WO2001006549A1 - Exposure method and device therefor - Google Patents

Exposure method and device therefor Download PDF

Info

Publication number
WO2001006549A1
WO2001006549A1 PCT/JP2000/004707 JP0004707W WO0106549A1 WO 2001006549 A1 WO2001006549 A1 WO 2001006549A1 JP 0004707 W JP0004707 W JP 0004707W WO 0106549 A1 WO0106549 A1 WO 0106549A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection system
exposure
charged particle
movable member
particle beam
Prior art date
Application number
PCT/JP2000/004707
Other languages
French (fr)
Japanese (ja)
Inventor
Nobutaka Magome
Motokatsu Imai
Yukio Kakizaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU60152/00A priority Critical patent/AU6015200A/en
Publication of WO2001006549A1 publication Critical patent/WO2001006549A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Definitions

  • the present invention relates to a lithographic apparatus for manufacturing a device such as a semiconductor device, an image pickup device (CCD or the like), a liquid crystal display device, a plasma display device, or a thin film magnetic head.
  • the present invention relates to an exposure method and apparatus used for transferring onto a substrate, especially charged particles that transfer various patterns such as a mask pattern or a character pattern onto a substrate via a charged particle beam such as an electron beam or an ion beam. It is suitable for use in a line transfer device.
  • a charged particle beam transfer apparatus capable of improving both the resolution of a transfer pattern and the throughput (productivity).
  • a transfer device is equivalent to one die corresponding to one integrated circuit (semiconductor chip, etc.) formed on one wafer as a photosensitive substrate, or
  • a batch transfer type apparatus for transferring a pattern of a plurality of dies from a mask onto a wafer coated with a resist sensitive to a charged particle beam has been studied.
  • the circuit pattern of each layer of one die on a substrate such as a wafer is, for example, a plurality of types of lines having a predetermined pitch • It can also be formed by combining and transferring images of a predetermined pattern (hereinafter referred to as “character pattern”) such as an and space pattern or a wiring pattern having a predetermined shape. it can. Therefore, a “character pattern transfer method” is used in which a large number of types of character patterns are formed in advance on a mask, and images of one character pattern selected from these are sequentially transferred onto a substrate in a predetermined arrangement. Development of a particle beam transfer device is being performed. For convenience of explanation, an area where a pattern image (for example, a reduced image) of one die is transferred on the substrate is called a shot area. The surface of the substrate is divided vertically and horizontally into a number of shot areas at predetermined pitches.
  • the ⁇ division transfer method '' is used to divide the circuit pattern to be transferred to the substrate into a plurality of sub-fields smaller than the size equivalent to one die, and transfer the reduced image of the pattern for each sub-field sequentially to the substrate. Development of a particle beam transfer device is also under consideration. Also in this division transfer method, it is desirable that the field of view of the projection system be as large as possible in order to transfer the pattern of each sub-field of view onto the substrate at high speed.
  • the MTP method is a method in which a deflector performs reduced projection using a projection system while the orbit of the charged particle beam is substantially aligned with the optical axis.
  • the deflector may use a charged particle beam. It is also possible to shift the position.
  • the deflector alone cannot transfer the image of the pattern corresponding to each position in one wide shot area on the substrate sequentially, so that conventionally, the substrate is mechanically moved by the substrate stage. This changed the transfer position of the image on the substrate. Also, the transfer position on the substrate was corrected by a deflector provided on the substrate as needed.
  • the substrate stage was mechanically driven two-dimensionally.
  • the smallest exposed area exposed by the image of one minimum unit pattern on the mask is called a "sub-exposure area”.
  • the images of the corresponding patterns are sequentially transferred into the elongated “main exposure region” having a width corresponding to approximately one sub-exposure region on the substrate, and then transferred.
  • the projection system in order to increase the field of view of the projection system, a method of simply enlarging the projection system is conceivable, but enlarging the projection system without increasing the aberration significantly increases the manufacturing cost. There is fear. Furthermore, since the optical path of the charged particle beam of the charged particle beam transfer device needs to be evacuated, the projection system should be as small as possible in order to make the vacuum vessel as small as possible and reduce the manufacturing cost. desirable.
  • the projected image is transferred with low aberration within a width of one to two sub-exposure areas on the substrate. Since the position could be shifted, when the substrate stage was scanned in the first direction using this electronic MOL method, the transfer was performed, for example, to the main exposure area with the width of two sub-exposure areas. If we do, the throughput can be improved by a factor of two. However, even in this case, it is necessary to repeat scanning by the substrate stage many times in order to expose the entire one shot region, and therefore, there has been a demand for the development of a technology for greatly improving the throughput.
  • a fourth object of the present invention is to provide an exposure apparatus capable of performing such an exposure method.
  • a fifth object of the present invention is to provide a device manufacturing method capable of manufacturing a high-performance device with high throughput by using the exposure method. Disclosure of the invention
  • the first exposure method comprises irradiating a first object (M) with a charged particle beam and projecting a charged particle beam having passed through the pattern of the first object (W) through a projection system (PL).
  • a projection system PL
  • At least a part of the The member (PL; 29) is displaced.
  • the movable members of the projection system are moved in a direction perpendicular to the normal line of the second object (W), or When displaced by 1, Ay2 in the direction perpendicular to the optical axis, the transfer position on the second object moves by ⁇ 1, ⁇ Y2 along the direction of displacement.
  • the method of mechanically displacing at least a part of the movable member of the projection system in this manner is hereinafter referred to as a “mechanical moving objective lens (M ⁇ L) method”.
  • this mechanical MOL method it is possible to reduce, for example, a reduced image of a pattern corresponding to a plurality of different positions on the second object, that is, to a wide area, without increasing the size of the projection system. Can be transferred.
  • the electromagnetic field in the projection system is electrically changed, and the irradiation position of the charged particle beam on the second object is changed. Is desirably corrected.
  • the conventional electronic MOL method is used in combination with the mechanical M ⁇ L method of the present invention. For example, as shown in Fig. 11, when at least a part of the projection system (PL) is mechanically displaced in a predetermined direction, the distribution of the electromagnetic field of the electromagnetic lens system constituting the projection system is changed.
  • the second object (W) By changing the position (27 A, 27 B, 29 A, 29 B) shown by the original dotted line to the position (27, 29) shown by the solid line, the second object (W)
  • the transfer position can be set to the same position (54 ⁇ ). Therefore, the accuracy of the transfer position on the second object is improved, and the overlay accuracy is improved during the overlay exposure.
  • a plurality of different patterns are formed on the first object, and the charged particle beam passing through the pattern selected from the first object according to the irradiation position on the second object is obtained. It is desirable to lead to a projection system. This corresponds to a case where the exposure method of the present invention is applied to a character pattern transfer method, a division transfer method, or the like.
  • the movable member is displaceable in a first direction, and the second object is moved in a second direction substantially orthogonal to the first direction. It is preferable that the pattern of the first object is transferred to an area on the second object that is longer than the moving distance of the movable member in the first direction. This further improves throughput.
  • the first object (M) is irradiated with a charged particle beam, and the charged particle beam passing through the pattern of the first object is projected through a projection system (PL).
  • a projection system PL
  • a plurality of different positions on the second object are each irradiated with a charged particle beam having passed through a corresponding pattern on the first object. Vibrates at least a part of the movable members (PL; 29) in a predetermined direction.
  • the second exposure method at least a part of the movable members of the projection system is vibrated in a predetermined direction by applying the mechanical moving objective lens (M ⁇ L) method of the present invention. Therefore, the pattern transfer position on the second object can be moved at high speed along the predetermined direction. At this time, at least some of the movable members of the projection system can be considerably reduced in weight compared to the stage for positioning the second object, so that the stage is mechanically moved in the predetermined direction. Exposure on the second object can be performed with greatly improved throughput compared to driving along.
  • M ⁇ L mechanical moving objective lens
  • the second object in synchronization with oscillating the movable member in the first direction (Y direction), the second object is moved in a second direction (X direction) crossing the first direction, It is desirable to irradiate a two-dimensional area on the second object with a charged particle beam having passed through a corresponding pattern on the first object.
  • the vibration in the first direction by the mechanical MOL method and the mechanical driving of the second object in the second direction for example, one of the When exposing the shot area (area for one die), the number of times the second object is mechanically driven in the second direction can be reduced. Therefore, the throughput of the exposure process is improved.
  • the transfer position of the pattern on the two objects deviates mainly from the target position (54A, 54B,...) In the second direction as shown by the locus (1 19). Therefore, the transfer position on the second object is corrected by correcting the transfer position of the pattern mainly in the second direction by combining the electronic MOL method so as to correct the displacement amount. For example, as shown by the locus (1 2 1) in Fig. 13 (D), the robot moves along the target position.
  • the transfer positions have reached the target positions (54A, 54B,...), Respectively. Then, by irradiating the charged particle beam for a very short time at that time tl, t 2,..., The pattern corresponding to the target position can be transferred.
  • a photosensitive material is coated on the second object, it is necessary to irradiate the charged particle beam onto the second object for a predetermined exposure time ⁇ t.
  • the first direction Y
  • the vibration frequency of the movable object may be controlled according to the sensitivity of the second object. Assuming that the intensity of the charged particle beam is constant, if the sensitivity of the second object is low, the exposure time ⁇ t becomes long, so that the vibration frequency needs to be lowered. On the other hand, when the sensitivity of the second object is high, the exposure time ⁇ t can be shortened, so that the vibration frequency The number can be higher.
  • the intensity of the charged particle beam source can be stably controlled, it is desirable to control the intensity of the charged particle beam according to the sensitivity of the second object.
  • the vibration frequency of the movable member can be kept constant, it is easy to control the mechanical drive system.
