザィ厶活性を有する MAをコ一ドする DM、
(d) DNAであって、 植物細胞における発現時に、 共抑制効果により、 配列番号: 31、 配 列番号: 50、 配列番号: 52、 配列番号: 54のいずれかに記載の DMの発現を抑制させる βΝ Αを ードし、 且つ配列番号: 31、 配列番号: 50、 配列番号: 52、 配列番号: 54のいずれ かに記載の DMと 90%以上の相同性を有する MA、
(e) D であって、 植物細胞における発現時に、 干渉効果により、 配列番号: 31、 配列番号: 50、 配列番夸: 52、 配列番号: 54のいずれかに記載の DNAの発現を抑制させる Aをコ一ドし、 かつ、 配列番号: 31、 配列番号: 50、 配列番号: 52、 配列番号: 54のい ずれかに記載の MAと 20塩基以上連続して同一である DM、
(f) MAであって、 植物細胞における内在性の配列番号: 31、 配列番号: 50、 配列番号 : 52、 配列番号: 54のいずれかに記載の]) Mがコードするタンパク質に対してドミナント ネガティプ活性を示すタンパク質をコ一ドする DM、
(g) 下記の(i)から(iii)のいずれかに記載の組換え DNAまたはべクタ一:
:)細胞内で転写可能なプロモーター、
(ii')該プロモータ一配列にセンス方向またはアンチセンス方向で結合した^)〜 )のい ずれか一に記載の DNA、
(iii)RNA分子の転写終結およびポリアデニル化に開するシグナル。
( 2 ) (1) の(a)〜(: 0のいずれか一に記載の DNA、 または 〔1 ) の(g)に記載の 組換え Μλまたはべクタ一を保持する形質転換植物細胞。
( 3 ) 植物細胞の增殖改変のために用いるものであることを特徴とする (2 ) に記載 の形質転換植物細胞。
(4) 植物細胞の増殖が改変されている (2) に記載の形質転換植物細胞。
(5) (2) 〜 4) に記載の形質転換植物細胞を含む形質転換植物体。
(6) (5) に記載の形質転換植物体の子孫またはクローンである形質転換植物体。
(7) 植物細胞の増殖が改変されている (5) または (6) に記載の形質転換植物体
( 8 ) 植物個体の発生分化の改変のために用いるものであることを特徴とする (5) または (6) に記載の形質転換植物。
(9) 植物個体の発生分化が改変されている (5) または (6) に記載の形質転換植 物。
(1 0) (2) 〜 (4) に記載の植物細胞または (5) (8) のいずれかに記載の 植物体より生産された食品及び/又は飼料組成物。
(1 1) (2) 〜 (4) に記載の植物細胞または (5) ( 8 ) のいずれかに記載の 植物体より生産された化学品。
(1 2) ( 2 ) 〜 ( 4 ) に記載の植物細胞または ( 5 ) ( 8 ) のいずれかに記載の 植物体より生産されたタンパク質。
(1 3) ( 2 ) 〜 ( 4 ) に記載の植物細胞または ( 5 ) (8) のいずれかに記載の 植物体より生産された核酸。 また、 本発明は次なるものを提供する。
(1 4) 下記(a)から(e)のいずれかに記載の DNA: -
(a) 配列番号: 32に記載のアミノ '酸配列からなるタンパク質をコ一ドする DN
(b) 配列番号:31に記載の塩基配列からなる DNA、
(c) 配列番号:32に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠 失、 もしくは付加したアミノ酸配列を有し、 それぞれ配列番号:32に記載のアミノ酸配列 からなるタンパク質と同等の機能を有するタンパク質をコードする DM、
(d) 配列番号:31に記載の塩基配列からなる DNAとストリ ンジヱントな条件下でハイブ リダィズする DNAであって、 それぞれ配列番号: 32に記載のアミノ酸配列からなるタンパ ク質と同等の機能を有するタンパク質をコ一ドする A、
(e) 配列番号: 32に記載のアミノ酸配列とスコア (Aligned Score) が 60以上であるァ ミノ酸配列を有するタンパク質をコ一ドする MAであって、 それぞれ配列番号: 32に記載 のァミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコードする DNA。
(1 5) (1 ) の(a)から(e)のいずれかに記載の DNAの転写産物と相捕的なアン チセ.ンス RMをコ一ドする DM。
U 6 ) C 1 4 ) の(a)から(e)のいずれかに記載の MAの転写産物を特異的に開裂 するリボザィム活性を有する をコ一ドする]) NA。
(1 7) MAであって、 植物細胞における発現時に、 共抑制効果により、 (1 4) の (a)から(e)のいずれかに記載の DNAの発現を抑制させる βΝΑをコードし、 かつ、 (1 4 ) の(a)から(e)のいずれかに記載の DMと 90%以上の相同性を有する MA。
( 1 8 ) MAであって、 植物細胞における発現時に、 MA干渉効果により、 (1 4) の(a)から(e)のいずれかに記載の DNAの発現を抑制させる fflAをコードし、 かつ、 (1
4 ) の (:a)から(e)のいずれかに記載の DMと 20塩基以上連続して同一である DM。
( 1 9 ) DNAであって、 植物細胞における内在性の ( 1 4 ) の(a)から(e)のいずれ かに記載の]) NAがコ一ドする夕ンパク質に対してドミナントネガティプ活性を示す夕ンパ ク質をコードする DNA。
( 2 0 ) 植物の細胞増殖の改変、 および Zまたは発生分化の改変のために用いるもの であることを特徴とする (1 4 ) ~ ( 1 9 ) のいずれか一に記載の DNA。 . '
( 2 1 ) 下記の(i)から(iii)の構成要素を含む組換え DM又はべクタ一:
(i) 細胞内で転写可能なプロモー夕一、
〔ii)該プロモータ一配列にセンス方向又はアンチセンス方向で結合した (1 4 ) 〜 ( 1 9 ) のいずれか一に記載の MA、
分子の転写終結およびポリアデニル化に関するシグナル。
( 2 2 ) 1 ) ~ ( 1 9 ) のいずれか一に記載の DMまたは (2 1 ) に記載の組換 え 又はべクタ一を保持する形質転換細胞。
( 2 3 ) ( 1 4 ) に記載の DNAによりコードされるタンパク質又は部分ペプチド、 あ るいは植物細胞における内在性の (1 4) の(a)〜(e)のいずれかに記載の DNAがコード するタンパク質に対してドミナントネガティプ活性を示すタンパク質又はその部分べプチ
(2 4 ) ( 1 4 ) に記載の DM又は該 MAを含むベクタ一を保持する形質転換細胞を 培養し、 該形質転換細胞又はその培養上清から発現させたタンパク質を回収する工程を含 む、 (2 3 ) に記載のタンパク質の製造方法。
( 2 5 ) ( 1 ) ~ ( 1 9 ) のいずれか一に記載の DMまたは (2 1 ). に記載の組換 え DM又はべクタ一を保持する形質転換植物細胞。
( 2 6 ) 植物細胞の増殖改変のために用いるものであることを特徴とする (2 5 ) に 記載の形質転換植物細胞。
( 2 7 ) 植物細胞の増殖が改変されている (2 5 ) に記載の形質転換植物細胞。
( 2 8 ) ( 2 5 ) 〜 ( 2 7 ) に記載の形質転換植物細胞を含む形質転換植物体。
( 2 9 ) ( 2 8 ) に記載の形質転換植物体の子孫またはクローンである形質転換植物 体。
( 3 0 ) 植物細胞の増殖が改変されている (2 8 ) または (2 9 ) に記載の形質転換 植物体。
( 3 1 ) 植物個体の発生分化の改変のために用いるものであることを特徴とする ( 2 8 ) または ( 2 9 ) に記載の形質転換植物体。
( 3 2 ) 植物個体の発生分化が改変されている (2 8 ) または (2 9 ) に記載の形質 転換植物体。
( 3 3 ) ( 2 5 ) ~ ( 2 7 ) に記載の植物細胞または (2 8 ) 〜 ( 3 2 ) のいずれか に記載の植物体より生産された食品及び/又は飼料組成物。
( 3 4 ) ( 2 5 ) ~ ( 2 7 ) に記載の植物細胞または (2 8 ) 〜 ( 3 2 ) のいずれか に記載の植物体より生産された化学品。
( 3 5 ) ( 2 5 ) ~ ( 2 7 ) に記載の植物細胞または ( 2 8 ) 〜 (: 3 2 ) のいずれか に記載の植物体より生産されたタンパク質。
( 3 6 ) t 2 5 ) 〜 ( 2 7 ) に記載の植物細胞または ( 2 8 ) 〜 (.3 2 ) のいずれか に記載の植物体より生産された核酸。
( 3 7 ) ( 1 ) の(a)〜 e)にいずれかに記載の DNAの転写産物。
C 3 8 ) ( 3 7 ) に記載の転写産物の量を測定する方法。
(3 9) 複数の検体中の (3 7 ) に記載の転写産物の量を相対的に比較する方法。
(4 0 ) ( 1 4 ) に記載の MAにコードされるタンパク質の量を測定する方法。
( 1 ) 複数の検体中の (1 4 ) に記載の MAにコードされるタンパク質の量を相対 的に比較する方法。
本発明者は NtinyM2夕ンパク質の C末端領域が転写活性化能を負に調節する領域である こと、 NtmybA2タンパク質の中程に転写を活性化する領域が存在することを見出した。 前 述ょり、 本発明者は MmybA2タンパク質の機能を改変し、 転写活性化能が上昇した MmybA 2変異体、 転写活性化能が減少した NtmyM2変異体、 すなわちドミナントネガティブとし て機能する NtmyM2変異体の作出に成功した。
本発明は、 また、 次なるものを提供する。
(4 2) 配列番号: 5 3で示される NtmybA2夕ンパク質において転写活性化能を調節 する調節領域の機能を消失した分子のアミノ酸配列をコードする DM。
(4 3 ) 機能を消失した該調節領域が 705〜1042番目までのアミノ酸の領域である分 子のァミノ酸配列をコ一ドする (4 2 ) の DM。
(4 4 ) 機能を消失した該調節領域が 631〜: 1042番目までのアミノ酸の領域である分 子のァミノ酸配列をコ一ドする (4 2) の MA。
( 5) 機能が消失した該調節領域が 569〜1042番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (4 2) の DNA。
(4 6) 機能が消失した該調節領域が 413〜1042番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (4 2 ) の A。
(4 7 ) 機能が消失した該調節領域が 243〜1042番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (4 2) の DNA。
( 8) 機能が消失した該調節領域が 188〜1042番目までのアミノ酸の領域である分 子のアミノ酸配列をコ一ドする ( 4 2 ) の DM。
(4 9) 該調節領域の機能の消失が、 アミノ酸の置換、 欠失及びノ又は挿入によって 生じた分子である (4 2) 力、ら (4 8) に記載の DNA。
(5 0) 該調節領域の機能の消失が、 アミノ酸の欠失によって生じた分子である (4 2 ) から (4 8) に記載の MA。
(5 1) 配列番号: 5 3で示される Ni;mybA2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるァミノ酸配列の 1〜704番目のァミノ酸配列をコ一ドす る醒。
(5 2) 配列番号: 5 3で示される NtmybA2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるアミノ酸配列の 1〜630番目のアミノ酸配列をコードす る舰。
(5 3) 配列番号: 5 3で示される NtmyM2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるアミノ酸配列の 1〜568番目のアミノ酸配列をコードす る通。
(5 4) 配列番号: 5 3で示される NtmybA2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるアミノ酸配列の 1〜412番目のアミノ酸配列をコードす る DM。
(5 5) 配列番号: 5 3で示される NtmyM2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるアミノ酸配列の:!〜 242番目のアミノ酸配列をコードす る赚。
(5 6) 配列番号: 5 3で示される NtmybA2タンパク質の機能が改変された分子とし ての、 配列番号: 5 3で示されるアミノ酸配列の 1〜187番目のアミノ酸配列をコードす る A。
(5 7) 配列番号: 5 1で示される MmybAlタンパク質において転写活性化能を調節 する調節領域の機能を消失した分子のァミノ酸配列をコードする]) M。
('5 8) 機能を消失した該調節領域が 715〜1003番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (5 7) の DM。
(5 9) 機能を消失した該調節領域が 641〜; 1003番目までのアミノ酸の領域である分 子のァミノ酸配列をコ一ドする (5 7 ) の MA。 ( 6 0 ) 機能が消失した該調節領域が 579〜; L003番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (5 7) の DMo
(6 1) 機能が消失した該調節領域が 459〜: L003番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (5 7) の DM。
( 6 2 ) 機能が消失した該調節領域が 299〜1003番目までのァミノ酸の領域である分 子のアミノ酸配列をコードする ( 5 7) の DNA。
( 6 3 ) 機能が消失した該調節領域が 186〜1003番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (5 7) の DNA。
(6 4) 該調節領域の機能の消失が、 アミノ酸の置換、 欠失及び 又は揷入によって 生じた分子である (5 7) から (6 3 ) に記載の A。
(6 5) 該調節領域の機能の消失が、 アミノ酸の欠失によって生じた分子である (5 7 ) から ( 6 3 ) に記載の]) NA。
(6 6 ) 配列番号: 51で示される NtmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜714番目のアミノ酸配列をコードす る MA。
(6 7) 配列番号: 51で示される MmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜640番目のアミノ酸配列をコードす る MA。
(6 8) 配列番号: 51で示される MmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜578番目のアミノ酸配列をコードす る MA。
(6 9) 配列番号: 51で示される MmybMタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜458番目のアミノ酸配列をコードす る赚。
(7 0) 配列番号: 51で示される NtmybMタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜298番目のアミノ酸配列をコードす る赚0
(7 1) 配列番号: 51で示される NtmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 51で示されるアミノ酸配列の 1〜: L85番目のアミノ酸配列をコードす る醒。
( 7 2) 配列番.号: 32で示される 0s3EmybAlタンパク質において転写活性化能を調節 する調節領域の機能を消失した分子のアミノ酸配列をコ一ドする MA。
( 7 3) 機能を消失した該調節領域が 709〜993番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (7 2) の MA。
( 7 4) 機能を消失した該調節領域が 635〜993番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (7 2) の DNA。
( 7 5) 機能が消失した該調節領域が 575~993番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする (7 2) の DM。
( 7 6) 機能が消失した該調節領域が 426〜993番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする ( 7 2 ) の Α。
( 7 7 ) 機能が消失した該調節領域が 257〜993番目までのアミノ酸の領域である分 子のアミノ酸配列をコードする ( 7 2) の DM。
(7 8) 機能が消失した該調節領域が 203〜993番目までのアミノ酸の領域である分 子のァミノ酸配列をコ―ドする (.7 2 ) の]) ΝΛ。
(7 9 ) 該調節領域の機能の消失が、 ァミノ酸の置換、 欠失及び Ζ又は揷入によって 生じた分子である ( 7 2) 力、ら ( 7 8) に記載の]) Μ。
( 8 0) 該調節領域の機能の消失が、 ァミノ酸の欠失によつて生じた分子である ( 7 2 ) 力、ら ( 7 8 ) に記載の 1)Νλ。
( 8 1) 配列番号: 32で示される 0s3KmybMタンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の 1~708番目のァミノ酸配列をコ一ドする 氣
(8 2) 配列番号: 32で示される 0s3RmyMlタンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の:!〜 634番目のァミノ酸配列をコ一ドする 氣
( 8 3 ) 配列番号: 32で示される 0s3EmybAl夕ンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の 1〜574番目のァミノ酸配列をコードする MA。
(8 ) 配列番号: 32で示される 0s3RmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の 1〜425番目のァミノ酸配列をコードする
( 8 5 ) 配列番号: 32で示される 0s3EmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の 1〜256番目のァミノ酸配列をコ一ドする 舰。
(8 6 ) 配列番号: 32で示される 0s3EmybAlタンパク質の機能が改変された分子とし ての、 配列番号: 32で示されるアミノ酸配列の 1〜202番目のァミノ酸配列をコ一ドする 通。
(8 7) 下記の(i)から(iii)のいずれかに記載の組換え MAまたはべクタ一:
(i)細胞内で転写可能なプロモータ一、
(ii)該プロモータ一配列にセンス方向で結合した (4 2 ) から (8 6) のいずれか一に 記載の DM、
(iii) A分子の転写終結およびポリアデニル化に関するシグナル。
( 8 8 ) ( 4 2 ) 力、ら (8 6) に記載の]) M、 または (8 7 ) に記載の組換え DNAま たはべクタ一を保持する形質転換細胞。
(8 9) 植物細胞の増殖改変のために用いるものであることを特徴とする (8 8) に 記載の形質転換植物細胞。
(9 0) 植物細胞の増殖が改変されている (8 8) に記載の形質転換植物細胞。 (9 1 ) ( 8 8 ) 〜 ( 9 0 ) に記載の形質転換植物細胞を含む形質転換植物体。
(9 2) (9 1) に記載の形質転換植物体の子孫またはクローンである形質転換植物 体。
(9 3) 植物細胞の増殖が改変されている (9 1) または (9 2) に記載の形質転換 植物体。
( 9 4) 植物個体の発生分化の改変のために用いるものであることを特徴とする (9 1) または (9 2) に記載の形質転換植物。
( 9 5) 植物個体の発生分化が改変されている (9 1) または (9 2) に記載の形質 転換植物。
( 9 6 ) ( 8 8 ) 〜 (9 0) に記載の植物細胞または (9 1 ) 〜 (9 5) のいずれか に記載の植物体より生産された食品及び/又は飼料組成物。
( 9 7 ) ( 8 8 ) 〜 (9 0) に記載の植物細胞または (9 1 ) 〜 (9 5) のいずれか に記載の植物体より生産された化学品。
( 9 8 ) ( 8 8 ) ~ ( 9 0 ) に記載の植物細胞または ( 9 1 ) 〜 ( 9 5 ) のいずれか に記載の植物体より生産された夕ンパク質。
(9 9 ) 8 ) ~ ( 9 0 ) に記載の植物細胞または (9 1 ) 〜 ( 9 5 ) のいずれか に記載の植物体より生産された核酸。 さらに本発明には以下のものも含まれる。
(.1 0 0 ) 下記(a)〜(f)のいずれか一に記載の DNA、 または g)に記載の組み換え DNAまたはベクターを保持する形質転換細胞:
(a) 植物 3Rmybタンパク質をコードする DNA、
(b) 植物 3Rmybタンパク質をコ一ドする DNAの転写産物と相捕的なアンチセンス RM をコードする DM、 (c) 植物 3Emybタンパク質をコードする DMの転写産物を特異的に開裂するリボザィ ム活性を有する BNAをコ一ドする DM、
(d) DNAであって、 植物細胞における発現時に、 共抑制効果により、 植物 3Bmybタンパ ク質をコードする DNAの発現を抑制させる をコードし、 かつ、 植物 3Rmybタンパク質 をコードする MAと 90%以上の相同性を有する DNA、
MAであって、 植物細胞における発現時に、 βΝΑ千渉効果により、 植物 3Emybタン パク質をコードする]) NAの発現を抑制させる MAをコードし、 かつ、 植物 3Rmybタンパク 質をコードする DNAと 20塩基以上連铳して同一である DM。
(f) MAであって、 植物細胞における内在性の植物 3Rmybタンパク質をコ ドする DM がコードするタンパク質に対してドミナントネガティブ活性を示すタンパク質をコ一ドす る舰、
(g 下記の(i)から ii)のいずれかに記載の組み換え またはべクタ一:
(i)細胞内で転写可能なプロモータ一、
(ii)該プロモー夕一配列にセンス方向またはアンチセンス方向で結合した(a)〜(: f )のい ずれか一に記載の DNA、
(iii) RM分子の転写終結およびポリアデニル化に関するシグナル。
(1 0 1) (1 0 0) の(a)〜(: 0のいずれか一に記載の DNA、 または ( 1 0 0 ) の (g)に記載の組み換え DMまたはべクタ一を保持する形質転換植物細胞。
(1 0 2) 植物細胞の増殖改変のために用いるものであることを特徴とする (1 0 1 ) に記載の形質転換植物細胞。
(1 0 3) 植物細胞の増殖が改変されている (1 0 1) に記載の形質転換植物細胞。
(1 0 4) ( 1 0 1 ) 〜 ( 1 0 3 ) に記載の形質転換植物細胞を含む形質転換植物体
(1 0 5) (1 0 4) に記載の形質転換植物体の子孫またはクローンである形質転換 植物体。
(1 0 6 ) 植物細胞の増殖が改変されている (1 0 4) または (1 0 5) に記載の形 質転換植物体。
(1 0 7) 植物個体の発生分化の改変のために用いるものであることを特徴とする ( 1 0 4) または (1 0 5) に記載の形質転換植物体。
(1 0 8) 植物個体の発生分化が改変されている ( 1 0 4 ) または ( 1 0 5 ) に記載 の形質転換植物体
(1 0 9) (1 0 1) 〜 (1 0 3) に記載の植物細胞または (1 0 4) 〜 C1 0 8) のいずれかに記載の植物体より生産された食品及び/又は飼料組成物。
(1 1 0) ( 1 0 1 ) 〜 ( 1 0 3 ) に記載の植物細胞または ( 1 0 4 ) 〜 ( 1 0 8 ) のいずれかに記載の植物体より生産された化学品。
(1 1 1) ( 1 0 1 ) 〜 (: L 0 3 ) に記載の植物細胞または ( 1 0 4 ) 〜 ( 1 0 8 ) のいずれかに記載の植物体より生産されたタンパク質。
(1 1 2) ( 1 0 :!) 〜 ( 1 0 3 ) に記載の植物細胞または ( 1 0 4 ) 〜 ( 1 0 8 ) のいずれかに記載の植物体より生産された核酸。 さらに本発明には転写活性化能が増大した植物 3 Emybタンパク質が含まれる力 <、 具体的 には以下の夕ンパク質が挙げられる。 またこれらのタンパク質をコ一ドする MAも本発明 に含まれる。
(1 1 3) 転写活性化能を調節する調節領域の機能を消失した植物 3 Emybタンパク質。
(1 1 ) 機能を消失した該調節領域が C末端より 600アミノ酸である (1 1 3 ) の植 物 3. Emybタンパク質。
( 1 1 5) 機能を消失した該調節領域が C末端より 500アミノ酸である (1 1 3) の植 物 3Kmybタンパク質。
(1 1 6) 機能を消失した該調節領域が C末端より 420アミノ酸である (1 1 3 ) の植 物 3Rmyb夕ンパク質。 ( 1 1 7 ) 機能を消失した該調節領域が C末端より 350アミノ酸である (1 1 3 ) の植 物 3 Rmyb夕ンパク質。
( 1 1 8 ) 機能を消失した該調節領域が C末端より 280アミノ酸である (1 1 3 ) の植 物 3 Emybタンパク質。
望ましくは、 以下のタンパク質が挙げられる。
( 1 1 9 ) 機能の消失がアミノ酸の欠失によるものである (1 1 3 ) の植物 3Emybタン パク質。
1 2 0 ) アミノ酸の欠失が、 C末端より 280ァミノ酸までの範囲から 600ァミノ酸ま での範囲である ( 1 1 3 ) の植物 3 Emybタンパク質。
( 1 2 1 ) アミノ酸の欠失が、 C末端より 280ァミノ酸までの範囲から 500ァミノ酸ま での範囲である (1 1 3 ) の植物 3 Emybタンパク質。
より望ましくは、
( 1 2 2 ) アミノ酸の欠失が、 C末端より 350ァミノ酸までの範囲から 420ァミノ酸ま での範囲である (1 1 3 ) の植物 3 Emybタンパク質。
( 1 2 3 ) 植物 3Rmyb夕ンパク質が配列番号: 32、 配列番号: 51、 配列番号: 53、 配列 番号: 75、 または配列番号: 76のいずれかのァ - ノ酸配列である ( 1 1 3 ) 〜 (; 1 2 2 ) のいずれか一つに記載のタンパク質。
( 1 2 4) 植物 3Kmybタンパク質が配列番号 32、 配列番号: 51、 または配列番号: 53 、 のいずれかのアミノ酸配列である (1 1 3 ) - ( 1 2 2 ) のいずれか一つに記載のタン パク質。 発明の効果
本発明により細胞増殖が改変された植物細胞が提供される。 またこれらの植物細胞を用 いて発生分化が改変された植物体を得ることが可能であり、 特定の器官の肥大、 雄性不稔 またはストレス耐性の改善等、 好ましい性質をもつ植物体を得るための新しい方法が提供 される。 本発明のその他の目的、 特徴、 優秀性及びその有する観点は、 以下の記載より当業者に とっては明白であろう。 しかしながら、 以下の記載及び具体的な実施例等の記載を含めた 本件明細書の記載は本発明の好ましい態様を示すものであり、 説明のためにのみ示されて いるものであることを理解されたい。 本明細書に開示した本発明の意図及び範囲内で、 種 々の変化及び/又は改変 (あるいは修飾) をなすことは、 以下の記載及び本明細書のその 他の部分からの知識により、 当業者には容易に明らかであろう。 本明細書で引用されてい る全ての特許文献及び参考文献は、 説明の目的で引用されているもので、 それらは本明細 書の一部としてその内容はここに含めて解釈されるべきものである。 図面の簡単な説明
図 1は、 DDBJに Acsession no. BAB78687として登録されているイネの仮想的なタンパク 質のァミノ酸配列と 0s3RmybA タンパク質のァミノ酸配列を、 最適な形で並べたァミノ酸 配列の比較を示す。 配列は図 2及び 3に連続する。
図 2は、 BAB78687として登,録されているイネの仮想的な夕ンパク質のァミノ酸配列と 0s 3KmybAlタンパク質のアミノ酸配列を、 最適な形で並べたアミノ酸配列の比較を示す。 配 列は図 1の続きで、 図 3に連続する。
図 3は、 BAB78687として登録されているイネの仮想的なタンパク質のァミノ酸配列と 0s 3RmybAlタンパク質のァミノ酸配列を、 最適な形で並べたァミノ酸配列の比較を示す。 配 列は図 1及び 2からの続きである。
図 4は、 0s3KmybAlと NtmybA2の CYM promoter- LUCプラスミ ドをレポ一タープラスミ ド として用いた、 CYM プロモーターと LUCの融合遺伝子に対する転写活性化能を LUC比活性 上昇率として示す。 数値は 5反復の平均値であり、 エラ一バーは標準偏差を示す。
図 5は、 NtmyM2および Ni;mybA2の各種 C末端欠失変異体の NACK1 promoter- LUCブラ スミ ドをレポ一タ一プラスミ ドとして用いた、 MCK1 プロモーターと LUCの融合遺伝子に 対する転写活性化能を LUC比活性上昇率として示す。 数値は 5反復の平均値であり、 エラ 一バーは標準偏差を示す。
図 6は、 NtmybA2と NtmybA2T5、 または NtmybBと NtmybA2T5の共発現による CYM promot er - LUCプラスミ ドをレポ一タ一プラスミ ドとして用いた、 CYM プロモーターと LUCの融合 遺伝子に対する転写活性化能を LUC比活性上昇率として示す。 数値は 5反復の平均値であ り、 エラ—バーは標準偏差を示す。
図 7は、 PP2P211- 35S:A2ENAiを用いて形質転換し、 RNA千渉の効果により内在性 N1;mybA 2の発現量が低下した形質転換 BY2力ルスと PPZP211を形質転換したカルスの大きさを示 す写真である。 vectorは pPZP211、 A2 RMiは pPZP211 - 35S: A2RNAiによる形質転換カルス を示している。
図 8は、 PPZP211- 35S:A2 RMiを用いて形質転換し、 干渉の効果により内在性 Ntiny bA2の発現量が低下した形質転換 BY2カルスと pPZP211を形質転換したカルスにおける核 内 DNA含量を測定した結果を示す。 vector、 および vector controlは pPZP211、 A2 RNAi は PPZP211- 35S: Α2ΕΝΑΪによる形質転換力ルスを示している。
図 9は、 PPZP211 - 35S:BBNAiを用いて形質転換し、 千渉の効果により内在性 NtmybB の発現量が低下した形質転換 BY2カルスと pPZP211を形質転換したカルスの大きさを示す 写真である。 vector および vector controlは pPZP211、 B RMiは pPZP211- 35S:BMAiに よる形質転換カルスを示している。
図 1 0は、 PPZP211および PPZP211- 35S:BRN を用いて形質転換し、 干渉の効果に より内在性 NtmybBの発現量が低下した形質転換 BY2力ルスと pPZP211を形質転換したカル スにおける核内 MA含量を測定した結果を示す。 vector、 および vector controlは pPZP21 1、 B RNAiは pPZP211- 35S:BRNAiによる形質転換カルスを示している。
図 1 1は、 PPZP211- 35S:A2または、 pPZP211- 35S:A2T2を用いて形質転換し、 恒常的に M mybA2または NtmyM2T2が発現する形質転換 BY2カルスと PPZP211を用いて形質転換した カルスの大きさを示す。 vectorは pPZP211、 35S:A2は pPZP211-35S: A2、 35S:A2T2は pPZP21 1-35S:A2T2による形質転換カルスを示している。
図 1 2は、 PPZP211- 35S:A2または、 pPZP211 - 35S:A2T2を用いて形質転換し、 恒常的に Nt mybA2または NtmyM2T2が発現する形質転換 BY2カルスと pPZP211を用いて形質転換した カルスを構成する細胞数を示す。 vectorは pPZP211、 35S: A2は pPZP211-35S: A2、 35S:A2T2 は PPZP211- 35S:A2T2による形質転換カルスを示している。
図 1 3は、 pPZP21卜 35S:A2または、 pPZP211- 35S: A2T2を用いて形質転換し、 恒常的に Νΐ mybA2または NtmyM2T2が発現する形質転換 BY2カルスと pPZP211を形質転換して得られ たカルスの核内 DM含量を測定した結果を示す。 Controlは pPZP211、 35S: A2は pPZP211 - 35S:A2、 35S:A2T2は pPZP211 - 35S:A2T2による形質転換カルスを示している。
図 1 4は、 PPZP211 - 35S:Bを用いて形質転換した NtmybBが恒常的に発現している形質転 換タバコ、 pPZP21卜 35S:B.BNAiを用いて形質転換した βΜίの効果により内在性 NtmybBの発 現を抑制した形質転換タバコ、 または pPZP211を用いて形質転換した形質転換タバコの生 育を示す写真である。 vectorは pPZP211、 35S:Bは pPZP211- 35S:B、 B KMiは pPZP211 - 35 S: B.IJNAiによる形質転換タバコを示している。
図 1 5は、 NtmybAl、 MmybA2、 0s3RmybAlタンパク質のアミノ酸配列を最適な形で並 ベた結果を示す。 図 15〜: 17における矢印は MmybA2の各種 C末端領域欠失変異体作出にお ける領域と、 それに対応する NtmybAl、 0s3EmyMlのアミノ酸領域を示している。 図中の 、 "." 、 ": " は CLUST Jプログラムによるアミノ酸の類似性を示す出力結果に おいて は完全に保存されたアミノ酸のサイ ト、 ": " は高度に保存されたアミノ酸 のサイ ト、 "." は中程度に保存されたアミノ酸のサイ トを示している。 配列は図 1 6か ら 1 8に連続する。
図 1 6は NtmybA NtmybA2、 0s3RmybAlタンパク質のアミノ酸配列を最適な形で並べ た結果を示す。 配列は図 1 5の続きで、 図 1 7及び 1 8に連続する。
図 1 Ίは MmybM、 NtmybA2, 0s3RmybAlタンパク質のアミノ酸配列を最適な形で並べ た結果を示す。 図中の四角で囲まれた領域は NtmybA2の欠失領域近辺に認められる NtmybA 1、 0s3RmybAlとの保存配列位置を示している。 四角の上に示されたアミノ酸配列は保存 配列を示しており、 Xば任意のアミノ酸を表す。 配列は図 1 5および 1 6の続きで、 図 1 8に連続する。 .
図 1 8は NtmyMl、 NtmybA2. OsSEmybM夕ンパク質のァミノ酸配列を最適な形で並べ た結果を示す。 配列は図 1 5から 1 7の続きである。 ·
図 1 9は、 tmybAK NtmybA2. 0s3EmybM、 AtMYB3Rl (図 19〜25において MYB3E - 1 · と記述)、 At MYB3R4(図 19〜25において AtMYB3R-4と記述)タンパク質のァミノ酸配列を 最適な形で並べた結果を示す。 図中の 、 ". " 、 ": " は CLUSTA プログラムによ るアミノ酸の類似性を示す出力結果において " * " は完全に保存されたアミノ酸のサィ 1、 、 ": " は高度に保存されたアミノ酸のサイ ト、 "ノ' は中程度に保存されたアミノ酸の サイ トを示している。 配列は図 2 0から 2 5に連練する。
図 2 0は、 NtmybA NtmybA2, 0s3RmybAK AtMYB3R-l , AtMYB3R- 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 配列は図 1 9の铳きで、 図 2 1カヽら 2 5に連 続する。
図 2 1は、 NtmybAl、 NtmybA2 0s3RmybAK AtMYB3R-lN AtMYB3R- 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 配列は図 1 9及び 2 0の続きで、 図 2 2から 2 5に連続する。
図 2 2は、 tmybAK NtmybA2、 0s3BmybAl、 AtMYB3H、 AtMYB3E- 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 配列は図 1 9から 2 1の きで、 図 2 3から 2 5に連続する。
図 2 3は、 NtmybAl、 NtmybA2N 0s3RmybAK A YB3R- 1、 AtMYB3K- 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 図中の太線は myb MA結合領域以外において 特に高くァミノ酸配列が保存されている領域を示している。 太線で示した領域において認 められる保存配列を太字で示し、 本配列中で Xは任意のアミノ酸、 Jは I、 V、 Lのいず れか一つのアミノ酸、 0は S、 Tのいずれか一つのアミノ酸、 X!は K、 Rのいずれか一 つのアミノ酸、 ϋは V、 Lのいずれか一つのアミノ酸、 Χ5は D、 Eのいずれか一つのァ ミノ酸であることを示している。 配列は図 1 9力、ら 2 2の続きで、 図 2 4力、ら 2 5に連続 する。
図 2 4は、 NtmybAK NtniybA2, 0s3RmybA AtMYB3R- 1、 AtMYB3R- 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 配列は図 1 9から 2 3の続きで、 図 2 5に連 す 6。
図 2 5は、 tmybAl^ NtmybA2, 0s3RmybAK AtMYB3E-l、 ΑΐΜΥΒ3Ιί - 4タンパク質のァ ミノ酸配列を最適な形で並べた結果を示す。 配列は図 1 9から 2 4の続きである。
図 2 6は、 tmybB, MYB3R3(図 26〜28において AtMYB3K - 3と記述)、 A"tMYB3R5(図 26 〜28において MMYB3E-5と記述)タンパク質のァミノ酸配列を最適な形で並べた結果を示 す。 図中の 、 "ノ' 、 ": " は CLUSTALWプログラムによるアミノ酸の類似性を示す 出力結果において " * " は完全に保存されたアミノ酸のサイ ト、 ": " は高度に保存され たアミノ酸のサイ ト、 "ノ' は中程度に保存されたアミノ酸のサイ トを示している。 図中 の太線は myb MA'結合領域以外において特に高くアミノ酸配列が保存されている領域を示 している。 太槔で示した領域において認められる保存配列は太字で示し、 本配列中で Xは 任意のァミノ酸、 X "ま K、 E、 D、 E、 IIのいずれか一つのァミノ酸であることを示し ている。 配列は図 2 7及び 2 8に連続する。
図 2 7は、 NtmybB、 At YB3R-3, 5タンパク質のァミノ酸配列を最適な形で並 ベた結果を示す。 配列は図 2 6の続きで、 図 2 8に連続する。
図 2 8は、 NtmybB, AtMYB3E-3, AtMYB3E-5夕ンパク質のァミノ酸配列を最適な形で並 ベた結果を示す。 配列は図 2 6及び 2 7の続きである。
図 2 9は、 Physcomitrella patensより単離された MYB3K-1 (図 29〜31中では PhpMYB3R - 1と記述)、 Adiantum raddianum より単離された MYB3R- 1 (図 29〜31中では AdrMYB3R- 1と 記述)、 Hordeum vulgare より単離された MYB3R - 1 (図 29〜31中では HvMYB3K - 1と記述)、 Secale cereale より単離された MYB3R-1(図 29 31中では ScMYB3R-lと記述)、 Papaver rhoeasより単離された putative Myb - related domain (図 29 31中ではでは ParMYB3R - 1と記 述)、 AtMYB3IU (図 29 31中では AtMYB3E - 1と記述)、 A«YB3E3(図 29 31中では AtMYB3 β - 3と記述)、 AtMYB3M (図 29 31中では A YB3R-4と記述)、 MYB3R5(図 29 31中で は AtMYB3R- 5と記述)、 NtmybAl NtmybA2, NtmybBs 0s3BmybAlタンパク質における 3 反復からなる myb様 MA結合領域を構成するアミノ酸配列を最適な形で並べた結果を示す 13種のァミノ酸配列中で、 保存されていたァミノ酸のサイ トは図中で保存配列として示 してある。 保存配列中で Xは任意のアミノ酸、 Jは I V Lのいずれか一つのアミノ酸