  • the position of the center of gravity of the mechanical system including the movable member and the balancer G It is desirable that the balancer be vibrated in phase opposite to that of the movable member so that the movable member does not move. Thereby, the movable member can be more stably vibrated, and the accuracy of the transfer position on the second object is improved.
  • the first exposure apparatus irradiates a first object (M) with a charged particle beam, and projects a charged particle beam having passed through the pattern of the first object through a projection system (PL).
  • a mechanical drive system at least one of the movable members of the projection system is displaced
  • 32 A, 32 B, 34 are provided.
  • a second object stage (46) for moving the second object with respect to the projection system in a plane substantially perpendicular to the optical axis of the projection system.
  • an electronic drive system for electrically changing an electromagnetic field in the projection system (35)
  • a control system for controlling the operation of the electronic drive system according to the operation of the second object stage and the operation of the mechanical drive system.
  • the first object is moved to the optical axis of the projection system.
  • the first exposure method of the present invention can be performed.
  • the second exposure apparatus irradiates the first object (M) with a charged particle beam, and emits a charged particle beam having passed through the pattern of the first object via a projection system (PL). W), the mechanical drive system (3) that vibrates at least some of the movable members of the projection system in order to move the irradiation position of the charged particle beam on the second object. 2 A, 32 B, 34).
  • the mechanical drive system vibrates the movable member along the first direction (Y direction), and a corresponding pattern on the first object is stored in a two-dimensional area on the second object.
  • a second object stage (46) for moving the second object in a second direction (X direction) intersecting the first direction.
  • an electronic drive system (35) for electrically changing an electromagnetic field in the projection system is provided, and the movable member is provided.
  • the charged particle beam via the electronic drive system in synchronism with the operation of oscillating the beam and the movement of the stage for the second object. It is desirable to correct the irradiation position on the second object.
  • the mechanical drive system includes, as an example, first and second leaf spring members (32A, 32B) arranged so as to sandwich the movable member and having mobility, and a support member for supporting the leaf spring member. (57A, 57B) and driving members (111A to 11D, 112A to 112D) for driving the movable member in a direction in which the two leaf spring members have flexibility. It has. Further, the mechanical drive system includes a balancer (128) arranged so as to surround the movable member, and a balancer holding member (32A to 32A) which holds the movable member and the balancer in a relatively displaceable state.
  • balancer 32D, 32E, 32F, and a balancer driving member (111A, 1111C, 129A, 129C) for driving the balancer. It is desirable that the balancer be vibrated in a phase opposite to that of the movable member so that the center of gravity (G) of the mechanical system including the movable member and the balancer is not substantially displaced.
  • the second exposure method of the present invention can be performed.
  • a first position detector (40, 41) for measuring the position of the movable member is provided, and the operation of the mechanical drive system is controlled according to the detection result of the first position detector. It is desirable. As a result, the control accuracy of the position of the movable member and the control accuracy of the transfer position on the second object are improved.
  • the method of manufacturing an exposure apparatus includes irradiating a first object (M) with a charged particle beam, and projecting a charged particle beam having passed through the pattern of the first object through a projection system (PL).
  • M first object
  • PL projection system
  • an exposure apparatus for irradiating W
  • at least a part of the movable member (PL; 29) of the projection system is moved to move the irradiation position of the charged particle beam on the second object.
  • a mechanical drive system 32 A, 32 B, 11 A, 1 1 2) that is attached to the support member (57A, 57B) in a state where it can be displaced or vibrated, and displaces or vibrates the movable member. A) is to be attached. According to such a manufacturing method, the exposure apparatus of the present invention can be manufactured efficiently.
  • a device manufacturing method includes a step of transferring a device pattern onto a workpiece using the above-described exposure method of the present invention.
  • an extremely fine pattern can be transferred with high precision onto a workpiece such as a substrate such as a wafer or a glass substrate for a mask by using a charged particle beam.
  • the mechanical MOL method of the present invention the throughput at the time of exposure is improved.
  • FIG. 1 is a configuration diagram showing a cross-sectional view of a part of an electron beam reduction transfer device according to a first embodiment of the present invention.
  • FIG. 2 (A) is a plan view showing the pattern arrangement of the mask M in FIG. 1, (B) is an enlarged plan view showing a portion B in FIG. 2 (A), and (C) is a plan view in FIG. It is sectional drawing which follows CC line.
  • 3A is a plan view showing a pattern arrangement of the wafer W in FIG. 1
  • FIG. 3B is an enlarged plan view of a portion B in FIG. 3A.
  • FIG. 4 is a cross-sectional view of a part of a state where the electron beam reduction transfer device of FIG. FIG.
  • FIG. 5 is a partially cutaway plan view showing the mask stage 20 of FIG. 4 and members related thereto.
  • Figure 6 shows the wafer stage 4 in Figure 4.
  • FIG. 6 is a partially cutaway plan view showing 6 and members related thereto.
  • Figure 7 is an enlarged perspective view showing an example of a mechanical drive system of the projection system PL in FIG. 1 £ 8 is an explanatory diagram of the operation of the mechanical drive system of FIG.
  • FIG. 9 is a partially cutaway plan view showing another example of the mechanical drive system of the projection system PL.
  • FIG. 10 is an explanatory diagram in the case where the position of the reduced image is changed by displacing the projection system PL by the mechanical MOL method in FIG. FIG.
  • FIG. 11 is an explanatory diagram of the case where the position of the reduced image is changed by changing the electromagnetic field of the electron optical system of the projection system PL by the electronic MOL method in FIG. 11.
  • FIG. 12 is an explanatory diagram in the case where exposure is performed by the character pattern transfer method in the first embodiment.
  • FIG. 13 is an explanatory diagram in the case of combining the operation of the mechanical MOL method with the operation of the electronic MOL method in the operation of FIG.
  • FIG. 14 is a plan view showing a locus of a reduced image on a wafer when the projection system PL is vibrated in a triangular waveform with respect to time by a mechanical MOL method.
  • FIG. 15 is an explanatory diagram in the case where exposure is performed by the division transfer method in the second embodiment of the present invention.
  • FIG. 16 is an explanatory diagram in the case where some members of the projection system PL are displaced or vibrated by the mechanical MOL method in the third embodiment of the present invention.
  • FIG. 17 is a perspective view showing a drive system when the projection system PL is displaced or vibrated by the counterbalance method and the mechanical M ⁇ L method in the fourth embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of the arrangement and operation of the drive elements of the drive system in FIG.
  • FIG. 19 is a diagram illustrating an example of a manufacturing process of a semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a reduction transfer apparatus using an electron beam as a charged particle beam in a character pattern transfer method, that is, an electron beam exposure apparatus. Applied.
  • FIG. 1 shows a schematic configuration of an electron beam reduction transfer apparatus of the present example as an exposure apparatus.
  • an electron beam EB emitted from an electron gun 1 is converted into a parallel beam by a capacitor lens 2, and The light passes between the blanking deflectors 3 and is incident on an aperture plate 4 having an opening of a predetermined shape (square in this example).
  • the electron beam EB whose cross-sectional shape has been shaped by passing through the aperture of the aperture plate 4 during transfer passes through the condenser lens system 5 including the first condenser lens 6A and the second condenser lens 6B, and then becomes a parallel beam again.
  • a deflector 7 for selecting a field of view composed of a first deflector 8A and a second deflector 8B, and guided into one character pattern on a mask M as a first object. .
  • An illumination system is composed of an electron gun 1, a condenser lens 2, an aperture plate 4, and a condenser lens system 5, and the optical axis AX 1 of the illumination system is perpendicular to the pattern surface of the mask M.
  • the pattern surface almost matches the horizontal plane.
  • the electron gun 1 for example, a thermionic emission type lanthanum hexaborite (L a B 6 ) or tantalum (T a) can be used.
  • the electron gun 1 is used in a so-called low acceleration method in which the acceleration voltage is, for example, about several hundred V to 5 kV.
  • the optical path of the electron beam EB is set to, for example, a high vacuum of about 1 0- 7 T orr.
  • the mask M is arbitrarily irradiated with the electron beam EB by operating the blanking deflector 3 to remove the electron beam EB from the opening of the aperture plate 4 as shown by the dotted optical path 11. Can be interrupted. Further, the electron beam EB can be irradiated almost vertically on one character pattern located at a certain distance in the X direction and the Y direction from the optical axis AX 1 on the mask M by the deflector 7 for selecting the visual field. It is configured as follows. The opening and closing operation of the electron beam EB by the deflector 3 and the amount of deflection in the deflector 7 are A main control system 10 that controls and controls the operation is controlled via a deflection amount setting unit 9.
  • the Z-axis is taken parallel to the optical axis AX1 of the illumination system
  • the X-axis is set in the direction perpendicular to the paper of Fig. 1 in the plane perpendicular to the Z-axis
  • the Y-axis is set in the direction A description will be given taking the axis.
  • the electron beam EB that has passed through one character pattern on the mask M is returned to the optical axis of the illumination system again by the swingback deflector 25 composed of the first deflector 26 A and the second deflector 26 B.
  • the deflection amount of the electron beam EB in the deflector 25 is set by the main control system 10 via a deflection amount setting unit 36.
  • Each of the deflectors 8A and 8B and the deflectors 26A and 26B is, for example, a four-pole electrostatic deflector, but instead includes a coil mounted inside a ferrite core. Alternatively, an electromagnetic deflector may be used.
  • the electron beam EB passes through a projection system PL composed of an imaging system to reduce the electron beam EB as a second object at a reduction magnification ⁇ (for example, 3 is 1/5, 1/10, or 120).
  • a reduced image of one character pattern is formed in the exposed area (sub-exposure area) on W8. That is, the pattern surface of the mask ⁇ as the first object is located on the object surface of the projection system PL, and the surface of the wafer W as the second object (or object to be exposed) is located on the image surface of the projection system PL. I have.
  • An electron beam resist is applied to the surface of the wafer W.
  • the wafer W is a disk-shaped substrate such as a semiconductor (silicon or the like) or S ⁇ I (silicon on insulator).
  • the projection system PL of this example includes a front group 27 including a first lens 28A and a second lens 28B, and a rear group 29 including a first lens 30A and a second lens 30B.
  • the front group 27 and the rear group 29 are housed in a cylindrical lens barrel 31.
  • the lenses 28A and 28B and the lenses 30A and 30B are each an eight-pole electrostatic lens as an example, but an electromagnetic lens may be used instead.
  • the electron beam EB is once focused by the front group 27 to form a crossover (image of the electron beam source) 42, and thereafter, the rear group 29 forms a projection image on the wafer W. .
  • the optical axis AX2 of the projection system PL is parallel to the optical axis AX1 of the illumination system.In the initial state, the optical axis AX2 of the projection system PL matches the optical axis AX1 of the illumination system and the lens barrel. 3 The axis of symmetry (center axis) of 1 also matches.
  • the lens barrel 31 in which the projection system PL is housed is supported by a pair of leaf springs 32A and 32B as members having flexibility in the Y direction. Both ends in the X direction of A and 32B are fixed to stably held support members 57A and 57B (not shown) (see FIG. 7). Therefore, the lens barrel 31 (projection system PL) is supported so that it can be displaced and vibrated within a predetermined range in the Y direction.
  • a drive system 34 for displacing and vibrating the leaf springs 32A and 328 in the directions is provided, and the operation of the drive system 34 is controlled by a synchronous drive control system 33 under the control of the main control system 10. Has been done.
  • a movable mirror 40 is fixed to a side surface of the lens barrel 31 in the Y direction, and the movable mirror 40 is irradiated with a laser beam of a plurality of axes for measurement from a laser interferometer 41, and the laser interferometer 41 is not shown.
  • the displacement of the lens barrel 31 in the Y direction, the rotation angle around the X axis, and the rotation angle around the Z axis are measured based on the position of the reference mirror of 34 and the alignment control system 39 described later.
  • the drive system 34 moves the lens barrel 31 (projection system PL) in a state where the optical axis AX 2 is parallel to the optical axis AX 1 based on the measurement data of the laser interferometer 41 and the control information of the synchronous drive control system 33. Displace in the Y direction. That is, the projection system PL of this example is a mechanical M ⁇ L (Moving Objective Lens) system using a mechanical drive system including the leaf springs 32A and 32B, the laser interferometer 41, and the drive system 34. , So that it can be displaced and vibrated in the Y direction. Therefore, in this example, the projection system ⁇ However, the whole is a movable member.
  • the projection system PL is, for example, a small electron optical system in which the distance from the object plane (the pattern plane of the mask M) to the image plane (the surface of the wafer W) is about 100 to 150 mm.
  • the MOL method enables high-speed, high-precision displacement and vibration.
  • the distribution of the internal electromagnetic field is indicated by dotted virtual lenses 44 and 45, using the electronic M ⁇ L (Moving Objective Lens) method.
  • the optical axis AX2 can be displaced within a predetermined range in the X direction and the Y direction with respect to the symmetry axis of the lens barrel 31.
  • the displacement of the optical axis AX2 by the electronic MOL method with the aberration kept within the allowable range is, for example,
  • the projection system PL is displaced or oscillated relatively large by the mechanical M ⁇ L method
  • the transfer position on the wafer W is corrected.
  • the optical axis AX2 is displaced by a typical MOL method. Therefore, the lenses 28 A and 28 B and the lenses 3 OA and 30 B as the electron optical systems constituting the projection system PL are respectively driven by the lens driving system 35 as the electronic driving system, and the lens driving system 35 is It is controlled by the synchronous drive control system 33.
  • the mask M is held on the mask stage 20 in parallel with the XY plane by electrostatic attraction so as not to affect the electron beam, and the mask stage 20 is placed on the mask base 21 by, for example, a linear motor. It is configured to be able to move stepwise in the X and Y directions. Since the exposure unit of the transfer device of this example is placed in a vacuum, the mask stage 20 is an air-bearing type that has almost no effect on the vacuum space, or a magnetic levitation type bearing that strictly shields the electron beam. Almost non-contact state On the mask base 21.
  • a group of a plurality of character patterns in each of which a plurality of character patterns are arranged close to each other is first used by moving the mask stage 20. After the center of the character pattern group is positioned approximately in the vicinity of the optical axis AX1, a deflector 7 for selecting a visual field is used to select one character and one pattern from the character and pattern group.
  • a moving mirror 22 fixed to the mask stage 20 (actually composed of an X-axis and a Y-axis) is irradiated with a multi-axis laser beam from the laser interferometer 23 on the mask side. Measures the position of the mask stage 20 in the X and Y directions, the rotation angle around the X axis, the rotation angle around the Y axis, and the rotation angle around the Z axis (jowing amount).
  • the alignment control system 39 supplies measured values and alignment information to the main control system 10, and the mask stage control system 24 supplies a mask stage based on the measured values and control information from the main control system 10.
  • 20 (Mask M) is made parallel to the XY plane, and its position, speed, and jogging amount are controlled.
  • a masked backscattered electron detector 37 for detecting backscattered electrons and the like from the mask M is disposed diagonally above the mask stage 20, and a detection signal of the backscattered electron detector 37 is supplied to an alignment control system 3. Supplied to 9. Since the state in which the electron beam EB is irradiated on the predetermined alignment mark on the mask M can be detected by the reflection electron detector 37, the mask M can be aligned based on the detection result.
  • the wafer W is held on the wafer stage 46 in parallel with the XY plane by an electrostatic chuck or the like that does not affect the electron beam via a wafer holder (not shown).
  • the wafer stage 4 6 is the wafer base 4 7 Above, for example, it is configured to be able to continuously move in the X direction by a linear motion method, and to be able to move stepwise in the X direction and the Y direction.
  • the wafer stage 46 is mounted on the wafer base 47 almost in a non-contact state by an air-bearing system that has almost no effect on the vacuum space or a magnetic levitation type bearing system that strictly shields the electron beam. Have been.
  • the wafer stage 46 also incorporates a Z leveling mechanism for controlling the position (focus position) of the surface of the wafer W in the Z direction and its two-dimensional inclination angle.
  • Information on the focus position at multiple measurement points on the surface of the wafer W Force is measured by an optical, multipoint autofocus sensor (AF sensor) (not shown), and Z leveling in the wafer stage 46 during exposure.
  • the mechanism focuses the surface of the wafer W on the image plane of the projection system PL by an autofocus method based on the measurement value of the AF sensor.
  • a movable mirror 48 fixed to the side of the wafer stage 46 (also composed of X-axis and Y-axis) is irradiated with a laser beam of multiple axes from a laser interferometer 49 on the wafer side.
  • the interferometer 49 is used to determine the position of the wafer stage 46 in the X and Y directions, the rotation angle around the X axis (the amount of rolling), the rotation angle around the Y axis (the amount of pitching), and the rotation around the Z axis.
  • the angle (jowing amount) is measured, and the measured value is supplied to the alignment control system 39 and the wafer stage control system 50.
  • the wafer stage control system 50 controls the measured value and the synchronous drive control system 33.
  • the wafer stage 46 (wafer W) is made parallel to the ⁇ plane, and its position and amount of movement are controlled.
  • a reflected electron detector 38 for the wafer for detecting backscattered electrons and the like from the wafer W is disposed obliquely above the wafer stage 46, and a detection signal of the backscattered electron detector 38 is used for the alignment control system 3. Supplied to 9.
  • the reflected electron detector 38 can detect the state in which the electron beam EB irradiates a predetermined alignment mark on the wafer W, and based on this detection result, The wafer W can be aligned.
  • the exposure data such as the pattern configuration of the mask M to be exposed and the arrangement information of a plurality of shot areas on the wafer W are supplied to the main control system 10 from an exposure data storage device (not shown). Is done.
  • the main control system 10 Based on the exposure data, the main control system 10 sequentially irradiates the electron beam EB onto a plurality of character patterns selected from the mask M via the mask stage drive system 24 and the deflection amount setting units 9 and 24.
  • the main control system 10 sequentially irradiates the electron beam EB onto a plurality of character patterns selected from the mask M via the mask stage drive system 24 and the deflection amount setting units 9 and 24.
  • a reduced image of the selected character and one pattern is formed on the wafer. It is transferred to the shot area to be exposed on W.
  • a reduced image of the target pattern is transferred to each shot area on the wafer W.
  • FIG. 2 (A) is a plan view showing an example of a mask M to be transferred
  • FIG. 2 (B) is an enlarged view of a portion B in FIG. 2 (A)
  • FIG. 2 (C) is a CC in FIG. 2 (B).
  • FIG. 2A a character pattern group 13 is formed at a predetermined pitch in the X direction and the Y direction in the pattern area of the mask M, and a pair of two-dimensional patterns is sandwiched between the pattern areas in the Y direction.
  • Alignment marks 14A and 14B made of a metal film are formed.
  • the mask M has a large number of character patterns formed inside a silicon wafer, and a notch portion 12 for angle detection is formed on an outer peripheral portion thereof.
  • each character pattern group 13 on the mask M has different character patterns 15 A, 15 B, 15 C,... At different pitches in the X and Y directions. , 15 Y are formed.