0は G S T C Λのいずれか一つのァミノ酸、 Χ7は Κ Ε IIのいずれか一つ
のアミノ酸、 ϋは H \ Y Fのいずれか一つのアミノ酸、 X"ま D Eのいずれか一 つのアミノ酸であることを示している。 図中での太線は MOTIFプログラム (http : //moti f. genome, ad. jp/) を用いての検索結果において MYB#l(Myb MA- binding domain repeat signature 1. )として示される c - mybの 3反復 myb 冊 A結合領域で認められるコンセンサ ス配列を示している。 太線間の矢印は前記コンセンサス配列間に存在するアミノ酸数を示 している。 配列は図 3 0及び 3 1に連続する。
図 3 0は、 PhpMYB3R- AdrMYB3R- HvMYB3B- 1 ScMYB3E - 1 ParMYB3E - 1 ΑΪΜΥΒ3Ε1 AtMYB3R3, AtMYB3E4, AtMYB3R5 NtmybAK NtmybA2 NtmybB^ 0s3BmybAlタンパク質 における 3反復からなる myb様 MA結合領域を構成するアミノ酸配列を最適な形で並べた 結果を示す。 配列は図 2 9の続きで、 図 3 1に連続する。
図 3 1は、 PhpMYB3R-l, AdrMYB3R- 1 I YB3R - 1 ScMYB3R- 1 ParMYB3 -K At YB3Rl AtMYB3R3. AtMYB3R4, AtMYB3R5 NtmybA NtmybA2 NtmybB 0s3KmybAlタンパク質 における 3反復からなる myb様 DNA結合領域を構成するアミノ酸配列を最適な形で並べた 結果を示す。 配列は図 2 9及び 3 0の続きである。
図 3 2は、 栽培 NtmyM2遺伝子導入植物体(MmyM2高発現タバコ)の生育状況 (草丈) にっき NtmyM2遺伝子を導入していない植物体と比較した結果を示す。
図 3 3は、 栽培 NtniybA2遺伝子導入植物体(NtmybA2高発現タバコ)の生育状況 (本葉数 ) にっき NtmybA2遺伝子を導入していない植物体と比較した結果を示す。 発明を実施するための最良の形態
本発明では、 「遺伝子組換え技術」 を利用して所定の核酸を単離 ·配列決定じたり、 組 換え体を作製したり、 所定のペプチドを得ることができる。 本明細書中使用できる遺伝子 組換え技術としては、 当該分野で知られたものが挙げられ、 例えば J. Sambrook, E. F. Fritsch & T. Maniatis, Molecular Cloning : A Laboratory Manual (2nd edition)" , C old Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989) D. M. G lover et al. ed. , " DM Cloning" , 2nd ed. , Vol. 1 to 4, (The Practical Approach S eries), IRL Press, Oxford University Press (1995);日本生化学会編、 「続生化学実験 講座 1、 遺伝子研究法 II」 、 東京化学同人 (1986) ;日本生化学会編、 「新生化学実験講座 2、 核酸 III (組換え DM技術) J 、 東京化学同人 (1992) ; " Methods in Enzymology" シ1リーズ, Academic Press, New Yorkヽ 例えば R. Wu ed. Methods in Enzymology" , Vo 1. 68 (Recombinant DM), Academic Press, New York (1980) ; R. ffu et al. ed. , "Met hods in Enzymology" , Vol. 100 (Recombinant MA, Part B) & 101 (Recombi 1; MA, Part C , Academic Press, New York (1983) R. Wu et al. ed. , " Methods in Enzymolo gy" , Vol. 153 (Recombinant DNA, Part D), 154 (Recombinant DM, Part E) & 155 (Re combinant DNA, Part F), Academic Press, New York (1987) J. H. Miller ed. , " Meth ods in Enzymology , Vol. 204, Academic Press, New York (1991) R. )ϊυ ed. , " Metho ds in Enzymology" , Vol. 216 (Recombinant DNA, Part G), Academic Press, New York (1992) ; R. Wu ed. , "Methods in Enzymology" , Vol. 217 (Recombinant DNA, Part H) & 218 (Recombinant DNA, Part I), Academic Press, New York (1993) ; G. M. Attardi e t al. ed. , " Methods in Enzymology" , Vol. 260 (Mitochondrial Biogenesis and Genet ics, Part A), Academic Press, New York (1995) J. L. Campbell ed. , " Methods in E nzymology", Vol. 262 (DNA Replication), Academic Press, New York (1995); G. M. A ttardi et al. ed. , "Methods in Enzymology", Vol. 264 (Mitochondrial Biogenesis a nd Genetics, Part B), Academic Press, New York (1996); P. M. Conn ed. , "Methods in Enzymology", Vol. 302 (Green Fluorescent Protein), Academic Press, New York ( 1999); S. y/eissman ed. , "Methods in Enzymology", Vol. 303 (cDNA Preparation and Characterization ), Academic Press, New York (.1999); J. C. Glorioso et al. ed. , " Methods in Enzymology", Vol. 306 (Expression of Recombinant Genes in Eukaryotic Systems), Academic Press, New York 999.); M. Ian Phillips ed. , "Methods in Enzy mology , Vol. 313 (Antisense Technology, Part A: General Methods, Methods of Del ivery and ENA Studies) & 314 (Antisense Technology, Part B: Applications), Acade mic Press, New York (1999); J. Thorner et al. ed. , "Methods in Enzymology", Vol.
326 (Applications of Chimeric Genes and Hybrid Proteins, Part A: Gene E xpressi on and Protein Purification), 327 (Applications of Chimeric Genes and Hybrid Pro teins, Part B: Cell Biology and Physiology) & 328 (Applications of Chimeric Gene s and Hybrid Proteins, Part C: Protein-Protein Interactions and Genomics), Acade mic Press , New York (2000) などに記載の方法あるいはそこで引用された文献記載の方 法あるいはそれらと実質的に同様な方法や改変法が挙げられる (それらの中にある記載は それを参照することにより本明細書の開示に含められる) 。 本発明は植物 3 Rmybタンパク質の活性が改変されている植物細胞および該植物細胞を含 む植物体を提供するが、 本発明における植物 3 Bmybタンパク質の活性の改変には、 植物 3 Rmyb遺伝子の発現の改変または植物 3 Bmybタンパク質の機能の改変が含まれる。
前記の植物 3 Bmyb遺伝子の発現の改変とは、 該遺伝子の発現を恒常的発現、 過剰発現、 異所的発現、 誘導的発現とすること、 または該発現を抑制することを包含し、 望ましくは 恒常的発現、 過剰発現、 または該発現を抑制することである。 また、 本発明は、 植物体内で植物 3 Rmyb遺伝子の発現を抑制し得る分子を提供する。 「 植物 3 Rmyb遺伝子の発現の抑制」 には、 遺伝子の転写の抑制およびタンパク質への翻訳の 抑制が含まれる。 また、 植物 3 Kmyb遺伝子の発現の完全な停止のみならず発現の減少も含 まれる。
植物における特定の内在性遺伝子の発現を抑制する方法としては、 アンチセンス技術を 利用する方法が当業者に最もよく利用されている。 植物細胞におけるアンチセンス効果は 、 エッカーらが一時的遣伝子発現法を用いて、 電気穿孔法で導入したアンチセンス MA が 植物においてアンチセンス効果を発揮することで初めて実証した (J. B.Ecker および R. W. Davis, Proc. Natl. Acad. USA. 83:5372(1986))。 その後、 タバコやペチュニアにおいて も、 アンチセンス MA の発現によって標的遺伝子の発現を低下させる例が報告されており (A. R. van der Krolら, ature 333:866(1988))、 現在では植物における遺伝子発現を抑 制させる手段として確立している。 アンチセンス核酸が標的遺伝子の発現を抑制する作用としては、 以下のような複数の要 因が存在する。 すなわち、 三重鎖形成による転写開始阻害、 RM ポリメラーゼによって局 部的に開状ループ構造がつく られた部位とのハイプリ ッ ド形成による転写抑制、 合成の進 みっつある RNA とのハイブリ ツ ド形成による転写阻害、 イントロンとェキソンとの接合点 でのハイプリ ッ ド形成によるスプライシング抑制、 スプライソソーム形成部位とのハイプ リッ ド形成によるスプライシング抑制、 mMAとのハイプリ ッ ド形成による核から細胞質へ の移行抑制、 キヤッ ピング部位やポリ(A) 付加部位とのハイプリ ッ ド形成によるスプライ シング抑制、 翻訳開始因子結合部位とのハイプリ ッ ド形成による翻訳開始抑制、 開始コ ド ン近傍のリボソーム結合部位とのハイプリッ ド形成による翻訳抑制、 πι Αの翻訳領域ゃポ リソ一ム結合部位とのハイプリ ッ ド形成によるペプチド鎖の伸長阻止、 および核酸とタン パク質との相互作用部位とのハイブリッ ド形成による遺伝子発現抑制などである。 これら は、 転写、 スプライシング、 または翻訳の過程を阻害して、 標的遺伝子の発現を抑制する 本発明で用いられるアンチセンス配列は、 上記のいずれの作用で標的遺伝子の発現を抑 制してもよい。 一つの態様としては、 遺伝子の mMAの 5'端近傍の非翻訳領域に相捕的なァ ンチセンス配列を設計すれば、 遺伝子の翻訳阻害に効果的であろう。 しかし、 コード領域 もしくは 3'側の非翻訳領域に相補的な配列も使用し得る。 このように、 遺伝子の翻訳領域 だけでなく非翻訳領域の配列のアンチセンス配列を含む]) NA も、 本発明で利用されるアン チセンス]) NA に含まれる。 使用されるアンチセンス は、 適当なプロモーターの下流に 連結され、 好ましくは 3 '側に転写終結シグナルを含む配列が連結される。 このようにし て調製された MA は、 公知の方法で、 所望の植物へ形質転換できる。 アンチセンス DNA の 配列は、 形質転換する植物が持つ内在性遺伝子またはその一部と相捕的な配列であること が好ましいが、 遺伝子の発現を有効に阻害できる限り、 完全に相捕的でなくてもよい。 転 写された A は、 標的とする遺伝子の転写産物に対して好ましくは 90%以上、 最も好まし くは 95%以上の相補性を有する。 配列の相補性は、 上記した検索により決定することがで きる。
アンチセンス配列を用いて、 効果的に標的遺伝子の発現を阻害するには、 アンチセンス DNA の長さは、 少なく とも 15塩基以上であり、 好ましくは 100 塩基以上であり、 さらに好 ましくは 500 塩基以上である。 通常、 用いられるアンチセンス]) NA の長さは 5kb よりも短 く、 好ましくは 2. 5kb よりも短い。 内在性遺伝子の発現の抑制は、 また、 リボザィムをコードする MA を利用して行うこと も可能である。 リボザィムとは触媒活性を有する A分子のことをいう。 リボザィムには 種々の活性を有するものがあるが、 中でも UNA を切断する酵素としてのリボザィムの研究 により、 RNA の部位特異的な切断を目的とするリボザィムの設計が可能となった。 リボザ ィムには、 グループ Iイントロン型や、 RNasePに含まれる M1EM のように 400 塩基以上の 大きさのものもあるが、 ハンマーへッ ド型ゃヘアピン型と呼ばれる 40塩基程度の活性ドメ ィンを有するものもある。
例えば、 ハンマーへッ ド型リボザィムの自己切断ドメインは、 G13U14C15 の C15 の 3'側 を切断するが、 活性には U14 が 9位の A と塩基対を形成することが重要とされ、 15位の塩 基は C の他に A または ϋ でも切断されることが示されている (M. Koizumi ら,(1988) FEBS Lett. 228 : 225) 。 リボザィムの基質結合部を標的部位近傍の RNA 配列と相補的になるよ うに設計すれば、 標的 RNA 中の TO、 UUまたは Mという配列を認識する制限酵素的な KNA 切 断リボザィムを作出することが可能である (M. Koizumi ら,(1988) FEBS Lett. 239 : 285、 M. Koizumi ら,(1989) Nucleic Acids Res. 17 : 7059) 。 例えば、 NtmybA2 遺伝子 (配列番 号:2) のコード領域中には標的となりうる部位が複数存在する。 · また、 ヘアピン型リボザィムも、 本発明の目的のために有用である。 ヘアピン型リボザ ィムは、 例えばタバコリングスポッ トウィルスのサテライ ト A のマイナス鎖に見出され る (J. M. Buzayan, Nature, 323 : 349, 1986) 。 このリボザィムも、 標的特異的な A 切断 を起こすように設計できることが示されている (Y. Kikuchi および N. Sasaki, Nucleic Ac ids Res. , 19 : 6751 (1992) )。 標的を切断できるよう設計されたリボザィムは、 植物細胞中で転写されるように力リフ ラヮ一モザィクウィルスの 35S プロモ一夕一などのプロモータ一および転写終結配列に連 結される。 しかし、 その際、 転写された βΜ の 5'末端や 3'末端に余分な配列が付加されて いる.と、 リボザィムの活性が失われてしまうことがある。 このようなとき、 転写されたリ ボザィムを含む ΕΝΑ からリボザィム部分だけを正確に切り出すために、 リボザィム部分の 5'側や 3'側に、 トリ ミ ングを行うためのシスに働く別のトリ ミ ングリボザィムを配置させ ることも可能である (K. Taira et al. , Protein Eng. , 3 : 733(1990) ; A. M. Dzianott およ ぴ J. J. Bujarski, Proc. Natl. Acad. Sci. USA. , 86 : 4823(1989); C. A. Grosshans および E. T. Cech, Nucleic Acids Res. , 19 : 3875 ( 1991 ) ; . Taira et al. , ucleic Acids Res. , 19 : 5125 ( 1991 ) ) 。 また、 このような構成単位をタンデムに並べ、 標的遺伝子内の複数 の部位を切断できるようにして、 より効果を高めることもできる (N. Yuyama et al. , Bio chem. Biop ys. Res. Commun. , 186 : 1271, 1992)。 このようなリボザィムを用いて本発明 で標的となる遺伝子の転写産物を特異的に切断し、 該遺伝子の発現を抑制することができ る。 内在性遺伝子の発現の抑制は、 さらに、 標的遺伝子配列と同一もしくは類似した配列を 有する DNA の形質転換によってもたらされる共抑制によっても達成されうる 6 「共抑制」 とは、 植物に標的内在性遣伝子と同一若しくは類似した配列を有する遺伝子を形質転換に より導入すると、 導入する外来遺伝子および標的内在性遺伝子の両方の発現が抑制される 現象のことをいう。 共抑制の機構の詳細は明らかではないが、 植物においてはしばしば観 察される (Curr. Biol. , 7 : E793, 1997 ; Curr. Biol. , 6 : 810, 1996)。 例えば、 NtmybA2 遺伝子が共抑制された植物体を得るためには、 MmybA2 遺伝子若しくはこれと類似した配 列を有する DM を発現できるように作製したベクタ一 DM を目的の植物へ形質転換し、 得 られた植物より生育が抑制された植物を選択すればよい。 共抑制に用いる遺伝子は、 標的 遺伝子と完全に同一である必要はないが、 少なく とも 70 %以上、 好ましくは 80 %以上、 さ らに好ましくは 90 %以上 (例えば、 95 %以上) の配列の同一性を有する。 配列の同一性は 、 上記した検索を利用して決定することができる。 内在性遺伝子の発現の抑制は、 さらに、 標的遺伝子配列と同一もしくは類似した配列を 逆位反復に配置した DNA の形質転換によってもたらされる RM 干渉によっても達成されう る。 「RNA干渉」 とは、 植物に標的内在性遺伝子と同一若しくは類似した配列を逆位反復 に配置した MA を形質転換により導入すると、 外来 DM に由来する二本鎖 RNA が発現し、 標的遺伝子の発現が抑制される現象のことをいう。 干渉の機構としては、 第一段階と して標的遺伝子の mBNAと導入配列由来の二本鎖 BM が複合体を形成し会合した配列をブラ イマ一として相捕的な RNA が合成され、 第二段階として内在性 RNase によってこの複合体 が断片化され、 第 3段階として 20- 30 塩基対に断片化した二本鎖 RM が二次的な ENA千渉 のシグナルとして機能することによって再び、 内在性の標的遺伝子の mMAを分解すると考 えられている。 (Curr. Biol. , 7 : R793, 1997 ; Curr. Biol. , 6 : 810, 1996)。 例えば、 M mybB遺伝子が A千渉によって抑制された植物体を得るためには、 NtmybB遺伝子若しくは これと類似した配列を有する]) NA を逆位反復に配置した DM を発現できるように作製した ベクター を目的の植物へ形質転換し、 得られた植物体から生育が促進された植物を選 択すればよい。 RM干渉に用いる遺伝子は、 標的遣伝子と完全に同一である必要はないが 、 少なく とも 10塩基以上が連続して同一であり、 好ましくは 20塩基から 100塩基が連続.し て同一であり、 さらに好ましくは 50塩基が連続して同一である。 また RM 干渉に用いる遺 伝子は、 標的遺伝子と少なくとも 70 %以上、 好ましくは 80 %以上、 さらに好ましくは 90 % 以上 (例えば、 95 %以上) の配列の同一性を有する遺伝子であっても良い。 さらにより好 ましくは、 標的遺伝子と少なくとも 70 %以上、 好ましくは 80 %以上、 さらに好ましくは 90 %以上 (例えば、 95 %以上) の配列の同一性を有する遺伝子が逆位反復に配置したものが 挙げられる。 とりわけ、 これらの標的逍伝子と配列の同一性を有する遣伝子がスぺーサ一 配列を挟んで逆位反復に配置されたものが望ましい。 配列の同一性は、 上記した検索を利 用して決定することができる。 ENA 干渉に用いる遗伝子の長さとしては、 標的遗伝子の全 長を使用してもよいが、 少なく とも 25塩基あれば良く、 好ましくは 50塩基、 より好ましく は 100塩基、 さらに好ましくは 500塩基あれば良い。
また、 RMiは植物ウィルスの感染によっても実現可能である。 ゲノムとして一本鎖 ENA をもつ植物ウィルスは、 その複製過程において二本鎖 RNA形態をとる。 そこで、 植物ウイ ルスゲノム中に目的遺伝子配列を適当なプロモータ一と共に揷入し、 この組換えウィルス を植物に感染させた場合、 該ウィルスの複製に伴い目的遺伝子配列の二本鎖 KMが生成さ れることになる。 その結果、 Aiの効果を得ることができる (Angell et al. , Plant J. 20, 357-362, (1999)) 。 さらに、 本発明における内在性遺伝子の発現の抑制は、 標的遺伝子のドミナントネガテ ィ ブの形質を有する遺伝子を植物へ形質転換することによつても達成することができる。 本発明において 「ドミナントネガティブの形質を有するタンパク質をコードする MA」 と は、 該醒 を発現させることによって、 植物体が本来持つ本発明の内在性遺伝子がコ一ド するタンパク質の活性を消失もしくは低下させる機能を有するタンパク質をコ一ドする]) N A のことを指す。 対象となる DM が本発明の内在性遺伝子の活性を消失もしくは低下させ る機能を有するか否かは、 上述したように、 対象となる DMが、 植物のサイクリン B遺伝 子や NACK1遺伝子およびこれらのオルソログの遺伝子の転写量を抑制するか否かにより判 定することができる。
ドミナントネガティブ分子よる内在性植物 3Emyb夕ンパク質の機能低下は、 MmybAl夕 ンパク質や MmybA2タンパク質、 0s3RmyMlタンパク質を単離した植物種と異なる植物種 に形質転換しても良い。 また、 本発明において植物 3 Bmybタンパク質の活性が改変された植物とは、 植物 3 Rmyb 遺伝子の発現またはタンパク質の機能が変化した植物であり、 該遺伝子の発現量または発 現したタンパク質の機能が野生型と比較して検出可能なレベルで変化している植物が望ま しく、 発現量の変化とは、 恒常的発現、 誘導的発現、 過剰発現、 異所的発現、 発現の抑制 を含む。 このような発現または機能が変化した植物は、 形質転換による遺伝子操作法以外 に、 伝統的な突然変異および選択技術を介して達成してもよい。 また、 本発明は、 上記本発明の MA や本発明の DNA の発現あるいは本発明の MA にコ一 ドされるタンパク質の発現を抑制する DNA が揷入された組換え DM 又はべクタ一を提供す る。 該組換え MA 又はべクタ一としては、 組換えタンパク質の生産に用いる上記したべク 夕一の他、 形質転換植物体作製のために植物細胞内で本発明の DM あるいは本発明の A の発現または本発明の DMにコードされるタンパク質 ©発現を抑制する DM を発現させる ためのベクターも含まれる。 このような組換え DM 又はべクタ一としては、 植物細胞で転 写可能なプロモータ一配列と転写産物の安定化に必要なポリアデニレーシヨン部位を含む ターミネ一ター配列を含んでいれば特に制限されず、 例えば、 プラスミ ド 「pBI121」 、 「 PBI221J 、 ΓρΒΠθυ (いずれも Cloiv ech社製) 、 ΓρΤΑ7001 」 、 ΓρΤΑ7002 J (Aoyama ら(1997) Plant J. 11 : 605) 、 「pPZP211」 (Hajdukiewicz et al., Plant Mol. Biol. 25: 989(1994)などが挙げられる。
本発明の前記組換え DM 又はベクターは、 本発明のタンパク質を恒常的または誘導的に 発現させるためのプロモータ一を含有しうる。 本発明において細胞内で発現可能なプロモ —ターとしては、 以下列挙されるものが望ましい。
恒常的に発現させるためのプロモータ一としては、 例えば、 カリフラヮ一モザィクウイ ルスの 35Sプロモータ一 (Odell et al. , Nature, 313 : 810(1985) )、 イネのァクチンプロ モータ一 (Zhang et al., Plant Cell, 3 : 1155(1991)) 、 トウモロコシのュビキチンプロ モータ一 (Cornej o et al. , Plant Mol. Biol. , 23 : 567(1993))などが挙げられる。 また、 誘導的に発現させるためのプロモータ一としては、 例えば糸状菌 .細菌 ' ウィル スの感染や侵入、 低温、 高温、 乾燥、 紫外線の照射、 特定の化合物の散布などの外因によ つて発現することが知られているプロモーターなどが挙げられる。 このようなプロモ一夕 —としては、 例えば、 糸状菌 ·細菌 ' ウィルスの感染や侵入によって発現するイネキチナ —ゼ迨伝子のプロモータ一 (Xu et al. , Plant Mol. Biol. , 30 : 387U996) )やタバコの Ρβ タンパク質遺伝子のプロモータ一(Ohshima et al., Plant Cell 2 : 95(1990) ) 、 低温によ つて誘導されるイネの 「lipl9」 遣伝子のプロモータ一 (Aguan et al. , Mol. Gen Genet . , 240 : 1(1993) ) 、 高温によって誘導されるイネの 「hsp80」 遺伝子と 「hsp72」 遺伝子 のプロモータ一 (Van Breusegem et al. , Planta, 193 : 57(1994)) 、 乾燥によって誘導さ れるシロイヌナズナの 「rabl6」 遺伝子のプロモータ一 (Nundy et al. , Proc. Natl. A cad. Sci. USA, 87 : 1406(1990)). 紫外線の照射によって誘導されるパセリのカルコン合 成酵素遺伝子のプロモータ— (Schulze- Leiert et al. , EMBO J. , 8 : 651(1989) ). 嫌気的 条件で誘導されるトウモロコシのアルコールデヒ ドロゲナーゼ遺伝子のプロモ一夕一 0?a lker et al., Proc. Natl. Acad. Sci. USA, 84 : 6624( 1987) ') などが挙げられる。 また、 イネキチナ一ゼ遺伝子のプロモーターとタバコの PI?タンパク質遺伝子のプロモーターはサ リチル酸などの特定の化合物によつて、 「rabl6」 は植物ホルモンのアブシジン酸の散布 によっても誘導される。 またダルココルチコィ ドゃエストロジヱンの処理によって植物内 で誘導的遺伝子発現が可能であるシステムを有するベクタ一系の使用も含有し得る。 グル ココルチコィ ド処理によって発現誘導可能なベクタ一としては pTA7001、 pTA7002(Aoyam a et al. , Plant J. , 11 : 605(1997) ) や、 エストロジヱン処理によって発現誘導が可能な ベクターとしては pEE10(Zuo et al. , Plant J. , 24 : 265 2000) ) が挙げられる。 また増殖 細胞特異的に発現させるためのプロモータ一としては例えば S〜M期に発現するタバコ NP K1遺伝子のプロモータ—(Nishihanm et al. , Genes Dev. , 15 : 352(2000) )、 M期に発現す るプロモータ一としてタバコ NACK1遺伝子のプロモ一夕一(Nishihama et al., Cell, 109 : 87(2002) )、 ニチニチソゥ CYM遺伝子プロモータ一(Ito et al. , Plant J. , 11 : 983(1997) )、 S期に発現するニチニチソゥ CYS遺伝子プロモータ一(Ito et al. , Plant J. , 11 : 983 (1997))、 増殖細胞において細胞周期を通じて発現が認められるシロイヌナズナ cdc2a遺 伝子のプロモータ一(Chung et al. , FEBS Lett. , 362: 215(1995))などが挙げられる。 また 組織特異的プロモーターの例としては以下の特許文献に見出すことが可能である.。
U S 5 4 5 9 2 5 2および U S 5 6 3 3 3 6 3 (根特異的) 、 U S 5 0 9 7 0 2 5 ( ( i ) 種子、 ( i i ) 成熟植物) 、 U S 5 3 9 1 7 2 5 ( ( i ) 葉緑体、 ( i i ) 細胞質ゾル) 、 U S 4 8 8 6 7 5 3 (根粒) 、 U S 5 6 4 6 3 3 3 (表皮) 、 U S 5 1 1 0 7 3 2 ( ( i ) 根、 ( i i ) 貯蔵根) 、 U S 5 6 1 8 9 8 8 (貯蔵器官) 、 U S 5 4 0 1 8 3 6および U S 5 7 9 2 9 2 5 (根) 、 U S 4 9 4 3 6 7 4 (果実) 、 U S 5 4 9 5 0 0 7 (師部) 、 U S 5 8 2 4 8 5 7 (脈管構造) 、 前記特許は各々 、 本明細書に援用される。 これらのプロモーターに加え、 維管束の前形成層特異的なプロ モーターであるシロイヌナズナ AtHB8プロモータ一(Baima et al. Development 121 : 4171 (1995)) 、 茎や根に特異的なシロイヌナズナ ACL5プロモータ一(Hanzawa et al. The EMBO Journal, 19 : 4248(2000))、 地上部に特異的なトマト RBCS3Aプロモータ一(Meier et al. Plant Physiol. 107 : 1105(1995))なども使用することができる。
雄性生殖系の器官または細胞において高い遺伝子発現を示すプロモータ一としてはシロ ィヌナズナ A"tNACK2迨伝子プロモータ一(PCT/JP02/12268)、 シロイヌナズナ AVP1遺伝子プ 口モーター(Mitsuda et al. , Plant Mol. Biol, 46 : 185(2001) )、 シロイヌナズナ MD 1 遺伝子プロモーター(Ishiguro et al. , Plant Cell, 13 : 2191(2001))、 タバコ TA20、 TA29 遺伝子プロモータ一(Goldberg et al. , Science, 240 : 1460(1988))、 イネ 0sg6B 遺伝子プ 口モータ—(Tuchiya et al. , Plant Mol. Biol, 26 : 1737(1994) )、 トマト La1:52 遺伝子プ 口モーター(Twellr et al. , Development, 109 : 705(1990)) 、 タバコ glO 遣伝子プロモ一 夕一(Rogers et al. , Plant Mol. Biol. , 5 : 577(2001)) 、 カリフラワーモザイクウィル ス 35Sプロモーターに葯特異的遗伝子発現調節配列を挿入した人工的なプロモーター(Ing rid et al. , Plant Cell, 4 : 253(1992))などが挙げられる。 また、 本発明は、 本発明の前記組換え DM 又はベクターが導入された形質転換植物細胞 を提供する。 本発明のベクターが導入される植物細胞には、 形質転換植物体作製のための 植物細胞が含まれる。 植物細胞としては特に制限はなく、 知られた植物、 例えば栽培植物 、 有用植物などから選んでそれに適用でき、 穀類、 豆額、 ィモ額、 種実額、 野菜類、 果実 類として知られた植物、 さらには園芸花木樹木などに由来のものを挙げることができる。 該植物細胞としては、 例えば、 ナス科、 アブラナ科、 イネ科、 マメ科、 ユリ科、 セリ科、 ゥリ科などのものが挙げられ、 好ましくはタバコ、 シロイヌナズナ、 アブラナ、 ダイズ、 ァズキ、 エンドゥ、 ソラマメ、 ラッカセィ、 ゴマ、 イネ、 コムギ、 ォォムギ、 ライムギ、 ェンバク、 トウモロコシ、 ジャガイモ、 トマト、 ピーマン、 キャベツ、 ブロッコリ一、 ハ。 セリ、 ホウレンソゥ、 サツマィモ、 夕ロイモ、 コンニヤク、 キヤッサバ、 ブドウ、 リ ンゴ 、 モモ、 ナシ、 カキ、 イチゴ、 ブル一ベリー、 プラム、 メロン、 キユウリ、 サトウキビ、 ミカン、 レモン、 オレンジ、 オリープ、 綿花などの細胞が挙げられる。 本発明の植物細胞 には、 培養細胞の他、 植物体中の細胞も含まれる。 また、 プロ トプラスト、 苗条原基、 多 芽体、 毛状根も含まれる。 植物細胞へのベクタ一の導入は、 例えば、 ァグロパクテリゥム を利用した導入方法 (Hood et al., Transgenic Res. , 2 : 218(1993) ; Hiei et al. , Plan t J. , 6 : 271 (1994) )、 エレク トロポレーシヨ ン法 (Tada et al., Theor. Appl. Genet, 8 0 : 475(1990) ) 、 ポリエチレングリコール法 (Lazzeri et al. , Theor. Appl. Genet, 81 : 437(1991) ) 、 パーティクルガン法 (Sanford et al. , J. Part. Sci. tech. , 5 : 27(1987 ) )などの方法を用いることが可能であり、 当該分野で知られた方法の中から適宜選択して 利用することが出来る。 形質転換された植物細胞は、 再分化させることにより植物体を再生させることが可能で ある。 再分化の方法は植物細胞の種類により異なるが、 例えば、 イネであれば Fuj imuraら (Plant Tissue Culture Lett. , 2 : 74 (1995))の方法が挙げられ、 トウモロコシであれば Shillito (Bio/Technology, 7 : 581 (1989)) の方法や Gorden- Kamm ら (Plant Cell, 2: 603 (1990)) が挙げられ、 ジャガイモであれば Visserら (Theor. Appl. Genet, 78 : 594 ( 1989))の方法が挙げられ、 タバコであれば Nagataと Takebe (Planta, 99 : 12 (1971) ) の方 法が挙げられ、 シロイヌナズナであれば Akanm ら (Plant Cell Reports, 12 : 7-11 (1992) ) の方法が挙げられる。
一旦、 ゲノム内に本発明の DNA あるいは本発明の MA の発現を抑制する DNA が導入され た形質転換植物体が得られれば、 該植物体から有性生殖または無性生殖により子孫を得る ことが可能である。 また、 該植物体やその子孫あるいはクローンから繁殖材料 (例えば、 種子、 果実、 切穂、 塊茎、 塊根、 株、 カルス、 プロ トプラスト等) を得て、 それらを基に 該植物体を量産することも可能である。 本発明には、 本発明の DNA または本発明の DM の 発現を抑制する DNA が導入された植物細胞、 該細胞を含む植物体、 該植物体の子孫および クローン、 並びに該植物体、 その子孫、 およびクローンの繁殖材料が含まれる。 本発明の植物体は、 本発明の DM の発現の調節により、 細胞增殖や発生分化が正常な個 体と比較して変化しうる。 本発明における 「細胞増殖の改変」 とは、 例えば、 細胞周期に 要する時間の短縮または遅延、 細胞周期を構成する G1期、 S期、 G2期、 M期の各期に要 する時間の短縮または遅延、 細胞周期を構成する G1期、 S期、 ' G2期、 M期の各期への進入 の抑制、 細胞周期を構成する G1期、 S期、 G2期、 M期の各期の終了の抑制、 細胞周期を構 成する G1期、 S期、 G2期、 M期の各期の存在の抑制、 細胞の大きさの変化、 隔膜形成体が 拡大する変化、 隔膜形成体の形成の変化、 細胞板が拡大する変化、 細胞板の形成の変化、 細胞分裂回数の変化、 細胞中に含まれる核数の変化、 または核内の DNA含量の変化を起こ すことを包含し、 望ましくは、 細胞周期に要する時間の短縮または遅延、 細胞の大きさの 変化、 隔膜形成体の形成の変化、 細胞板の形成の変化、 細胞分裂回数の変化、 または核内 の MA含量の変化を起こすことを包含する。 本発明において核内の DM含量の変化とは、 倍数性の変化を包含し、 望ましくは、 倍数性の増加を包含する。 また本発明おける 「発生 分化の改変」 とは、 例えば、 細胞増殖が促進されるために植物体を構成する細胞数が増加 すること、 細胞増殖が抑制されるために植物体を構成する細胞数が減少すること、 細胞増 殖が促進されるために植物体の生育速度が促進されること、 細胞増殖が抑制されるために 植物体の生育速度が抑制されること、 植物体の生育速度が促進され花芽を形成するまでの 期間が短縮されること、 植物体の生育速度が抑制され花芽を形成するまでの期間が延長さ れること、 植物体の生育速度が促進されるが花芽を形成する制御機構には変化が無く大き な植物体において花芽を形成すること、 植物体の生育速度が抑制されるが花芽を形成する 制御機構には変化が無く小さな植物体において花芽を形成すること、 植物体の生育速度が 促進され老化するまでの期間が短縮されること、 植物体の生育速度が抑制され老化するま での期間が延長されること、 植物体の生育速度が促進されるが老化が開始するまでの制御 '機構には変化が無く老化が開始するまでに大きな植物体となること、 植物体の生育速度が 抑制されるが老化が開始するまでの制御機構には変化が無く小さな植物体で老化が開始す ること、 細胞増殖が促進または抑制されるために組織の形態が変化すること、 細胞増殖が 促進または抑制されるために組織の大きさが変化すること、 細胞増殖が促進または抑制さ れるために器官の形態が変化すること、 細胞増殖が促進または抑制されるために器官の大 きさが変化すること、 細胞増殖が促進または抑制されるために植物体の形態が変化するこ と、 または細胞増殖が促進または抑制されるために植物体の大きさが変化することを包含 し、 望ましくは、 植物体の生育速度が促進されるが花芽を形成する制御機構には変化が無 く大きな植物体において花芽を形成すること、 細胞増殖が抑制されるために植物体を構成 する細胞数が減少すること、 植物体の生育速度が抑制されるが花芽を形成する制御機構に は変化が無く小さな植物体において花芽を形成すること、 細胞増殖が促進または抑制され るために器官の大きさが変化すること、 細胞増殖が促進または抑制されるために植物体の 大きさが変化することを包含し、 より望ましくは、 細胞増殖が促進または抑制されるため に植物体の大きさが変化することである。 本発明において、 細胞増殖が促進または抑制さ れるために植物体の大きさが変化することとは、 細胞増殖が促進されるために植物体が大 きくなること、 または細胞増殖が抑制されるために植物体が小さくなることである。 本発明において内在性の MmybAlおよび NtmybA2の遺伝子発現量が低下する植物を作出 すると、 細胞分裂や細胞質分裂が抑制された細胞を伴った生育や増殖が抑制された植物が 得られること、 内在性の NtniyM2の遺伝子発現量が低下した培養細胞を作出した結果、 細 胞周期が改変されたことは NtmybAlおよび、 NtmybA2が細胞周期および細胞分裂に関して 正の制御因子であることを示すものであり、 生育が抑制された植物が作出可能であること を示すものである。