  • the character pattern group in the mask M A portion 17 where 13 is formed is formed thinner than other regions, and a portion corresponding to the character pattern (a portion that transmits an electron beam) in the portion 17 is a hole.
  • the portion 17 may be a thin film of silicon (Si), but the portion 17 may be a thin film of, for example, silicon nitride (SiN).
  • the mask M of this example is a so-called perforated stencil mask, and the mask M is a so-called so-called stencil mask provided with a thin film for scattering electron beams such as tungsten (W) on a film that transmits electron beams.
  • a scattering mask may be used.
  • each character pattern 15A to 15Y is formed in a square area having a width D, and the boundary between adjacent character patterns is an electron beam. This is a region that does not transmit light or a region that scatters electron beams (non-pattern region).
  • the irradiation area 14 in FIG. 2 (B) by the electron beam EB in FIG. 1 is a square having a width slightly larger than D, and one character selected from the character pattern group 13 is selected. It is configured such that only the pattern (for example, 15 A) can be completely covered by the irradiation area 14.
  • a plurality of different character patterns are formed in different character pattern groups 13 respectively.
  • each of the character patterns 15A to 15Y corresponds to a “sub-field of view” which is a minimum unit pattern obtained by dividing a large original pattern.
  • two-dimensional (here, cross-shaped) alignment marks 16 A to 16 D made of a metal film that reflects an electron beam are formed.
  • FIG. 1 after driving the mask stage 20 to sequentially move the alignment marks 14 A and 14 B of FIG. 2A on the mask M substantially in the vicinity of the optical axis AX 1 By driving the deflector 7 and scanning the electron beam EB in the X and Y directions, By processing the detection signal, the coordinates of the alignment marks 14A and 14B are detected, and the center coordinate and the rotation error of the mask M are calculated from the detection result. Thereafter, for example, by rotating the mask stage 20 so as to cancel the rotation error, the array coordinates of each character and pattern group 13 on the mask M can be calculated.
  • the deflector 7 is driven to scan the electron beam EB in the X and Y directions to process the detection signal from the backscattered electron detector 37, thereby obtaining the alignment mark 1 in FIG. 2 (B). Detect the coordinates of at least two alignment marks in 6A to 16D. Then, by processing the obtained coordinates of the two alignment marks, the optical axis AX1 of each of the character patterns 15A to 15Y in the character pattern group 13 is set as the origin. Can be calculated with high accuracy.
  • the electron beam irradiation area can be accurately placed on the desired character pattern in the character pattern 15A to 15Y. 14 can be moved, and the electron beam transmitted through the desired character pattern can be returned to the optical axis AX1 with high precision via the deflector 25 in FIG. That is, in this example, the arrangement coordinates of the character-to-character patterns 15A to 15Y in each character pattern group 13 are finally obtained based on the positions of the alignment marks 16A to 16D. Therefore, the positioning accuracy of the mask stage 20 in FIG. 1 does not need to be so high.
  • the width D of the outer shape of the character one pattern 15 A to 15 Y is, for example, about 100 m to l 00 / zm.
  • each character one pattern group 1 3 Each character pattern of 5 rows x 5 columns is formed in each character pattern, but in each character pattern group 13, character patterns of about 5 rows x 5 columns to 20 rows x 20 columns are formed. be able to.
  • FIG. 3 (A) is a plan view showing the wafer W
  • FIG. 3 (B) is an enlarged view of a portion B in FIG. 3 (A)
  • FIG. A large number of shot areas 52 are arranged at predetermined pitches in the X and Y directions, and a circuit pattern for one die is transferred to each shot area 52. Note that a circuit pattern for a plurality of dies may be transferred to each shot area 52.
  • a pair of two-dimensional metal film search alignment marks 53 A and 53 B are formed so as to sandwich the shot regions 52 in the Y direction. Has a notch 51 for angle detection.
  • each shot area 52 is a minimum unit exposure area to which a reduced image of one character pattern is transferred. Are arranged closely in the X and Y directions. Also, assuming that a reduced image of one character pattern by the projection system PL in Fig. 1 is a reduced image 43 in Fig. 3 (B), the width D of the outer shape of the character pattern and the projection magnification of the projection system PL are used. Each of the reduced image 43 and the sub-exposure area 54 is a square area of width 3D. Then, by moving the shot area 52 relative to the sequentially changing reduced image 43 in the X and Y directions, the character pattern corresponding to all the sub-exposure areas 54 of the shot area 52 is obtained. Is transferred.
  • each sub-exposure area 54 in the shot area 52 on the wafer W is 50
  • the shot area 52 is, for example, a rectangular or square area having a side length of about 20 to 30 mm.
  • the projection system PL is mechanically displaced or vibrated as described later in order to transfer a reduced image of the character pattern corresponding to all the sub-exposure regions 54 in the projection region 52 at a high throughput.
  • FIG. 4 is a cross-sectional view showing the entirety of the transfer device of the present example.
  • the transfer device of the present example has a box-shaped solid frame 60 capable of maintaining the inside in an airtight state.
  • the frame 60 is housed in a larger chamber (not shown).
  • a dry air or the like which is temperature-controlled at a substantially atmospheric pressure and is highly dust-proof, is provided. Is supplied.
  • the frame 60 is mounted on the base member 65 via the vibration isolating tables 64 A and 64 B (actually arranged at three or four places).
  • the decompression chambers 67 and 69 correspond to the spare chamber of the present invention.
  • a plurality of exhaust holes are formed from the top to the bottom on the side wall surrounding the exposure chamber 66, and these exhaust holes are connected to the vacuum pump 63 via exhaust pipes 62A to 62E, respectively.
  • internal exposure chamber 6 6 is maintained at a high vacuum of about 1 0- 7 T orr example by a vacuum pump 6 3 when.
  • a partition plate 93 (see FIG. 5) is provided so as to surround the decompression chamber 67 on the mask side, and a boundary between the exposure chamber 66 and the decompression chamber 67 is opened and closed by a drive unit 77A.
  • a shirt member that is opened and closed by the drive unit 77B. 7 6 B is installed.
  • a partition plate 94 (see FIG. 6) is provided so as to surround the decompression chamber 69 on the wafer side, and the boundary between the exposure chamber 66 and the decompression chamber 69 is opened and closed by a drive unit 87A.
  • a shirt evening member 86B that is opened and closed by a drive unit 87B is installed.
  • exhaust pipes 62F and 62G respectively, which lead to a vacuum pump 63, and a solenoid valve that can be opened and closed to take in ambient gas as needed.
  • a supply line with 788 and 88 is connected.
  • tables 79 and 89 are provided in the decompression chambers 67 and 69 for transferring a mask and a wafer, respectively.
  • the electron gun 1 is arranged in the sealed cover 61 above the frame 60, and the condenser lens 2, the condenser lens system 5, and the field selection
  • the deflector 7 and the mask M are arranged.
  • members such as the aperture plate 4 in FIG. 1 are not shown in FIG. 4 for easy understanding of the drawing.
  • the mask base 21 is fixed to the frame 60, and a coarse movement stage 73 for driving the mask stage 20 holding the mask M is arranged.
  • the mask base 21 is driven by a pair of linear motors 74 A and 74 B in the Y direction with respect to the mask base 21.
  • FIG. 5 is a plan view in which a part of a drive system and a measurement system of the mask stage 20 in FIG. 4 is shown in cross section.
  • the side surfaces of the mask stage 20 in the X direction and the Y direction are shown.
  • X-axis movable mirror 2 2 X and Y-axis movable mirror 2 2 Y are fixed, and reference mirrors 2 2 RX and 2 are placed on mask base 2 1 in parallel with movable mirrors 2 2 X and 2 2 Y, respectively.
  • 2 RY is fixed.
  • the moving mirror 22 X and the reference mirror 22 RX are moved along the X axis with respect to a plurality of axes, respectively.
  • a single-axis laser beam is irradiated, and the Y-axis laser interferometer 23 Y is moved to the moving mirror 22 Y and the reference mirror 22 RY via the window member 71 Y provided on the frame 60.
  • the laser interferometers 23 X and 23 Y are irradiated with laser beams of multiple axes and one axis, respectively, along with, and the moving mirrors 22 X and 22 Y are referenced with respect to the reference mirrors 22 RX and 22 RY.
  • the X coordinate and Y coordinate of Y (mask stage 20) and the rotation angle around three axes are measured.
  • the mask stage 20 is disposed in the U-shaped coarse movement stage 73, and the coarse movement stage 73 is substantially parallel to the Y axis with respect to the mask base 21. It is driven in the Y direction by linear motors 74A and 74B along the simple guide surface 21a.
  • a guide surface 73a substantially parallel to the X-axis is formed on the inner surface of the coarse movement stage 73, and a guide member 96 is slidably disposed along the guide surface 73a.
  • the mask stage 20 is disposed via two actuating sections 95A and 95B that can be extended and contracted in the Y direction with respect to the guide member 96, respectively.
  • the actuary 95A and 95B include, for example, a so-called EI core type non-contact actuator having an electromagnet having an E-shaped core and an I-shaped core.
  • One-touch contact or a small linear motor can be used.
  • a mover fixed to the end in the + Y direction of the mask stage 20 and a stator fixed to one side of the coarse movement stage 73 constitute a linear motor 74 D.
  • the linear motor 74 C is composed of a mover fixed to the guide member 96 and a stator fixed to the other side of the coarse movement stage 73.
  • the guide member 96 and the mask stage 20 are integrally driven in the X direction with respect to the coarse movement stage 73 by 4C and 74D. Be moved. Further, by controlling the amount of expansion and contraction of the two-axis factories 95A and 95B, the rotation angle (jowing amount) of the mask stage 20 with respect to the coarse movement stage 73 (mask base 21) is controlled. Can be controlled.
  • the positional relationship between the mask and the table 79 in the decompression chamber 67 is maintained close to the boundary between the decompression chamber 67 and the mask stage 20 in the exposure chamber 66.
  • a robot arm 75 for transferring the mask up to the mask is provided.
  • a rotary table 81 for temporarily mounting a mask is installed, and an imaging type position detecting device 82A around the rotary table 81.
  • ⁇ 82 C has been installed.
  • a mask library 97 is installed near the opening communicating with the outside air of the mask storage room 68, and a plurality of types of character patterns different from the plurality of character patterns formed on the mask M are provided in the mask library 97. A plurality of masks on which a character pattern group is formed (the uppermost mask MN appears) are stored.
  • a robot arm 80 for transferring a mask between the mask library 97, the rotary table 81, and the table 79 in the decompression chamber 67 while maintaining the positional relationship of the mask in a predetermined state is installed.
  • a mask loader system is composed of the robot arm 75, the table 79, the mouth pot 80, and the like.
  • the position of the notch at the outer periphery of the mask placed at the position P2 on the rotary table 81 taken out of the mask library 97 and the other two edges are detected by the position detecting device 82A.
  • the position detecting device 82A By detecting at up to 82 C, it is possible to detect a rotation error and a two-dimensional position error based on the notch of the mask.
  • the rotary table 81 is rotated so as to cancel the rotation error, and the mask is moved through the robot arm 80 so as to cancel the two-dimensional position error.
  • the shirt members 76A and 76B are closed and the electromagnetic valve 78 is turned on.
  • the inside of the decompression chamber 67 is brought to the atmospheric pressure
  • the shirt member 76B is opened, and the mask on the table 79 is returned to the mask library 97 in the mask storage chamber 68 (see FIG. 5).
  • a deflector 25 for rewinding, a projection system PL and a wafer W are sequentially arranged below the mask base 21 in the exposure chamber 66, and the projection system PL is connected to the lens barrel 31 and the leaf spring 3 2.
  • the supporting members 57 A and 57 B which are held via A and 32 B (see FIG. 1), are stably fixed to the frame 60, and the wafer W is placed on the wafer stage 46 via the wafer holder 98.
  • the wafer stage 46 is mounted on a wafer base 47 so as to be movable two-dimensionally.
  • the wafer base 47 is fixed on the bottom surface of the frame 60, and a coarse movement stage 83 for driving the wafer stage 46 is mounted on the wafer base 47.
  • the coarse movement stage 83 is arranged and driven by a pair of linear motors 84 A and 84 B in the Y direction with respect to the wafer base 47.
  • the measurement system for the wafer stage which includes the moving mirror 48 on the wafer side and the laser interferometer 49, etc., is actually composed of elements for two axes as shown in FIG. ing.
  • FIG. 6 is a plan view in which a part of a drive system and a measurement system of the wafer stage 46 in FIG. 4 is shown in cross section.
  • the side surfaces of the wafer stage 46 in the X direction and the Y direction are shown.
  • the X-axis movable mirror 48 and the X- and Y-axis movable mirrors 48 Y are fixed, respectively, and the reference mirrors 48 RX and 48 RY are mounted on the wafer base 47 in parallel with the movable mirrors 48 X and 48 Y, respectively. Has been fixed.
  • the moving mirror 48 X and the reference mirror 48 RX are respectively moved along the X axis to the plural axes and A single-axis laser beam is irradiated, and a Y-axis laser interferometer 49 Y is applied to a moving mirror 48 Y and a reference mirror 48 RY via a window member 72 Y provided in a frame 60.
  • the laser interferometers 49 X and 49 Y are illuminated by a multi-axis and a single-axis laser beam, respectively.
  • the X- and Y-coordinates of the movable mirror 48 X, 48 Y (wafer stage 46) and the rotation angles around three axes are measured with reference to 8 RX and 48 RY.
  • the wafer stage 46 is disposed in a U-shaped coarse movement stage 83 laterally, and the coarse movement stage 83 is a guide substantially parallel to the Y axis with respect to the wafer base 47. Driven in the Y direction by linear motors 84 A and 84 B along the drive surface 47 a.
  • a guide surface 83 a substantially parallel to the X-axis is formed on the inner surface of the coarse movement stage 83, and a guide member 100 is slidably disposed along the guide surface 83 a. , Each of which is non-contact and extendable and contractible in the Y direction with respect to the guide member 100.
  • a wafer stage 46 is arranged via 9 9 B. As in the case of the mask stage 20 of FIG. 5, the wafer stage 46 and the guide member 100 of FIG. 6 are integrally moved by a pair of linear motors 84 C and 84 D. Driven in the X direction along guide surface 83a with respect to 83. Further, by controlling the amount of expansion and contraction of the two-axis actuators 99A and 99B, the rotation angle (jewing amount) of the wafer stage 46 with respect to the coarse movement stage 83 (the wafer base 47) is controlled. Can be controlled.
  • the positional relationship of the wafer is maintained in a predetermined state in the exposure chamber 66 near the boundary with the decompression chamber 69, and between the table 89 and the wafer stage 46 in the decompression chamber 69.
  • a robot arm 85 that transfers wafers to the robot is installed.
  • a rotary table 91 for temporarily mounting a wafer is installed, and around the rotary table 91, three image-sensing type position detecting devices are provided. 9 2 A to 92 C are installed. Further, a wafer cassette 101 is installed near the opening communicating with the outside air of the wafer storage room 70, and the exposed or unexposed wafer (the uppermost wafer WN appears in the wafer cassette 101). Is stored. Then, a wafer is transferred between the wafer cassette 101, the rotary table 91, and the table 89 in the decompression chamber 69 while maintaining a predetermined positional relationship of the wafer. Arm 90 is installed.
  • the wafer loader system is composed of the mouth pot arm 85, the table 89, the robot arm 90, and the like.
  • the wafer on the table 89 is loaded into the opening in the exposure chamber 66.
  • the shirt evening member 86A is closed and the shirt evening member 86B is moved.
  • the shutter member 86B and the electromagnetic valve 88 are also closed in a state where the wafer is opened and the wafer is placed at the position P3.
  • the shirt member 86 A is opened, and the wafer is loaded onto the wafer holder 98 from the position P 3.
  • the shirt members 86A and 86B are closed and the electromagnetic valve 88 is turned on.
  • the shirt member 86B is opened and the wafer on the table 89 is returned to the wafer cassette 101 in the wafer storage chamber 70 (see Fig. 6). It is.
  • the decompression chamber 69 since the decompression chamber 69 is provided, the wafer can be quickly exchanged between the vacuum exposure chamber 66 and the atmospheric pressure wafer storage chamber 70.
  • the wafer opening system (the same applies to the mask loader system) may be divided into a load system and an unload system so as to shorten the wafer (mask) replacement time.
  • at least two wafer stages 46 may be arranged to execute various operations such as load alignment of the next wafer in parallel with exposure of one wafer. .
  • a plurality of alignment marks on the wafer are detected by a mark detection system, and a pattern is detected based on the detection result.
  • Sub-dew in each shot area on Yagami The light region and the corresponding reduced image of the sub-field on the mask are accurately aligned.
  • the mark detection system detects the mark to be inspected by an electron beam, but an optical mark detection system may be used instead.
  • FIG. 7 is an enlarged perspective view, partially cut away, showing an example of members from the field-of-view selection deflector 7 to the wafer W in FIG. 1.
  • the character pattern to be exposed on the mask M is shown.
  • the center of group 13 almost coincides with the optical axis AX1 of the illumination system.
  • the positions of at least two alignment marks in the alignment marks 16A to 16D in FIG. 2 (B) are detected. It is assumed that the arrangement coordinates with the optical axis AX1 of the character pattern 15A to 15Y as the origin are determined with high precision.
  • the irradiation area 14 of the electron beam EB is The electron beam EB that has moved on the character pattern 15 N and has passed through the character pattern 15 N is accurately moved on the optical axis AX 1 by the deflector 25 for swingback.
  • the optical axis AX1 of the illumination system coincides with the optical axis AX2 of the projection system PL.
  • a reduced image 43 obtained by reducing the character pattern 15N at a projection magnification of 3 is formed on one sub-exposure area of the square sub-exposure area 54.
  • the projection system PL is housed in the lens barrel 31, and the lens barrel 31 is a pair of plates.
  • the leaf springs 32A and 32B are held so as to be sandwiched in the Y direction, and both ends of the leaf springs 32A and 32B in the X direction are fixed to support members 57A and 57B. Therefore, the projection system PL is supported by the leaf springs 32A and 32B so as to be able to be displaced and vibrated in the Y direction.
  • the extensible drive elements 111 A, 111 B, 112 A, and 112 B, each composed of a piezo element, are fixed to one surface of the leaf springs 32 A and 32 B in the Y direction by bonding or the like.
  • the leaf springs 32A and 32B also have expandable and contractible piezo elements so as to face the drive elements 11A, 1118 and 1128, and 112B on the + Y direction surfaces, respectively.
  • Driving elements 1 1 1C, 1 1 10 and 1 12 (:, 1 1 2D are fixed.
  • driving elements 1 1 1A to: L 1 1D, 1 12A to 1 12D are piezo elements. It is also possible to use an electrostrictive element or a magnetostrictive element other than the above.
  • a control unit (not shown) separates one set of drive elements 11A, 11B, 12A, and 12B.
  • the projection system PL By expanding and contracting a set of the driving elements 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 D at a constant period while the phases are inverted, the projection system PL as a whole Y Vibrates in the direction parallel to the axis (Y direction).
  • the mechanical vibration direction MV of the projection system PL is in the Y direction.