本発明において MmybA2を恒常的に発現する形質転換植物や細胞を作出した結果、 生育 が遅い植物や培養細胞が得られたことは、 MmybA2の異所的な発現により細胞周期が遅延 され、 生育が抑制された植物が作出可能であることを示すものである。
本発明において内在性 NtniybBの遺伝子発現量が低下した形質転換植物や培養細胞では生 育や増殖が促進されたことは NtmybBが細胞周期および細胞分裂に関して負の制御因子であ ることを示すものであり、 生育が促進された植物が作出可能であることを示すものである 本発明において NtmybBを恒常的に発現する植物では生育が抑制されたことは MmybBが細 胞周期および細胞分裂に関して負の制御因子であることを示すものであり、 生育が抑制さ れた植物が作出可能であることを示すものである。 本発明は、 サイクリ ン B遗伝子、 NACK関違遺伝子の転写活性化因子であるイネ 0s3Rmyb 遺伝子を提供する。 イネより、 植物 3Rmyb遺伝子である 0s3RmybAl の cDNAを単離し、 その塩基配列を明らかにした。 0s3RmyMlの cDNAの塩基配列を配列番号: 3 1に、 この遺 伝子がコ一ドする 0s3RmybAl タンパク質のァミノ酸配列を配列番号: 3 2に示す。 本発明は 0s3EmybAlと機能的に同等な単子葉植物の 3Rmybタンパク質を提供する。 本発 明において 「同等な機能を有する」 または「機能的に同等」とはタンパク質がサイクリン B遗伝子や NACK関連遗伝子の転写活性化因子として機能することを指す。 タンパク質がサ イクリン B遺伝子や NACK関連逍伝子の転写制御因子であるか否かは、 変異株における該タ ンパク質の発現による機能相捕試験や植物細胞内で一過的に発現した該タンパク質による 、 サイクリ ン B遣伝子や NACK 1遗伝子の転写活性化により決定することができる。 本発明で特徴付けた 0s3KmybAlタンパク質と機能的に同等なタンパク質を単離するため の植物としては、 単子葉植物の中から選択して利用できる。 これらは遺伝子源としても利 用できる。 上記したような機能的に同等なタンパク質を取得 .単離する方法の一つの態様としては 、 タンパク質中のアミノ酸に変異を導入する方法が当業者によく知られている。 即ち、 当 業者であれば、 公知の方法により、 天然型の 「0s3I½ybAl」 タンパク質 (例えば、 配列番 号:32に記載のタンパク質) 中のアミノ酸を適宜置換、 欠失、 付加などして、 これと同等 の機能を有する改変タンパク質を調製することが可能である。 また、 アミノ酸の変異は自 然界において生じることもある。 本発明のタンパク質には、 このように天然型の 「0s3¾y bAlj タンパク質において 1もしくは複数のァミノ酸が置換、 欠失もしくは付加したァミ ノ酸配列を有し、 天然型のタンパク質と同等の機能を有するタンパク質も含まれる。 タン パク質におけるアミノ酸の改変は、 通常、 全アミノ酸の 50アミノ酸以内であり、 好ましく は 30アミノ酸以内であり、 さらに好ましくは 10アミノ酸以内であり、 さらに好ましくは 3 アミノ酸以内である。 アミノ酸の改変は、 例えば、 変異や置換であれば 「T ransformer S ite - directed Mutagenesis KitJ や rExSite PGR - Based Site-directed Mutagenesis Kit J (Clontech社製) を用いて行うことが可能であり、 また、 欠失であれば 「Quairtum leap Nested Deletion KitJ (Clontech社製) などを用いて行うことが可能である。 変異 ·変換 ·修飾法としては、 日本生化学会編、 「続生化学実験講座 1、 遺伝子研究法 II 」 、 P105 (広瀬進) 、 東京化学同人(1986) ; 日本生化学会編、 「新生化学実験講座 2 、 核酸 III (組換え MA技術) 」 、 p233 (広瀬進) 、 東京化学同人(1992); E. fu, L. Gr ossman, ed. , "Methods in Enzymology" , Vol. 154, p. 350 & p. 367, Academic Press, New York (1987); R. ffu, L. Grossman, ed., " Methods in Enzymology" , Vol. 100, p. 457 & p. 468, Academic Press, New York (1983) ; J. A. Wells et al. , Gene, 34: 3 15, 1985 ; T. Grundstroem et al. , Nucleic Acids Res. , 13 : 3305, 1985 ; J. Taylor e t al. , ucleic Acids Res. , 13: 8765, 1985 ; R. Wu ed. , " Methods in Enzymology" , V ol. 155, p. 568, Academic Press, New York (1987) ; A. R. Oliphant et al. , Gene, 44 : 177, 1986 などに記載の方法が挙げられる。 例えば合成オリゴヌクレオチドなどを利 用する位置指定変異導入法 (部位特異的変異導入法) (Zoller et al. , Nucl. Acids Res. , 10: 6487, 1987 ; Carter et al. , ucl. Acids Res. , 13 : 4331, 1986), カセッ 卜変異 導入法 (cassette mutagenesis : Wells et al., Gene, 34: 315, 1985), 制限部位選択変 異導入法 (restriction selection mutagenesis: Wells et al. , Philos. Trans. . Soc . London Ser A, 317: 415, 1986),ァラニン ■ スキヤンニング法 (Cunningham & Wells, Science, 244 : 1081 - 1085, 1989), PCR 変異導入法, Kunkel法, dNTP [ a S]法 (Eckstein ),亜硫酸や亜'硝酸などを用いる領域指定変異導入法等の方法が挙げられる。 ァミノ酸の置換、 欠失、 あるいは揷入は、 好ましい変化を与えるものであってよく、 当 該タンパク質を構成するポリべプチドの生理的な特性や化学的な特性に変化を生ぜしめる ものであってよい。 該置換、 欠失、 あるいは揷入を施されたポリペプチドは、 そうした置 換、 欠失、 あるいは揷入のされていないものと実質的に同一であるとされるものであるこ ともできる。 該ァミノ酸配列中のァミノ酸の実質的に同一な置換体としては、 そのァミノ 酸が属するところのクラスのうちの他のアミノ酸類から選ぶことができうる。 例えば、 非 極性 (疎水性) アミノ酸としては、 ァラニン、 フエ二ルァラニン、 ロイシン、 イソ口イシ ン、 バリン、 プロリ ン、 トリブトファン、 メチォニンなどが挙げられ、 極性 (中性) とし ては、 グリシン、 セリ ン、 スレオニン、 システィン、 チロシン、 ァスパラギン、 グルタ ミ ンなどが挙げられ、 陽電荷をもつアミノ酸 塩基性アミノ酸) としては、 アルギニン、 リ ジン、 ヒスチジンなどが挙げられ、 陰電荷をもつアミノ酸 (酸性アミノ酸) としては、 ァ スパラギン酸、 グルタミ ン酸などが挙げられる。 場合によっては、 システィ ンをセリンに 、 グリシンをァラニンやロイシンに、 あるいはロイシンをァラニン、 イソロイシン、 パ'リ ンなどに置き換えてもよい。
本発明のタンパク質は、 化学的な手法でその含有されるアミノ酸残基を修飾することも できるし、 ぺプチダ一ゼ、 例えばペプシン、 キモトリブシン、 パパイン、 プロメライン、 エン ドべプチダ一ゼ、 ェキソぺプチダーゼなどの酵素を用いて修飾したり、 部分分解した りしてその誘導体または変異体などにすることができる。 また遺伝子組換え法で製造する時に融合タンパク質として発現させ、 生体内あるいは生 体外で天然の所定の本発明のタンパク質と実質的に同等の生物学的活性を有しているもの に変換 ·加工してもよい。 遺伝子工学的に常用される融合産生法を用いることができるが 、 こうした融合夕ンパク質はその融合部を利用してァフィ二ティクロマトグラフィ一など で精製することも可能である。 こうした融合タンパク質としては、 ヒスチジンタグに融合 せしめられたもの、 あるいは、 /3 -ガラク トシダ一ゼ (^ - gal) 、 マルトース結合タ ンパ ク (MBP), グルタチオン- S -トランスフ ラーゼ (GST)、 チォレドキシン (TRX)又は Cre
Becombinaseのアミノ酸配列に融合せしめられたものなどが挙げられる。 同様に、 ポリべ プチドは、 ヘテロジーニアスなェピト一プのタグを付加され、 該ェピトープに特異的に結 合する抗体を用いてのィムノアフィ二ティ · クロマトグラフィ一による精製をなし得るよ うにすることもできる。 より適した実施態様においては、 該ェピトープタグとしては、 例 えば AU5, c-Myc, CruzTag 09, CruzTag 22, CruzTag 41, Glu-Glu, HA, Ha. 11, T3, FL AG (registered trademark, Sigma-Aldrich), Omni - probe, S - probe, T7, Lex A, V5, VP 16, GAL4, VSV-G などが挙げられる。 (Field et al., Molecular and Cellular Biology,
8 : pp. 2159-2165 (1988) ; Evan et al. , Molecular and Cellular Biology, 5 : pp. 3610 -3616 (1985) ; Paborsky et al. , Protein Engineering, 3(6) : pp. 547-553 (1990) ; Hop p et al. , BioTechnology, 6 : pp. 1204-1210 (1988) ; Martin et al. , Science, 255: pp . 192-194 (1992) ; Skinner et al. , J. Biol. Chem. , 266: pp. 15163- 15166 (1991) ; Lut z-Freyermuth et al. , Proc. Natl. Acad. Sci. USA, 87: pp. 6393-6397 (1990)など) 。 酵母を利用した two- hybrid 法も利用できる。 さらに融合タンパク質としては、 検出可能な夕ンパク質となるようなマーカ一を付され たものであることもできる。 より好適な実施態様においては、 該検出可能なマ一カーは、 ピオチンノストレブトアビジン系の Biotin Avi Tag、 螢光を発する物質などであってよい 。 該螢光を発する物質としては、 ォワンクラゲ (Aequorea victorea)などの発光クラゲ由 来の緑色螢光タンパク質(green fluorescent protein : GFP)、 それを改変した変異体(GFP バリアント) 、 例えば、 EGFP (Enhanced-humanized GFP), rsGFP (red-shift GFP), 黄色 螢光タンパク質 (yellow fluorescent protein : YFP), 緑色螢光タンパク質 (green fluo rescent protein : GFP),藍色螢光タンパク質 (cyan fluorescent protein : CFP), 青色螢 光タンパク質 (blue fluorescent protein : BFP)などが挙げられる (宮脇敦史編、 実験医 学別冊ポストゲノム時代の実験講座 3—GFP とバイオイメージング、 羊土社 (2000年))。 また、 上記融合タグを特異的に認識する抗体 (モノクローナル抗体及びそのフラグメ ント を含む) を使用して検出を行うこともできる。
本発明のタンパク質及びその一部のぺプチドの合成には、 当該べプチド合成分野で知ら れた方法、 例えば液相合成法、 固相合成法などの化学合成法を使用することができる。 こ うした方法では、 例えばタンパク質あるいはべプチド合成用樹脂を用い、 適当に保護した ァミノ酸を、 それ自体公知の各種縮合方法により所望のァミノ酸配列に順次該樹脂上で結 合させていく。 縮合反応には、 好ましくはそれ自体公知の各種活性化試薬を用いる力 そ うした試薬としては、 例えばジシクロへキシルカルボジィミ ドなどカルボジィミ ド類を好 ましく使用できる。 生成物が保護基を有する場合には、 適宜保護基を除去することにより 目的のものを得ることができる。 本発明のタンパク質は、 当業者に公知の方法により、 天然のタンパク質としての他、 遗 伝子組換え技術を利用して調製した組換えタンパク質として調製することができる。 天然 のタンパク質は、 例えば、 下記の方法により調製された組換えタンパク質をゥサギなどの 小動物に免疫して得た抗体を適当な吸着体 (CNBr活性化ァガロースやトシル活性化ァガロ —ス) に結合させてカラムを作製し、 得られたカラムを利用してイネの葉のタンパク質抽 出液を精製することにより調製することが可能である。 一方、 組換えタンパク質は、 常法 、 例えば、 本発明のタンパク質をコー ドする DNA を適当な発現べクタ一に揷入し、 該べク ターを適当な細胞に導入し、 該形質転換細胞から精製することにより調製することが可能 である。 組換えタンパク質を生産するために用いられる細胞としては、 例えば、 植物細胞、 大腸 菌、 酵母などの微生物細胞、 動物細胞、 昆虫細胞などが挙げられる。 また、 細胞内で組換 えタンパク質を発現させるためのベクタ一としては、 例えば、 植物、 酵母細胞用にはブラ スミ ド 「pBI121」 や 「pBI101」 (Clontech社製) 、 大腸菌用にはプラスミ ド ·「pET Expres sion system J (Stratagene社 ) や 厂 GST gene fusion Vectors J (Pharmacia 社製-) 、 ほ乳類細胞用にはプラスミ ド 「pMAM」 (Clontech社製) 、 昆虫細胞用にはプラスミ ド 「 pBacPAKS. 9」 (Cloirtech社製) などが挙げられる。 ベクタ一への DM の揷入は、 常法、 例 _ ίま、 Molecular Cloning (Maniatis et al. , Cold Spring harbor Laboratry Press に 記載の方法により行うことができる。 また、 宿主細胞へのベクタ一の導入は、 常法により 宿主細胞に応じてエレク トロポレーション法、 マイクロインジェクション法、 パーティ ク ルガン法などの方法で行うことが可能である。
得られた形質転換細胞からの本発明の組換えタンパク質の精製は、 タンパク質の性質に 応じ、 塩析ゃ有機溶媒による沈殿、 イオン交換クロマトグラフィ一、 ァフィ二ティ一クロ マトグラフィ一、免疫吸着体によるカラムクロマトグラフィ一、ゲルろ過、 SDS 電気泳動 、 等電点電気泳動などを適宜組み合わせて行うことが可能である。 また、 本発明の組換え タンパク質をグルタチオン S-トランスフヱラ一ゼなどの標識との融合タンパク質として発 現させた場合には、 該標識に対するァフィ二ティ一クロマトグラフィ一などにより精製す ることも可能である。 また、 本発明は、 上記本発明のタンパク質をコードする DNA を提供する。 本発明の]) NA は、 本発明のタンパク質をコードし得るものであれば特に制限はなく、 ゲノム DNA、 cDNA 、 化学合成]) NA などが含まれる。 ゲノム MA は、 例えば、 文献 (Rogers and Bendich, PI ant Mol. Biol. 5 : 69 (1985) ) 記載の方法に従って調製したゲノム DM を鎳型として、 本 発明の DM の塩基配列 例えば、 配列番号:31に記載の塩基配列) を基に作製したプライ マ一を用いてポリメラ一ゼ ' チヱイン ' リアクション(polymerase chain reaction ; PCR) を行うことにより調製することが可能である。 また、 cMAであれば、 常法 (Maniatis et al. Molecular Cloning Cold Spring harbor Laboratry Press) により植物から m醒を調 製し、 逆転写反応を行い、 上記と同様のプライマ一を用いて PCK を行うことにより調製す ることが可能である。 また、 ゲノム DM や cDNAは、 常法によりゲノム DNA ライブラリーま たは cDNAライプラリーを作製し、 このライブラリ一に対し、 例えば本発明の DM の塩基配 列 (例えば、 配列番号:31 に記載の塩基配列) を基に合成したプロ一プを用いてスク リ一 ニングすることによつても調製することが可能である。 また、 機能的に同等なタンパク質を単離する方法の他の態様としては、 ハイプリダイゼ —シヨ ン技術 (Southern, J. Mol. Biol. 98 : 503(1975) ; Maniatis et al. , "Molecular Cloning" , Cold Spring harbor Laboratry Press) や PCK 技術 (H. iV. Erlich (ed. ), "PCR technology" , Stockton Press, New York (1989) )が挙げられる。 即ち、 当業者にとって は、 「0s3EmybAl」 遺伝子の塩基配列 (配列番号: 31) もしくはその一部をプローブとし て、 「0s3EmyMl」 遗伝子の塩基配列 (配列番号:31) の一部にハイプリダイズするオリ ゴ塩基をプライマ一として、 これと高い相同性を有する DMを単離して、 該 DMから 「0s 3EmybAlJ タンパク質と同等の機能を有するタンパク質を得ることは通常行いうることで ある。 このようにハイブリダィズ技術や PCB技術により単離された DNAがコー ドする 「0s 3RmybAl 」 タンパク質と同等の機能を有するタンパク質もまた本発明のタンパク質に含ま れる。 本明細書中、 PCR とは、 一般的に、 Saiki et al. , Science, 239 : 487 (1988) ; 米国特許 第 4, 683, 195号明細書などに記載されたような方法を指し、 例えば、 所望のヌクレオチド 配列をインビトロで酵素的に増幅するための方法を指している。 一般に、 PCR は、 銪型核 酸と優先的にハイプリダイズすることのできる 2個のォリゴヌクレオチドプライマ一を使 用して、 プライマー伸長合成を行うようなサイクルを繰り返し行うことを含むものである 。 典型的には、 PCB 法で用いられるプライマ一は、 錶型内部の增幅されるべきヌクレオチ ド配列に対して相捕的なプライマ一を使用することができ、 例えば、 該増幅されるべきヌ クレオチド配列とその両端において相捕的であるか、 あるいは該增幅されるべきヌクレオ チド配列に隣接しているものを好ましく使用することができる。 代表的な場合には、 5'端 側のプライマ一としては、 少なくとも開始コ ドンを含有するか、 あるいは該開始コ ドンを 含めて增幅できるように選択し、 また 3'端側のプライマーとしては、 少なくともストップ コ ドンを含有するか、 あるいは該ストップコ ドンを含めて増幅できるように選択すること が好ましい。 プライマーは、 好ましくは 5個以上の塩基、 さらに好ましくは 10個以上の塩 基からなるォリゴヌクレオチド、 より好ましくは 18~35個の塩基からなるオリゴヌクレオ チドが挙げられる。
PCR は、 当該分野で公知の方法あるいはそれと実質的に同様な方法や改変法により行う ことができるが、 例えば 上記文献の他、 L Saiki, et al. , Science, 230 : 1350, 1985 ; H. A. Erlich ed. , PCR Technology, Stockton Press, 1989 ; D. M. Glover et al. ed " DNA Cloning" , 2nd ed. , Vol. 1, (The Practical Approach Series), IRL Press, 0 xford University Press (1995); M. A. Innis et al. ed. , ' PCR Protocols: a guide t o methods and applications" , Academic Press, - New York ( 1990) ); M. J. McPherson, P. Quirke a nd G. R. Taylor (Ed. ), PCR : a practical approach, IRL Press, Oxford ( 1991 ) ; . A. Frohman et al. , Proc. Natl. Acad. Sci. USA, 85, 8998-9002 (1988) などに記載された方法あるいはそれを修飾したり、 改変した方法に従って行うことができ る。 また、 PCR は、 それに適した市販のキッ トを用いて行うことができ、 キッ ト製造業者 あるいはキッ ト販売業者により明らかにされているプロ トコルに従って実施することもで きる。
PCE は、 代表的な場合には、 例えば铸型 (例えば、 πιΜΑを铸型にして合成された DM ; 1 st strand DNA など) と該遺伝子に基づいてデザインされたプライマーとを、 10 x反応緩 衝液 (Taq DNA ポリメラ一ゼに添付されている) 、 dNTPs (デォキシヌクレオシド三リ ン酸 dATP, dGTP, dCTP, dTTPの混合物) 、 Taq DM ポリメラ一ゼ及び脱イオン蒸留水と混合す る。 混合物を、 例えば、 GeneAmp 2400 PCR system, Perkin-Elmer/Cetus などの自動サ一 マルサイクラーを用いて一般的な PCR サイクル条件下にそのサイクルを 25〜60回繰り返す が、 増幅のためのサイクル数は適宜目的に応じて適当な回数とすることができる。 PCR サ ィクル条件としては、 例えば、 変性 90〜95°C 5-100 秒、 ァニ一リング 40〜60°C 5〜150 秒、 伸長 65〜75°C 30 〜300 秒のサイクル、 好ましくは変性 94 °C 15 秒、 ァニーリ ング 58°C 15 秒、 伸長 72 °C 45 秒のサイクルが挙げられるが、 ァニ一リングの反応温度及 び時間は適宜実験によって適当な値を選択できるし、 変性反応及び伸長反応の時間も、 予 想される PCE 産物の鎖長に応じて適当な値を選択できる。 ァニ一リングの反応、温度は、 通 常プライマ一と踌型 DNA とのハイプリ ツ ドの Tin値に応じて変えることが好ましい。 伸長反 応の時間は、 通常 1000bpの鎖長当たり 1 分程度がおおよその目安であるが、 より短い時間 を選択することも場合により可能である。
得られた DM の塩基配列は、 例えば 「シークェンサ一 Model310」 (ABI 社製) を利用す る.: とにより容易に決定することが可能である。 本発明の DNA は、 例えば、 上記したよう に組換えタンパク質の調製に用いることができる。 さらに、 本発明の DM を植物体内で発 現させることにより、 細胞増殖が変化した形質転換植物体や発生分化が変化した形質転換 植物体を得ることも可能である。 0s3RmybAl と機能的に同等なタンパク質をコ一 ドする遺伝子を単離するためのハイプリ ダイゼーションは、 55°Cでハイブリダイゼ一ショ ンさせた後、 0. 1% SDSを含む 2XSSC(3M N aCl, 0. 3M クェン酸ナトリウム)もしくは 2XSSPE 3. 6M NaCl, 0. 2Mリ ン酸ナトリゥム液 (pH7. 7), 0. 02M Na2 - EDTA)中で、 55°Cで 10分間の洗浄を合計 3回行うという条件で行な うことができる。 よりストリ ンジヱントなハイプリダイゼ一ションにおいては、 65°Cでハ ィプリダイゼ一ショ ンさせた後、 0. 1¾ SDSを含む 2XSSCもしく は 2XSSPE液中で、 65°Cで 10 分間洗浄を合計 3回行えば良い。 さらに、 よりスト リ ンジヱントなハイブリダイゼーショ ンにおいては、 65°Cでハイプリダイゼ一シヨンさせた後、 0. 1% SDSを含む 2XSSCもしく は 2XSSPE液中で、 65°Cで 10分間洗浄し、 次に 0. 1% SDSを含む 1XSSCもしくは 1XSSPE液中で 、 65 Cで 10分間の洗浄を 2回行えばよい。 ハイプリダイゼ一ショ ン液は、 「Molecular cl oning (Maniatis T. et al. Cold Spring Harbor Laboratory Press ; J に s己載さ ている もの等を用いればよい。 本明細書中で開示した関連したタンパク質、 そのフラグメ ント、 さらには MA を含め た核酸 やオリゴヌク レオチドを含む) は、 それらを単独あるいは有機的に使用し、 更にはアンチセンス技術、 モノクローナル抗体を含めた抗体、 トランスジヱニク植物など とも適宜組合わせて、 ゲノ ミ ックス及びプロテオミ ックス技術に応用できる。 また、 二本 鎮 EM (dsRNA) を使用しての EMi (RNA interference) 技術への応用の途もある。 かく し て、 一塩基多型(SNP ; single nucleotide polymorphisms)を中心とした遺伝子多型解析、 核酸アレイ、 タンパク質アレイを使用した遺伝子発現解析、 遺伝子機能解析、 タンパク質 間相互作用解析、 関連遺伝子解析、 農薬解析をすることが可能となる。 例えば、 核酸ァレ ィ技術では、 cMAライブラリ一を使用したり、 PCR 技術で得た DM を基板上にスポッティ ング装置で高密度に配置して、 ハイプリダイゼ一ションを利用して試料の解析が行われる 該ァレイ化は、 針あるいはピンを使用して、 あるいはィンクジエ トプリ ンティ ング技術 などでもって、 スライ ドガラス、 シリコン板、 プラスチックプレートなどの基板のそれぞ れ固有の位置に MA が付着せしめられることによりそれを実施することができる。 該核酸 ァレイ上でのハイプリダイゼ一ションの結果得られるシグナルを観察してデータを取得す る。 該シグナルは、 螢光色素などの標識 (例えば、 Cy3, Cy5, B0DIPY, FITC, Alexa Fluo r dyes (商品名), Texas red (商品名) など) より得られるものであってよい。 検知には レーザ一スキャナ一などを利用することもでき、 得られたデータは適当なアルゴリズムに 従ったプログラムを備えたコンピュータ一システムで処理されてよい。 また、 タンパク質 アレイ技術では、 タグを付された組換え発現タンパク質産物を利用してよく、 二次元電気 泳動(2-DE)、 酵素消化フラグメントを含めての質量分析 (MS) (これにはエレク トロスプレ —イオン化法(electrospray ionization : ESI), マトリ ツクス支援レーザー脱離イオン化 法(matrix- assisted laser desorption/ionization : MALM)などの技術が含まれ、 MALDI- T0F 分析計、 ESI- 3 連四重極分析計、 ESI-イオントラップ分析計などを使用してよい) 、 染色技術、 同位体標識及び解析、 画像処理技術などが利用されることができる。 したがつ て、 本発明には上記で得られるあるいは利用できる MCK2 など及びそれに対する抗体に関 連したソフ トウエア、 データベースなども含まれてよい。 本明細書中、 「抗体」 との用語は、 広義の意味で使用されるものであってよく、 所望の 0s3EmybAlタンパク質、 その構成ポリぺプチド及び関連べプチド断片に対するモノクロ一 ナル抗体の単一のものや各種ェピトープに対する特異性を持つ抗体組成物であってよく、 ま 1価抗体または多価抗体並びにポリクロ一ナル抗体及びモノクローナル抗体を含むも のであり、 さらに天然型 ntact)分子並びにそれらのフラグメ ント及び誘導体も表すもの であり、 F(ab' ) 2, Fab' 及び Fab といったフラグメ ントを包含し、 さらに少なく とも二 つの抗原又はェピトープ (epitope)結合部位を有するキメラ抗体若しくは雑種抗体、 又は 、 例えば、 クヮ ドローム(quadrome), トリオーム(i;riome)などの二重特異性組換え抗体、 種間雑種抗体、 抗イディォタイプ抗体、 さらには化学的に修飾あるいは加工などされてこ れらの誘導体と考えられるもの、 公知の細胞融合又はハイプリ ドーマ技術や抗体工学を適 用したり、 合成あるいは半合成技術を使用して得られた抗体、 抗体生成の観点から公知で ある従来技術を適用したり、 赚 組換え技術を用いて調製される抗体、 本明細書で記載し 且つ定義する標的抗原物質あるいは標的ェピトープに関して中和特性を有したりする抗体 又は結合特性を有する抗体を包含していてよい。 特に好ましい本発明の抗体は、 配列番号 : 32の 53〜202番目の領域から選択されたポリぺプチドを特異的に識別できるものが挙げ られる。 抗原物質に対して作製されるモノクローナル抗体は、 培養中の一連のセルラインにより 抗体分子の産生を提供することのできる任意の方法を用いて産生される。 修飾語 「モノク ローナル」 とは、 実質上均質な抗体の集団から得られているというその抗体の性格を示す ものであって、 何らかの特定の方法によりその抗体が産生される必要があるとみなしては ならない。 個々のモノクロ一ナル抗体は、 自然に生ずるかもしれない変異体が僅かな量だ け存在しているかもしれないという以外は、 同一であるような抗体の集団を含んでいるも のである。 モノクローナル抗体は、 高い特異性を持ち、 それは単一の抗原性をもつサイ ト に対して向けられているものである。 異なった抗原決定基 (ェピトープ) に対して向けら れた種々の抗体を典型的には含んでいる通常の (ポリクロ一ナル) 抗体調製物と対比する と、 それぞれのモノクローナル抗体は当該抗原上の単一の抗原決定基に対して向けられて いるものである。 その特異性に加えて、 モノクローナル抗体は、 ハイプリ ドーマ培養によ り合成され、 他のィムノグロプリン類の夾雑がないあるいは少ない点でも優れている。 モ ノクロ一ナル抗体は、 ハイブリツ ド抗体及びリコンビナン ト抗体を含むものである。 それ らは、 所望の生物活性を示す限り、 その由来やィムノグロブリンクラスやサブクラスの種 別に関わりなく、 可変領域ドメインを定常領域ドメインで置き換えたり、 あるいは軽鎖を 重鎖で置き換えたり、 ある種の鎮を別の種の鎖でもって置き換えたり、 あるいはヘテロジ 一二ァスなタンパク質と融合せしめたりして得ることができる (例えば、 米国特許第 4816 567 号; Monoclonal Antibody Production Techniques and Applications, pp. 79-97, Ma reel Dekker, Inc. , New York, 1987 など) 。
モノクローナル抗体を製造する好適な方法の例には、 ハイプリ ドーマ法 (G. Kohler an d C. Milstein, Nature, 256, pp. 495-497 (1975)) ; ヒ ト B細胞ハイプリ ドーマ法 (Kozb or et al. , Immunology Today, 4, pp. 72-79 (1983) ; Kozbor, J. Immunol. , 133, pp. 30 01 (1984); Brodeur et al. , Monoclonal Antibody Production Techniques and Applies tions, pp. 51-63, Marcel Dekker, Inc. , New York (1987);トリオ一マ法; EBV-ハイプリ 卜一マ法 (Cole et al. , Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, I nc. , pp. 77-96 (1985) ) (ヒ トモノクローナル抗体を産生するための方法);米国特許第 4946 778 号 (単鎖抗体の産生のための技術) が挙げられる他、 抗体に関して以下の文献が挙げ られる: S. Biocca et al. , EMB0 J, 9, pp. 101-108 (1990) ; Ε. Ε. Bird et al. , Scienc e, 242, pp. 423-426 (1988) ; M. A. Boss et al. , Nucl. Acids Res. , 12, pp. 3791-3806 (1984) ; J. Bukovsky et al. , Hybridoma, 6, pp. 219-228 (1987) ; M. DAIN0 et al. , An al. Biochem. , 166, pp. 223-229 (1987) ; J. S. Huston et al. , Proc. Natl. Acad. Sci.
USA, 85, pp. 5879-5883 (1988) ; P. T. Jones et al. , Nature, 321, pp. 522-525 (1986) ; J. J. Langone et al. (ed. ), " Methods in E nzj'mology" , Vol. 121 (Immunochemical Techniques, Part I: Hybridoma Technology and Monoclonal Antibodies), Academic Pr ess, New York 1986;; S. Morrison et al., Proc. Natl. Acad. Sci. USA, 81, p. 685 1-6855 (1984) ; V. T. Oi et al., BioTechniques, 4, pp. 214-221 (1986) ; L. Riechman n et al., ature, 332, pp. 323-327 ( 1988) ; A. Tramontano et al. , Proc. Natl. Acad . Sci. USA, 83, pp. 6736-6740 (1986) ; C. food et al. , Nature, 314, pp. 446-449 (19 85) ; Nature, 314, pp. 452-454 (1985) あるいはそこで引用された文献 (それらの中にあ る記載はそれを参照することにより本明細書の開示に含められる) 。 本発明の抗体は、 当 該遺伝子発現物の解析、 検知などに利用できる他、 様々な利用が可能である。 本発明における植物 3Emybタンパク質をコードする DNAを単離する方法としては、 前述 のハイプリダイゼーションによる方法や、 PCRによる方法を用いれば良い。 PCRを用いて 単離する場合は例えば実施例 1に記載の縮重プライマ一を用いて PCRを行なうことによつ て 3反復の構造を示す myb MA結合領域をコ一ドする DNAを単離することが可能である。 PCKの特異性を向上させるためには、 目的配列に対して最初に用いた PCKプライマ一より さらに内側にァニーリングするような PCEプライマーを用いた Nested- PCRを行なうことで 可能となる。 得られた]) NAの塩基配列を決定後、 Rapid amplification of cDNA ends 法 (RACE法、 Dorit en al. , Current protocols in moleculer biology. Unii;15. 6(1992) ) を用いることによって cDNAの 5'および、 3'末端配列を単離、 決定することが可能である。 本発明で特徵付けた植物 3Emyb夕ンパク質を単離するための植物としては、 双子葉植物 の中から選択して利用できる。 これらは遺伝子源としても利用できる。 本発明で特徴付けた双子葉植物や単子葉植物としては、 特に制限はなく、 広く栽培植物 あるいは有用植物として知られたものの中から選択して利用でき、 穀類、 豆類、 ィモ類、 種実類、 野菜類、 果実類として知られた植物、 さらには園芸花木樹木なども挙げられる。 該植物としては、 例えば、 ナス科、 アブラナ科、 イネ科、 マメ科、 ユリ科、 セリ科、 ゥリ 科などのものが挙げられ、 好ましくはタバコ、 シロイヌナズナ、 ダイズ、 ァズキ、 エンド ゥ、 ソラマメ、 ラッカセィ、 イネ、 コムギ、 ォォムギ、 ライムギ、 ェンバク、 ベントダラ ス、 トウモロコシ、 アブラナ、 ジャガイモ、 サツマィモ、 タロィモ、 コンニヤク、 キヤッ サバなどが挙げられる。 本発明は、 NtmybAlタンパク質、 N"tmyM2タンパク質、 0s3RmybAlタンパク質、 ΑΪΜΥΒ3 R1タンパク質、 MMYB3R4タンパク質の機能を改変し、 これらタンパク質の転写活性化能が 上昇した分子を作出する方法を提供する。
本発明において NtmybAlタンパク質の転写活性化能が上昇した分子として機能するため には、
(a) 配列番号: 5 1に示した MmybAl タンパク質において 459〜1003番目のアミノ酸 配列を欠失した分子、
(b) さらに望ましくは、 配列番号: 5 1に示した NtmyMl タンパク質において 579〜 1003番目のァミノ酸配列を欠失した分子、 または 715〜; 1003番目のァミノ酸配列を欠失し た分子、
(c) 最も望ましくは配列番号: 5 1に示した NtmybAl タンパク質において 641~1003 番目のアミノ酸配列を欠失した分子、
からなる群から選ばれたもののうち少なく とも一つである分子である。
本発明において NtmybA2タンパク質の転写活性化能が上昇した分子として機能するため には、
(a) 配列番号: 5 3に示した NtmybA2 タンパク質において 413〜1042番目のアミノ酸 配列を欠失した分子、
(b) さらに望ましくは、 配列番号: 5 3に示した NtmyM2タンパク質において 569~ 1042番目のァミノ酸配列を欠失した分子、 または 705〜: 1042番目のァミノ酸配列を欠失し た分子、
(c) 最も望ましくは配列番号: 5 3に示した NtmyM2タンパク質において 631〜: 1042 番目のアミノ酸配列を欠失した分子、
から.なる群から選ばれたもののうち少なくとも一つである分子である。
本発明において Os myMlタンパク質の転写活性化能が上昇した分子として機能するた めには、
(a) 配列番号: 3 2に示した 0s3RmybMタンパク質において 426〜993番目のァミノ 酸配列を欠失した分子、 (b) さらに望ましくは、 配列番号: 3 2に示した 0s3RmybAlタンパク質において 575 〜993番目のァミノ酸配列を欠失した分子、 または 709〜993番目のァミノ酸配列を欠失 した分子、
(c 最も望ましくは配列番号: 3 2に示した 0s3KniybAlタンパク質において 635~99 3番目のアミノ酸配列を欠失した分子、
からなる群から選ばれたもののうち少なく とも一つである分子である。
本発明において AtMYB3Rlタンパク質の転写活性化能が上昇した分子として機能するため には、
(a) 配列番号: 7 5に示した AtMYB3Rlタンパク質において 583〜776番目のアミノ酸 配列を欠失した分子、 または 691〜776番目のァミノ酸配列を欠失した分子、
(b) 望ましくは配列番号: 7 5に示した AtMYB3Elタンパク質において 621〜776番目 のァミノ酸配列を欠失した分子、
からなる群から選ばれたもののうち少なくとも一つである分子である。
本発明において ΑΪΜΥΒ3Ε4タンパク質の転写活性化能が上昇した分子として機能するため には、
(a) 配列番号: 7 6に示した AtMYB3K4タンパク質において 570〜961番目のアミノ酸 配列を欠失した分子、 または 667〜961番目のアミノ酸配列を欠失した分子、
(b) 望ましくは配列番号: 7 6に示した AtMYB3E4タンパク質において 608〜961番目 のァミノ酸配列を欠失した分子、
からなる群から選ばれたもののうち少なくとも一つである分子である。 本発明はまた、 NtmybAlタンパク質、 NtmyM2タンパク質、 0s3EmybAlタンパク質、 At MYB3R1タンパク質、 Ai:MYB3R4タンパク質の機能を改変し、 これらタンパク質の転写活性化 能が野生型と比較して低下、 もしくは消失した分子すなわち、 内在性植物 3Bniyb分子に対 してドミナントネガティブ分子として機能する分子を作出する方法を提供する。 本発明において NtraybAlタンパク質、 MmybA2タンパク質、 0s3RmybAlタンパク質、 At MYB3R1タンパク質、 AtMYB3R4タンパク質が内在性植物 3Rmyb遺伝子に対してドミナントネ ガティブとして機能するためには,