  • the drive elements 111 A to 111 D, 112 A to 112 D, and the control system are the drive system shown in Fig. 1. 34 is supported.
  • Fig. 8 shows the relationship between the expansion and contraction state of the driving elements 111A and L11D and 112A to 112D and the displacement of the projection system PL (barrel 31).
  • the projection system PL is not displaced.
  • FIG. 8 (B) one set of drive elements 1 1 1 A, 1 1 1 B, 1 1 2 A, 1 1 2 B shrinks and another set of drive elements 1 1
  • the leaf springs 32 A and 32 B are bent in the + Y direction, and the projection system PL is also displaced in the + Y direction (direction MVA).
  • one set of driving elements 1 1 1A and 1 1 1 1 When B, 1 12 A, 1 12 B expands and another set of driving elements 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 D contracts, leaf springs 32 A, 32
  • the projection system PL When B moves in the Y direction, the projection system PL is also displaced in one Y direction (direction MVB).
  • the projection system PL can be oscillated in the Y direction by expanding and contracting the two driving elements at a constant period (constant frequency) with the phases inverted.
  • the amplitude of the projection system PL during vibration can be controlled.
  • a movable mirror 40 composed of a mirror having a reflecting surface substantially parallel to the ZX plane is fixed to a side surface in the Y direction of the lens barrel 31, and a reference mirror 40 R substantially parallel to the movable mirror 40. Is arranged.
  • the reference mirror 4OR is fixed to a support member (not shown) so as not to be displaced relative to the support members 57A and 57B. Then, the laser interferometer 41 fixed to the supporting member irradiates the movable mirror 40 with a three-axis laser beam, and irradiates the reference mirror 40R with, for example, a one-axis laser beam.
  • a ⁇ By controlling the amount of expansion and contraction of L11D, 112A ⁇ 112D, the lens barrel 31 and the projection system PL are rotated at a predetermined amplitude and at a predetermined frequency without rotation. Vibrates along the mechanical vibration direction MV.
  • the displacement and rotation angle of the projection system PL are actually measured by the laser interferometer 41, and the measured values are fed back to the drive system. Can be stably vibrated in the Y direction as a whole.
  • the displacement of the projection system PL is monitored.
  • an expansion / contraction measuring element such as a strain gauge is attached to at least one surface of each of the leaf springs 32A and 32B, and the expansion / contraction measuring element is used as the leaf spring 3A.
  • the amount of expansion and contraction of 2 A and 32 B may be directly measured. Further, in order to monitor the amount of displacement of the projection system PL, a non-contact capacitance sensor or an optical gap sensor may be used.
  • two pairs of drive elements 11 1A to 11 ID are attached to one leaf spring 32A (the same applies to 32B).
  • Elements, for example, four pairs of drive elements in two rows in the Z direction are attached to one leaf spring 32A (the same applies to 32B).
  • the amplitude of projection system PL can be increased.
  • a pair of driving elements or only one driving element is attached to one leaf spring 32A (the same applies to 32B). Just do it.
  • the mechanical drive system of the projection system PL of this example uses a telescopic drive element.
  • the projection system PL is configured using a voice coil motor or linear motor. It may be mechanically displaced.
  • Fig. 9 shows an example of the configuration of a mechanical drive system that drives the projection system PL using a voice coil motor system.
  • the lens barrel 31 in which the projection system PL is housed is formed by leaf springs 32A and 32B.
  • the leaf springs 32A and 32B are fixed to support members 57A and 57B.
  • a cylindrical member 1 13 A, 1 13 B made of a non-magnetic material is fixed to the outer surface of each of the leaf springs 32 A, 32 B, and a coil is attached to the tip of the cylindrical member 1 13 A, 1 13 B. 1 1
  • permanent magnets 115A and 115B as magnets are inserted into the cylindrical members 113A and 113B in a non-contact state, and inserted into the permanent magnets 115A and 115B.
  • A, 1 16 B are fixed.
  • the permanent magnets 1 15 A, 1 15 B and the yoke 1 16 A, 1 16 B are fixed to a support member (not shown) so as not to be displaced relative to the support members 57 A, 57 B. .
  • the voice coil motor is composed of coils 114A and 114B, permanent magnets 115A and 115B, and yokes 1116A and 116B.
  • VCM voice coil motor
  • the coils 114A and 114B move along the direction in which the leaf springs 32A and 32B have flexibility, that is, the mechanical vibration direction MV.
  • a thrust consisting of Lorentz force is generated in the same direction.
  • the leaf springs 32A and 32B are radiused in that direction, and the lens barrel 31 (projection system PL) is also displaced.
  • the projection system PL is vibrated at the predetermined frequency and the predetermined amplitude along the vibration direction MV. Can be done.
  • the inner surfaces of the leaf springs 32A and 32B are covered with expansion and contraction measuring elements 127A and 127B, respectively, each composed of a strain gauge.
  • the projection system PL can be vibrated with high accuracy.
  • a laser interferometer or the like may be used to monitor the displacement of the lens barrel 31.
  • the projection system PL can be stably displaced along the vibration direction MV by a desired amount with high accuracy and stopped.
  • the projection system PL was moved along the Y direction by expanding and contracting the drive elements 111A to 111D and 112A to 112D to deflect the leaf springs 32A and 32B in the Y direction.
  • Vibration direction Predetermined vibration at predetermined frequency in MV Vibrate by width.
  • the width L1 is, for example, about 10 to 30 times the width d of the sub-exposure area 54, but for simplicity in FIG. 7, the width L1 is set to 9 times the width d. I have.
  • FIG. 10 shows a state in which the projection system PL is vibrated in the Y direction.
  • the optical axis AX 2 of the projection system P is compared with the optical axis AX 1 of the illumination system.
  • the reduced image of the character pattern 15 B on the mask M by the projection system PL is exposed on the sub-exposure area 54 A on the wafer W.
  • the projection system PL is moved in the direction MVA ( + Y direction) by ⁇ .
  • the projection system PL of this example is an inverted projection system composed of the front group 27 and the rear group 29, the projection image / 3 (] 3 ⁇ 1) and the + Y direction of the reduced image are used.
  • the displacement amount ⁇ 1 is as follows.
  • ⁇ 1 (1 + ⁇ ) ⁇ ⁇ ⁇ (1)
  • the character is added to the sub-exposure area 54B adjacent to the sub-exposure area 54A on the wafer W. A reduced image of the pattern 15 C can be exposed.
  • a reduced image of the character pattern 15A on the mask M is exposed on the sub-exposure area 54C adjacent to the sub-exposure area 54B on the wafer W.
  • the displacement of the reduced image due to the displacement ⁇ y2 of the projection system PL in the direction MVA with the electron beam EB transmitted through the character pattern 15 A turned back onto the optical axis AX1 ( (1 + 3) ⁇ y 2) Should be 2 ⁇ d.
  • the time points at which the displacement of the reduced image by the projection system PL becomes 0, ⁇ Y1, ⁇ Y2 are t1, t2, Assuming that the minimum value of the interval between t 3 and time points tl, t 2, and t 3 is ⁇ , when the sensitivity of the electron beam resist on the wafer W is high (the required exposure amount is small), it is almost at the time point tl.
  • the deflector 3 for blanking shown in FIG. 1 is deactivated for the exposure time ⁇ t 1 (where m 1 is considerably shorter than the spacing plate) around t, t 2, and t 3.
  • a reduced image of one character pattern corresponding to each of the different sub-exposure areas 54A, 54B, and 54C on the wafer W can be exposed.
  • the output of the electron gun 1 in FIG. 1 that is, the intensity of the electron beam EB is controlled according to the sensitivity. You may do so. That is, when the sensitivity of the electron beam resist is slightly low (appropriate exposure amount is slightly large), the intensity of the electron beam EB is increased, and when the sensitivity of the electron beam resist is slightly high (appropriate exposure amount is slightly small), the electron beam is increased. The strength of the EB may be reduced.
  • This exposure amount control method is effective when the intensity of the electron beam EB can be controlled accurately and stably within a predetermined range, and thus the exposure amount can be easily controlled.
  • the exposure time 2 around the time points t1, t2, and t3 is the interval Shorter than ⁇ , but may approach the interval ⁇ .
  • the reduced image on the wafer W moves in the Y direction, and is transferred to the sub-exposure areas 54A to 54C. Image resolution may be degraded.
  • the projection system PL is moving in the Y direction, the reduced images on the wafer W are stopped on the respective sub-exposure areas 54A to 54C, so that an electronic P 04707
  • the optical axis of the projection system PL is electronically displaced by applying the MOL method.
  • the optical axis in the initial state of the projection system PL (before the optical axis is displaced by the electronic MOL method) is set to the optical axis AX2, and after being displaced by the electronic MOL method.
  • the optical axis is called the optical axis AX3 (see Fig. 11).
  • the displacement between the optical axis AX2 and the center of the sub-exposure area 54 (exposure target area) is ⁇ 5Ya
  • the displacement of the optical axis AX3 by the electronic M ⁇ L method 6 y can be expressed by the following equation.
  • the displacement of the optical axis AX3 with respect to the optical axis AX2 is gradually reduced, and in FIG. 11B showing the state at the time point t2, the optical axis AX3 is matched with the optical axis AX2.
  • the front group 27 and the rear group 27 are formed by an electronic MOL method as shown in Fig. 11 (C).
  • the electromagnetic field (optical axis AX3) of group 29 is displaced in one Y direction with respect to the initial state (optical axis AX2) indicated by dotted lines 27B and 29B.
  • the reduced image moves from the dotted locus 1 17 B to the solid locus, The reduced image is transferred to the sub-exposure area 54B.
  • the optical axis AX3 determined by the electromagnetic field distribution of the projection system PL is displaced by the electronic M ⁇ L method at the exposure time ⁇ t2 around each time point t1, t2, t3, ...
  • the reduced images of the corresponding character patterns are transferred with high resolution to the sub-exposure areas 54 A, 54 B, 54 C,... In a row along the mechanical vibration direction MV on the wafer W.
  • the mechanical oscillation frequency of the projection system PL is lowered to increase the interval T. You may.
  • the mechanical vibration frequency of the projection system PL may be increased.
  • the exposure amount control may be performed by combining the control of the mechanical vibration frequency of the projection system PL and the control of the intensity of the electron beam EB.
  • the position of the reduced image on the wafer W is also corrected in the X direction by an electronic MOL method as described later.
  • the projection system PL is oscillated in the Y direction by the mechanical MOL method, and the position of the reduced image 43 is corrected by the electronic MOL method, thereby obtaining the width in the Y direction.
  • a reduced image of the character pattern corresponding to the sub-exposure area 54 having a width d of one row arranged in the Y direction in the main exposure area 11 1 OA of L1 can be transferred.
  • the projection system PL is synchronized with the oscillation operation in the Y direction in the Y direction.
  • the wafer W is continuously moved at a predetermined speed in the + X direction orthogonal to the Y direction. That is, the wafer W is scanned in the + X direction relative to the projection system PL. Therefore, the scanning direction MSA of the wafer W is in the + X direction, and the scanning direction MSA is orthogonal to the mechanical vibration direction MV of the projection system PL.
  • the frequency at which the projection system PL is vibrated along the vibration direction MV Is M0L and the period is T OL —— ⁇ ⁇ / ⁇ MOL).
  • T OL the frequency at which the projection system PL is vibrated along the vibration direction MV Is M0L and the period
  • T OL the frequency at which the projection system PL is vibrated along the vibration direction MV Is M0L and the period
  • two rows of sub-exposure areas 54 are exposed during one period T MOL. It is necessary to move the wafer W along the scanning direction MSA by 2 ⁇ d which is twice the width of the sub-exposure area 54. Accordingly, the scanning speed Vw in the running direction MSA of Jehwa W is as follows.
  • the wafer W is moved stepwise in the Y direction by an interval L1, and then synchronized with the mechanical MOL method of oscillating the projection system PL in the Y direction. Then, by moving the wafer W in the ⁇ X direction, the reduced images of the corresponding character patterns are sequentially exposed in the adjacent main exposure area 110B.
  • the image of the target circuit pattern is transferred onto the entire surface of the shot area 52 by sequentially exposing the adjacent main exposure areas 110C,... While reversing the scanning direction of the wafer W. There is a monkey.
  • the width d of the sub-exposure area 54 on the bottom surface is about 50 m. Furthermore, if the width L 1 of the main exposure area 11 OA in the Y direction is 20 times the width .d of the sub-exposure area 54, the width L 1 is about 2 mm ( ⁇ lmm). Therefore, using equation (1), the minimum value of the amplitude when the projection system PL is vibrated in the Y direction by the mechanical MOL method is approximately L IZ (1 +) 3), that is, approximately 1.82 mm. .
  • the width of the effective visual field on the object plane side of the projection system PL only needs to be approximately (D + L1Z (1 + ⁇ )) or more. That is, the effective visual field may be a circular area having a diameter of about 2.3 mm or more.
  • the amplitude of the projection system PL is set to about 1.2 to 1.6 times the minimum value, and is set within the range of the width L1 on the surface of the wafer. Only one character pattern reduction Small images may be transferred.
  • the frequency f MOL when the projection system PL is vibrated in the Y direction by a mechanical MOL method is, for example, about 40 to 60 Hz.
  • a vibration method at this time it is excellent in terms of stability to vibrate the projection system PL in a sinusoidal waveform with respect to time.
  • the projection system PL may be vibrated in a substantially triangular waveform with respect to time.
  • the scanning speed Vw of the wafer W in the + X direction is given by the following equation (4). SmmZs ec.
  • FIGS. 12 to 13 show an example of an operation of transferring a predetermined pattern to one shot area on a wafer by the character-to-pattern transfer method using the reduction transfer apparatus of FIG. 1 of the present embodiment. It will be described with reference to FIG.
  • FIG. 12 (A) shows an example of a pattern arrangement of a mask M to be exposed.
  • a character pattern 15 A to 1 A in a character pattern group 13 A on the mask M is shown.
  • Patterns represented by symbols A1 to Y1 are formed as 5Y, and symbols ⁇ 2,...,... , A3,... And ⁇ 4,... Are formed.
  • the electron beam irradiation area 14 is relatively moved along the trajectory 118 on the mask ⁇ , so that the reduced images of the patterns ⁇ 1, C1,...
  • the main exposure area 11 having a width L1 and a length L5 in the shot area 52 on the wafer W of FIG. 12 (B) 11 is sequentially transferred to the sub-exposure areas 54A, 54B, 54C,.
  • the projection system PL is vibrated in the vibration direction MV (Y direction) by the mechanical MOL method, and the reduced image 43 is vibrated.
  • the wafer W is scanned in the scanning direction MSA along the + X direction.
  • the vibration of the projection system PL is sinusoidal with respect to time at this time
  • the relative locus of the center of the reduced image 43 with respect to the main exposure area 110 A on the wafer W is shown in FIG.
  • the width L1 of the main exposure area 110A in the Y direction is 10 times the width d of the sub-exposure areas 54A, 54B,. I have.
  • the reduced image 43 by the projection system PL moves relative to the main exposure area 11 OA in a sinusoidal shape at a pitch 2
  • the Y coordinate of the center of the reduced image 43 matches the Y coordinate of the center of the sub-exposure areas 54A, 54B, 54C,..., 54U, respectively.
  • the reduced image 43 of the corresponding character pattern is exposed simply by irradiating an electron beam at the time points tl, t 2,..., the sub-exposure areas 54 ⁇ , 54 ⁇ ,... in the X direction
  • the position of the reduced image 43 is shifted.
  • the projection system PL is changed by changing the electromagnetic field of the electron optical system of the projection system P using the electronic MOL method in synchronization with the operation of oscillating the projection system PL in the ⁇ direction.
  • the optical axis (corresponding to the optical axis AX 3 in Fig. 11) is periodically displaced in the X direction (the direction orthogonal to the vibration direction), and the reduced image 43 is transferred as shown in Fig. 13 (B). Displace the position.
  • FIG. 13 (B) the position of the lens barrel 31 of the projection system PL at the time points t1, t5, t10, and til is shown corresponding to FIG. 13 (A).
  • the reduced image 43 is displaced in the X direction, and at the time t5, the reduced image 43 does not need to be displaced substantially, and at the time t10, the reduced image 43 needs to be displaced in the + X direction.
  • the contraction is performed to expose the sub-exposure area 54L adjacent in the X direction. It is necessary to displace small image 43 in one X direction.
  • the frequency of the vibration in the Y direction of the projection system P in the mechanical MOL method is equal to the frequency F M0L of the vibration of the reduced image 43 in the X direction in the electronic MOL method, but the electronic MOL In the movement of the reduced image 43 by the method, as shown in Fig.
  • the reduced image 43 when the projection system PL is located at the end, the reduced image 43 is almost instantaneously moved from the position 43B or from the position 43B. A must move in the X direction by width d in A.
  • the reduced image 43 due to the electronic MOL method, the reduced image 43 has a sawtooth-like waveform with respect to time at a frequency of 2 • f MOL with almost the amplitude d in the X direction (direction perpendicular to the mechanical vibration direction of the projection system PL). It will vibrate.
  • the mechanical MOL vibration of the projection system PL and the electronic MOL vibration are combined, the reduced image 43 follows an approximately “8-shaped” locus on the image plane (wafer W). To move.
  • the projection system PL in the Y direction by the mechanical MOL method, the scanning of the main exposure area 11 OA on the wafer W in the X direction, and the X direction of the reduced image 43 by the electronic MOL method When the displacement is performed in synchronization with the main exposure area 11 OA, the relative locus of the center of the reduced image 43 with respect to the main exposure area 11 OA is
  • the center of 43 is in the center of the sub-exposure area 54 A, 54 B, 54 C,..., 54U Agree.
  • the reduced images of the corresponding character patterns can be exposed in the sub-exposure areas 54 ⁇ to 54U.
  • the transfer position of the reduced image 43 is also corrected in the Y direction by the electronic MOL method during the exposure time ⁇ t 2 around the time points tl, t 2,. You can do it.
  • the projection system PL is vibrated in the Y direction in a triangular waveform with respect to time by the mechanical MOL method and the wafer W is scanned in the X direction, the main exposure area is not driven when the electronic MOL method is not driven.
  • the relative locus of the center of the reduced image 43 with respect to 11 OA has a triangular wave shape as shown by the solid line locus 122 in FIG.
  • the drive control of the electronic MOL method is easy.
  • the mask stage 20 moves the mask M stepwise.
  • the character stage pattern group 13 A, 13 B,... is selected by the step movement of the mask stage 20.
  • a character pattern to be transferred can be selected quickly and efficiently from a large number of characters and patterns.
  • the wafer stage 46 in FIG. By moving the wafer W in the X direction (ie, the scanning direction MSB of the adjacent main exposure area 110B) in synchronization with the operation of vibrating the PL in the Y direction, the main exposure area 110 Exposure to B is performed, and thereafter, the wafer W is scanned in the opposite scanning directions MSA, MSB, and MSA alternately for each of the adjacent main exposure areas 110C, 110D, and 110E. Finally, an image of a circuit pattern of a predetermined layer is transferred onto the entire surface of the shot area 52. Similarly, the same or another circuit pattern image is transferred to other shot areas on the wafer W, respectively. Subsequently, the circuit pattern of the layer is formed through a development process of a resist on the surface of the wafer W and a pattern formation process such as etching and ion implantation.