(a) 配列番号: 5 1に示した NtmybAl タンパク質であれば 299〜1003番目のァミノ酸 配列を欠失した分子、
(b) さらに望ましくは配列番号: 5 1に示した t mybAl タンパク質で 186〜1003番 目のアミノ酸配列を欠失した分子、
(c) 配列番号: 5 3に示した NtmybA2 タンパク質であれば 243〜: 1042番目のアミノ酸 配列を欠失した分子、
(d) さらに望ましくは配列番号: 5 3に示した NtmyM2 タンパク質で 188〜1042番 目のアミノ酸配列を欠失した分子、
(e) 配列番号: 3 2に示した 0s3RmybAl タンパク質であれば 257〜993番目のァミノ 酸配列を欠失した分子、
(f) さらに望ましくは配列番号: 3 2に示した 0s3RmybAl タンパク質で 203〜993番 目のアミノ酸配列を欠失した分子、
(g) 配列番号: 7 5に示した AtMYB3IU タンパク質であれば 24;!〜 776番目のァミノ 酸配列を欠失した分子、
(h) さらに望ましくは配列番号: 7 5に示した タンパク質で 187〜776番目 のァミノ酸配列を欠失した分子、
Ci.) 配列番号: 7 6に示した ΑΪΜΥΒ3Μ タンパク質であれば 235〜961番目のァミノ 酸配列を欠失した分子、
(Ϊ ) さらに望ましくは配列番号: 7 6に示した AtMYB3E4タンパク質で 18:!〜 961番目 のアミノ酸配列を欠失した分子、
からなる群から選ばれたもののうち少なくとも一つである分子である。 NtmybA2タンパク質の 242〜1042番目のァミノ酸配列を欠失した分子や、 188〜1042 番目のアミノ酸配列を欠失した分子の転写活性化能が野生型 NtraybA2タンパク質よりも低 下したこと、 加えて NtniyM2タンパク質の 188〜1042番目のァミノ酸配列を欠失した分子 と全長 NtmybA2タンパク質の共発現において、 NtmybA2タンバク質単独の転写活性能が抑 制されたこと、 さらに、 全長 NtmybBタンパク質と 188〜1042番目のアミノ酸配列を欠失 した分子の共発現においては NtmybB夕ンパク質単独での転写抑制能が抑制されたことは、 MmybA2タンパク質の 243〜1042番目のァミノ酸配列を欠失した分子や、 188〜: 1042番目 のァミノ酸配列を欠失した分子が内在性植物 3Emyb夕ンパク質に対してドミナントネガテ ィプに機能することを証明するものである。 明細書及び図面において、 用語は、 IUPAC-IUB Commission on Biochemical Nomenclatu reによるか、 あるいは当該分野において慣用的に使用される用語の意味に基づく ものであ る。 代表的な用語の意味を以下に示す。
ァミノ酸配列に関しては:
A :ァラニン (Ala) M :メチォニン (Met)
C :システィン (Cys) N :ァスパラギン (Asn)
D :ァスパラギン酸 (Asp) P :プロリ ン (Pro)
E :グルタミ ン酸(Glu) Q :グルタミ ン (Gin)
F :フエ二ルァラニン(Phe) K :アルギニン (Arg)
G グリシン(Gly) S:セリン (Ser)
H :ヒスチジン(His) T :スレオニン (Thr)
I:イソロイシン(lie) V:バリ ン (Val)
:リ ジン(Lys) W : トリブトファン (Trp)
L :ロイシン(Leu) Y :チロシン (Tyr)
X:上記のいずれかのァミノ酸あるいは特定の任意のァミノ酸 (特別に指定した場
合はその指定したァミノ酸である)(Xaa)
ヌクレオチド配列に関しては:
a :ァテニン G,g : グァニン
C, c:シトシン T, t : チミ ン
R, 1- :グァニン又はアデニン Y, y : チミ ン ウラシル又はシトシン
M,m :アデニン又はシトシン K, k : グァニン又はチミ ン /ゥラシル
S, s :グァニン又はシトシン W, w : アデ二ン又はチミ ン /ゥラシル
D,d :アデニン又はグァニン又はチミ ン /ゥラシル
H, h :アデニン又はシトシン又はチミ ンノウラシ.ル
V,v :アデニン又はグァニン又はシトシン
N, アデニン又はグァニン又はシトシン又はチミ ン Zゥラシル, 不明,
又は他の如何なる塩基でもよい (特別に指定した場合はその指定した塩基で ある) 実施例
以下に実施例を掲げ、 本発明を具体的に説明するが、 この実施例は単に本発明の説明の ため、 その具体的な態様の参考のために提供されているものである。 これらの例示は本発 明の特定の具体的な態様を説明するためのものであるが、 本願で開示する発明の範囲を限 定したり、 あるいは制限することを表すものではない。 本発明では、 本明細書の思想に基 づく.様々な実施形態が可能であることは理解されるべきである。
なお、 MA の切断、 連結、 大腸菌の形質転換、 遺伝子の塩基配列決定、 ハイブリダィゼ —シヨン等一般の遺伝子組換えに必要な方法は、 各操作に使用する市販の試薬、 機械装置 等に添付されている説明書や、 実験書 (例えば 「Molecular cloning (Maniatis T. et al . , Cold Spring Harbor Laboratory Press) J (J. Sambrook et al., Molecular Cloning : A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2nd Edition, 1989 & 3rd Edition, 2001)を含む) に基本的に従った。 全ての 実施例は、 他に詳細に記載するもの以外は、 標準的な技術を用いて実施したもの、 又は実 施することのできるものであり、 これは当業者にとり周知で慣用的なものである。 実施例 1
ィネ 0s3RmybAl遺伝子の単離と塩基配列の決定
イネより 3Einyb をコードする cMAの単離と、 塩基配列の決定を行った。 cMAを単離する ためには、 タバコの 3Emybである NtmybM、 MmybA2、 NtmybBの myb DNA結合領域におけ るアミノ酸配列を参考に設計した縮重プライマ一を用いてイネカルスより調整した cDNAを 錚型として PCE反応を行った。 縮重 PCEの特異性を向上させるために、 Nested PCRを実施 することにより 3反復の myb DNA 結合領域を示す cDNA断片の単離に成功した。
得られた断片より、 5' CE法、 3' RACE法によって全長 cMAの末端配列を決定した。 5'末端配列と 3'末端配列を参考に設計したプライマ一によつて構造遺伝子全長を含む cD NAの単離に成功した。 以下に詳細に示す。
( 1 ) mRMの精製および cMA合成
イネ (品種 日本晴) 種子より籾も取り除きアンチホルミ ンを用いて滅菌した後に、 N6 CI培地 (N6無機塩、 N6ビタミ ン(Chuら(1975), Sientia Sinica 18: 659) に sucrose, 30g/ 1、 2, 4-D 2mg/K gelrite 2g/lを添加。 pH5. 8) 上で胚盤に由来するカルスを誘導した このカルス 130mgより RNeasy plant mini kit (QIAGEN社)を用いて総 BNAを抽出した 抽出した総 MAの 50 gより、 PolyATtract mRM Isolation Systems (Promega社)を 用いて mRMを精製した。 精製された mR はエタノール沈殿により濃縮した後に、 Superscr ipt First-strand syntesis system for ET-PCR(Invitrogenth) を用いて cMAを合成した
( 2 ) Myb領域の縮重プライマ一を用いた PCKによるクロ一ニング
合成された cDNA 50 μ 1のうち 2 μ 1を使用して PCR反応を行った。 PCK反応に用いた プライマーは DEGmybF (5, - GAIGTICARTGYYWICAY GNTGG -3' ; 配列番号: 1)及び DEGmybR (5' - YTTYTTDAVIGAISWRTKCCA -3';配列番号: 2)である。 反応は Ex taq(Takara社)を用 い、 Ex taqに付属する反応バッファ—、 各 200 / Mの dATP、 dTTP、 dCTP、 dGTP、 各 10 / M の DEGmybFおよび DEGmybRを用いて、 50;« 1の液量で行った。 GeneAmp PCE system 9700 (PE Applied Biosystems社)を用いて 94°Cを 30秒、 42°Cを 30秒、 72°Cを 30秒の Xテツプを 35サイクル繰り返した。 反応終了後、 PCR反応液を QIAquick PCR Purification Kit (QIA GEN社)を用いて精製した。
精製された PCR反応液を Ι μ ΐを铸型として用いて、 Nested PCRを行った。 2回目の PC β反応に用いたプライマーは DEGmybFと DEGmybEの内側にあたる領域に設計した縮重ブラ イマ— DEGmybF2 (5' - CARTGYYTICAYMGITGGCAEAARG -3' ; 配列番号: 3)及び DEGmybE2 (5' - ACIS ISWRTTCCARTTRTGYTT -3';配列番号: 4)を用いた。 反応は Ex taq(Takara社)を用 い、 Ex tagに付属する反応バッファ一、 各 200 / Mの dATP、 dTTP、 dCTP、 dGTP、 各 10 Μ の DEGmybF2および DEGmybB2を用いて、 50 1の液量で行った。 GeneAtnp PCR system 9700C PE Applied Biosystems社)を用いて 94°Cを 30秒、 58°Cを 30秒、 72°Cを 30秒のステップを 35サイクル繰り返した。 反応終了後、 PCE反応液を QIAquick PCR Purification Kit (QIA GEN社)を用いて精製した。
精製された 2回目の PCB反応液を Ι μ ΐを铸型として用いて、 さらに Nested PCEを行つ た。 3回目の PCR反応に用いたプライマ一は DEGmy bF2と DEGmy bK2の内側にあたる領域に設 計した縮重プライマ一 DEGmybF3 (5' - CAYMGITGGCARAARGTIYTIRAYCC - 3'; 配列番号: 5)及 び DEGmybE3 (5' - HIGCRTTITCISfflCKICCIKGIA -3';配列番号: 6)を用いた。 反応は Ex taq (Takara社)を用い、 Ex taqに付属する反応バッファ一、 各 200 Mの dATP、 dTTP、 dCTP 、 dGTP、 各 の DEGmybF3および]) EGmybR3を用いて、 50 1の液量で行った。 GeneAmp PCR system 9700CPE Applied Biosystems社)を用いて 94°Cを 30秒、 56°Cを 30秒、 72°Cを 30秒のステップを 30サイクル繰り返した。 反応終了後、 PCE反応液を QIAquick PCR Purif ication Kit (QIAGEN社)を用いて精製した。 PCE反応液をァガロースゲルを用いて解析 したところ、 約 300bpの MAが増幅していることが確認されたため、 この爾 A断片を pCM -T0P0 (. Invitrogen社:) に TAクロ一ニングした。 3種のクローンより得られたプラスミ ド に揷入された MAを T7プライマ一 (5' - TAATACGACTCACTATAGGG -3' ; 配列番号: 7 )を用い て塩基配列を決定し、 配列番号: 8、 配列番号: 9、 配列番号: 10を得た。
( 3 ) イネ 3Emyb cDNAの 5' 末端配列の決定
( 1 ) で得られた 3¾yb DNA結合領域の断片配列を含むイネ 3 Ikyb遺伝子の全長 c DNA を得るために、 cDNAの 5' 末端側の単離を行った。 5'末端側の DMの単離は 5' CE法で 行い、 GeneEacer Kit (Invitrogen社) を用いて実施した。 前述 ( 1 ) に記述の方法によ り誘導したイネ胚盤由来カルス 130mgより easy plant mini kit (QMGEN社)を用いて 総 RNAを抽出した。 抽出した総 MAを 3 i gを銪型として用い、 GeneRacer Kit (Invitro gen社)により cMAを合成した。 この cDMを錄型として、 配列番号: 8、 配列番号: 9、 配列番号: 10を参考に設計したプライマ一 78687 - R1 (5' - CAGCTCGGCCCATTTATTTCCATACATT
- 3';配列番号: 11 )と GeneRacer Kit (Invitrogen社)に付属のプライマ一 GeneRacer 5 ' Primer (5' - CGACTGGAGCACGAGGACACTGA -3';配列番号: 12)を用い PCE反応を行った。 反応には Ex i;a(i(Takara社)を用い 50 1の液量で行った。 GeneAmp PCE system 9700CPE
Applied Biosystems社)を用いて 94°Cを 2分の後に、 94°Cを 30秒、 72。Cを 3分のステツ プを 5サイクル、 94°Cを 30秒、 70°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 68°Cを 30秒、 72°Cを 3分のステップを 25サイクル行い、 最後に 72°Cで 10分の反応を行った。 PCR 反応液を Ι μ ΐを鎵型として、 プライマ— 78687-R2 (5' - CTTCTTGTGTCCATGCCTCCTTGTTTAT
-3';配列番号: 13)と GeneRacer Kit (Invitrogen社)に付属のプライマ一 GeneRacer 5' Nested Primer (5, - GGACACTGACATGGACTGAAGGAGTA -3';配列番号: 14)を用い PCE反 応を行った。 反応には Ex taq Takara社)を用い の液量で行った。 GeneAmp PCR sy stem 9700(PE Applied Biosystems社)を用いて 94°Cを 2分の後に、 94°Cを 30秒、 72°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 70°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 68でを 30秒、 72°Cを 3分のステップを 25サイクル行い、 最後に 72°Cで 10分の反応を 行った。 反応終了後、 PCR反応液を QMquick PCR Purification Kit (QIAGEN社)を用い て精製した。 增幅された MAを pCR4 - T0P0 (Invitrogen社) に TAクローニングした。 得ら れたプラスミ ドに揷入された DMを T7プライマ一 (5' - TAATACGACTCACTATAGGG - 3'; 配列 番号: 7)と T3プライマ一 (5' - AATTAACCCTCACTAAAGGG -3'; 配列番号: 15)を用いて塩基配 列を決定した。 クローン #26の塩基配列を配列番号: 16に、 クローン #27の塩基配列を配 列番号: 17に示した。
( 4 ) イネ 3Rmyb cMAの 3'末端配列の決定
( 1 ) で得られた 3Bmyb DNA 結合領域の断片配列を含むイネ 3 Rmyb遺伝子の全長 cDMを 得るために、 cMAの 3' 末端側の単離を行った。 3'末端配列の決定は 3' EACE法で行い、 GeneRacer Kit ( Invitrogen社) を用いて実施した。 前述 ( 1 ) に記述の方法により誘導 したイネ胚盤由来カルス 130mgより Measy plant mini kit (QIAGEN社)を用いて総 βΜ を抽出した。 抽出した総 RNAを 5 gを铸型として用い、 GeneRacer Kit (Invitrogen社 パこより cMAを合成した。 この cMAを铸型として、 配列番号: 8、 配列番号: 9、 配列番 号: 10を参考に設計したプライマー 78687- F1 (5, - AGGAGGCATGGACACAAGAAGAGGAAAT -3'; 配列番号: 18)と GeneBacer Kit (Invitrogen社)に付属のプライマー GeneRacer 3' Prim er {5' - GCTGTCAACGATACGCTACGTAACG -3';配列番号: 19 )を用い PCE反応を行った。 反応 には Ex taq Takara社)を用い 50 // 1の液量で行った。 GeneAmp PCR system 9700(PE App lied Biosystems社)を用いて 94°Cを 2分の後に、 94°Cを 30秒、 72°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 70°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 68°Cを 30秒 、 72°Cを 3分のステップを 25サイクル行い、 最後に 72°Cで 10分の反応を行った。 PCE反応 液を 1 Uを铸型として、 プライマ一 78687-F2 (5' - GGAAATAAATGGGCCGAGCTGACAAAAT -3' ;配列番号: 20)と GeneEacer Kit (Invitrogen社)に付属のプライマ一 GeneRacer 3' N ested Primer - CGCTACGTAACGGCATGACAGTC -3';配列番号: 21)を用い PCK反応を行った 。 反応には Ex taq(Takara社)を用い 50 ^ 1の液量で行った。 GeneAmp PGR system 9700C PE Applied Biosystems社)を用いて 94°Cを 2分の後に、 94°Cを 30秒、 72°Cを 3分のステ ップを 5サイクル、 94°Cを 30秒、 70°Cを 3分のステップを 5サイクル、 94°Cを 30秒、 68°C を 30秒、 72°Cを 3分のステップを 25サイクル行い、 最後に 72°Cで 10分の反応を行った。 反 応終了後、 PCR反応液を QIAquick PCR Purification Kit (QIAGEN社)を用いて精製した 。 增幅された DNAを pCK4 - T0P0 (Invitrogen社) に TAクロ一ニングした。 得られたプラス ミ ドに揷入された DNAを T7プライマ一 (5' - TAATACGACTCACTATAGGG -3'; 配列番号: 7)と T3プライマー (5' - MTT CCCTCACTAAAGGG -3' ; 配列番号: 15)を用いて揷入された DM断 片の 5'側と 3'側の塩基配列を決定した。 クローン #31の 5'側の塩基配列を配列番号: 22に 、 3'側の塩基配列を配列番号: 23に示した。
( 5 ) ィネ 3Rmyb遺伝子の構造領域全長を含む c DNAの単離と塩基配列の決定 前述 (1 ) に記述の方法により誘導したイネ胚盤由来カルス 130mgより RNeasy plant mini kit (QIAGEN社)を用いて総 RNAを抽出した。 抽出した総 EMの 5 gより、 Supers cript First-strand syntesis system for RT-PCR(Invitrogentt) を用いて cMA¾"合成し た。
合成された cMA 50 « 1のうち を使用して PCK反 を行った。 PCR反応に用いた プライマーは OsAl - 1F (5' - TGTCTTCAGTCATGATGACAAGCGA -3'; 配列番号: 24)及び OsAl - 2 R (5' - CAAGCTATCTAAAACTTTTCAGAAGATGG -3';配列番号: 25)である。 反応は PfuTurbo Hot start DNA Polymerase (Stratagene社)を用 、、 PfuTurbo Hotstart DNA Polymeraseiこ 付属する反応バッファ一、 各 200 ^ Μの dATP、 dTTP、 dCTP、 dGTP、 各 Ι μ Μ の OsAl - IFお よび 0sAl-2Rを用いて、 50 1の液量で行った。 GeneAmp PCR system 9700(PE Applied B iosystems社)を用いて 95°Cを 2分の後に、 95°Cを 30秒、 60°Cを 30秒、 72°Cを 4分のステ ップを 40サイクル繰り返した。 最後に 72°Cで 10分、 反応した。 反応終了後、 PCR反応液 を QIAquick PCR Purification Kit (QIAGEN社)を用いて精製した。 PCR反応液をァガロ -スゲルを.用いて解析したところ、 約 3kbpの単一の DMが増幅していることが確認された ため、 この MA断片を pCR4- T0P0 (Invitrogen社) に TAクローニングした。 この DMが揷 入されたプラスミ ド pCR4-0s3I½ybAlを
T7プライマ— (5' - TAATACGACTCACTATAGGG -3'; 配列番号: 7)、
T3プライマ— (5, - AATTAACCCTCACTAAAGGG -3'; 配列番号: 15)、
プライマ— 78687 - F1 (5' - AGGAGGCATGGACACAAGAAGAGGAAAT - 3';配列番号: 18)、 プライマ
-0sAl-4F (5' - GATCAACACTTGCAAGAGGA -3';配列番号: 26)、
プライマ— OsAl - 3F (5' - ACAGGGCCTTCTTTTCTGGAC -3';配列番号: 27)、
プライマ— 0sAl-5F (5' - AGCATACCTGAATGTGGGGA - 3' 配列番号: 28)、
プライマ一 0sAl-6F (5, - TACTCATGATGAAAGCACGG - 3' 配列番号: 29)、
プライマ— OsAl - 7F (5' - ATCTCCTTCACATGGAAGTC - 3' 配列番号: 30)、
を用いて塩基配列を決定した。 得られた塩基配列を配列番号: 31に示した。 実施例 2
配列番号: 31の]) NiUこコードされるアミノ酸配列を配列番号: 32に示した。 配列番号: 32のアミノ酸配列は 3反復の myb 結合領域を含んでおり、 この配列にコードされる遗 伝子を 0s3EniybAlとした。 OsSEmybAlタンパク質のァミノ酸配列と DDBJに登録番号 MB786 87と'して登録されているゲノム情報より予測されている仮想のァミノ酸配列〔配列番号: 49)を最適な形で並べた結果、 0s3RmyMl cDMにコードされるアミノ酸配列は MB78687の アミノ酸配列と N末端領域では高い類似性を示すが、 C末端領域が異なっていた。 BAB786 87の 783番目のァミノ酸以降が 0s3RmybAlと異なっており、 BAB78687では 787ァミノ酸よ り構成されるタンパク質であるが、 0s3RmybAlは 993アミノ酸から構成されている。 これ はゲノム配列より BAB78687の構造領域を予測する際にスプライシング部位の予測が異なつ ていたためであると考えられる(図 1、 図 2、 図 3 )。 実施例 3
0s3BmyMlの転写活性化能
単離した 0s3EmybAlの機能を、 プロモ一夕—領域に MSA制御配列を含む CYM遺伝子の転 写活性化能として確認した。 すなわち、 タバコ培養細胞 BY2プロ トプラストにおいてカリ フラワーモザィクウィルス(CaMV) 35Sプロモーターにより 0s3RmybAlが発現するプラスミ ドと、 CYMプロモーターとルシフェラーゼ遗伝子が融合したレポ一タ一遺伝子を含むプラ スミ ドを共導入し、 一過性発現によるルシフヱラーゼ活性を 0s3RmybAlの転写活性化能と して定量化した。
( 1 ) プラスミ ドの構築
発現用プラスミ ドの構築
pEXP- 0s3BniyMlの構築
pCR4- 0s3RmybMを EcoRIで切断し、 切り出される 0s3RmybMを含む MA断片を pEXP35S を EcoRIで切断して生じるサイ トにセンス方向に揷入し、 pEXP_0s3RmybAlを構築した。 pE XP-0s3RmybAlはカリフラワーモザイクウィルス(CaMV) 35Sプロモータ一により、 0s3RmyM 1の 0RF全長を発現するプラスミ ドである。
また、 pEXP- 0s3RraybAlと実質的に機能が同等であるプラスミ ドは以下のように構築可能 である。 pBI221(Clontech社製)を EcoEIと Saclで切断し、 切り出される DNAの突出末端 を Klenow断片を用いて平滑化し、 pBluescript(SK-)を Xholで切断し Klenow断片を用いて平 滑化する部位に挿入するとプラスミ ド pTNが構築される。 pBI221を Pstlで切断、 Klenow断 片を用いて突出末端を平滑化、 さらに Xbalを用いて切断し切り出される MA断片を、 pTN を Notlで切断、 Klenow断片を用いて突出末端を平滑化、 さらに Xbalを用いて切断して生成 される部位に揷入すると PP35Sプラスミ ドが構築される。 すなわち pP35Sプラスミ ドは Ca MV 35Sプロモータ一とノパリン合成酵素のターミネータ一の間に複数の制限酵素切断部位 を有するプラスミ ドである。 pCR4- 0s3RmybMを EcoRIで切断し、 切り出される 0s3EmybAl を含む DM断片を、 pP35Sを EcoRIで切断して生じるサイ トにセンス方向に揷入し、 pP35 S-0s3RmybAlを構築する。 pP35S- 0s3I½ybAlは CaMV 35Sプロモータ一により、 0s3RmybAl の 0RF全長を発現するプラスミ ドである。
pEXP - GUSプラスミ ドの構築
pBI-121 (Clontech社製)を Saclで切断後、 Klenow断片を用いて突出末端を平滑化し、 さ らに Hindlllで切断して生成される DM断片を、 pEXP35Sを EcoMで切断後、 Klenow断片 を用いて突出末端を平滑化し、 さらに Hindlllで切断して生成される部位に挿入して pEXP - GUSを構築した。 pEXP- GUSは CaMV 35Sプロモータ一により、 GUSを発現するプラスミ ドで ある。 pEXP - GUSと実質的に機能が同等なプラスミ ドとしては pBI221(Clontech社製)が利 用可能である。
β - LUCプラスミ ドの構築
pEL-null Vector プラスミ ド ( Promega社製 )を BamHIと Nhelで切断し、 生成される断 片を、 pBI - 221 (Clontech社製)を Xba! [と BamHIで切断して生成される部位に揷入した。 このプラスミ ドを Xbalと Saclで切断後に Klenow断片を用いて突出末端を平滑化、 切り出さ れた DM断片を取り除いた後に、 セルフライゲ一シヨンを行い、 B- LUCプラスミ ドを構築 した。 R-LUCプラスミ ドは CaMV 35Sプロモータ一により、 ゥミシィタケ(Renilla)由来の ルシ.フェラ一ゼ(E- LUC)を発現するプラスミ ドである。
CYM promoter- LUCプラスミ ドの構築
PD0432プラスミ ド(Nishiuchi et al. , Plant Mol. Biol. , 29 : 599(1995) )を Hindlllと Saclで切断し生成される DM断片を pBI221 (Clontech社製)を Hindlllと Saclで切断して 、 CaMV 35S プロモータ一領域を含む DM断片を除いた部位に揷入し、 pUC - LUCを構築し た。 CYMプロモータ一領域については常法によりニチニチソゥ(Catharanthus roseus) よ り調整したゲノム MAを鎳型に用い、 PCRにより調整した。 PCE反応に用いたプライマー は CYM3 (5' - CCGGATCCTTCAATAGAATTTCTTCCA 3'; 配列番号: 56)及び CYM5 1 (5' - CCAAGC TTACCCATAAATTGTTGGTAAA - 3';配列番号: 57)である。 増幅された CYM プロモーター領域 を BamHIと Hindlllで切断した後に、 pUC- LUCの BamHIと Hindlllの切断により生成され る部位に揷入して、 CYM promoter- LUCプラスミ ドを構築した。 すなわち CYM promoter - LUC プラスミ ドは制御配列として MSA配列を 3ケ所含む CYMプロモータ一によりルシフェラー ゼ(LUC)が発現するプラスミ ドである。
( 2 ) BY- 2プロ トプラストの作成、 プラスミ ドの導入、 LUC活性の測定
新しい 100mlの LSD液体培地 (Nagataら(1981 ) Mol. Gen. Genet. 184 : 161 )に植え継い で 3日目のタバコ培養細胞 BY2より、 Evans らの方法によりプロ トプラストを調整した (J vansら(1983) Int. Eev. Cytol. 33: 53)。 即ち、 BY2細胞を 2000回転、 室温で遠心し て LSD液体培地より細胞を回収し、 100mlの N2培地(1¾ Cellulase " 0N0ZU A" RS (ャク ルト社製)、 0. 5% Hemicellurase (SIGMA社製)、 0. 1% Pectolyase Y- 23 (キッコ一マン 社製)、 7. 4g/l CaCl 2 · 2H 20、 1. 6g/l 酢酸ナトリウム、 45g/l マンニトール、 pH5.
7)を加えた。 暗所、 27°Cで穏やかに回転培養を行い、 細胞壁を消化した。 3時間後に細胞 を 500回転、 室温の遠心操作により回収した。 回収された細胞は 50mlの N3培地(7. 4g/l Ca Cl 2 . 2H20、 1. 6g/l 酢酸ナトリウム、 45g/l マンニトール、 pH5. 7)を加えて洗浄した 。 500回転、 室温の遠心操作により細胞を回収し、 40mlの M倍地(4. 6g/l ムラシゲ .スク —グ培地用混合塩類(和光純薬社製)、 100mg/l カザミノ酸、 lOOmg/1 myo inositol 2. 8g/l L-proline、 97. 6mg/l MESヽ lmg/1 Thiamin- HC1、 357mg/l KH2P0" 102. 6g/l Sue rose, pH5. 7)に懸濁した。 700回転、 室温で 10分間遠心操作を行い、 培地上層に存在する プロトプラストを回収した。
得られたプロ トプラストへのプラスミ ド DMの導入は PEG法を用いて行った(Bilangら (1994) . In Plant Molecular Biology Manual, pp. Al, 1 16. )。 すなわち得られたプロ トプラストを 40mlの W5 (15½M NaCl、 124mM CaCl 2、 5mM KC1、 5mM glucose. pH5. 8)を 用いて洗浄後に室温、 500回転、 3分の遠心操作でプロ トプラストを回収した。 この洗浄 操作を 3回繰り返した。 洗浄後のプロ トプラストは MMM(l5mM MgCl 2、 0. 1% MES、 0. 5M M annito pH5. 8)を用いて 2xl05個/ mlの濃度に調整した。 MMMに懸濁したプロトプラス ト 250 1を試験管に分注し、 プラスミ ド DM溶液を 20 1加えた。 穏やかに攪拌したの ちに PEG溶液(0. 4M mannitoK 0. 1M Ca(N03 ) 2溶液に 40% w/vになるように PEG4000を 添加、 pH8に調整後、 オートクレープ)を 250 / 1加え、 穏やかに攪拌した。 最後に LSD 液体培地に 0. 4M mannitolを加えた培地を 5ml加え、 暗所で 20時間培養を行った。 培養後 、 室温、 500回転、 3分の遠心操作で細胞を回収し、 LUCおよび R- LUCの活性測定を行つ た。 これらのの基質としては Dual- Lucif erase Reporter assay system (Promega社製)を 用い、 ルミノメータ一 LB955 (berthold社製)で測定した。
( 3 ) 0s3BmybAlによる CYM プロモーターの活性化
導入したサンプル間の導入効率の標準化は、 CaMV 35Sプロモーターによって Renillaル シフェラ一ゼが発現する R-LUCプラスミ ドを同時に導入し、 Renillaルシフヱラ一ゼの活 性で LUC活性を捕正することによって行った。 CaMV 35Sプロモータ一により 0s3BmybAlの 全長が発現するプラスミ ドである pEXP- 0s3RmybAl、 CaMV 35Sプロモーターにより GUSが 発現するプラスミ ド pEXP - GUS、 前述の CYM promoter- LUCプラスミ ド、 R-LUCプラスミ ドを 用いた。 導入は 5反復で行った。 プラスミ ドの組み合わせについては
( i ) フヱクタ一プラスミ ドを含まない組み合わせ(CYM promoter-LUCプラスミ ド(10 / g/1サンプル) + PEXP-GUSプラスミ ド(10 g/lサンプル) + R- LUCプラスミ ド l g/
1サンプル)
(ii)エフェクタープラスミ ドを pEXP-0s3RmyMlとする組み合わせ(CYM プロモータ一- LUC プラスミ ド(lO g/lサンプル) + PEXP- 0s3RmybAlプラスミ ド(10 μ g/1サンプル) + R- LUCプラスミ ド サンプル) )
(iii)エフヱクタ一プラスミ ドを pEXP - NtmybA2とする組み合わせ(CYM プロモータ一- LUC プラスミ ド(lO ^ g/lサンプル) + PEHP- NtmybA2プラスミ ド(10 g/1サンプル) + β- LU Cプラスミ ド (l g/1サンプル) )
で行なった。 (i )の組み合わせで導入した場合の LUC比活性 (Eenillaルシフヱラーゼの 活性によつて標準化されたルシフヱラーゼ活性) を 1とした場合、 (.ii )では LUC比活性が 約 2. 5倍に上昇した。 (iii)においても同様に LUC比活性が約 2. 5倍に上昇した(図 4 ) 0s3RmybAlは CYMプロモータ一の転写を活性化することが示された。 驚くべきことに、 0s3RmybAlはイネからクローニングされた cDNAであるにも関わらず、 タバコ細胞内におい てタバコの NtmyM2と同じ程度の転写活性化能を示した。 イネから単離した 0s3BmyMlが タバコ細胞内で、 タバコ NtmybA2と同等の機能を示したことは、 単子葉植物と双子葉植物 においても G2/M期における遺伝子発現調節機構が高度に保存されていることが明らかにな つた。 実施例 4
NtmybA NtmyM2、 NtmybB^ をコ一ドする MAの単離。
本発明に用いる N1:mybAlをコ一ドする MAの塩基配列を配列番号: 50に、 ァミノ酸配列 は配列番号: 51に示す。 NtmybA2をコ一ドする MAの塩基配列を配列番号: 52に、 ァミノ 酸配列は配列番号: 53に示す。 NtmybBをコードする の塩基配列を配列番号: 54に、 ァ ミノ酸配列は配列番号: 55に示す。
NtmybA NtmybA2、 NtmybBをコ一ドする DNAは Yeast One-hybrid system (Clontech 社製)を用いて単離された(Ito et al., Plant Cell, 13 : 1891(2001))。 培養 2日目の BY 2細胞より調整した cMAを pGADIOプラスミ ド上に挿入し cDNAライブラリ一を構築した。 MS λ配列を含むプロモータ一である MCKlプロモータ一とヒスチジン合成酵素(HIS3)が機能 的に融合されたレポーター遺伝子が染色体に挿入されたヒスチジン合成酵素(HIS)欠損酵 母株を作出し、 前述の cMAライブラリーを形質転換した。 形質転換した酵母をヒスチジン 無添加培地を用いて選抜し、 生育したコロニーより回収した 3種のプラスミ ド(0H53、 0H 60、 0H88)に揷入された cMAの塩基配列を決定し NtmybAl、 NtmybA2, NtmybB をコード する DMを得た。 OH53プラスミ ドには NtmybAlをコードする]) NA断片が、 0H60プラスミ ド には全長 NtmybA2をコードする DNAが、 0H88プラスミ ドには全長 MmybBをコードする MA が揷入されていた。 0H53は全長を含んでいなかつたため、 3' EACE法を用いて 3'末端配列を 決定し、 NtmyMlの全長 cDNAが揷入された pGEMe- 0H53i6プラスミ ドを得た。
これらの MAは PCKやハイプリダイゼ一ションを用いてより簡便に単離することが可能 である。 ハイプリダイゼ一ションを用いる場合は対数増殖期にある BY2細胞より調整した cMAを用いてプラスミ ドゃファージ上に構築したライブラリ一をスクリ一ニングすれば良 い。 用いるプローブは NtraybAlであれば配列番号: 50に記載の DM、 mybA2であれば配 列番号: 52に記載の MA、 NtmybBであれば配列番号: 54に記載の DM、 を参考に作成する ことが出来る。
また、 PCEにより単離する場合は対数増殖期にある BY2細胞より調整した cMAを铸型に用 いる。 プライマ一は NtmybMであれば配列番号: 50に記載の DNA、 NtmyM2であれば配列 番号: 52に記載の DNA、 NtmybBであれば配列番号: 54に記載の DMを参考に設計すること が出来る。 プラスミ ドの構築を示した以後の実施例において 0H60や 0H88等から制限酵素を 用いて NtmybA2や NtmybBを切り出した DNA断片は PCRプライマーに適宜制限酵素認識配列 を付加することによってを得ることが可能である。 実施例 5
pEXP-NtmybA2. pEXP-NtmybBプラスミ ドの構築
カリフラワーモザイクウィルス(CaMV)35S プロモータ一により、 NtmybA2および NtmybB が発現する pEXP- NtmybA2および、 pEXP- NtmybBプラスミ ドを構築した。 pEXP35Sを Sailで 切断して生成するサイ トに 0H60および 0H88を Sailで切断して切り出される MA断片をセン ス方向に揷入し、 CaMV 35Sプロモータ一によって NtmybA2または NtmybBが発現する pEXP - N 1:inybA2および、 pEXP-NtmybBプラスミ ドを構築した。 また、 これらのプラスミ ドと実質的 に機能が同等であるプラスミ ドは以下のように構築可能である。 pP35Sプラスミ ドを Sail で切断して生成されるサイ トに、 0H60または、 0H88を Sailで切断して切り出される DM断 片を揷 することによって PP35S- NtmybA2、 pP35S - NtniybBが構築される。 すなわち、 pP35 S-NtmybA2, pP35S- NtniybBは CaMV 35Sプロモーターによつて NtniybA2または NtmybBが発現 するプラスミ ドである。 実施例 6
NtmybA2の転写活性化能を調節する機能領域
NtmybA2は NACK1遺伝子や CYM遺伝子の転写活性化因子である。 し力、し、 MisybA2タン パク質の転写活性化能力に関わる機能領域は未知である。 そこで、 この機能領域を探索す るために、 NtmybA2タンパク質の C末端側から欠失を行った変異体を作成し、 これら変異 体による NACK1遺伝子の転写活性化能を測定し、 NtmyM2の転写活性化能を調節する機能 領域を決定した。
( 1 ) プラスミ ドの構築
NtmybA2タンパク質の C末端欠質変異体をコードする各種プラスミ ドの構築
Ni;niybA2の転写活性化能に機能する領域を検討するために、 MmybA2のアミノ酸配列を C 末端側より欠失した以下の NtraybA2変異体を作出した。
(i) pEXP-NtmybA2Tl (705番目のアミノ酸から C末端までを欠失)
(ii) pEXP-NtmybA2T2 (631番目のアミノ酸から C末端までを欠失)
(iii) pEXP-NtmybA2T3 (569番目のアミノ酸から C末端までを欠失)
(iv) pEXP-NtmybA2 A EcoRI (413番目のアミノ酸から C末端までを欠失)
(V) pEXP-NtmybA2T4 (243番目のアミノ酸から C末端までを欠失)
(vi) pEXP-NtmybA2T5 (188 番目のアミノ酸から C末端までを欠失)
(i)、 (ii)、 (iii). (v)、 (vi)のプラスミ ドは pEXP - NtmybA2を铸型にして PCRを用い て欠失 MA断片を作成した。 PCRに用いたプライマーはプライマー 35S0 (5' - TATCCTT CGCAAGACCCTTC -3';配列番号: 48)と(i)ではプライマ一 A2-T1-TAG (5' - CCGTCGACTATGCA GCCTCGTCAAACATAA -3';配列番号: 43)、 (ii)ではプライマ— A2-T2-TAG (5, - CCGTCGACTA CCACAGCCTAAATGGAGTA - 3';配列番号: 44)、 (iii)ではプライマ— A2- T3-TAG (5' - CCGTCG ACTATATGCTCGAATTTTCGTTCAC - 3';配列番号: 45)、 (v)ではプライマー A2-T4-TAG (5' - CC GTCGACTAGCATTCTGAAGCTTCCTCC -3';配列番号: 46)、 (vi)ではプライマー A2-T5-TAG (5 ' - CCGTCGACTACTTTTTGACGGAACTATTCC - 3';配列番号: 47)を用いた。 PCRによって増幅され た各種 Ni;mybA2C末端欠失変異体をコードする DM断片を Sailで切断後、 pEXP35Sの Sailで 切断して生成される部位にセンス方向に挿入し、 (i)、 (ii)、 (iii)、 (v)、 (vi)を構築 した。
(iv) については pEXP- MmyM2を EcoRIで切断し、 切り出される MAを除いた後に、 セ ルフライゲ一シヨンを行い構築した。 また、 (i)〜(vi)のプラスミ ドと実質的に機能が同 等なプラスミ ドは以下のように構築可能である。
(vii) pP35S-NtmybA2Tl (705番目のアミノ酸から C末端までを欠失)
(viii ) pP35S-NtmybA2T2 (631番目のアミノ酸から C末端までを欠失)
(ix) pP35S-NtmybA2T3 (569番目のアミノ酸から C末端までを欠失)
( x) pP35S-NtmybA2 A EcoEI U13番目のアミノ酸から C末端までを欠失)
(xi ) pP35S-NtmybA2T4 (243番目のアミノ酸から C末端までを欠失)
(xii) pP35S-NtmybA2T5 (188番目のアミノ酸から C末端までを欠失)
(vii ). (viii )、 (ix)、 (xi), (xii)のプラスミ ドは pP35S- N"tmyM2を銪型にして PCKを 用いて欠失 DNA断片を作成する。
PCRに用いるプライマ一はプライマー 35S0 (5' - TATCCTTCGCAAGACCCTTC -3';配列番 号: 48)と(vii)ではプライマー A2-T1-TAG (5, - CCGTCGACTATGCAGCCTCGTCAAACATAA - 3' ; 配列番号: 43)、 (vi ii )ではプライマー A2-T2-TAG (5, - CCGTCGACTACCACAGCCTAAATGGAGTA - 3';配列番号: 44)、 ( ix)ではプライマー A2-T3-TAG (5' - CCGTCGACTATATGCTCGAATTTTCGTT CAC - 3';配列番号: 45)、 (xi )ではプライマー A2-T4-TAG ( 5' - CCGTCGACTAGCATTCTGAAGCTT CCTCC - 3';配列番号: 46)、 (xi i )ではプライマー A2-T5-TAG ( 5' - CCGTCGACTACTTTTTGACG GAACTATTCC -3';配列番号: 47 )を使用する。 PCBによって増幅された各種 NtmybA2C末端欠 失変異体をコードする DM断片を Sailで切断後、 pP35Sの Sailで切断して生成される部位 にセンス方向に揷入し、 (vi i)、 (vi i i)、 (i 、 (xi)、 (xii )を構築する。 ύ)について は PP35S- NtmybA2を EcoRIを用いて部分切断し、 Klenow断片を用いて突出末端を平滑化し た後に、 セルフライゲ一シヨンを行い構築する。
NAC 1 promoter- LUCプラスミ ドの構築
PD0432プラスミ ト"(Nishiuchi et al., Plant Mol. Biol. , 29 : 599 ( 1995 ) )を Hindlllと Sa clで切断し生成される MA断片を pBI221 (Clontech社製)を Hindlllと Saclで切断して、 CaMV 35S プロモータ一領域を含む DM断片を除いた部位に揷入し、 pUC-LUCを構築した 。 MCK1プロモーター領域については常法によりタバコ培養細胞 BY- 2より調整したゲノム MAを鎳型に用い、 PCEにより調整した。 PCB反応に用いたプライマ一は NM1P-3 ( 5' - , CCGGATCCTCTAGATTTGCGCCTGAGATCTGAG - 3'; 配列番号: 58)及び NAK1P- 5 ( 5' - CCAAGCTTCA TAAGCCGATAGAATTCACC - 3';配列番号: 59)である。 増幅された NACK1 プロモータ一領域を Ba mHIと Hindlllで切断した後に、 pUC- LUCの BamHIと Hindlllの切断により生成される部 位に挿入して、 MCK1 promoter- LUCプラスミ ドを構築した。 すなわち NiVCKl promoter- LUC プラスミ ドは制御配列として MSA配列をニケ所含む NACK1プロモータ一により LUCが発現 するプラスミ ドである。
( 2 ) C末端領域欠失 NtmyM2タンパク質の転写活性化能の変化
実施例 3の (2 ) に記述の方法により BY- 2プロ トプラストへプラスミ ドの導入を行った。 エフェクタープラスミ ドとしては前記 (1 ) の(i )から(vi )までの NtmyM2欠失変異体を 発現するプラスミ ドおよび、 全長 NtmybA2を発現するプラスミ ドである pEXP- NtciyM2、 GU Sを発現するプラスミ ドである pEXP- GUSを用いた。 レポ一ターとして MCK1 promoter- LUC プラスミ ドを用いた。 レポーター遺伝子の転写活性化は LUC活性として測定した。 LUCお よび B- LUC活性の測定方法は実施例 3と同様に行なつた。 R-LUC活性で LUC活性を標準化 した値を LUC比活性とした。
pEXP- GUSをエフヱクタ一プラスミ ドとした LUC比活性を 1とすると、 pEXP - NtmyM2で は約 4倍の LUC比活性が認められた。 (i )〜(: i i i )のプラスミ ドを用いると pEXP- NtmyM 2より LUC比活性が上昇し、 特に(ii )のプラスミ ドを用いた場合では約 45倍もの LUC比活 性の上昇が認められた。 (iv)のプラスミ ドを導入した場合には(i i i )と比較して LUC比活 性は、 pEXP-NtmybA2と同程度まで低下した。 (v)、 (vi )では pEXP- NtmybA2よりも LUC活性 は低下した。 以上の結果より、 MmybA2タンパク質の 631番目のアミノ酸から C末端側の 領域は NtmybA2の転写活性化能を負に制御する領域であり、 413から 630番目のアミノ酸 配列は転写活性化能を促進する領域として機能することは明白である。 また、 569番目の ァミノ酸から C末端側まで、 特に 631番目から C末端までの配列を欠失させることによつ て NtmybA2の転写活性化能を飛躍的に向上できること、 また 188番目から C末端までのァ ミノ酸を欠失、 および 243番目から C末端までのァミノ酸を欠失によって NtmybA2の転写 活性化能を低下できることが示された(図 5 )。 実施例 7
NtmybA2T5の NtmybA2または NtmybBに対する ドミナントネガティプ効果
実.施例 6において NtmybA2タンパク質の 1〜242番目のァミノ酸を用いた NtmybA2T4、 NtmybA2タンパク質の 1〜187番目アミノ酸を用いた NtmyM2T5、 では全長 NtDiybA2より も転写活性化能が低下した。 これは、 転写活性化能力が低下、 もしくは消失して NtmybA2T 4や NtmyM2T5が標的プロモーターの MSA配列に結合することにより、 内在性 Ntmybill、 N"tmyM2や NtmyMの MSA配列への結合を阻害し、 ドミナントネガティブに機能することを 示している。 NtmyM 2 T5のドミナントネガティブ機能をより明確に示すために、 NtmyM2 と NtmybA2T5および、 IrtmybBと NtmyM2T5の共発現による CYMプロモータ一の転写活性化 を定量化した。
実施例 3の (2 ) に記述の方法により調整した BY- 2プロ トプラストに NACK1 プロモータ 一: LUCプラスミ ド(10〃 g/サンプル)、 E - LUCプラスミ ド(.1 ^/サンプル)に加え、 pE XP-NtmybA2(10 g/サンプル + pEXP-NtmybA2T5( 10 g/サンプル)、 また iipEXP-Ntmyb g/サンプル) + pEXP- GUS(10 g/サンプル)を導入し、 実施例 3の (4 ) に記述 の方法により LUC活性、 IHiJC活性を測定した。 プラスミ ドの導入は 5反復で行った。 LU C活性を R- LUC活性で標準化した LUC比活性は pEXP- NtmybA2+pEXP- GUSの組み合わせより も pEXP-NtniyM2+pEXP - MmybA2T5の組み合わせで低下した。 この結果は Ni;myM2T5が Ntmy bA2に対してドミナントネガティプに機能することを証明するものである。
また、 Maa プロモータ一: Lucプラスミ ド (_io g/サンプル)、 K-LUCプラスミ ド (ι μ g/サンプル)に加え、 EXP-NtmybB(10 μ g/サンプル) + pEXP - MmybA2T5(10 μ g/サンプ ル)、 または pEXP- NtmybB IO μ g/サンプル) + pEXP-GUS( 10 μ g/サンプル)を導入し、 実 施例 3の (4 ) に記述の方法により LUC活性、 R- LUC活性を測定した。 LUC活性を R- LUC 活性で標準化した LUC比活性は pEXP-frtmybB+pEXP_GUSの組み合わせよりも pEXP-NtmybB+pE XP - MmybA2T5の組み合わせで上昇した。 この結果は NtmybA2T5が MmybBに対してドミナン トネガティブに機能することを証明するものである (図 6 )。 実施例 8
NtmyM2、 NtmybA2T2 および NtmybB形質転換シロイヌナズナにおける生育の改変 転写活性化型である N1;mybA2、 N¼yM2の転写活性化能が飛躍的に向上した変異体であ る NtmyM2T2、 転写抑制型である Ntm ybBを CaMV 35Sプロモータ一により恒常的に発現す る形質転換シロイヌナズナを作出し、 生育を比較した。
( 1 ) 形質転換用プラスミ ドの構築
pEXP- N1;mybA2T2を Kpnlで切断後、 Klenow断片で突出末端を平滑化し、 さらに Xholで切断 することによつて生成される DM断片を、 国際出願番号 PCT/JP02/12268に記載の pBI - RHL を Sailと Smalで切断することによって生成される部位に揷入し、 pBIHm- NtmybA2T2を構築 した。 pBIHm- NtmybA2T2を Sailで切断し、 切り出される NtmybA2T2を含んだ DM断片を取 り除き生成される部位に、 pEXP NtmybBあるいは pEXP - MmyM2を Sailで切断して生成され る DM断片を揷入し、 ρΒΙΗπι - N"tmybB、 pBIHm - N"tmybA2を構築した。 プラスミ ド pTH2 (Chiu ら, Curr Biol 1996 Mar 1; 6(3): 325 - 30 ) を Notlで切断し、 Klenow断片を用いて突出末端 を平滑化した後に Sailで切断して生成される sGFPを含んだ DM断片を pBIHm - NtmyM2T2を Sailと Smalで切断し、 NtmybA2T2を含んだ]) NA断片を取り除いて生成される部位に揷入し て pBIHm- GFPを構築した。
すなわち、 前記(i) pBIHm-NtmybA2T2, (ii) pBIHm- NtmybB、 (iii) pBIHm-NtmybA2¾ び(iv) pBIHm- GFPは、 CaMV 35Sプロモーターによりそれぞれ、 !itmybA2T2、 NtmybB, Ntmy M2、 sGFPを発現するプラスミ ドベクタ一であり、 ァグロバクテリゥム法で植物の形質転 換が可能なバイナリーベクタ一である。 これらのプラスミ ドで形質転換された植物はハイ グロマイシンを用いることによって形質転換体を選抜可能である。
前記の(i)から(iv)と実質的に機能が同等なプラスミ ドは以下に示すように構築可能で ある。 PP35S- NtmyM2T2を Saclと Apalで切断後、 Klenow断片で突出末端を平滑化し生成さ れる DNA断片を、 国際出願番号 PCT/JP02/12268 に記載の pBI- KHLを Sailで切断し、 en ow断片を用いて突出末端を平滑化することによつて生成される部位に揷入し、 pBIHni35S - N tniyM2T2を構築する。 pBIHm35S- MmyM2T2を Sailで切断し、 切り出される NtmybA2T2を含 んだ MA断片を取り除き生成される部位に、 pP35S - NtmybBあるいは pP35S - NtmybA2を Sail で切断して生成される MA断片を揷入し、 pBIHm35S - NtmybB、 pBIHm35S-N1;myM2を構築す る。 プラスミ ド pTH2 (Chiuら, Curr Biol 1996 Mar 1; 6(3) : 325-30 ) を ΝοΐΙと Sailで切 断し、 Klenow断片を用いて突出末端を平滑化して生成される sGFPを含んだ DNA断片を pBIH DI35S MmybA2T2を Sailで切断した後に Klenow断片を用いて突出末端を平滑化して、 Ntmy bA2T2を含んだ DM断片を取り除いて生成される部位に揷入して pBIHm35S - GFPを構築する すなわち、 前記(V) pBIHm35S-NtmybA2T2N (vi ) pBIHm35S-NtmybB, (vii ) pBIHm35S-Ntm ybA2及び pBIHm35S- GFPは、 CaMV 35Sプロモ一クーによりそれぞれ、 Mm yM2T2、 NtmybB, NtmybA2、 sGFPを発現するプラスミ ドベクタ一であり、 ァグロバクテリゥム法で 植物の形質転換が可能なバイナリ一ベクターである。 これらのプラスミ ドで形質転換され た植物はハイグロマイシンを用いることによって形質転換体を選抜可能である。
( 2 ) シロイヌナズナの形質転換
前記 (1 ) で構築した(i )〜(iv)のバイナリーベクターを用いてァグロバクテリウム ' ッメファシエンス EM101株(Agrobacterium tumefacience EHA101 strain)を形.質転換し、 これらのプラスミ ドを保持する Ύグロバクテリウムを用いて Floral dip法(Clough et al. ( 1998) Plant J. 16 : 735) によりシロイヌナズナ ェコタイプ Col - 0を形質転換した。 ァ グロパクテリゥムを感染させた花芽より得られた種子を次亜塩素酸と滅菌水を用いて滅菌 し、 ハイグロマイシン 25 μ Ε/πι1、 カルペニシリ ン lOO ^ g/mlを含む MS倍地上に播種した。 ハイグロマイシン添加培地上で生育可能な形質転換植物を選択した。
( 3 ) NtmybA2, NtmybA2T2、 および NtmybB形質転換シロイヌナズナにおける生育の改 変
選抜した形質転換植物は、 角型 2号シャーレ(栄研化学社製)中で固化した MS培地(MS 無機塩、 30% ショ糖、 0. 4% ゲランガム)に移植し、 垂直に静置して 16時間の照明、 8 時間の暗黒、 21°Cの条件で栽培を行った。 播種後 25日後に主根の長さを測定した。 pBIHm- GFPを用いて形質転換した対照区では主根の長さが 31mn!〜 35雇の形質転換ラインが最も 多かったが、 pBIHm-NtmybA2, pBIHm-NtmybA2T2 、 pBIHm - NtmybBを用いて形質転換した 形質転換植物では主根長が 21mn!〜 25醒の形質転換ラインが最も多く分布し、 生育が抑制さ れた植物が作出された。 以上の結果より、 IrtmyM2、 NtmybB. NtmybA2T2を恒常的に発現 する形質転換シロイヌナズナは生育が改変されていることが明らかとなつた。 実施例 9
NtmybA2T2および、 MmybA2T5の形質転換シロイヌナズナの生育の改変
ドミナントネガティプ型である NtmybA2T5を CaMV 35Sプロモータ一により恒常的に発現 する形質転換シロイヌナズナを作出し、 生育を比較した。
NtmybA2の転写活性化能が飛躍的に向上した変異体である NtmybA2T2をサイクリン B(CY M)プロモーターにより発現する形質転換シロイヌナズナを作出し、 生育を比較した。
( 1 ) 形質転換用プラスミ ドの構築
pDBIHm- NtmybA2T5プラスミ ドの構築
pUC19 (Takara社製)を Smalで切断したサイ トにィンビトロジヱン社より市販されている Reading Frame Aの DNA断片を揷入し、 pUC - βΜを生成した。 国際出願番号 PCT/JP02/122 68 に記載のプラスミ ド pBI-MLを BamHIと Spelで切断したサイ トに pUC- RFAを BamHIと Spelで切断して切り出される Reading Frame Aを揷入し、 pDESTBI_lを構築した。
プラスミ ド pENra2B(Invitrogen社製)を Kpnlと Xholで切断して生成される部位に pEXP - N tmyM2T5を Kpnlと Xholで切り出される DNA断片を揷入し、 pENTE - NtmyM2T5を構築した。 pDESTBI - 1と pENTE_N1;mybA2T5を混合し、 Gateway LR Clonase mix(Invitrogen社製)を 用いた部位特異的組換え反応により pDBIHn NtmybA2T5を構築した。 Gateway LE Clonase m ixを用いた反応は試薬に添付のプロ トコールに従って実施した。 pDBIHm-NtmyM2T5は CaMV 35Sプロモータ一により、 NtmybA2T5を発現するプラスミ ドベクタ一であり、 ァグロパク テリゥム法で植物の形質転換が可能なバイナリ一ベクタ一である。 これらのプラスミ ドで 形質転換された植物はハイグロマイシンを用いることによつて形質転換体を選抜可能であ る。
pDBIHm - NtmybA2T5と実質的に機能が同等なプラスミ ドは以下の様にして構築可能である 。 プラスミ ド pP35S-NtmybA2T5を SacIIと Apalで切断した後に、 Klenow断片を用いて突出 末端を平滑化する。 切り出される DM断片を pENTE2B(Invitrogen社製)を Kpnlと Xholで切 断した後に Klenow断片を用いて突出末端を平滑化して生成される部位に揷入し、 pENTR35S - MmyM2T5を構築する。 pDESTBI - 1と pENTR35S - NtraybA2T5を混合し、 Gateway LE Clona se mix(Invi"trogen社製)を用いた部位特異的組換え反応により pDBIHm35S- MmybA2T5を 構築する。 Gateway LR Clonase mixを用いた反応は試薬に添付のプロ トコールに従って 実施する。 pDBIHm35S- NtmybA2T5は CaMV 35Sプロモーターにより、 NtmybA2T5'を発現する プラスミ ドベクターであり、 ァグロパクテリゥム法で植物の形質転換が可能なバイナリ一 ベクターである。 これらのプラスミ ドで形質転換された植物はハイグロマイシンを用いる ことによつて形質転換体を選抜可能である。
pPCYM- NtmybA2T2プラスミ ドの構築
常法によりニチニチソゥより調整したゲノム DMを铸型に用い、 PCRにより CYMプロモ —夕一領域を調整した。 PCR反応に用いたプライマ一は CYM3Pst (5' - AACTGCAGTCTTCAAT AGAATTTCTTCCAG -3' ; 配列番号: 60)及び CYM5-1 (5, - CCAAGCTTACCCATAAATTGTTGGTAAA - 3' ;配列番号: 57)である。 増幅された CYM プロモータ一領域を Pstlと Hindlll で切断した後 に、 PZP211(Hajdukie icz et al. , Plant Mol, Biol. 25 : 989(1994))の Pstlと Hindll Iの切断により生成される部位に挿入して、 PPZP211- CYMプラスミ ドを構築した。 pEXP- N ■tmybA2T2を Sailで切断し切り出さされる断片を pPZP211-CYMを Sailで切断し生成される部 位に挿入し、 pPCYM- NtmyM2T2を構築した。 pPCYM-NtmybA2T2は CYMプロモーターによつ て N1;myM2T2を発現するプラスミ ドベクターであり、 ァグロパクテリゥム法で植物の形質 転換が可能なバイナリ一ベクターである。 このプラスミ ドで形質転換された植物はカナマ イシンを用いることによって形質転換体を選抜可能である。 pPCYM-Ni;DiybA2T2プラスミ ド は以下のように構築可能である。 pP35SNtmybA2T2を Sailで切断して切り出される DM断片 を PPZP211 - CYMを Sailで切断して生成される部位に揷入することで構築可能である。
( 2 ) シロイヌナズナの形質転換
前記 (1 ) で構築した pDBIHra-N1:mybA2T5、 pPCYM-N1;mybA2T2および対象区として pBIHm - GFPを用いて実施例 5で示した方法により、 シロイヌナズナ ェコタイプ Col- 0を形質転 換し、 形質転換植物を選抜した。 pDBIHm-NtD]ybA2T5および pBIHm-GFPによって形質転換し た形質転換植物の選抜はハイグロマイシン 25 /J g/ml、 カルべニシリン 100 g/ffllを含む MS 倍地上で、 pPCYM- NtmyM2T2によつて形質転換した形質転換植物の選抜はカナマイシン 5 0 / g/ml、 カルべニシリン 100 g/mlを含む MS倍地上で生育可能な形質転換植物を選択し た。 形質転換ラインはバーミキユラィ トとピートモスを 1 : 1で混合した土に移植し、 馴ィ匕 の後に、 16時間の照明、 8時間の暗黒、 21°Cの条件で栽培を行った。 これらのラインより それぞれ自殖による次世代の種子を得て解析に用いた。
( 3 ) NtmyM2変異体によるシロイヌナズナの生育速度の改変
形質転換して得られた植物の自殖による次世代種子を次亜塩素酸と滅菌水を用いて滅菌 し、 角型 2号シャーレ(栄研化学社製)中で固化した MS培地(MS無機塩、 30% ショ糖、 0. 4% ゲランガム)に播種し、 4°C、 暗黒化で 4日間春化処理を行った。 春化処理後、 垂 直に静置して 16時間の照明、 8時間の暗黒、 21°Cの条件で栽培を行った。 春化処理後、 3 日後に主根の長さを測定した。
対照区として pBIHm- GFPによって形質転換されたラインと比較すると、 pDBIHm-NtmyM 2T5や pPCYM - NtmybA2T2によって形質転換されたラインでは複数のラインにおいて、 生育 が抑制された表現型が観察された。 実施例 1 0
NtmyMlと NtmyM2の発現抑制による植物体の生育抑制 内在性遺伝子の発現抑制の手段として Virus Induced Gene si lencing (VIGS)を用いて 、 NtmybAlと NtmyM2の発現が抑制された植物の表現型を観察できる。 VIGSに用いた LgJ 、 LGFPJプラスミ ドは東京大学 大学院 総合文化研究科 広域科学専攻 生命環境科学 系渡辺雄一郎助教授より分譲頂いた。 LgJは植物 ウィルスであるトマトモザィクウイ ルス(ToMV )を改変したウィルスをコードする MAが揷入されたプラスミ ドである。 ToMVの 改変点としては複製酵素をコ一ドする領域にァミノ酸置換を導入し、 ウィルスの増殖量を 低下させることによって病徴を軽減していること、 新たなプロモータ一配列を導入し外来 MAの発現が可能であること、 外来 DNA発現用プロモーターの下流に Gateway systemの認 識配列が揷入されており、 Invitrogen社より市販されている LR反応を用いて外来 MAを揷 入可能である点が挙げられる。 LgJプラスミ ドより In Vi tro ENA Transcriptionを行うこ とにより植物に対して感染性をもつた組み換えゥィ'ルス ENAが得られる。 この組換えゥィ ルスが植物に感染すると外来 DM由来の 2本鎖 が複製中間体として植物内で発現し、 外来 DMとして感染植物由来の DNAを用いていた場合には、 対応する植物の内在性遺伝子 発現が抑制される。 LGFPJは LgJに GFPをコードする DNAが揷入されており、 ウィルス感 染が GFPの発現により確認可能である。
( 1 ) プラスミ ドの構築
LA1A2Jの構築
pGEMe-0H53i 6 を铸型としてプライマ一 VA1- F ( 5, - ATAGTTCTGTTAAAAAGAAACTG -3';配 列番号: 37 )とプライマ— VM- E (5' - TAACATTGAACAAGAAACATCTTG -3';配列番号: 38)を用 いて PCBを行い、 NtmybAl cMAの一部分を含む MA断片を増幅した。 0H60を鍩型としてプ ライマー VA2 - F ( 5' - ACAAAGTCTTCTCTAACTACG - 3';配列番号: 39 )とプライマ一 VA2 - R ( 5' - AGCTTCGAGTCGTCTAGCG -3';配列番号: 40 )を用いて PCRを行い、 tmybA2 cMAの一部分 を含む DM断片を増幅した。 これらの P CR反応には PyrobesKTakara社製)を用いた。 こ れらの MA断片を pBluescripi; (Stratagene社製)を EcoRVで切断して生成されるサイ トに 揷入し、 pBS - VA1、 および pBS - を構築した。 PBS- VA2を Smalと Sailで切断し、 切り出 された DNA断片を pBS-Mlを Hindlllで切断、 Klenow断片を用いて平滑化し、 さらに Sail で切断して生成されるサイ トに揷入し、 pBS - VA1A2を構築した。 pBS - VMA2を鍀型にブラ イマ一 B1T3 (5' - GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG -3';配列番号 : 41 )とプライマ一 B2T7 ( 5' - GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAATACGACTCACTATAGGGC - 3';配列番号: 42 )を用いて PCEを行い、 NtmybAlの一部分を含む DM断片および NtmybA2 の一部分を含む DM断片が夕ンデムに接続され両末端に Gateway system ( Irwi trogen社) の attBl、 ai:tB2配列が付加された DNA断片を得た。 この MA断片とプラスミ ド pD0NR201 ( Invitrogen社)を混合し、 BP Clonase(Invitrogen社)を用いて BP反応を行い、 pDON OR - を得た。 pD0Nl?_VAlA2を LgJと混合し、 LR Clonase(Invitrogen社)反応を行い 、 を得た。 BP Clonase, および Clonaseを用いた反応については試薬に添付の説 明書に従った。
5 gを Mlulを用いて切断し、 プラスミ ドを直鎖化した。 フエノール/クロロホ ルム処理後、 エタノール沈殿を行い、 10 /« 1の滅菌水に再溶解した。
直鎖化した LA 2Jを鎳型に in vitro transcriptionを行った。 すなわち、 5 1の 10xT7 buffer (Eoche社製、 T7 RNA Polymeraseに付属)、 2. 5;« 1の 0. 1M DTT、 の Rnas e-Inhibi tor (Boche社製、 40units/ 1)、 5 ^ 1の A/C/U/G mixture (ATP、 CTP、 UTPは それぞれ 20mM。 GTPは 2mM。 ) 2. 5 1の 5mM m7 G [ 5' ] ppp [ 5' ] G (CAPヽ Eoche社製)
、 14 1の滅菌水、 10 ^ 1 直鎖化 LA1A2Jを混合し、 37°Cで 5分インキュベートした。 10 μ 1の Τ7 RNA Polymerase (20units/ ^ K Roche社製)を加えさらに 37°Cで 25分ィンキュ ベ一トした。 その後、 の 20mM GTPを加え、 37°Cで 35分ィンキュベ一トした。 反応終 了後、 の反応液をァガロースゲルを用いて電気泳動し、 RNAが転写されていること を確認した。
LA1A2J RMは Ni cotiana benthamiana に接種した。 25°Cで栽培し、 4〜5葉期の Nicoti ana benthamianaの上位 2葉に力一ボランダムを薄く振りかけ、 1枚の葉あたり、 5〃1 の LA1A2J RNAを接種した。 接種後、 5分以内に接種葉を滅菌水を用いて洗浄した。 5個体 に接種を行い、 接種後は 23°Cで栽培を行なった。 一 対照区として LGFPJについても LA1A2Jと同様に、 in vitro RNA transcriptionを行い、 LG FPJ fflAの接種を行なった。
2 Ntmybi と NtmybA2の発現が抑制された植物の生育抑制。
NtmybAlおよび Ni;myM2 mMA発現量の RT- PCBによる確認
LA1A2Jと LGFPJの感染植物の MmybAlおよび N1;mybA2の m A発現量を RT- PCRにより確認す る。 草丈が抑制された LA 2J 接種植物、 および LGFPJ 接種植物の茎頂部分より EN easy plant mini kit (QIAGEN社)を用いて総 RMを抽出する。 総 EMを錚型として Supe rscript First-strand syntesis system for RT-PC (Invitrogen¾h ¾·用いて cDM-≥合 成する。 得られた cMAを鎳型として用い、 NtmyMlおよび、 NtmyM2の検出にはプライマ -A2-583F (5' - GTACAATGCTTGCACCGGTGG - 3';配列番号: 33)とプライマ一 A2 - 1089R (5' - TGTAGACTGGGAACAGCCAGC -3';配列番号: 34)を用いる。 c DM量の標準化には EF1 αの mRNA の発現量を用い、 プライマ一
EFF (5' - AGACCACCAAGTACTACTGC -3';配列番号: 35)とプライマ一 EF R (5, - GTCAAGAG CCTCAAGGAGAG -3';配列番号: 36)を用いる。 合成された cMA 50 1のうち 1 μ 1を使用 して PCI?反応を行うことによって用いた cDM量の標準化と NtmybAl、 Ni;niybA2発現量が解 析できる。
LA1A2J βΜを接種し、 内在性 NtmybAlおよび NtmybA2の mENA発現量が抑制された Nicoti ana benthamoianaの植物体においては対照区である LGFPJ Aの接種区と比較すると生育 が極度に抑制される。
以上より、 内在性 NtmybAlおよび Ni;mybA2の発現量を減少させることで植物体の生育の 抑制が可能であることが明らかになる。
( 3 ) NtmyMlと NtmybA2の発現が抑制された植物における細胞質分裂の抑制、 M期進 行の抑制。
前記 (2 ) の内在性 NtmybAlおよび NtmybA2の発現が抑制されたタバコ植物個体の葉に おける表皮細胞、 気孔孔辺細胞を観察する。
葉の裏面より、 表皮細胞をピンセッ トを用いて剥ぎ取り、 1%ォルセインを含有する乳酸 、 プロピオン酸の等量混合物で核染色を行う。 これらの細胞を微分干渉顕微鏡を用いて観 察すると、 複数個の核を持った多核化した細胞が観察される。 また、 多核化細胞に存在す る核は大きな核や小さな核が観察される。 多核化した細胞は核分裂が進行し、 細胞質分裂 が阻害されることを、 大きさの異なった核の存在は核分裂の異常、 および M期のスキップ が起こったための核内染色体の倍数化を示す。 すなわち、 NtmybAlおよび Nt;inybA2の発現 が抑制された細胞では M期の進入、 進行、 終了のステップに影響を示している。 以上より 、 NtmybAlおよび NtmybA2は M期の正常な進行に必須な遺伝子であることが明らかになる .
( 4 ) NtmybAlと MmybA2の発現が抑制された植物における細胞周期の変化
前記 ( 2 ) の内在性 KmyMlおよび NtmybA2の発現が抑制されるタバコ植物個体の葉に おける核内の DM含量を測定する。 接種した葉より 3枚上位にある葉を切断し、 シャーレ 中で 1mlの Cystain UV Precise P (High Resolution DNA staining kit> Pratec社製) に含まれている nuclei extraction buffer を加え、 剃刀の刃を用いて 1分間、 細断する 。 10分間室温に保った後に、 Partec Cell Tries Disposable filter units (50 mesh 、 Pi;atec社製)を用いてろ過し、 ろ液に Cystain UV Precise P (High Resolution DNA s taining kit, Pratec社製)に含まれている staining buffer を 2ml加える。 測定は Ploi dy Analyser PA (Pratec社製)を用いて行う。
内在性 NtmybAlおよび NtmyM2の発現が抑制されたタバコ植物個体の葉より調整した核 では対象区と比較して S期、 G2期を示す 4 Cのピークが増大しており、 さらに対象区では 認められない倍数化した核を示す 8 Cのピークも認められる。 4 Cのピークが増大してい ることは、 S期、 G2期の進行が遅延してること、 または、 M期への進入の遅延を示してい る。 また倍数化した 8 Cのピークの存在は M期への進入の阻害、 または M期のスキップを 示している。 これらより、 MmyMlおよび NtmybA2は M期の正常な進行に必須な遺伝子で あり、 これらの遺伝子発現を抑制することで細胞周期を改変できることが明らかになる。 実施例 1 1
Mmybの発現が抑制された形質転換タバコ培養細胞 BY2の増殖速度の改変
( 1 ) NtmybAK NtmyM2、 NtmybB MAi用プラスミ ドの構築 ·
PEXP35Sを Kpnlで切断し、 Τ4 DNA Polymeraseを用いて突出末端を平滑化した後に、 Ec oKVで切断して切り出される MA断片を PPZP211を EcoRIと Hindlllで切断後に Klenow断 片を用いて突出末端を平滑化して生成される部位に挿入し、 PPZP211- 35Sを構築した。 pBI121(Clontech社製)を铸型として配列番号: 61 (5' - GGAATTCGTGTGATATCTACCCGCT TCG -3';配列番号: 61)と配列番号: 62 (5' - CGGGATCCGTTTTTCACCGAAGTTCATGC -3';配列 番号: 62)で示したプライマ一を用いて PCRを行い、 GUSの 0RFを含む MA断片を増幅した 。 この DNA断片を EcoRIと BamHIで切断後に、 pBluescrip1;II(SK+, Stratagene社製)を EcoRIと BamHIで切断して生成される部位に揷入し、 pGUSl. 0を構築した。
OH60を鍩型としてプライマ一 A2ia3 (5, - TTGAATTCCAAGTCTTGGGCTTGACAGAAGAG -3';配 列番号: 63)とプライマ一 A2ia5(5' - TTCTCGAGAAGCTTCGTCAAGAATCATTCTCTGATCTG -3';配列 番号: 64)を用いて PCR反応を行い、 得られた NtmybA2の一部分をコ一ドする DM断片を Ec oEIと Xholで切断した。 この DNA断片を pGUSl. 0を EcoKIと Xholで切断して生成される 部位に揷入し、 PGUS-A2. RNM- aを構築した。
0H60を鎳型としてプライマ一 A2ib3 (5' - TTGGATCCAAGTCTTGGGCTTGACAGAAGAG 3';配 列番号: 65)とプライマ— A2ib5(5,- CCTCTAGACTAGTGTCGACCGTCAAGAATCATTCTCTGATCTG -3' ;配列番号: 66)を用いて PCR反応を行い、 得られた NtniybA2の一部分をコ一ドする DM断 片を BamHIと Xbalで切断した。 この DNA断片を pGUS- A2. MAi- aを Bam HIと Xbalで切断して 生成される部位に揷入し.、 GUS-A2. K iを構築した。
0H88を铸型としてプライマ一 Bia3 (5' - TTGAATTCTTGTTGCCTGATAAGGTCGTCTC - 3';配列番 号: 67)とプライマ -Bia5(5'一 TTCTCGAGAAGCTTGAATTTGCCTAGTAGGTTAGTGC -3';配列番号: 6 8)を用いて PCR反応を行い、 得られた NtmybBの一部分をコードする MA断片を EcoRIと Xh olで切断した。 この MA断片を pGUSl. Oを EcoBIと X hoiで切断して生成される部位に揷 入し、 pGUS - B. RNAi_aを構築した。
0H88を铸型としてプライマ一 Bib3 (5' _ TTGGATCCTTGTTGCCTGATAAGGTCGTCTC -3';配列番 号: 69)とプライマ一 Bib5(5' - CCTCTAGACTAGTGTCGACGAATTTGCCTAGTAGGTTAGTGC -3';配列番 号: 70)を用いて PCR反応を行い、 得られた NtmybBの一部分をコ一ドする DNA断片を BamHI と Xbalで切断した。 この DM断片を pGUS - B. RMi- aを BamHIと Xbalで切断して生成される 部位に揷入し、 pGUS- B. RMiを構築した。
PGUS-A2. RMiを Hindlllで切断して切り出される MA断片を pPZP211- 35Sを Hindlllで 切断して生成される部位に揷入し、 PPZP211 - 35S : A2RMiを構築した。
pGUS-B. ENAiを Hindlllと Sailで切断して切り出される MA断片を pPZP211_35Sを Hind IIIと Sailで切断して生成される部位に揷入し、 pPZP211- 35S :B : RNAiを構築した。
pPZ P211 - 35S : A2RNAi、 および pPZP211- 35S: B: NAiは CaMV 35Sプロモーターにより、 ΐ mybA2の部分配列、 または NtmybBの部分配列が逆位反復で発現し、 植物内で NtmybA2の部 分配列、 または NtmybBの部分配列が二本鎖 KM形態をとるプラスミ ドベクターであり、 ァ グロパクテリゥム法で植物の形質転換が可能なバイナリ一ベクターである。 これらのブラ スミ .ドで形質転換された植物はカナマイシンを用いることによつて形質転換体を選抜可能 である。
これらのプラスミ ドで形質転換されたタバコ植物体や、 タバコ培養細胞では発現した二 本鎖 RNAにより MmyM2または MmybBに対する RNAi効果が得られるプラスミ ドである。
PPZP211-35S: A2腸 i、 および pPZP211- 35S: B: RNAiと実質的に機能が同等であるプラスミ ドは以下の様に構築可能である。 PP35Sを SacIIと Kpnlで切断し、 Τ4 MA Polymeraseを 用いて突出末端を平滑化した後に、 切り出される]) M断片を PPZP211を EcoRIと Hindlll で切断後に Klenow断片を用いて突出末端を平滑化して生成される部位に揷入し、 pPZP211- P35Sを構築する PGUS-A2. RMiを Hindlllで切断して切り出される MA断片を pPZP211 - P3 5Sを Hindlllで切断して生成される部位に揷入し、 pPZP211-P35S: A2RNAiを構築する。 pG US-B. BNAiを Hindlllと Sailで切断して切り出される DM断片を PPZP211- P35Sを Hindlll と Sailで切断して生成される部位に挿入し、 pPZP211-P35S: B: RNAiを構築する。 pPZP211- P35S : A2腿 i、 および pPZP211 - P35S: B: E A1は CaMV 35Sプロモータ一により、 NtmybA2の 部分配列、 または NtmybBの部分配列が逆位反復で発現し、 植物内で NtmyM2の部分配列、 または NtmybBの部分配列がニ本鎮 RNA形態をとるプラスミ ドベクターであり、 ァグロバ クテリウム法で植物の形質転換が可能なバイナリ一ベクタ一である。 これらのプラスミ ド で形質転換された植物はカナマイシンを用いることによつて形質転換体を選抜可能である
( 2 ) タバコ培養細胞 BY2の形質転換
N tmybA2および、 NtmybBの発現抑制が細胞増殖に与える影響を決定するために、 PPZP21 1 - 35S : A2RMi、 pPZP21卜 35S : B : RNAiまたはべクタ一コントロールとしての pPZP211 を保持 するァグロノ クテリゥム · ッメファシエンス LBA4404 株(Agorbacterium tumefacience LB A4404 strain) を介してタバコ培養細胞 BY2の形質転換を行った。 '新しい LSD 液体培地に 植え継いで 3日目のタバコ培養細胞 BY- 2と pPZP211 - 35S : A2RMi、 p PZP211 - 35S :B : Aiま たはべクタ一コントロールとしての pPZP211を保持するァグロバクテリゥム ' ッメファシ エンス LBA4404 株を YEB 培地で二日間培養した培養物を混合し、 25°C、 暗黒下で共培養を 行った。 二日後にタバコ培養細胞 BY2を LSD 液体培地を用いて洗浄した後に、 カナマイシ ン SOO g/mlとカルべニシリ ン 300 g/mLを含有する LSD- 0. 2 ゲルライ ト培地に細胞を 播き 25°C暗黒下で培養を行った。 22日後に得られたカナマイシン 耐性カルスにおける NtmybA2および Mm ybBの発現量を RT - PCEにより確認した。 これらのカルスより、 Imdtr ogen Trizol reagent (Invitrogen社)を用いて総 RNAを抽出した。 総 RNAを鎳型として Superscript First-strand syntesis system for ET-PCR(Invitrogen?±) を用いて cDMを 合成した。 得られた cMAを铸型として用い、 NtmybA2 cDNA を増幅して検出するにはブラ イマ— 0H60DB1 (5' - CCGGATCCTTCCAGTTCAGCACCATGCTCTG -3';配列番号: 73)とプライマ一 OH60DS6 (5' - CCGTCGACCTAAGAGATCTGATAGTTCGATG -3';配列番号: 74)を用いた。 NtmybB cMAを增幅し検出するにはプライマ— 0H88Bam5 (5' - CCGGATCCTTCCTCAGTAAAGAAAAGATTG AACTTG -3';配列番号: 71)とプライマ一 0H88DS2 (5' - CCGTCGACTTAACAGTTAGGATCATTAA CAG - 3';配列番号: 72)を用いた。 合成された cDM 50 μ 1のうち 1 μ 1を使用して PCR反 応を行った。 反応は Ex taq(Takara社)を用い、 Ex taqに付属する反応バッファ一、 各 20 0 11の0^1?、 dTTP、 dCTP、 dGTP、 それぞれのプライマ一を各 1 ^ M用いて、 50 / 1の液 量で行った。 93°Cを 30秒、 56°Cを 1分、 73°Cを 2分のステップを NtmybBの検出には 27サイ クル、 NtmyM2の検出には 26サイクル繰り返した。 これらの PCR産物をァガロースゲル電 気泳動を用いて解析した結果、 PPZP21卜 35S : A2EMiを形質転換して得られたカルスにおい てはべクタ一コントロールである 'PPZP211形質転換カルスと比較して N1;myM2の発現量が 低下しており、 PZP211-35S: B. RMiを形質転換して得られたカルスにおいてはべクタ一コ ントロールと比較して、 NtmybBの発現 Sが低下していた。 3 ) NtmyM2の発現量が抑制された形質転換 BY 2細胞における細胞増殖速度の変化 前述の PZP211-35S: A2RMiを形質転換し、 tmybA2 mRNA®発現量が抑制されていた力ル スの.大きさをべク夕一コントロールと比較したところ、 力ルスの大きさが小さくなること が示された (図 7) 。
これらのカルスを構成する細胞の細胞周期を調べるために核内 DNA含量を測定した。 方 法は凍結保存したカルス 1個につき Cystain UV Precise P (High Resolution DNA stain ing kii:、 Pratec社製) iこ含まれてレヽる nuclei extraction buffer を lml加え、 溶解後、 混合した。 10分間室温に保った後に、 Partec Cell Tries Dispos able fi lter units (50 μ α mesh. Pratec社製)を用いてろ過し、 ろ液に Cys :ain UV Pre cise P (High Resolution DNA staining kit Pratec社製) ίこ含まれて ヽる staining buf fer を 2ml加えた。 測定は Ploidy Analyser PA (Pratec社製)を用いて実施した。
ベクタ一コントロールと比較したところ MniyM2 mBNAの発現が抑制されている PPZP21 35 S : A2 Ai形質転換カルスでは S期、 G2期の染色体を示す 4 Cのピークが増大し、 さらにべ クタ一コントロールでは認められない染色体が倍化した核を示す 8Cのピークが認められた
(図 8) 。 4Cの増大は NtmybA2の発現を抑制した細胞においては M期への進入が起こりに くいことから S期、 G2期の期間が延長することを示している。 また 8Cの存在は M期への進 入阻害が起こり、 M期がスキップすることで染色体の倍数化が起こることを示している。 これらの結果、 細胞周期が遅延し、 細胞増殖が抑制され、 小さなカルスとなったことが示 された。
( 4 ) NtmybBの発現量が抑制された形質転換 B Y 2細胞における細胞増殖速度の変化 前述の pPZP211-35S : BRNMを形質転換し、 NtmybB mRNAの発現量が抑制されていたカル スの大きさをベクターコントロールと i匕較したところ、 カルスの大きさが大きくなること が示された (図 9) 。
これらのカルスを構成する細胞の細胞周期を調べるために核内 DNA含量を測定した。 方 法は前述の (4 ) と同様で実施した。
ベクターコント口一ルと比較したところ NtmybBの発現を抑制した pPZP211-35S : BI?NAi形質 転換カルスでは S期、 G2期の染色体を示す 4 Cのピークが減少していた (図 10) 。 4Cの減 少は S期、 G2期の短縮、 すなわち M期への進入が早まっていることを示している。 NtmybB の発現を抑制することによつて M期の進入に必須な遺伝子の発現が早まるか、 あるいは発 現量が上昇することにより、 M期への進入が促進された結果、 細胞周期が短縮され、 細胞 増殖が促進し、 大きなカルスとなったことが示された。 実施例 1 2
MmybA2、 および N1;mybA2T2を恒常的に発現する形質転換タバコ培養細胞 BY2における 細胞増殖速度の改変
( 1 ) NtmybA2, および N ybA2T2恒常的発現用プラスミ ドの構築
OH60を Sailで切断して得られる MA断片を、 pPZP211 - 35Sを Sailで切断して生成される 部位に揷入して、 PPZP211 - 35S : A2を構築した。
pEXP - NtmybA2T2を Sailで切断して得られる MA断片を、 pPZP211 - 35Sを Sailで切断して 生成される部位に揷入して、 PPZP211- 35S : A2T2を構築した。
すなわち、 PPZP211 - 35S : A2および、 pPZP211 - 35S : A2T2は CaMV 35Sプロモータ一によりそ れぞれ、 NtniyM2、 N¾yM2T2を発現するプラスミ ドベクタ一であり、 ァグロバクテリウ ム法で植物の形質転換が可能なバイナリ一ベクターである。 これらのプラスミ ドで形質転 換された植物はカナマイシンを用いることによつて形質転換体を選抜可能である。
PPZP211 - 35S : A2T2と実質的に同じ機能を有するプラスミ ドは以下のように構築可能であ る。 P35S-NtmybA2T2, または OH60を Sailで切断して得られる MA断片を、 PZP211-P35S を Sailで切断して生成される部位に揷入して、 pPZP21卜 P35S : A2T2、 および pPZP211- P35S : A2を構築する。 2 ) タバコ培養細胞 BY2の形質転換
NtmybA2, および MmyM2T2の恒常的発現が細胞増殖に与える影響を決定するために、 pPZP211-35S : A2, pPZP211 - 35S : A2T2またはベクターコントロールとしての pZP211 を保持 するァグロバクテリゥム ' ッメファシエンス LBA4404 株(Agorbacterium tumefacience L BA4404 strain) を介してタバコ培養細胞 BY2の形質転換を行った。 BY2細胞の形質転換 は実施例 1 1の (2 ) に記述の方法により実施した。 22日後に得られたカナマイシン 耐 性カルスの MmybA2および NtmybA2T2の ωΚΝΑ発現量を βΤ - PCKにより確認した。 これらの力 ルスより、 Invitrogen Trizol reagent (Invitrogen社)を用いて総 RNAを抽出した。 総 醒を銪型として Superscript; First-strand syntesis system for RT-PCR(Invitrogen 社) を用いて cDNAを合成した。 得られた cDNAを錚型として用い、 NtmybA2および MmybA2T 2の検出にはプライマ— OH60DB1 (5, - CCGGATCCTTCCAGTTCAGCACCATGCTCTG -3';配列番号 : 73)とプライマー 0H60DS6 (5, - CCGTCGACCTAAGAGATCTGATAGTTCGATG -3';配列番号: 74)を 用いた。 合成された cDNA 50 1のうち 1 1を使用して PCK反応を行つた。 反応は Ex t aq(Taliara社)を用い、 Ex taqに付属する反応バッファー、 各 200 Mの dATP、 dTTP、 dC TP、 dGTP、 それぞれのプライマ一を各 用いて、 50 1の液量で行った。 93°Cを 30秒 、 56°Cを 1分、 73°Cを 1分のステップを 24サイクル繰り返した。 これらの PCR産物をァガ ロースゲル電気泳動を用いて解析した結果、 ベクタ一コントロールと比較して PPZP211-35 S: A2を形質転換して得られたカルスでは NtniyM2の発現量が上昇しており、 pPZP211 - 35S: A2T2を形質転換して得られたカルスでは NtmybA2T2の発現が確認された。
( 3 ) NtmyM2および、 MmybA2変異体を恒常的に発現する形質転換 BY - 2細胞における 細胞増殖速度の変化
前述の PPZP211- 35S : A2、 または pPZP211 - 35S : A2T2を形質転換し、 MmybA2あるいは Mmy bA2T2 niRMの発現が確認されたカルスの大きさをべクタ一コントロールと比較したところ 、 カルスの大きさが小さくなることが示された (図 11) 。
これらのカルスを構成する細胞の細胞周期を調べるために核内 MA含量を測定した。 方 法は前述の実施例 1 1の (3 ) と同様に実施した。
ベクターコントロールと比較したところ恒常的に NtmybA2を発現しているカルスでは S 期、 G2期の染色体を示す 4 Cのピークが減少していた。 この傾向は NtmybA2の転写活性化 能を向上させた変異体である N¼ybA2T2を恒常的に発現させたカルスでさらに顕著に認め られた (図 13) 。
また、 これら形質転換細胞の顕微鏡観察の結果、 多核化した細胞は認められなかったこ とから検出された核の数は細胞数を表す。 得られた細胞数をベクターコントロールと Ntmy bA2形質転換カルスや NtmybA2T2形質転換カルスで比較した結果、 カルスの大きさと相関 して、 MmybA2では細胞数が減少しており、 N1:myM2T2ではさらに細胞数の減少が顕著で あることが示された (図 12) 。
これらは MmybA2および NtmybA2変異体が恒常的に発現しているカルスにおいては M期 への進入が加速されるが、 細胞増殖が抑制され、 細胞数が減少することから小さなカルス となったことが示された。 実施例 1 3
NtmybBの発現量が変化した形質転換タバコにおける生育の変化
( 1 ) プラスミ ドの構築
0H8 8を Sailで切断して得られる MA断片を、 pPZP211を Sailで切断して生成される 部位に揷入して、 PPZP211- 35S : Bを構築した。
( 2 ) 形質転換タバコの作出
RNAiの効果により内在性 NtmybBの発現を抑制した形質転換タバコを作出するために、 実 施例 1 1の (3 ) に記述の PPZP211- 35S : B. RMiプラスミ ドを用いた。 恒常的に NtmybBが発 現する形質転換タバコを作出するために PPZP211- 35S: Bプラスミ ドを用いた。 それぞれ、 pPZP211-35S : B. RNAi, pPZP211- 35S : Bまたはべクタ一コントロールとしての pPZPSll を保 持するァグロバクテリゥム · ッメファシエンス LBA4404 株 gorbacterium tumefacience LBA4404 strain) を介してリーフディスク法によりニコチアナ タバカム 品種 SRKNico tiana tabacum ver. SRI) の形質転換を行った。
( 3 ) 形質転換タバコの生育変化
得られたカナマイシン 耐性個体を栽培し自殖種子を得た。 得られた種子を、 ェタノ一 ルと次亜塩素酸によって滅菌後、 カナマイシン 50 Ci g/mLを含有する MS - 0. 2% ゲルライ ト培 地に播種し、 28°C連続照明の条件下で植物の生育を行った。 栽培 12日後に得られたカナマ イシン耐性個体を土に移植し、 28°C連続照明の条件下で 25日間、 植物の生育を行った。 得られたカナマイシン耐性個体の NtmybB πιΚΜ発現量の変化を - PCEにより確認した。 播種後 22日目の植物体 (生重量 0. 5から 0. 8g) より、 Invitrogen Trizol
reagent (Invitrogen社)を用いて総 EMを抽出した。 総 RMを錚型として Superscrip t First-s trand syntesis system for RT-PCI Invitrogen社) を用いて cDMを台成した。 得られた cDNAを鎳型として用い、 NtmybB cDNAの検出にはプライマ一 0H88Bam5 (.5' - CCGG ATCCTTCCTCAGTAAAGAAAAGATTGAACTTG -3';配列番号: 71 )とプライマ一 0H88DS2 (5' - CCGT CGACTTAACAGTTAGGATCATTAACAG -3';配列番号: 72)を用いた。 c DM量の標準化には EF1 の mENAの発現量を用い、 プライマー EFF ( 5, - AGACCACCAAGTACTACTGC -3';配列番号: 35 ) とプライマー EFR (5' - GTCAAGAGCCTCAAGGAGAG -3';配列番号: 36)を用いた。 合成された cDNA 50 1のうち; 1を使用して PCE反応を行った。 反応は Ex taq(Takara社)を用 い、 Ex i;aqに付属する反応バッファー、 各 200 Mの dATP、 dTTP、 dCTP、 dGTP、 それぞれ のプライマーを各 I M用いて、 50〃1の液量で行った。 9 3°Cを 30秒、 56°Cを 1分、 73 °Cを 1分のステツプを 27サイクル繰り返した。 EFl aの検出には同じステツプを 18サイク ル繰り返した。 これらの PCK産物をァガロースゲル電気泳動を用いて解析した結果、 EF1 aは全てのサンプルで等量検出されたが、 PPZP211- 35S : Bを形質転換した # 6の,ラインに おいてはベクターコントロールと比較して NtmybB cDNAの増幅量が多く、 発現量が上昇し ていることが確認された。 また PPZP211- 35S : B. Mを形質転換した # 2のラインではべク ターコントロールと比較して、 NtmybB cDNA の増幅がほとんど認められず、 発現量の低下 が確認された。
NtmybBを恒常的に発現している形質転換タバコ(#6)ラインにおいてはべクタ一コント口 —ルと比較して生育が抑制され、 内在性 NtmybBを RNAiにより抑制された形質転換タバコ( # 2 )においてはべクタ一コントロールと比較して生育が促進された (図 14) 。 NtmybBは M期の進行に必要である遺伝子の発現を抑制するため、 NtmybBを過剰発現した形質転換 植物では、 M期への進入や進行が遅延することで細胞分裂の抑制や細胞周期に要する時間 が延長された結果、 生育が抑制された表現型となったと考えられる。 また逆に、 内在性 my bBの発現を抑制することによって、 Μ期の進行に必要な遺伝子の発現時期は早まるか、 あるいは発現量が増大することによつて M期への進入や進行が加速し、 細胞周期に要する 時間が短縮された結果、 生育が促進された表現型となったと考えられる。 実施例 1 4
NtmybAlタンパク質、 MmybA2タンパク質、 0s3RmyMlタンパク質のァミノ酸配列の類 似性
MmybAlタンパク質、 NtmybA2タンパク質、 0s3KmybAlタンパク質のァミノ酸配列を最 適な形で並べ、 比較した結果を図 15〜18に示す。 3反復からなる myb DNA結合領域での高 い類似性以外に、 実施例 6で示された NtmybA2タンパク質の転写活性化能力を負に制御す る領域(631〜1042ァミノ酸)や転写活性化能力を促進する領域(413〜630ァミノ酸)にお いてもアミノ酸配列が高い類似性を示した。 転写活性化因子として機能する NtmybAl、 Nt mybA2、 0s3EmybAlは転写活性化能を調節する領域においてもアミノ酸の類似性が高く、 同様の制御機構を有することが示された。 実施例 6で示された N'traybA2の各種欠失領域の 位置と、 それに対応する NtrayMlおよび 0s3RmybAlタンパク質の領域を図 15〜18の矢印で 示した。 また NtmyM2の変異体であり、 高い転写活性化能を示す NtmybA2Tl、 NtmybA2T2 、 NtmybA2T3の欠失領域では NtmybAl、 0s3RmybAlと特に高いアミノ酸の類似性が認めら れ、 3種のタンパク質において保存されているアミノ酸を見出した。 すなわち^ myM2Tl であれば欠失領域付近に TPSM!Offl! 配列番号: 89 )で示される配列が、 MmyM2T2であ れぱ NXXTPXRL (配列番号: 90)で示される、 NtmybA2T3であれば PPRFPSXDXPF (配列番 号: 91)で示される配列を見出した(Xは任意のアミノ酸を示す。 )。 MmybAlや 0s3RmybA 1であればこれらの保存配列より C末端側を欠失することで N1;mybA2Tl、 NtmybA2T2, Nt rayM2T3と同様の機能を示す変異体を作出することが出来る。 実施例 1 5
シロイヌナズナ 3Rmybと NtmybA NtmybA2、 N"tmybB、 0s3EmybAlのアミノ酸配列の類 似性。
シロイヌナズナでは全ゲノム中に 100種以上の myb様 DM結合領域を持つ夕ンパク質が 知られているが、 myb領域が不完全な 3反復の配列により構成される構造を示す 3Rniybは 5種のみであることが報告されている(Strackeら、 Curr. Opin. Plant Biol. 4 : 447. C200 1) )。 し力、し、 これらの 3Rmybで機能が解明されているものは未だ無い。
( 1 ) 転写活性化型植物 3Rmybにおけるアミノ酸配列の類似性
報告されているシロイヌナズナの 3Emybである A«YB3in(GenBank accession no. AAD 46772、 配列番号: 75)、 AtMYB3R4(GenBank accession no. AAK54739, 配列番号: 76) のァミノ酸配列を NtmyMl、 NtmybA2, 0s3RmybAlのァミノ酸配列と最適な形で並べ、 ァ ミノ酸配列の類似性を比較した結果を図 19〜25に示した。 AtMYB3Elおよび、 AtMYB3R4のァ ミノ酸配列は NtmybAl、 NtmybA2, 0s3EmybMのアミノ酸配列と myb様 DM結合領域で高 い類似性を示すことに加え、 Ntmy 2において転写活性化能の制御を行うために重要であ る領域においても高い類似性が認められた。 特に、 類似性の高い領域において SILX! KEXR XLUOPnXsX XXsKK (配列番号:94、 本配列中で Xは任意のアミノ酸、 Jは I、 V、
Lのいずれか一つのアミノ酸、 0は S、 Tのいずれか一つのアミノ酸、 X!は K、 Κのい ずれか一つのアミノ酸、 Uは V、 Lのいずれか一つのアミノ酸、 Χ5は D、 Eのいずれか 一つのァミノ酸であることを示している。 )の 22ァミノ酸からなる特徴的な保存配列が認 められた。 こ 0保存配列は、 AtMYB3Rlおよび ΜΜΥΒ3Κ4が、 NtmybAl、 NtmybA2、 0s3RmybA 1と同様にサイクリ ン B遺伝子や NACK1遺伝子の転写活性化因子として機能することを示 している。
( 2 ) 転写抑制型植物 3Rmybにおけるァミノ酸配列の類似性
シロイヌナズナの 3Rmybである A«YB3R3(GenBank accession no. AAF25950、 配列番号: 77)、 AtMYB3R5(GenBank accession no. AAK54740. 配列番号: 78)、 のアミノ酸配列は myb DNA結合領域以外では上記の転写活性化型植物 3Rmybとアミノ酸配列の類似性が認め られないことから、 転写活性型として機能しないことが予測された。 そこで ΑΪΜΥΒ3Ε3と At MYB3K5のァミノ酸配列を NtmybBのアミノ酸配列と最適な形で並べた結果、 A1:MYB3R3、 AtMY B3R5と NtmybBとのアミノ酸の類似性を見出した。 比較した結果を図 26〜28に示した。 AtMY B3K3および、 AtMYB3R5のァミノ酸配列は NtmybBのァミノ酸配列と myb様 DM結合領域で高 い類似性を示すことに加え、 それ以外の領域においても類似ァミノ酸が多数存在したこと 、 さらに myb MA 結合領域より N末端側に 4つ Serを中心とする SCSSXSX6 (配列番号: 95、 本配列中で Xは任意のアミノ酸、 X6は K、 E、 D、 E、 Hのいずれか一つのアミノ 酸であることを示している。 )の 7アミノ酸で構成される特徴的な保存配列が認められた 。 この保存配列は AtMYB3Rl、 A«YB3B4、 NtmybA NtmybA2, 0s3BmyMlのアミノ酸配列 中には認められず、 この保存配列は、 AtMYB3E3および AUYB3K5が NtmybBと同様にサイクリ ン B遺伝子や NACK1遺伝子の転写抑制因子であることを示している。
( 3 ) 植物 3Eniybファ ミ リ一内で活性化型、 抑制型に分類されるサブフア ミ リー 上記 (1 ) 、 (2 ) より 3Emybは植物の mybスーパ一ファ ミ リ一の中においても構造的 、 機能的に特殊な位置を占めており、 サイクリ ン B遗伝子や NACK1遣伝子の転写を調節す る因子であることが明らかである。 また 3Rmybファミ リ一内においても配列の類似性より 、 転写活性化型サブファミ リーと転写抑制型サブフア ミ リーに分けることが可能であるこ とを見出した。
アミノ酸配列を最適な形で並べるためには、 CLUSTAUプログラム (http :〃CTW. ddbj . ni g. ac. jp/E-mail/clustalw-j. html) を用いて行い、 条件設定は全てデフオルトのまま行つ た。 CLUSTMJプログラムの出力結果である図中のアミノ酸の類似性、 同一性を示す記号に ついては は完全に保存されているサイ ト. は高度に保存されたサイ ト、 は中程度に保存されたサイ トを示す。 実施例 1 6
myb MA 結合領域を構成するァミノ酸配列の各種植物 3Emyb 間での高い保存性。
これまでに様々な植物種より myb領域が 3反復した構造を示す 3Eniyb の c丽 A断片が単離 され報告されている(Kranzら、 Plant J. 21 : 231. ( 2000) ) 。 これらの様々な植物の 3Bmyb の myb MA結合領域のァミノ酸配列とヒト c - myb全長ァミノ酸配列を比較した。
これらの様々な植物の 3Bmybの myb DNA 結合領域のアミノ酸配列を比較した。 アミノ酸 配列の比較に用いた 3Emyb は、 Physcomitrella patens より単離された MYB3E- KGenBank accession no. AAF78888, 配列番号: 79、 図 29〜31では PhpMYB3E- 1と記述) 、 Adiantum r addianumより単離された MYB3E- GenBank accession no. AAF67053、 配列番号: 80、 図 29 〜31では AdrMYBSR - 1と記述)'、 Hordeum vulgare より単離された MYB3E- KGenBank access ion no. AAF78890, 配列番号: 81、 図 29〜31では ΗνΜΥΒ3β- 1 と記述) 、 Secale cerealeよ り単離された MYB3E- GenBank accession no. AAF67050、 配列番号: 82、 図 29〜31では Sc MYB3E-1 と記述) 、 Papaver rhoeasより単離された putative Myb - related domainCGenBan k accession no. AAF43043. 配列番号: 83、 図 29〜31では ParMYB3R-lと記述) 、 AtMYB3Rl (図 29〜31では ΑΪΜΥΒ3Κ - 1と記述)、 AtMYB3E3(図 29〜31では ΑΪΜΥΒ3Κ- 3と記述)、 AtMY B3R4(図 29〜31では A«YB3R - 4と記述)、 AtMYB3E5(図 29〜31では A1;MYB3E - 5と記述)、 MmybAl NtmybA2 MmybB 0s3RmybAlヽ ヒ h c-myb(swissprot accession no. P10242 ヽ 配歹 'J番号: 88)でめる o Adiantum raddianunu Hordeum vulgare Secale cerealeより 単離された cMAは断片であるため、 myb DNA結合領域を構成する最初の反復が完全な長 さでは示されていない。
ヒト c_mybタンパク質(swissproi; accession no. P10242. 配列番号: 88)の 43番目から 192番目までのアミノ酸配列にコ一ドされる myb DNA結合領域と、 前述の植物から単離さ れた 3Rniybのアミノ酸配列を最適な形で並べた。 植物 3Rmybでは myb DNA結合領域の全長 力含まれて 、ない Adiairtum raddiaminu Hordeum vulgareヽ Secale cerealeii除 ¾ヽ その 他のものは報告されている全長で比較した。 C- mybとの比較によるアミノ酸配列の類似性 を表す Aligned Scoreを以下に示す。 Aligned Scoreは、 NtmybAlでは 62、 mybA2では 65、 MmybBでは 60、 MMYB3E1では 64、 A1:MYB3R3では 64、 AtMYB3R4では 63、 ΜΥΒ3Ε5では 66 、 PhpMYB3R- 1では 66、 ParMYB3R- 1では 66、 0s3RmybAlでは 60の値を示した。 以上より植物 3Rmybの myb D 結合領域は c- mybとの間で高く保存されていることが明らかになった。 また植物 3Rmybは myb MA結合領域を c_mybと比較し 60以上の Aligned Scoreを示すこと が明らかになった。
さらに、 tmybAl, NtmybA2、 NtmybBヽ AtMYB3Rls AtMYB3R3N AtMYB3R4、 AtMYB3E5, Ph PMYB3E - 1、 ParMYB3R_l、 0s3RmybAl'、 HvMYB3R- 1、 AdrMYB3R - 1、 ScMYB3R_lの c_myb様 M A結合領域を示すァミノ酸配列を最適な形で並べることにより、 これら 13種の植物 3Rniy bの該領域のァミノ酸配列間に共通して保存されている配列を見出すことに成功した (図 29〜31) 。
すなわち、 各種植物 3Rmyb間の myb DNA 結合領域に保存されている共通のアミノ酸配列 とは
(i) W [S, T] XXE [D, E] XX [L, I, V]
(配列番号: 92に対応する。 本配列中で Xは任意のアミノ酸を、 [ ] はその中のいずれか 一つのアミノ酸が選択されることを示す。 )
の 9ァミノ酸で示される c- mybの mybモチーフ (MOTIFプログラム (http : //motif. geno me. ad. jp/) を用いての検索結果において MYB#l(Myb DNA-binding domain repeat signa ture 1. )として示される c mybの 3反復 myb DNA結合領域を構成するコンセンサス配列、 図中においては黒い太線で示されている配列) が任意の 42アミノ酸を挟んで 3反復存在す ることであり (図中においては矢印で示されている間のアミノ酸数) 、
さらに詳細には 13種のアミノ酸配列中で、 同一のアミノ酸、 あるいは、 化学的性状の類 似したァミノ酸で構成されるサイ トを保存配列として示した場合に以下の 150ァミノ酸で 示される配列に示すことが可能である (図中においては保存配列として示されている配列
( i i ) ffTXEEDXXLXXXVXXUXGX 7 XWKXIAXXXXXROX 5 JQCLH ffQ VLXPXLJKGX OXEEDXXJXXXJX X 7 XGXX iySXJOXXXXGRIGKQCEEEWUNHLXPXIX 7 XXfTXXEX 5 XXLXXXHXXXGNXT AEJXX 7 LXG
X T OMOIKNXKSOX KX T
(配列番号: 93に対応する。 本配列中で Xは任意のァミノ酸、 Jは I、 V、 Lのいずれか 一つのァミノ酸、 0は G、 S、 T、 C、 Aのいずれか一つのァミ ノ酸、 X 7は K、 R、 H
のいずれか一つのアミノ酸、 Uは H、 W、 Y、 Fのいずれか一つのアミノ酸、 X 5は D、
Eのいずれか一つのァミノ酸であることを示している。 )
アミノ酸配列を最適な形で並べるためには、 CLUSTAUプログラム (http :〃冊 w. ddbj . ni g. ac. j p/E-mai l/clustalw-j , html ) を用いて行い、 条件設定は全てデフォルトのまま行つ た。 実施例 1 7
植物 3Emybの単離
実施例 1 6で示された( i)、 さらに詳細には(l i )で示されるアミノ酸配列を含む、 タン パク質をコードする DMを単離するためには、 実施例 1の方法により可能となる。
すなわち、 目的植物の細胞増殖が盛んな組織、 または細胞より調整した cMAを鎳型とし て、 縮重プライマ一を用いた PCEと Nested PCRを組み合わせて行う。 用いる縮重プライマ —として、 1回目の PCR反応には配列番号: 1と配列番号: 2で示したプライマ一セッ ト で行なう。 1回目の反応液を、 2回目の PCKの铸型として用いる。 2回目の PCEとして行 う Nested PCR反応には配列番号: 3と配列番号: 4で示したプライマーセッ トで行う。 2 回目の PCR反応液を 3回目の PCR反応の錶型として用いる。 3回目の PCEとして行う Nest ed PCR反応には配列番号: 5と配列番号: 6で示したプライマ一セッ トを用いることで my b MA結合領域の一部をコ一ドする DNAを得ることが可能である。 得られた DM断片の塩 基配列を参考に、 5' RACE法、 3' RACE法を行うことによって全長 cMAの 5' 末端およ び 3' 末端の塩基配列を決定することが可能である。 RACE法によって得られた末端配列を 参考としてプライマ一を設計し、 PCE反応を行うことによって、 全長 cMAを得ることが可 能である。 細胞増殖が盛んな組織及び細胞としては、 目的の植物より誘導したカルス、 培 養細胞、 あるいは芽生えの植物体、 植物体の茎頂部分、 根端部分などが挙げられる。 実施例 1 8
植物 3Rmybの機能決定
実施例 1 7の方法により得られた植物 3Rmybの機能を決定するためには、 目的 cDMが CaMV 35Sプロモーターにより発現可能な植物 3Rmybプラスミ ドを構築し、
( i ) 植物 3Rmybプラスミ ド(10 ^ g/サンプル)、 NAC 1 promoter - LUCプラスミ ド(10〃 g/サンプル)、 R-LUCプラスミ ド(l g/サンプル)
(ii ) pBI221プラスミ ド(10 g/サンプル)、 ACK1 promoter- LUCプラスミ ド(10 i g/サ ンプル)、 R - LUCプラスミ ド(l // g/サンプル)
で示される(i )または(i i )の組み合わせのプラスミ ドをタバコ培養細胞 BY2より作成した プロトプラストに導人し、 LUC活性、 B- LUC活性を測定する。 K-LUC活性で標準化した LU C活性(LUC比活性 )が(i i )と比較して(i )の組み合わせで上昇した場合は用いた植物 3Rmy bが転写活性化型であることを規定することができる。 また(i i )と比較して(i で LUC 比活性が低下した場合は用いた植物 3¾iybが転写抑制型であることを決定することができ る。 プロ トプラストの調整方法、 プラスミ ドの導入方法、 LUC活性および、 K- LUC活性の 測定方法は実施例 3に記述の方法により実施可能である。 実施例 1 9
NtmybBの雄性生殖器官特異的発現による雄性不稔植物の作出 雄性生殖器官に特異的に発現するプロモータ一を用いて G 2/M期特異的発現遺伝子の転 写を抑制する NtmybB遺伝子が発現するプラスミ ドを用いて植物を形質転換することにより 、 雄性生殖器官において細胞増殖を改変し、 正常な花粉形成を抑制し種子稔性が低下した 植物を作出することが可能である。
( 1 ) プラスミ ドの構築
NtmybBを雄性生殖器官において特異的に発現する形質転換用プラスミ ドの構築方法の一 例を示す。 国際出願番号 PCT/JP02/12268に記載のプラスミ ドである pENTEAVPlおよび pENT R0. 6はそれぞれシロイヌナズナ AtNACK2遺伝子、 またはシロイヌナズナ AVP1遺伝子のプロ モーターが揷入されたプラスミ ドであり、 これらのプラスミ ドを铸型として pENT VPlの 場合にはプライマー Hindlll- AVP1- 298S(5, -CCCAAGCTTAAATTCGGACAAATAGAGCGTAGTCAAC-3' ; 配列番号: 84)、 およびプライマー AVP1+5A〔5' - GCCATCTTCTCTCCTCCGTATAAGAG - 3'; 配列 番号: 85 )を、 ENTEO. 6の場合はブライマ一 Hindlll- NACK2- 575S(5, - CCCAAGCTTCTCGTTAAGA ACCCTTGATC-3'; 配列番号: 86)、 およびプライマ— CK2+3A+2(5, - GCCATCTTCTACACACAAA ATCGAAACC-3'; 配列番号: 87)を用いて PCRを行なう。 增幅された DM断片を Hindlllで切 断し、 pEXP- NtmybBを Sailと EcoRVを用いて切り出される NtmybBの MA断片と同時に、 pU C18(Takara社製)を Sailと Hindlllで切断して生成される部位に揷入し、 pUC - P1 - Ntmyb Bおよび、 pUC - 0. 6 - MmybBを構築する。 pUC-AVPl- NtmybBおよび、 pUC- 0. 6- MmybBを Sail で切断後に T4 MA polymeraseを用いて突出末端を平滑化し、 さらに Hindlllを用いて切 断し切り出される MA断片を pBI121 (Clontech社製)を Saclで切断後に T4 DNA polymeras eを用いて突出末端を平滑化し、 さらに Hindlllを用いて切断して生成される部位に挿入 して pBI - PAVP1 - NtmybBおよび pBI - NO. 6 - NtmybBを構築する。 pBI- PAVP1- MmybBはすなわち 、 P1プロモータ一により NtmybBが発現するァグロバクテリゥム法で植物を形質転換可能 なバイナリ一ベクタ一である。 pBI- NO. 6- MmybBはすなわち、 A ACK2プロモータ一によ り NtmybBが発現するァグロバクテリゥム法で植物を形質転換可能なプラスミ ドベクタ一で ある。 これらのプラスミ ドで形質転換された植物はカナマイシンを用いることで選抜可能 である。
( 2 ) シロイヌナズナの形質転換
前記 (1 ) で構築した 2種のバイナリ一ベクタ一を用いてァグロバクテリゥム · ッメフ ァシエンス (Agrobacterium turaefacience)を形質転換し、 これらのプラスミ ドを保持す る各ァグロバクテリゥムを用いて Floral dip法 (前記実施例 8と同様) によりシロイヌナ ズナ ェコタイプ Col- 0を形質転換する。 ァグロパクテリゥムを感染させた花芽より得ら れる種子を次亜塩素酸と滅菌水を用いて滅菌し、 カナマイシン 50
Figure imgf000055_0001
カルペニシリン 100 g/mlを含む MS倍地上に播種する。 カナマイシン添加培地上で生育可能な形質転換植 物を選択する。
( 3 ) 形質転換植物の稔性低下
前記 (1 ) のバイナリ一ベクタ一を使用して、 前記 (2 ) で得られた形質転換植物の鞘 中に形成される種子を観察すると、 野生型より種子の数が減少し、 稔性の低下した植物が 得られる。 実施例 2 0
NtmybBの雄性生殖器官特異的発現による雄性不稔植物の作出
雄性生殖器官に特異的に発現するプロモータ一を用いて G2/M期特異的発現遺伝子の転写 を抑制する NtmybB遺伝子が発現するブラスミ ドを用いて植物を形質転換することにより、 雄性生殖器官において細胞増殖を改変し、 正常な花粉形成を抑制し種子稔性が低下した植 物を作出することが可能である。
( 1 ) プラスミ ドの構築 雄性生殖器官に特異的発現が認められる遺伝子としてはシ口ィヌナズナ AVP1遺伝子また はシロイヌナズナ AtMCK2遺伝子を用い、 これらの遺伝子のプロモーター領域をプラスミ ドの構築に用いる。 これら遺伝子のプロモータ一領域をコ一ドする DNAは国際出願番号 PC T/JP02/12268に記載の pENTRAVPi VPl)、 および pENTRO. 6(AtN K2)のプラスミ ドに揷入 されているプロモータ一領域が使用可能である。 NtmybBをコ一ドする]) NAは 0H88より調整 可能である。 これらの!) ΝΛ断片を pBI121 i、Clontech社製)の CaMV 35Sプロモーターと GUS 遺伝子を除去した領域に揷入し、 AVP1プロモーター、 NtmybB、 Nosターミネータ一が機 能的に融合したプラスミ ドまたは、 AtNACK2プロモーター、 NtmybB、 Nosターミネータ一 が機能的に融合したプラスミ ドを構築する。 これらのプラスミ ドは AVP1プロモーターまた は AtNACKlプロモータ一により NtmybBが発現する、 ァグロバクテリウムを介して植物を形 質転換可能なバイナリーベクタ一であり、 得られた形質転換植物はカナマイシンを用いて 選抜可能である。
( 2 ) シロイヌナズナの形質転換
上記 (1 ) で得られるプラスミ ドを用いてァグロパクテリゥム ッメファシエンス(Ago rbacterium tumef science)を形質転換し、 これらプラスミ ドを保持する各ァグロバクテリ ゥムを用いて Floral dip法 (前記実施例 8と同様) によりシロイヌナズナ ェコタイプ Co 1 - 0を形質転換する。 ァグロバクテリゥムを感染させた花芽より得られる種子を次亜塩素 酸と滅菌水を用いて滅菌し、 カナマイシン 50〃g/ml、 カルペニシリン 100 g/mlを含む MS 倍地上に播種する。 カナマイシン添加培地上で生育可能な形質転換植物を選択する。
( 3 ) 形質転換植物の稔性低下
前記 (1 ) のバイナリーベクタ一を使用して、 前記 (2 ) で得られた形質転換植物の鞘 中に形成される種子を観察すると、 野生型より種子の数が減少し、 稔性の低下した植物が 得られる。 実施例 2 1
NtmybA NtmybA2の発現が抑制された形質転換タバコの生育改変
RNAiを用いて内在性 NtmybAlおよび NtmybA2の発現を抑制した形質転換タバコは生育が抑 制される。
( 1 ) プラスミ ドの構築
NtmybAK あるいは MmyM2、 あるいは MmyMlと MmybA2の両者の DNAの一部分の配列 を逆位反復となるように接続した DMを構築する。 逆位反復に接銃する場合には反復間に スぺ一サ一として GUSをコ一ドする MAを揷入する。 この逆位反復に配置した MAを EMi DMとして、 CaMV 35Sプロモーター、 ENAi MA、 Nos夕一ミネ一ターが機能的に融合した DNAを pBI-RHLプラスミ ドに揷入する。 これらのプラスミ ドは CaMV 35Sプロモーターによ り NtmybAl、 あるいは MmybA2、 あるいは NtmybAlと NtmybA2の両者をコードする RMが 2本鎖形態で発現するァグロバクテリゥムで形質転換可能なプラスミ ドであり、 形質転換 植物はハイグロマイシンで選抜可能である。 得られた形質転換植物では発現した 2本鎮 UN Aが引き金となり、 植物体中で内在性である NtmyMl、 あるいは NtmybA2、 あるいは Ntmy bAlと NtmybA2の両者の発現が低下した、 すなわち RNAiの効果を得ることが可能である。
( 2 ) タバコの形質転換
前記( 1 )で構築したプラスミ ドを用いてァグロバクテリウム ッメファシエンス go rbacterium tumefacience )を形質転換し、 プラスミ ドを保持する各ァグロバクテリゥム を用いてニコチアナ タバカム 品種 SE Nicotiana tabacum ver. SR1)をリーフデイス ク法で形質転換する。 ハイグロマイシン耐性としてカルスより分化、 再生した形質転換植 物個体より、 自殖種子を得る。 ( 3 ) 形質転換植物における生育改変
前記 (1 ) のバイナリ一ベクターを用いて形質転換し前記 (2 ) で得られた形質転換植物 の自殖種子を播種して生育を観察すると野生型と比較して生育が抑制されたタバコ植物が 得られる。 実施例 2 2
Ntmyb形質転換タバコの生育改変
NtmyM2、 NtmybA2T5, MmybA2T2、 MmybBを発現する形質転換タバコでは生育が抑制さ れる。 '
RMiを用いて転写活性型である内在性 MmyMl、 内在性 NtmyM2および内在性 NtmybM と NtmyM2の両者の発現を抑制した形質転換タバコは生育が抑制される。
C 1 ) プラスミ ドの構築
国際出願番号 PCT/JP02/12268に記載のプラスミ ド pBHLを Apalで切断し、 T4 DM polymer aseを用いて突出末端を平滑化後にセルフライゲージョンを行なうことによって pBHL2を 構築した。 pML2を Xholで切断し、 Klenow断片を用いて突出末端を平滑化後にセルフライ ゲーシヨンを行なうことによって p L3を構築した。 pML3を Spelで切断し、 Klenow断片 を用いて突出末端を平滑化後にセルフライゲ一ションを行なうことによって pRHL4を構築 した。
pENTK2B(Invitrogen社製)を EcoRIで切断して切り出される ccdB力セッ トを含む DM断 片を、 Klenow断片を用いて突出末端を平滑化し、 pD0NR201 (Invitrogen社製)を Xmnlと Bs aAIを用いて生成される部位に揷入して pDONR201 A Cmlを構築した。 揷入された DM断片 が pDONR201 A Cmlと逆向きであるプラスミ ドを pD0NE201△ Cm3とした。
PD0NE201 Δ Cmlを Apalと Smalで切断し、 切り出される MA断片を pBluescriptlKStratage ne社製)を Apalと Smalで切断して生成される部位に揷入し pBS-a廿 Pを構築した。
pMu卜 1(名古屋大学理学研究科上野宜久助手より譲渡頂いた)を EcoMで切断し、 切り 出された MAの突出末端を Klenow断片を用いて平滑化した後に、 pEHL4を Smalで切断して 生成される部位に揷入し pMGUSRiLを構築した。
PD0NE201 Δ Cm3を Apalと Nrulで切断して切り出される MA断片を p GUSEiLを Apalと Smal で切断して生成される部位に揷入して pMGUSEiPlを構築した。
pBS- a廿 Pを Apalで切断後、 突出末端を DNA polymeraseを用いて平滑化し、 さらに Spel で切断することによって切り出される MA断片を p GUSRiPlを Xholで切断後、 突出末端を Klenow断片を用いて平滑化し、 さらに Spelで切断することによって生成される部位に揷入 し、 PKHGUSMP2を構築した。
pRHGUSRiP2を Bglllで切断し切り出される DM断片を pBI121を Bglllで切断し切り出さ れた DNA断片を取り除いて生成される部位に揷人して pBI - GUSI P1を構築した。
実施例 1 0の (1 ) に記載の PBS-VMA2を铸型にプライマー B1T3 (5' - GGGGACAAGTTTGT ACAAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG -3' ; 配列番号: 41)とプライマ一 B2T7 (5' - GGGG ACCACTTTGTACAAGAAAGCTGGGTCGTAATACGACTCACTATAGGGC -3' ;配列番号: 42)を用いて PCRを 行い、 NtmybAlの一部分を含む DM断片および NtmybA2の一部分を含む MA断片がタンデ ムに接続され両末端に Gateway system (Invitrogen社)の attBl、 attB2配列が付加され た DNA断片を得た。 この]) M断片とプラスミ ド pBI- GUSRiPl (Invitrogen社)を混合し、 BP Clonasednvitrogen社)を用いて BP反応を行い、 NtmybAlの一部分を含む DM断片お よび NtmybA2の一部分を含む DM断片が夕ンデムに接続された DMを pBI-GUSBiPl に逆位 反復に位置するように揷入し、 pBIHm- A 2RMiを構築する。
実施例 1 0の ( 1 ) に記載の pBS- Mlを鎳型にプライマ— B1T3 (5' - GGGGACAAGTTTGTAC AAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG -3'; 配列番号: 41)とプライマ一 B2T7 (5' - GGGGAC CACTTTGTACAAGAAAGCTGGGTCGTAATACGACTCACTATAGGGC -3';配列番号: 42)を用いて PCEを行 い、 NtmybAlの一部分を含む DM断片に両末端に Gateway system (Invitrogen社)の attB 1、 attB2配列が付加された DM断片を得る。 この MA断片とプラスミ ド pBI- GUSRiPl (I nvitrogen社)を混合し、 BP Clonase(Invi1:rogen社)を用いて BP反応を行い、 NtmybAl の一部分を含む DMを pBI - GUSEiPl に逆位反復に位置するように揷入し、 pBIHm- MBMiを 構築する。
実施例 1 0の (1 ) に記載の pBS VA2を铸型にプライマー B1T3 (5, - GGGGACAAGTTTGTAC AAAAAAGCAGGCTCAATTAACCCTCACTAAAGGG -3'; 配列番号: 41 )とプライマ— B2T7 (5' - GGGGAC CACTTTGTACAAGAAAGCTGGGTCGTAATACGACTCACTATAGGGC -3';配列番号: 42 )を用いて PCRを行 い、 NtmybA2の一部分を含む MA断片に両末端に Gateway system (Invitrogen社)の ati;B 1、 attB2配列が付加された DNA断片を得る。 この DM断片とプラスミ pBI-GUSRiPl (I nvitrogen社)を混合し、 BP Clonase(Invi1;rogen社)を用いて BP反応を行い、 NtmybA2 の一部分を含む DMを pBI- GUSEiPl に逆位反復に位置するように揷入し、 pBIHm- A2EMiを 構築する。
すなわち、 a)pBIHnrAlA2BMiは NtmybAlと NtmybA2の両者をコードする RNAが、 (ii) pBIHm- AlEMiは MmybAlをコードする EMが、 (iii)pBIHm- は NtmybA2をコ—ドす る RNAが、 CaMV 35Sプロモータ一により 2本鎖形態で発現する了グロバクテリウム法で形 質転換可能なバイナリ一ベクターであり、 形質転換植物はハイグロマイシンで選抜可能で ある。 (i)から(iii)のバイナリ一ベクターを用いて得られた形質転換植物では発現した 2本鎖 が引き金となり、 植物体中で(i)では内在性である MmybAlと NtmybA2の両者 、 ( i i )では内在性である NtmyMl、 (i ii )では内在性である NtmyM2の発現量が低下した 、 すなわち!? Miの効果を得ることが可能である。
( 2 ) タバコの形質転換
下記のプラスミ ドを用いてタバコの形質転換を行なう。
(i) pBIHm- AlA2 Aiプラスミ ド(前記 (1 ) に記述)
(ii) pBIHm - MENAiプラスミ ド(前記 (1 ) に記述)
(iii) pBIHm- プラスミ ド(前記 ( 1 ) に記述)
(iv) pBIHm-Ntniy 2プラスミ ド(実施例 8の ( 1 ) に記述)
(v) pBIHm- NtmybA2T2プラスミ ド(実施例 8の (1 ) に記述)
(vi) pBIHm- NtmybBプラスミ ド(実施例 8の ( 1 ) に記述)
(vii) pDBIHm- NtmyM2T5ブラスミ ド(実施例 9の ( 1 ) に記述)
(viii) pBIHm- GFPプラスミ ド(実施例 8の ( 1 ) に記述)
(ix) PPZP211プラスミ ド(実施例 9の ( 1 ) に記述)
(X) pPCYM- NtmyM2T2プラスミ ド(実施例 9の ( 1 ) に記述)
(xi) PPZP211- 35S : A2RMiプラスミ ド(実施例 1 1の ( 1 ) に記述)
(xii) pPZP- 35S : A2プラスミ ド(実施例 1 2の ( 1 ) に記述)
(xiii) pPZP- 35S : A2T2プラスミ ド(実施例 1 2の ( 1 ) に記述)
(i)から(xiii)のプラスミ ドを用いてァグロパクテリゥム ッメファシエンス(Agrobacte rium tumeiacience)を形質転換し、 プラスミ ドを保持する各ァグロバクテリゥムを用いて ニコチアナ タバカム 品種 SRKNicotiana tabacuni ver. SR1)をリーフディスク法で形 質転換する。 (i)から(viii)のプラスミ ドを用いた場合はハイグロマイシン耐性として、 (ix)から(xiii)のプラスミ ドを用いた場合はカナマイシン耐性として、 カルスより分化、 再生した形質転換植物個体より、 自殖種子を得る。
( 3 ) 形質転換植物における生育改変
前記 (2 ) で得られた形質転換植物の自殖種子を播種して生育を観察する。 前記 (2 ) の (viii)を用いて得られた形質転換植物、 または野生型を対象として比較すると、 前記 (2 ) の(i)から(vii)を用いて得られた形質転換植物は生育が抑制されている。 前記 ( 2 ) の(ix)を用いて得られた形質転換植物、 または野生型を対象として比較すると、 前記 2 ) の(X)から(xi i i )を用いて得られた形質転換植物は生育が抑制されている。 実施例 2 3
転写活性化能の変化した NtmybAl、 0s3EmybAl、 AtMYB3El, A«YB3E4変異体の作出 転写活性化型植物 3Rmybである NtmyMl、 0s3RmybA AtMYB3EK AtMYB3B4の C末端側 から欠失することで、 転写活性化能が上昇した分子や転写活性化能が低下した分子を作出 することができる。 欠失する領域は実施例 1 4や、 図 1 5〜 1 8、 実施例 1 5や図 1 9〜 2 5を参考に決定することが出来る。
すなわち、 MisyMlであれば 579から 1003番目のアミノ酸配列の欠失や、 641から 100 3番目のアミノ酸配列の欠失、 715から 1003番目のァミノ酸配列の欠失によって転写活性 可能が上昇した変異体を作出することが出来る。 0s3EmybAlであれば 575から 993番目の アミノ酸配列の欠失や、 635から 993番目のアミノ酸配列の欠失、 709から 993番目のァ ミノ酸配列の欠失によって転写活性可能が上昇した変異体を作出することが出来る。 A«Y B3B1であれば 583から 776番目のァミノ酸配列の欠失や、 621から 776番目のァミノ酸配 列の欠失、 691から 776番目のアミノ酸配列の欠失によって転写活性可能が上昇した変異 体を作出することが出来る。 AtMYB3E4であれば 570から 961番目のアミノ酸配列の欠失や 、 608から 961番目のアミノ酸配列の欠失、 667から 961番目のアミノ酸配列の欠失によ つて転写活性可能が上昇した変異体を作出することが出来る。
また、 MmybMであれば 186から 1003番目のアミノ酸配列の欠失、 299から 1003番目の アミノ酸配列の欠失によって転写活性化能が低下した変異体を作出することが出来る。 0s 3RmyMlであれば 203から 993番目のァミノ酸配列の欠失、 257から 993番目のァミノ酸 配列の欠失によって転写活性化能が低下した変異体を作出することが出来る。 ΑΪΜΥΒ3Κ1で あれば 187から 776番目のアミノ酸配列の欠失、 2 41から 776番目のアミノ酸配列の欠失 によって転写活性可能が低下した変異体を作出することが出来る。 iVtMYB3R4であれば 181 から 961番目のァミノ酸配列の欠失や、 235から 961番目のァミノ酸配列の欠失によって 転写活性可能が低下した変異体を作出することが出来る。
上記の変異体の転写活性化能は実施例 3および実施例 1 8に記載の方法により、 BY2プ ロトプラストでの一過性発現における NACK 1プロモーターに対する転写を測定することで が決定可能である。 これら欠失変異体は野生型と比較して、 転写活性化能が上昇、 もしく は低下している。 実施例 2 4
MmybA2が過剰発現している形質転換タパコの矮性化
( 1 ) タバコの形質転換
前述のプラスミ ドである pBIHm- NtmybA2、 pBIHm-GFP を用いてァグロパクテリゥム · ッ メファシエンス EHA101株(Agrobacterium tumefacience EHA101 strain)を形質転換し、 こ れらのプラスミ ドを保持するァグロバクテリゥムを用いてリ一フディスク法によりニコチ アナ タバカム 品種 SB Nicotiana tabacum ver. SR1) の形質転換を行った。
( 2 ) 形質転換タバコにおける導入遺伝子の発現量
得られたハイグロマイシン耐性個体を栽培し自殖種子を得た。 NtmybA2 の形質転換ライ ンである AW3、 AW23 、 および GFP の形質転換ラインである G#3 より得られた自殖種子を 、 クレハ園芸培土 (呉羽化学社製) をつめた 13cmポリポッ トに播種し、 27°Cで栽培を行つ た。 照明条件は 18時間照明、 6時間暗黒で行った。 これらのラインにおける導入迫伝子の 発現を RT - PCE法により確認した。 各ラインにつき 5個体より未展開の頂葉をサンプリ ング し、 前述の実施例 1 0 ( 2 ) の方法により、 frtmyM2 を増幅した。 ァガロースゲル電気泳 W]により PCR 産物を解析した結果、 廳、 AW23 のラインでは G#3 ラインと比較して Ntniy bA2 の発現量が上昇しており、 導入造伝子の過剰発現が確認された。
( 3 ) NtmybA2 形質転換タバコの矮性化
前記 (2 ) において、 IttniyM2 の過剰発現を確認した各個体を引き続き栽培し、 草丈、 本葉数を継時的に計測した。 その結果、 NtniyM2 の発現量が上昇している M#3、 AW23、 の各個体は G#3 と比較して草丈 (図 32) 、 葉の大きさが小さくなつていた。 本葉数につい てはやや減少する傾向が認められた (図 33) 。 また、 顕著に節間が短くなつていた。 以上 より、 CaMV 35Sプロモーターにより Ni;niybA2 を発現する形質転換タバコでは植物が矮性化 することが示された。
( 4 ) NtmybA2 形質転換タバコにおける細胞数の減少、 および細胞の小型化
前記 (3 ) で用いた栽培した AW23 の形質転換ラインと野生型タバコの本葉の大きさと 表皮細胞を比較した。 観察に用いた本葉は野生型、 AW23 共に同じ葉位の完全に展開した 葉を用いた。 これらの葉の大きさを比較したところ、 Α1Ϊ#23 は野生型より約 80%小さくな つていた。 この葉における表皮細胞を観察するためにリーフディスクを作成し、 ェタノ一 ル:酢酸を 9 : 1で混合した溶液にて脱色、 固定を行った。 これらのリーフディスクを微 分干渉顕微鏡を用いて写真撮影を行い、 各 50個の表皮細胞の面積を測定した。 その結果、 野生型と比較して Μ#23 では細胞の面積が約 45%小さくなつており、 では細胞の大 きさが小さくなつていることが明らかとなった。 以上の結果より、 脆 3 では葉を構成す る細胞の大きさは 45%小さくなっているが、 葉の大きさはさらに小型化率が高く 80%小さ くなつていることから、 葉の小型化の原因としては細胞が小さくなっていることに加え細 胞数が減少しているためであると考えられる。 また細胞数の減少は細胞周期の遅延による ものであると考えられる。 実施例 2 5
シロイヌナズナ AtHB8 プロモーターで NtmyM2 が発現する形質転換タバコの矮性化 NtmybA2 がシロイヌナズナ AtHBS 遺伝子のプロモータ一により発現する形質転換タバコ を作出し、 生育を比較する。
( 1 ) 形質転換用プラスミ ドの構築
pDBIHm- PAtHB8- NtmybA2プラスミ ドの構築
常法により抽出したシロイヌナズナゲノム DM を錶型とし、 プライマ一 PAtHB8_lF (5' - AACTGCAGCGGATAAACCAATTTTCAAATGATA-3'; 配列番号: 96)と、 プライマー P HB8- 1700E (5' -CGGGATCCCTTTGATCCTCTCCGATCTCTCTAT-3';配列番号: 97)を用いて PCR 反応を行うことによ つて、 シロイヌナズナ 遣伝子のプロモータ一領域を含んだ DM 断片を得た (配列番 号: 98, AtHB8 promoter GenBank Accession # AL161582 用いた領域 89580- 91279)) 。 OH 60を鎳型とし、 プライマ— A2-ATG- Bam (5' -CGGGATCCATGGAAAGTGATAGAATAAGCAC-3';配列番 号: 99)と、 プライマ— A2T2- TM - Not (5' -TTTTCCTTTTGCGGCCGCTTAACAGCCTAAATGGAGTAAGACA G-3'; 配列番号: 100) を用いて PCK 反応を行い、 NtmyM2 の一部を含んだ MA 断片を得た
PCR 反応により得られた AtHB8 プロモータ一 DM を Pstlと BamHI で切断した。 また Mmy bA2 の一部を含む]) M .断片は BamHIと Ncrtlで切断した。 これら 2種の]) M 断片を、 pBlues cript(S"tratagene社製) を Pstlと Notlで切断して生成される部位に揷入し、 プラスミ ド pB S- PAtHB8 - NtmybA2T2を構築した。
プラスミ pTH2 (Chiuら, Curr Biol 1996 Mar 1; 6(3) : 325- 30)を EcoRI で切断し、 Klen ow断片にて突出末端を平滑化した後に、 更に Notlで切断して N0S ターミネータ一を含んだ DNA 断片を切り出した。 この DM 断片をプラスミ ド pENTR2B(Invitrogen社製) を ΝοΐΙと Ec oRV で切断して生成する部位に挿入しプラスミ ド pENTR-NOSTl を構築した。
pBS-PAtIIB8 - NtmybA2T2を Sailと Notlで切断して切り出される DNA 断片を、 pENTR-NOSTl を Sailと Notlで切断して生成する部位に揷入してプラスミ ド pENTK- PA'tIlB8-NtmybA2T2を構築 した。
0H60を Sailで切断、 Klenow断片を用いて突出末端を平滑化したのちに Spelで切断して Nt mybA2の C末端領域を含んだ MA断片を切り出した。 この]) M断片を、 PENTR-PAtHB8- tm ybA¾T2を Spelと Smalで切断して生成される部位に揷入し、 プラスミ FpENTR-PAtHB8-Ntmyb A2を構築した。
前記実施例 9において構築したプラスミ ド pDESTBI- 1 と pENTK - PAtHB8- MmybA2を混合し 、 Gateway LR Clonase mixCInvitrogen社製) を用いた部位特異的組換え反応により pDBI Hm - HB8- MmyM2を構築した。 Gateway LE Clonase mixを用いた反応は試薬に添付のプロ ト コールに従って実施した。 pDBIHm- HB8- Ntmy 2は A B8 プロモーターにより、 全長 NtmybA 2 を発現するプラスミ ドベクタ一であり、 ァグロパクテリゥム法で植物の形質転換が可能 なバイナリ一ベクターである。 これらのプラスミ ドで形質転換された植物はハイグロマイ シンを用いることによって形質転換体を選拔可能である。
(. 2 ) タバコの形質転換
前述のプラスミ ドである pDBIHni - HB8- NtmybA2を用いてァグロパクテリゥム · ッメファシ エンス EHA101株(Agrobacterium tumefacience EHA101 strain)を形質転換し、 これらのプ ラスミ ドを保持するァグロバクテリゥムを用いてリーフディスク法によりニコチアナ 夕 バカム 品種 SEKNicotiana tabacum ver. SE1) およびニコチアナ ベンサミア一ナ(Nic otiana beirtamiana)の形質転換を行った。
( 3 ) AtHB8 プロモータ—で NtmyM2 が発現する形質転換タバコの矮性化
前記 (2 ) において、 形質転換した各ラインの自殖種子を得る。 これらの種子をクレハ 園芸培土 (呉羽化学社製) をつめた 13cmポリポッ トに播種し、 27°C、 で栽培を行う。 照明 条件は 18時間照明、 6時間暗黒で行う。 これらの植物体は野生型のタバコや Vectorのみの 形質転換体と比較すると矮性化している。 実施例 2 6
Atniyb3Rlと Atmyb3R4の発現が抑制された形質転換シ口ィヌナズナにおける倍数性の改変
( 1 ) Atmyb3El, Atmyb3R4 KMi用プラスミ ドの構築
Atmyb3Mと Atmyb3R4の Aiを誘導する形質転換シロイヌナズナを作出するためのプラス ミ ドを構築する。 配列番号: 7 5で示した Atmyb3Blと配列番号: 7 6で示した Atmyb3K4の cMAより、 250 塩基対以上を含む DM 配列を PCR によって增幅する。 これら 2種の MA を タンデムに接続した MA を構'築する。 この]) M 配列を実施例 1 1に示したプラスミ ドの構 築と同様の方法で、 間に GUS が挿入されるように逆位反復に接続したプラスミ ドを構築す る。 このプラスミ ドは CaMV 35Sプロモーターにより挿入した DNA の発現を制御し、 形質転 換体はカナマイシンで選抜するァグロバクテリゥム法によりシロイヌナズナが形質転換可 能なバイナリ一ベクタ一である。 このプラスミ ドによって形質転換されたシロイヌナズナ は導入遺伝子より発現した ENA により Aiの効果が得られ、 Atmyb3IUと Atmyb3R4の発現量 が低下する。
( 2 ) シロイヌナズナの形質転換
前述 (1 ) で構築するプラスミ ドを保持するァグロバクテリゥムを用いてシロイヌナズ ナ ェコタイプ Col- 0を Floral dip法 (前記実施例 8と同様) にて形質転換する。 ァグロ バクテリゥムが感染した植物体より得られた自穑種子をエタノールと次亜塩素酸を用いて 滅菌し、 滅菌蒸留水を用いてよく洗浄する。 これらの種子をカナマイシン 50 g/mlの濃度 で添加した MS寒天培地に播種し栽培する。 形質転換植物はカナマイシン耐性個体として選 抜される。
( 3 ) 形質転換シロイヌナズナにおける倍数性の変化
前述 (2 ) で選抜した形質転換体を鉢挙げし、 栽培する。 これらの形質転換植物より得 られた自穉種子ををエタノールと次亜塩素酸を用いて滅菌し、 滅菌蒸留水を用いてよく洗 浄する。 これらの種子をカナマイシン 50 μ g/mlの濃度で添加した MS寒天培地に播種し栽培 する.。 カナマイシン耐性として生育した個体のロゼッ ト葉を用いて実施例 1 1で示した方 法と同様にして、 核の DM 含量を測定する。 シロイヌナズナは 2倍体であるため、 野生型 シロイヌナズナの DM 含量を測定した場合は 2C、 4C、 さらにェンドリデュプリケーシヨン によって核内 DM含量が增加した 8Cや 16C を示すピークが観察される。 Atniyb3I?lと Atmyb3 E4の発現量が Aiの効果によって減少している形質転換シロイヌナズナの核内 DM 含量を 測定することで、 倍数性の増加した個体が確認される。 野生型で認められる 2Cを示すピ一 クが認められない個体は 4倍体となっている個体である。 2C、 4Cを示すピークが消失し、 8C、 16C を示すピークが認められる個体は 8倍体の個体である。 産業上の利用可能性
植物育種において重要な細胞周期の制御、 そして植物細胞の増殖を改変する技術、 さら には植物個体の発生分化を改変する技術が提供される。 また該植物細胞増殖の制御 ·植物 個体の発生分化の制御に有用な植物遺伝子並びにその利用技術が提供される。 該技術を利 用した新規植物の開発 ·植物育種技術の開発ができる。 特に植物 3 Eniyb遺伝子の機能改変 •制御技術並びに機能が改変された新規な 3 Bmyb遺伝子及び該遺伝子産物や関連分子が提 供される。 転写活性化能が飛躍的に向上した植物 3 Roiybタンパク質変異体や、 植物 3 Rmyb 遺伝子の転写産物に対してドミナントネガティプに機能する分子も提供され、 その利用技 術も開発できる。 該遗伝子を標的とした植物細胞の増殖を改変する技術および植物個体の 発生分化を改変する技術が提供され、 改変細胞増殖、 発生分化を保持した植物細胞及び植 物体が得られ、 特定の器官の肥大、 雄性不稔またはストレス耐性の改善等、 好ましい性質 をもつ植物体の開発ができる。 本発明は、 前述の説明及び実施例に特に記載した以外も、 実行できることは明らかであ る。 上述の教示に鑑みて、 本発明の多くの改変及び変形が可能であり、 従ってそれらも本 件添付の請求の範囲の範囲内のものである。 ぐ配列表フリ一テキス ト >
SEQ ID NO : 1, Oligonucleotide to act as a primer for PCR, n stands for inosine in positions 3, 6 and 15 and for any base in position 21
SEQ ID NO : 2, Oligonucleotide to act as a primer for PCR, n stands for inosine
SEQ ID NO : 3, Oligonucleotide to act as a primer for PCR, n stands for inosine
SEQ ID NO : 4, Oligonucleotide to act as a primer for PCR, n stands for inosine
SEQ ID NO : 5, Oligonucleotide to act as a primer for PCR, n stands for inosine
SEQ ID NO : 6, Oligonucleotide to act as a primer for PCR, n stands for inosine
SEQ ID NO 7, Oligonucleotide to act as a primer for PCR, T7 Primer
SEQ ID NO 11, Oligonucleotide to act as a primer for PCR
SEQ ID NO 12, Oligonucleotide to act as a primer for PCR
SEQ ID NO 13, Oligonucleotide to act as a primer for PCR
SEQ ID NO 14, Oligonucleotide to act as a primer for PCR
SEQ ID NO 15, Oligonucleotide to act as a primer for PCR, T3 primer
SEQ ID NO 16, n stands for any base
SEQ ID NO 18, Oligonucleotide to act as a primer for PCE
SEQ ID NO 19, Oligonucleotide to act as a primer for PCR
SEQ ID NO 20, Oligonucleotide to act as a primer for PCR
SEQ ID NO 21, Oligonucleotide to act as a primer for PCR
SEQ .ID NO 24, Oligonucleotide to act as a primer for PCR
SEQ ID NO 25, Oligonucleotide to act as a primer for PCR
SEQ ID NO 26, Oligonucleotide to act as a primer for PCE
SEQ ID NO 27, Oligonucleotide to act as a primer for PCR
SEQ ID NO 28, Oligonucleotide to act as a primer for PCR SEQ ID NO 29 Oligonucleotide to act as a primer for PCE
SEQ ID NO 30 Oligonucleotide to act as a primer for PCR
SEQ ID NO 31 Os3RmybAl OEF
SEQ ID NO 33 RT-PCR Primer for NtmybAl/A2
SEQ ID NO 34 ET-PCE Primer for NtmybAl/A2
SEQ ID NO 35 T-PCR Primer for EF1
SEQ ID NO 36 RT-PCE Primer for EF1 a
SEQ ID NO 37 PCR Primer for VIGS l Mk
SEQ ID NO 38 PCR Primer for VIGS Al DNA
SEQ ID NO 39 PCE Primer for VIGS A2 DNA
SEQ ID NO 40 PCR Primer for VIGS A2 DNA
SEQ ID NO 41 Oligonucleotide to act as a primer for PCR
SEQ ID NO 42 Oligonucleotide to act as a primer for PCR
SEQ ID NO 43 Oligonucleotide to act as a primer for PCE
SEQ ID NO 44: Oligonucleotide to act as a primer for PCR
SEQ ID NO 45: Oligonucleotide to act as a primer for PCR
SEQ ID NO 46 Oligonucleotide to act as a primer for PCR
SEQ ID NO 47: Oligonucleotide to act as a primer for PCR
SEQ ID NO 48 Oligonucleotide to act as a primer for PCR
SEQ ID NO 50 DDBJ Acsession# AB056122, NtmybAl (DDBJ Acsession# BAB70510)
SEQ ID NO : 52 DDBJ Acsession* AB056123, NtmybA2 (DDBJ Acsession* BAB70511)
SEQ ID NO : 54: DDBJ Acsession# AB056124, NtmybB (DDBJ Acsession# BAB70512)
SEQ ID NO 56 Oligonucleotide to act as a primer for PCR
SEQ ID NO 57 Oligonucleotide to act as a primer for PCR
SEQ ID NO 58 Oligonucleotide to act as a primer for PCE
SEQ ID NO 59 Oligonucleotide to act as a primer for PCR
SEQ ID NO 60 Oligonucleotide to act as a primer for PCR
SEQ ID NO 61 Oligonucleotide to act as a primer for PCR
SEQ ID NO 62 Oligonucleotide to act as a primer for PCR
SEQ ID NO 63 Oligonucleotide to act as a primer for PCR
SEQ ID NO 64 Oligonucleotide to act as a primer for PCR
SEQ ID NO 65 Oligonucleotide to act as a primer for PCR
SEQ ID NO 66 Oligonucleotide to act as a primer for PCR
SEQ ID NO 67 Oligonucleotide to act as a primer for PCR
SEQ ID NO 68 Oligonucleotide to act as a primer for PCE
SEQ ID NO 69 Oligonucleotide to act as a primer for PCR
SEQ ID NO 70 Oligonucleotide to act as a primer for PCR
SEQ ID NO 71 Oligonucleotide to act as a primer for PCR
SEQ ID NO 72 Oligonucleotide to act as a primer for PCE
SEQ ID NO 73 Oligonucleotide to act as a primer for PCR
SEQ ID NO 74 Oligonucleotide to act as a primer for PCR
SEQ ID NO 84 Oligonucleotide to act as a primer for PCE
SEQ ID NO 85 Oligonucleotide to act as a primer for PCE
SEQ ' ID NO 86 Oligonucleotide to act as a primer for PCR
SEQ ID NO 87 Oligonucleotide to act as a primer for PCR
SEQ ID NO 89 Designed amino acid sequence
SEQ ID NO 90 Designed amino acid sequence, X stands for any amino acid residue
SEQ ID NO : 91, Designed amino acid sequence, X stands for any amino
acid residue
SEQ ID NO : 92, Designed amino acid sequence, X stands for any amino
acid residue in positions 3, 4, 7 and 8, for S or T in position 2, for
D or E in position 6, and for L or I or V in position 9
SEQ ID NO : 93, Designed amino acid sequence, X stands for H, \ Y or F in 18 & 9 3, for K, H or E in 19, 67, 102, 123, 129, 134 & 150, for S,
T, G, C or A in 32, 54, 77, 135, 138 & 146, for D or E in 33 & 110, for L, I or
V in 34, 49, 61, 65, 76 & 127, and for any residue in others
SEQ ID NO : 94, Designed amino acid sequence, X stands for K or R in 4 & 17, for
L or V in 11, for S or T in 12, for L, I or V in 14, for D or E in 16 & 20, and for any amino acid residue in others
SEQ ID NO : 95, Designed amino acid sequence, X stands for K or R or D or E or H in position 7 and for any amino acid residue in position 5
SEQ ID NO 96, Oligonucleotide to act as a primer for PCR
SEQ ID NO 97, Oligonucleotide to act as a primer for PCR
SEQ ID NO 99, Oligonucleotide to act as a primer for PCR
SEQ ID NO 100, Oligonucleotide to act as a primer for PCR

Claims

請 求 の 範 囲
1 . 対応する野生型の植物細胞に比べて、 植物 3 Emybタンパク質の活性が改変され ている植物細胞。
2 . 植物細胞が、 下記^ >〜(: 0のいずれか一に記載の DNAまたは(g)に記載の組 換え DM若しくはベクターを、 保持するか或いはそれらにより形質転換された植物細胞で ある請求項 1の植物細胞:
(a) 植物 S Rmybタンパク質のアミノ酸配列をコードする DM、
.b) 植物 3 Emybタンパク質のァミノ酸配列をコードする DNAとストリンジヱントな条 件下でハイプリダイズする DMであって、 植物 3 Rmyb夕ンパク質と同等の機能を有するタ ンパク質をコ一ドする ΜΑ、
(c) 植物 3 Emybタンパク質をコードする MAの転写産物を特異的に開裂するリボザィ ム活性を有する ENAをコ一ドする MA、
(d) DNAであって、 植物細胞における発現時に、 共抑制効果により、 植物 3 Rmybタンパ ク質をコードする DMの発現を抑制させる RNAをコードし、 かつ、 該]) Mと 90%以上の相 同性を有する DNA、
(e) MAであって、 植物細胞における発現時に、 ΒΝλ千渉効果により、 植物 3 Emybタン パク質をコ一ドする MAの発現を抑制させる ENAをコ一ドする DM、
(f) 植物 3 Rmybタンパク質をコ一ドする MAの転写産物と相補的なアンチセンス RNA をコードする]) NA、
(g) 下記の(i)から(iii)を含む組換え DNAまたはべクタ一:
(i) 細胞内で転写可能なプロモータ一、
(ii) 該プロモータ一配列にセンス方向またはアンチセンス方向で結合した前記(a)〜(f )のいずれか一に記載の DM、
(iii) RNA分子の転写終結およびポリアデニル化に関するシグナル。
3 . 植物 3 Rmybタンパク質が、 MSA配列を介した G 2 /M期特異的転写を活性化す る転写因子である請求項 1または 2に記載の植物細胞。
4 . MSA配列を介した G 2 ZM期特異的転写を活性化する転写因子である植物 3 Km ybタンパク質が、 SILX JRXEXLX3 4PX2 X5X 1 XX5 K (配列番号: 94、 Xは任意
のアミノ酸であり、 Χ^άΚまたは Eであり、 Χ2はレ Iまたは Vであり、 Χ3は Lま
たは Vであり、 X Sまたは Τであり、 X iDまたは Eである) で表されるアミノ酸 配列を含むタンパク質である請求項 1または 2に記載の植物細胞。
5 . 植物 3 Kmybタンパク質が、 配列番号: 32、 配列番号: 51、 配列番号: 53、 配列 番号: 75または配列番号 76のいずれかのァミノ酸配列である請求項 1から 4のいずれか一 に記載の植物細胞。
6 . 植物 3 Rmybタンパク質が MSA配列を介した G 2 /M期特異的転写を抑制する転 写因子である請求項 1または 2に記載の植物細胞。
7 . MSA配列を介した G 2 /M期特異的転写を抑制する転写因子である植物 3 Rmyb タンパク質が、 SCSSXSX6 (配列番号: 95、 Xは任意のアミノ酸であり、 X6は K、 R、
D、 Eまたは Hである) で表されるアミノ酸配列を含むタンパク質である請求項 1または 2に記載の植物細胞。
8 . 植物 3 Rmybタンパク質が、 配列番号: 55、 配列番号: 77または配列番号: 78の アミ ノ酸配列である請求項 1、 2、 6又は 7に記載の植物細胞。
9 . 対応する野生型の植物細胞に比べて、 植物 3 Rmybタンパク質の発現量が改変さ れて.いる請求項 1から 8のいずれか一に記載の植物細胞。
10. 対応する野生型の植物細胞に比べて、 細胞増殖が改変されている請求項 1から 8のいずれか一に記載の植物細胞。
11. 請求項 1から 10のいずれか一に記載の植物細胞を含む植物体。
12. 請求項 11に記載の植物体の子孫またはクローンである植物体。
13. 対応する野生型の植物体に比べて、 細胞増殖及び/または発生分化が改変され ている請求項 11または 12に記載の植物体。
14. 細胞増殖及び/または発生分化の改変のために用いられる請求項 11または 12に 記載の植物体。 '
15. 対応する野生型タンパク質に比べて、 転写活性化能が増大している植物 3 Eniyb 夕ンパク質をコ一ドする DM。
16. 転写活性化能が増大している植物 3 Emyb夕ンパク質が、 転写活性化能を調節す る調節領域の機能が消失していることを特徴とするタンパク質である請求項 15に記載の DN
Figure imgf000066_0001
17. 機能を消失した該調節領域が配列番号: 89に記載のァミノ酸配列 TPSILKKEHEよ り C末端側であることを特徴とする請求項 16に記載の MA。
18. 機能を消失した該調節領域が配列番号: 90に記載のァミノ酸配列 NXXTPXKLWX (: Xは任意のァミノ酸を示す) 中の Wより C末端側であることを特徴とする請求項 16に記載 の腿。
19. 機能を消失した該調節領域が配列番号: 91に記載のァミノ酸配列 PPRFPSXDXPF (Xは任意のァミノ酸を示す) から C末端までの領域であることを特徴とする請求頊 16に 記載の MA。
20. 機能の消失がアミノ酸の置換、 欠失及び Z又は挿入によって生じたものである 植物 3 Rmybタンパク質'をコ一ドする請求項 15から 19のいずれか一に記載の MA。
21. 機能の消失がアミノ酸の欠失によって生じたものである植物 3 Emyb夕ンパク質 をコードする請求項 15から 19のいずれか一に記載の DM。
22. 内在性の植物 3 Rmybタンパク質に対してドミナントネガティブ活性を示すタン パク質をコ一ドする MA。
23. 植物 3 ¾iybの DM結合領域のァミノ酸配列を含むことを特徵とするタンパク質 をコ一ドする請求項 22に記載の DM。
24. 下記の(i)から(iii)を含む組換え MAまたはベクター:
(i)細胞内で転写可能なプロモータ一、
(ii)該プロモータ一配列にセンス方向またはアンチセンス方向で結合した請求項 15から 23 のいずれか一に記載の DN入、
(iii) ENA分子の転写終結およびポリアデニル化に関するシグナル。
25. 請求項 15から 24のいずれか一に記載の DNAまたは組換え DNA若しくはベクター を、 保持するか或いはそれらにより形質転換された植物細胞。
26. 対応する野生型の植物細胞に比べて、 細胞増殖が改変されている請求項 25に記 載の植物細胞。
27. 請求請 25に記載の植物細胞を含む植物体。
28. 請求項 27に記載の植物体の子孫またはクローンである植物体。
29. 対応する野生型の植物体に比べて、 細胞増殖及び/または発生分化が改変され ている請求項 27または 28に記載の植物体。
30. 下記(a)〜(i)のいずれかに記載の MA:
(a) 配列番号: 32に記載のァミノ酸配列からなるタンパク質をコ一ドする DM、
(b) 配列番号: 31に記載の塩基配列からなる DN
(c) 配列番号: 32に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、 欠 失、 もしくは付加したアミノ酸配列を有し、 それぞれ配列番号: 32に記載のアミノ酸配列 からなるタンパク質と同等の機能を有するタンパク質をコードする DNA、
(d) 配列番号: 31に記載の塩基配列からなる MAとストリンジヱン卜な条件下でハイプ リダイズする DNAであって、 それぞれ配列番号: 32に記載のァミノ酸配列からなる夕ンパ ク質と同等の機能を有するタンパク質をコ一ドする DNA、
(e) 配列番号: 32に記載のアミノ酸配列とスコア (Aligned Score) が 60以上であるァ ミノ酸配列を有するタンパク質をコードする MAであって、 それぞれ配列番号: 32に記載 のアミノ酸配列からなるタンパク質と同等の機能を有するタンパク質をコ一ドする]) NA、 6 6
(f) 前記(a)〜(e)のいずれかに記載の DMの転写産物と相捕的なァンチセンス RNAを コ一ドする MA、
(g) 前記(a)〜(e)のいずれかに記載の MAの転写産物を特異的に開裂するリボザィ厶 活性を有する KMをコードする DNA、
(.h) MAであって、 植物細胞における発現時に共抑制効果により、 前記(a)〜(e)のい ずれかに記載の DMの発現を抑制させる龍 Aをコードし、 かつ前記(a)〜(e— >のいずれか に記載の DNAと 90%以上の相同性を有する MA、
(i DNAであって、 植物細胞における発現時に KM干渉効果により、 前記(a)〜(e )の いずれかに記載の MAの発現を抑制させる をコードし、 かつ前記(a)〜(e)のいずれ かに記載の DMと 20塩基以上連続して同一である DM。
PCT/JP2004/003228 2003-03-12 2004-03-11 細胞増殖、発生分化が改変された植物細胞及び植物体 WO2004081204A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP04719645.6A EP1602717B1 (en) 2003-03-12 2004-03-11 Plant and plant cell having been modified in cell multiplication and development/differentiation
NZ542274A NZ542274A (en) 2003-03-12 2004-03-11 Plant and plant cell having been modified in cell multiplication and development/differentiation
CA2518811A CA2518811C (en) 2003-03-12 2004-03-11 Plant cells and plant bodies with modified cell growth, development and differentiation
BRPI0408254-0A BRPI0408254A (pt) 2003-03-12 2004-03-11 células de plantas e corpos de plantas com crescimento celular, desenvolvimento e diferenciação modificados
US10/548,484 US7563947B2 (en) 2003-03-12 2004-03-11 Plant cells and plant bodies with modified cell growth, development and differentiation
CN2004800128495A CN1788078B (zh) 2003-03-12 2004-03-11 细胞增殖、发育分化受到改变的植物细胞和植物
AU2004219801A AU2004219801B2 (en) 2003-03-12 2004-03-11 Plant and plant cell having been modified in cell multiplication and development/differentiation
ES04719645.6T ES2531479T3 (es) 2003-03-12 2004-03-11 Plantas y células vegetales que se han modificado en multiplicación celular y desarrollo/diferenciación
DK04719645.6T DK1602717T3 (en) 2003-03-12 2004-03-11 PLANT AND PLANT CELLS THAT HAVE BEEN MODIFIED IN A CELL PROMOTION AND DEVELOPMENT / DIFFERENTIZATION
IL170789A IL170789A (en) 2003-03-12 2005-09-11 Plant cells and plant bodies with modified cell growth, development and differentiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-66064 2003-03-12
JP2003066064 2003-03-12

Publications (1)

Publication Number Publication Date
WO2004081204A1 true WO2004081204A1 (ja) 2004-09-23

Family

ID=32984525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003228 WO2004081204A1 (ja) 2003-03-12 2004-03-11 細胞増殖、発生分化が改変された植物細胞及び植物体

Country Status (13)

Country Link
US (1) US7563947B2 (ja)
EP (1) EP1602717B1 (ja)
CN (1) CN1788078B (ja)
AU (1) AU2004219801B2 (ja)
BR (1) BRPI0408254A (ja)
CA (1) CA2518811C (ja)
DK (1) DK1602717T3 (ja)
ES (1) ES2531479T3 (ja)
IL (1) IL170789A (ja)
NZ (1) NZ542274A (ja)
PT (1) PT1602717E (ja)
RU (1) RU2349642C2 (ja)
WO (1) WO2004081204A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687951B (zh) * 2011-07-18 2019-08-02 德福根有限公司 对昆虫害虫具有抗性的植物
BR112014022704A2 (pt) 2012-03-13 2017-08-22 Pioneer Hi Bred Int Método para aumentar a produtividade em plantas sob condições limitadoras de nitrogênio, método para a produção de uma planta transigência, molécula de acido nucleico isolada, cassete de expressão, vetor, método para gerar mutantes de tls1
WO2013138358A1 (en) 2012-03-13 2013-09-19 Pioneer Hi-Bred International, Inc. Genetic reduction of male fertility in plants
CA2867377A1 (en) 2012-03-13 2013-09-19 Pioneer Hi-Bred International, Inc. Genetic reduction of male fertility in plants
CN106967670A (zh) * 2017-05-19 2017-07-21 江苏省农业科学院 一种杜梨原生质体的制备方法
CN112391395A (zh) * 2020-12-03 2021-02-23 吉林省农业科学院 一种大豆不育基因突变体、应用及大豆不育系的构建方法
CN117050154B (zh) * 2023-10-10 2024-04-09 广东省农业科学院作物研究所 一种提高烟草抗高温、抗旱及耐盐胁迫性能的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4886753A (en) 1986-01-28 1989-12-12 A/S De Danske Sukkerfabrikker Method for the expression of genes in plants, parts of plants, and plant cell cultures, and DNA fragments, plasmids, and transformed microorganisms to be used when carrying out the method, as well as the use thereof for the expression of genes in plants
US4943674A (en) 1987-05-26 1990-07-24 Calgene, Inc. Fruit specific transcriptional factors
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5097025A (en) 1989-08-01 1992-03-17 The Rockefeller University Plant promoters
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
US5391725A (en) 1989-12-08 1995-02-21 New York University Medical Center Organ-specific plant promoter sequences
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
US5495007A (en) 1994-04-29 1996-02-27 Thompson; Gary A. Phloem-specific promoter
US5618988A (en) 1990-03-02 1997-04-08 Amoco Corporation Enhanced carotenoid accumulation in storage organs of genetically engineered plants
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5646333A (en) 1994-09-02 1997-07-08 Drexel University Plant promoter useful for directing the expression of foreign proteins to the plant epidermis
US5824857A (en) 1991-11-08 1998-10-20 Washington University Plant promoter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002341542A1 (en) * 2001-06-22 2003-03-03 Syngenta Participations Ag Transcription factors of cereals
EP1402038A2 (en) 2001-06-22 2004-03-31 Syngenta Participations AG Identification and characterization of plant genes
WO2003013228A2 (en) 2001-08-09 2003-02-20 Mendel Biotechnology, Inc. Biochemistry-related polynucleotides and polypeptides in plants

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4886753A (en) 1986-01-28 1989-12-12 A/S De Danske Sukkerfabrikker Method for the expression of genes in plants, parts of plants, and plant cell cultures, and DNA fragments, plasmids, and transformed microorganisms to be used when carrying out the method, as well as the use thereof for the expression of genes in plants
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (ja) 1986-01-30 1990-11-27 Cetus Corp
US4943674A (en) 1987-05-26 1990-07-24 Calgene, Inc. Fruit specific transcriptional factors
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5110732A (en) 1989-03-14 1992-05-05 The Rockefeller University Selective gene expression in plants
US5097025A (en) 1989-08-01 1992-03-17 The Rockefeller University Plant promoters
US5391725A (en) 1989-12-08 1995-02-21 New York University Medical Center Organ-specific plant promoter sequences
US5618988A (en) 1990-03-02 1997-04-08 Amoco Corporation Enhanced carotenoid accumulation in storage organs of genetically engineered plants
US5459252A (en) 1991-01-31 1995-10-17 North Carolina State University Root specific gene promoter
US5824857A (en) 1991-11-08 1998-10-20 Washington University Plant promoter
US5401836A (en) 1992-07-16 1995-03-28 Pioneer Hi-Bre International, Inc. Brassica regulatory sequence for root-specific or root-abundant gene expression
US5495007A (en) 1994-04-29 1996-02-27 Thompson; Gary A. Phloem-specific promoter
US5633363A (en) 1994-06-03 1997-05-27 Iowa State University, Research Foundation In Root preferential promoter
US5646333A (en) 1994-09-02 1997-07-08 Drexel University Plant promoter useful for directing the expression of foreign proteins to the plant epidermis

Non-Patent Citations (152)

* Cited by examiner, † Cited by third party
Title
"Methods in Enzymology", ACADEMIC PRESS
"METHODS IN ENZYMOLOGY", vol. 101, 1983, ACADEMIC PRESS
"METHODS IN ENZYMOLOGY", vol. 218, 1993, ACADEMIC PRESS
"METHODS IN ENZYMOLOGY", vol. 327, article "Applications of Chimeric Genes and Hybrid Proteins, Part B: Cell Biology and Physiology"
"METHODS IN ENZYMOLOGY", vol. 328, 2000, ACADEMIC PRESS, article "Applications of Chimeric Genes and Hybrid Proteins, Part C: Protein-Protein Interactions and Genomics"
"Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 79 - 97
A. R. OLIPHANT ET AL., GENE, vol. 44, 1986, pages 177
A. TRAMONTANO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 83, 1986, pages 6736 - 6740
A.M.DZIANOTT; J.J.BUJARSKI, PROC. NATL. ACAD. SCI. USA., vol. 86, 1989, pages 4823
A.R.VAN DER KROL ET AL., NATURE, vol. 333, 1988, pages 866
AGUAN ET AL., MOL. GEN GENET., vol. 240, 1993, pages 1
AKAMA ET AL., PLANT CELL REPORTS, vol. 12, 1992, pages 7 - 11
ANGELL ET AL., PLANT J., vol. 20, 1999, pages 357 - 362
AOYAMA ET AL., PLANT J., vol. 11, 1997, pages 605
ATSUSHI MIYAWAKI: "Jikken Igaku, suppl., Postgenome Jidai no Jikken Kouza 3. GFP and Bioimaging", 2000, YOUDOSHA
BAIMA ET AL., DEVELOPMENT, vol. 121, 1995, pages 4171
BILANG ET AL.: "Plant Molecular Biology Manual", 1994, pages: A1,1 - 16
BRODEUR ET AL.: "Monoclonal Antibody Production Techniques and Applications", 1987, MARCEL DEKKER, INC., pages: 51 - 63
C. WOOD ET AL., NATURE, vol. 314, 1985, pages 446 - 449
C.A.GROSSHANS; R.T.CECH, NUCLEIC ACIDS RES., vol. 19, 1991, pages 3875
CARTER ET AL., NUCL. ACIDS RES., vol. 13, 1986, pages 4331
CHIU ET AL., CURR BIOL, vol. 6, no. 3, 1 March 1996 (1996-03-01), pages 325 - 30
CHU ET AL., SIENTIA SINICA, vol. 18, 1975, pages 659
CHUNG ET AL., FEBS LETT., vol. 362, 1995, pages 215
CLOUGH ET AL., PLANT J., vol. 16, 1998, pages 735
COLE ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, INC., pages: 77 - 96
CORNEJO ET AL., PLANT MOL. BIOL., vol. 23, 1993, pages 567
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085
CURR. BIOL., vol. 6, 1996, pages 810
CURR. BIOL., vol. 7, 1997, pages R793
D. M. GLOVER ET AL.: "DNA Cloning", 2nd ed.,", vol. 1, 1995, IRL PRESS, OXFORD UNIVERSITY PRESS
D. M. GLOVER ET AL.: "DNA Cloning, 2nd ed.,", vol. 1, 4, 1995, IRL PRESS, OXFORD UNIVERSITY PRESS
DASH ET AL., GENES DEV., vol. 10, 1996, pages 1858
DOERNER ET AL., NATURE, vol. 380, 1996, pages 520
EVAN ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 5, 1985, pages 3610 - 3616
EVANS ET AL., INT. REV. CYTOL., vol. 33, 1983, pages 53
FIELD ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 8, 1988, pages 2159 - 2165
FUJIMURA ET AL., PLANT TISSUE CULTURE LETT., vol. 2, 1995, pages 74
G. KOHLER; C. MILSTEIN, NATURE, vol. 256, 1975, pages 495 - 497
G. M. ATTARDI ET AL.: "Methods in Enzymology", vol. 260, 1995, ACADEMIC PRESS, article "Mitochondrial Biogenesis and Genetics, Part A"
G. M. ATTARDI ET AL.: "Methods in Enzymology", vol. 264, 1996, ACADEMIC PRESS
GOLDBERG ET AL., SCIENCE, vol. 240, 1988, pages 1460
GORDEN-KAMM ET AL., PLANT CELL, vol. 2, 1990, pages 603
H. A. ERLICH: "PCR technology", 1989, STOCKTON PRESS
HAJDUKIEWICZ ET AL., PLANT MOL. BIOL., vol. 25, 1994, pages 989
HANZAWA ET AL., THE EMBO JOURNAL, vol. 19, 2000, pages 4248
HIEI ET AL., PLANT J., vol. 6, 1994, pages 271
HOOD ET AL., TRANSGENIC RES., vol. 2, 1993, pages 218
HOPP ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1204 - 1210
INGRID ET AL., PLANT CELL, vol. 4, 1992, pages 253
ISHIGURO ET AL., PLANT CELL, vol. 13, 2001, pages 2191
ITO ET AL., PLANT CELL, vol. 10, 1998, pages 331
ITO ET AL., PLANT CELL, vol. 13, 2001, pages 1891
ITO ET AL., PLANT J., vol. 11, 1997, pages 983
ITO M. ET AL: "G2/M-PHASE-SPECIFIC TRANSCRIPTION DURING THE PLANT CELL CYCLE IS MEDIATED BY C-MYB-LIKE TRANSCRIPTION FACTORS", THE PLANT CELL, vol. 13, 2001, pages 1891 - 1905, XP002964309 *
J. A. WELLS ET AL., GENE, vol. 34, 1985, pages 315
J. BUKOVSKY ET AL., HYBRIDOMA, vol. 6, 1987, pages 219 - 228
J. C. GLORIOSO ET AL.: "Methods in Enzymology", vol. 306, 1999, ACADEMIC PRESS
J. H. MILLER: "Methods in Enzymology", vol. 204, 1991, ACADEMIC PRESS
J. L. CAMPBELL: "Methods in Enzymology", vol. 262, 1995, ACADEMIC PRESS
J. SAMBROOK ET AL.,: "MOLECULAR CLONING A LABORATORY MANUAL 3rd Edition", 2001
J. SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual(2nd Edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS
J. SAMBROOK; E. F. FRITSCH; T. MANIATIS: "Molecular Cloning: A Laboratory Manual(2nd edition)"", 1989, COLD SPRING HARBOR LABORATORY PRESS
J. TAYLOR ET AL., NUCLEIC ACIDS RES., vol. 13, 1985, pages 8765
J. THORNER ET AL.: "Methods in Enzymology", vol. 326, article "Applications of Chimeric Genes and Hybrid Proteins, Part A: Gene Expression and Protein Purification"
J.J. LANGONE ET AL.: "Immunochemical Techniques, Part I: Hybridoma Technology and Monoclonal Antibodies", vol. 121, 1986, ACADEMIC PRESS, article "Methods in Enzymology"
J.M.BUZAYAN, NATURE, vol. 323, 1986, pages 349
J.R.ECKER; R.W.DAVIS, PROC. NATL. ACAD. USA, vol. 83, 1986, pages 5372
J.S. HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883
JAPANESE BIOCHEMICAL SOCIETY: "Shin-Seikagaku Jikken Koza 2, Kakusan III", 1992, TOKYO KAGAKU DOZIN CO. LTD.
JAPANESE BIOCHEMICAL SOCIETY: "Zoku-Seikagaku Jikken Koza 1, Idenshi Kenkyu-Hou II", 1986, TOKYO KAGAKU DOZIN CO. LTD.
JBS: "Shin-Seikagaku Jikken Koza 2, Kakusan III", 1992, TOKYO KAGAKU DOZIN CO. LTD., article "Recombinant DNA technique", pages: 233
JBS: "Zoku-Seikagaku Jikken Koza 1, Idenshi Kenkyuhou II", 1986, TOKYO KAGAKU DOZIN CO. LTD., pages: L05
K.TAIRA ET AL., NUCLEIC ACIDS RES., vol. 19, 1991, pages 5125
K.TAIRA ET AL., PROTEIN ENG., vol. 3, 1990, pages 733
KOZBOR ET AL., IMMUNOLOGY TODAY, vol. 4, 1983, pages 72 - 79
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001
KRANZ ET AL., PLANT J., vol. 21, 2000, pages 231
L. RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327
LAZZERI ET AL., THEOR. APPL. GENET, vol. 81, 1991, pages 437
LUTZ-FREYERMUTH ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 6393 - 6397
M. A. FROHMAN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
M. A. INNIS ET AL.: "PCR Protocols: a guide to methods and applications", 1990, ACADEMIC PRESS
M. DAINO ET AL., ANAL. BIOCHEM., vol. 166, 1987, pages 223 - 229
M. J. MCPHERSON, P. QUIRKE AND G. R. TAYLOR: "PCR: a practical approach", 1991, IRL PRESS
M. KOIZUMI ET AL., FEBS LETT., vol. 228, 1988, pages 225
M. KOIZUMI ET AL., FEBS LETT., vol. 239, 1988, pages 285
M. KOIZUMI ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 7059
M. LAN PHILLIPS: "Methods in Enzymology", vol. 313, 314, 1999, ACADEMIC PRESS, article "Antisense Technology, Part B: Applications"
M.A. BOSS ET AL., NUCL. ACIDS RES., vol. 12, 1984, pages 3791 - 3806
MANIATIS ET AL.: "Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS
MANIATIS T. ET AL.: "Molecular cloning", COLD SPRING HARBOR LABORATORY PRESS
MARTIN ET AL., SCIENCE, vol. 255, 1992, pages 192 - 194
MASAAKI UMEDA: "KIKAN KEISEI NI OKERU SAIBO BUNRETSU NO SEIGYO KIKO", PROTEIN , NUCLEIC ACID AND ENZYME, vol. 47, 2002, pages 1628 - 1632, XP002982593 *
MEIER ET AL., PLANT PHYSIOL., vol. 107, 1995, pages 1105
MITSUDA ET AL., PLANT MOL. BIOL, vol. 46, 2001, pages 185
N.YUYAMA ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 186, 1992, pages 1271
NAGATA ET AL., MOL. GEN. GENET., vol. 184, 1981, pages 161
NAGATA; TAKEBE, PLANTA, vol. 99, 1971, pages 12
NATURE, vol. 314, 1985, pages 452 - 454
NISHIHAMA ET AL., CELL, vol. 109, 2002, pages 87
NISHIHAMA ET AL., GENES DEV., vol. 15, 2000, pages 352
NISHIUCHI ET AL., PLANT MOL. BIOL., vol. 29, 1995, pages 599
NUNDY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 1406
ODELL ET AL., NATURE, vol. 313, 1985, pages 810
OHSHIMA ET AL., PLANT CELL, vol. 2, 1990, pages 95
OKADA M. ET AL: "MYB CONTROLS G2/M PROGRESSION BY INDUCING CYCLIN B EXPRESSION IN THE DROSOPHILA EYE IMAGINAL DISC.", THE EMBO JOURNAL, vol. 21, 2002, pages 675 - 684, XP002982594 *
P. M. CONN: "Methods in Enzymology", vol. 302, 1999, ACADEMIC PRESS
P.T. JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525
PABORSKY ET AL., PROTEIN ENGINEERING, vol. 3, no. 6, 1990, pages 547 - 553
R. SAIKI ET AL., SCIENCE, vol. 230, 1985, pages 1350
R. WU ET AL.: "Methods in Enzymology", vol. 100
R. WU ET AL.: "Methods in Enzymology", vol. 153
R. WU ET AL.: "METHODS IN ENZYMOLOGY", vol. 154
R. WU, L. GROSSMAN,: "Methods in Enzymology", vol. 100, 1983, ACADEMIC PRESS, pages: 457,468
R. WU, L. GROSSMAN,: "Methods in Enzymology", vol. 154, 1987, ACADEMIC PRESS, pages: 350,367
R. WU: "METHODS IN ENZYMOLOGY", vol. 155, 1987, ACADEMIC PRESS, article "Recombinant DNA, Part F"
R. WU: "Methods in Enzymology", vol. 155, 1987, ACADEMIC PRESS, pages: 568
R. WU: "Methods in Enzymology", vol. 217
R. WU: "Methods in Enzymology", vol. 68, 1980, ACADEMIC PRESS, article "Recombinant DNA"
R.E. BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
R.WU ET AL.: "Methods in Enzymology", vol. 216, 1992, ACADEMIC PRESS, article "Recombinant DNA, Part G"
ROGERS ET AL., PLANT MOL. BIOL., vol. 45, 2001, pages 577
ROGERS; BENDICH, PLANT MOL. BIOL., vol. 5, 1985, pages 69
S. BIOCCA ET AL., EMBO J, vol. 9, 1990, pages 101 - 108
S. MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
S. WEISSMAN: "Methods in Enzymology", vol. 303, 1999, ACADEMIC PRESS
SAIKI ET AL., SCIENCE, vol. 239, 1988, pages 487
SANFORD ET AL., J. PART. SCI. TECH., vol. 5, 1987, pages 27
SASAKI T. ET AL: "THE GENOME SEPUENCE AND STRUCTURE OF RICE CHROMOSOME 1", NATURE, vol. 420, 2002, pages 312 - 316, XP002980607 *
SCHULZE-LEFERT ET AL., EMBO J., vol. 8, 1989, pages 651
See also references of EP1602717A4 *
SHILLITO ET AL., BIO/TECHNOLOGY, vol. 7, 1989, pages 581
SKINNER ET AL., J. BIOL. CHEM., vol. 266, 1991, pages 15163 - 15166
SOUTHERN, J. MOL. BIOL., vol. 98, 1975, pages 503
STRACKE ET AL., CURR. OPIN. PLANT BIOL., vol. 4, 2001, pages 447
STRACKE R ET AL: "THE R2R3 -MYB GENE FAMILY IN ARABIDOPSIS THALIANA", CURRENT OPINION IN PLANT BIOLOGY, vol. 4, 2001, pages 447 - 456, XP002982592 *
T. GRUNDSTROEM ET AL., NUCLEIC ACIDS RES., vol. 13, 1985, pages 3305
TADA ET AL., THEOR. APPL. GENET, vol. 80, 1990, pages 475
TUCHIYA ET AL., PLANT MOL. BIOL, vol. 26, 1994, pages 1737
TWELLR ET AL., DEVELOPMENT, vol. 109, 1990, pages 705
V.T. OI ET AL., BIOTECHNIQUES, vol. 4, 1986, pages 214 - 221
VAN BREUSEGEM ET AL., PLANTA, vol. 193, 1994, pages 57
VISSER ET AL., THEOR. APPL. GENET, vol. 78, 1989, pages 594
WALKER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 6624
WELLS ET AL., GENE, vol. 34, 1985, pages 315
WELLS ET AL., PHILOS. TRANS. R. SOC. LONDON SER A, vol. 317, 1986, pages 415
XU ET AL., PLANT MOL. BIOL., vol. 30, 1996, pages 387
Y.KIKUCHI; N.SASAKI, NUCLEIC ACIDS RES., vol. 19, 1992, pages 6751
ZHANG ET AL., PLANT CELL, vol. 3, 1991, pages 1155
ZOLLER ET AL., NUCL. ACIDS RES., vol. 10, 1987, pages 6487
ZUO ET AL., PLANT J., vol. 24, 2000, pages 265

Also Published As

Publication number Publication date
CN1788078B (zh) 2010-05-12
EP1602717B1 (en) 2014-12-31
RU2005131582A (ru) 2006-05-10
ES2531479T3 (es) 2015-03-16
AU2004219801A1 (en) 2004-09-23
CA2518811A1 (en) 2004-09-23
EP1602717A1 (en) 2005-12-07
US20060107343A1 (en) 2006-05-18
NZ542274A (en) 2009-08-28
PT1602717E (pt) 2015-02-13
IL170789A (en) 2010-12-30
BRPI0408254A (pt) 2006-03-01
CN1788078A (zh) 2006-06-14
US7563947B2 (en) 2009-07-21
DK1602717T3 (en) 2015-02-16
CA2518811C (en) 2013-09-17
EP1602717A4 (en) 2007-11-07
AU2004219801B2 (en) 2009-08-06
RU2349642C2 (ru) 2009-03-20

Similar Documents

Publication Publication Date Title
Borghi et al. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production
EP1928226A2 (en) Stress tolerance in plants
US20200354735A1 (en) Plants with increased seed size
AU2018253488B2 (en) Methods of controlling seed size in plants
Xiang et al. Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata
Lago et al. The Arabidopsis TFIID factor AtTAF6 controls pollen tube growth
Lei et al. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis
WO2004081204A1 (ja) 細胞増殖、発生分化が改変された植物細胞及び植物体
CA2913329A1 (en) Stress tolerant plants
WO2014118123A1 (en) Methods and means for increasing stress tolerance and biomass in plants
US8461414B2 (en) Gene having endoreduplication promoting activity
US8569580B2 (en) Transformed plants or algae with highly expressed chloroplast protein BPG2
US20040006783A1 (en) Compositions and methods for modulating Rop GTPase activity in plants
US20020152495A1 (en) Plants having seedless fruit
Solís-Guzmán et al. Expression analysis of the Arabidopsis thaliana AtSpen2 gene, and its relationship with other plant genes encoding Spen proteins
JP2010183894A (ja) 冠水応答関連遺伝子及びその利用
KR20100090135A (ko) 생장 증진, 내염성 및 노화 조절에 관여하는 고추의 CaHB1 유전자 및 그의 용도
JP2004290193A (ja) 細胞増殖、発生分化が改変された植物細胞及び植物体
EP1116793A1 (en) Homeobox genes encoding proteins participating in differentiation
Jordano et al. Stress tolerant plants
WO2001014519A2 (en) Methods and compositions for regulating developmental identity
JP2004236653A (ja) 植物の隔膜形成体の形成制御及び雄性不稔植物作出の方法
JP2006122025A (ja) 花弁の伸長に関与する新規遺伝子およびその利用
JP2003526324A (ja) 体細胞性植物組織を選択的かつ随意に復帰可能に退化させる方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 542274

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2518811

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 170789

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 05092062

Country of ref document: CO

Ref document number: 2004219801

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004719645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004219801

Country of ref document: AU

Date of ref document: 20040311

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004219801

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005131582

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006107343

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048128495

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004719645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0408254

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10548484

Country of ref document: US