  • the width L1 in the Y direction of the main exposure areas 110A, 110B, ... is about 10 to 30 times the width of one sub-exposure area 54A, 54B, ... Therefore, for example, the throughput of the exposure process is greatly improved to about 10 to 30 times as compared with the case where the wafer W is mechanically scanned and exposed for each row of the sub-exposure areas 54.
  • the projection system PL is vibrated by the mechanical MOL method.
  • exposure can be performed by vibrating the reduced image 43 in the Y direction with the width d of one sub-exposure area by the electronic MOL method. Conceivable.
  • each time the wafer W is scanned once in the X direction it is possible to expose about two rows of sub-exposure areas.
  • the throughput is about 15 to about;
  • the projection system PL is vibrated by the mechanical MOL method, and at the time of scanning the wedge W, for example, the locus 11 1 of the center of the reduced image 43 in FIG.
  • the optical axis of the projection system PL is displaced by an electronic MOL method in order to align 9 with the center of a series of sub-exposure areas 54 A, 54 B, 54 C,.
  • An irradiation position correction deflector similar to the deflectors 7 and 25 is arranged between the projection system PL and the wafer W, and the position of the reduced image 43 is corrected by the irradiation position correction deflector. You may.
  • the position of the electron beam EB incident on the projection system PL may be displaced from the optical axis AX1 by, for example, a deflector 25 for rewinding.
  • the projection system PL is vibrated. For example, when a test pattern is transferred onto the wafer W, the corresponding patterns are sequentially shifted while gradually displacing the projection system PL in the Y direction. It may be transcribed. Further, in the above embodiment, the projection system PL is displaced or vibrated one-dimensionally. However, a support mechanism that supports the projection system PL so as to be freely displaceable in two directions orthogonal to a plane perpendicular to the optical axis is provided. The projection system PL may be displaced or vibrated two-dimensionally in the X direction and the Y direction.
  • a measurement system for example, a laser interferometer
  • a measurement system that can detect the position of the projection system PL in the X and Y directions and the rotation angle around three axes
  • four portions of the projection system PL may be supported by leaf springs, and these leaf springs may be vibrated by telescopic drive elements.
  • the actuator may be driven by an EI core type 3-axis or 4-axis actuator having an E-shaped electromagnet section and an I-shaped core section.
  • the position of the wafer stage 46 in FIG. 1 is measured with reference to the predetermined reference mirrors 22 RX and 22 RY, but the position of the wafer stage 46 is fixed to the projection system PL.
  • the position of wafer stage 46 may be controlled based on the difference between the measured value of the position of projection system PL and the measured value of the position of wafer stage 46, with reference to the reference mirror obtained as a reference.
  • a second embodiment of the present invention will be described with reference to FIG.
  • the present invention is applied to the case where the exposure is performed by the character-to-pattern transfer method.
  • the present invention is applied to the exposure by the split transfer method. This is applied when performing.
  • the exposure is performed by using the same electron beam reduction transfer device as the first embodiment in FIG.
  • FIG. 15 shows the mask Ml and the wafer W when performing the exposure by the division transfer method using the electron beam reduction transfer apparatus of FIG. 1, and as shown in FIG. 15 (A), the pattern of the mask M1 is shown.
  • the main fields of view 13A1, 13B1, 13C1, 13D1, ... are arranged at predetermined pitches in the X and Y directions, and each of the main fields of view 13A1, 13B1, ...
  • a pattern (a code A, B, C, D is shown) in which a predetermined circuit pattern is enlarged.
  • FIG. 15 (B) an image of a circuit pattern for one or more dies on the wafer W is formed.
  • the shot area 52A which is an area to be exposed, is divided into a plurality of main exposure areas 125 A to 125 F in the Y direction, and each main exposure area 125 A to 125 F
  • the exposure units 124 A, 124 B,... are divided in the X direction, and these exposure units 124 A, 124 B,... are each composed of 5 rows ⁇ 5 columns of sub-exposure areas 54 A 1.
  • a reduced image 43 of the original pattern in the corresponding sub-field of view 15 on the mask M1 is transferred to the sub-exposure area 54A1.
  • the mask Ml is placed on the mask stage 20 in FIG. 1, and the wafer W is placed on the wafer stage 46 in FIG. Then, by driving the mask stage 20 and the deflector 7 for selecting the field of view, in FIG. 15 (A), the irradiation area 14 of the electron beam EB is changed to the first sub-field of the main field of view 13 A1. , The second sub-field of view,..., And the 25th sub-field of view are sequentially moved, and each is irradiated with the electron beam EB for a predetermined exposure time.
  • the projection system PL is vibrated in the Y direction (mechanical vibration direction MV) by the mechanical MOL method, and the wafer W is moved in the + X direction (mechanical scanning direction MS A).
  • Fig. 15 (B) 5 lines X in the main exposure area 125A on wafer W are scanned by correcting the irradiation position of the reduced image using the electronic MOL method.
  • a reduced image of a circuit pattern represented by a symbol A is transferred to a first exposure unit 124A composed of five rows of sub-exposure areas 54A1.
  • the electron beam irradiation area 14 is regularly moved as the first sub-field of view, the second sub-field of the next main field of view 13 B 1 on the mask Ml, and so on.
  • the operation of oscillating the projection system PL in the Y direction by the mechanical MOL method and the operation of scanning the wafer W in the scanning direction MSA are performed as shown in Fig. 15 (B).
  • the second, third,... Exposed units 124 B, 124 C,... In the main exposure area 125 A are denoted by B, C,.
  • the reduced image of the circuit pattern represented by is transferred.
  • the wafer W is alternately moved in the opposite scanning direction MSB, MSA to the adjacent main exposure areas 125B, 125C,. Exposure is performed by the division transfer method by scanning in the order of.
  • the reduced image 43 (projection system PL) is vibrated in the Y direction by the mechanical M ⁇ L method, and each main exposure area 125 A , 125 B,... In the Y direction can be increased, thereby improving the throughput of the exposure process.
  • the number of divisions of the enlarged pattern in the main field of view 13 A 1, 13 B 1,... On the mask Ml and the corresponding exposed units 124 A, 124 B on the wafer W ... Have the same number of divisions in the sub-exposure area (5 rows x 5 columns), but the main field of view 13A1, 13B1,... , 124 B,... May be different from the number of divisions of the sub-exposure area.
  • an overlapping portion (joint portion) is provided at the boundary of the adjacent sub-exposure area 54A1 on the wafer W, and a reduced image of the adjacent original pattern is overlapped at the overlapping portion. Exposure may be performed together. This reduces splice errors.
  • a mask stage 20 is used. May be moved.
  • the mask stage 20 and the wafer stage 46 are used. It will be moved similarly.
  • the entire projection system PL is mechanically MOL-based.
  • some members of the projection system PL are mechanically displaced or vibrated.
  • FIG. 16 is a schematic diagram showing members from the mask M to the wafer W of the present example corresponding to FIG. 10 and, in FIG. 16 (A), the character pattern 15 on the mask M is shown.
  • the reduced image by the projection system PL of B is projected on the sub-exposure area 54A on the wafer W.
  • the projection system PL in this example also includes the front group 27 and the rear group 29.
  • the optical axis of the front group 27 is the optical axis AX2
  • the optical axis AX2 is the optical axis AX1 of the illumination system. Is matched.
  • the rear group 29 as a movable member is arranged so as to be able to displace and vibrate in a direction perpendicular to the optical axis AX2. That is, the sub lens barrel 126 holding the rear group 29 is held by, for example, the leaf springs 32A and 32B in FIG. 1, and the leaf springs 32A and 32B are displaced in the Y direction by the drive system 34 in FIG. And it can be vibrated.
  • the reduced image of the character pattern 15C can be transferred to the sub-exposure area 54B by matching the displacement ⁇ with the interval (d) between the sub-exposure areas 54 ° and 54 °.
  • the front group 27 is used as a movable member. It is also possible. However, if the projection system PL is a reduction system and the projection magnification 3. (/ 3 ⁇ 1) is used, the displacement AYF of the reduced image with respect to the displacement Ay F of the front group 27 is as follows.
  • the entire projection system PL is displaced or vibrated by the mechanical MOL method, but in the fourth embodiment, the displacement of the center of gravity during displacement or vibration is prevented.
  • the council components for the balance of the evening and evening are provided.
  • FIG. 17 shows a mechanical drive system of the projection system PL of the present example corresponding to FIG. 7.
  • the projection system PL is housed in the lens barrel 31 and the lens barrel 3 1 Are held so as to be sandwiched in the Y direction by two pairs of leaf springs 32A, 328, and 32 (:, 32D. Both ends of the leaf springs 32A to 32D in the X direction are supported by supporting members 57A1, 57B1.
  • a ring-shaped balance member 128 is arranged so as to surround the center of the lens barrel 31 in a non-contact state, and the balance member 128 is also moved in the Y direction by a pair of leaf springs 32E and 32F.
  • both ends of the leaf springs 32E and 32F in the X direction are also fixed to the support members 57A1 and 57B 1. Therefore, the projection system PL and the balance member 128 are formed by the leaf springs. It is supported so that it can perform relative displacement and relative vibration in the Y direction via 32 A to 32 F.
  • the projection system PL and the lens barrel 3 1, and the weight of the member including the leaf springs 32A to 32D is substantially equal to the weight of the member including the balance member (counterhead) 128 and the leaf springs 32E and 32F.
  • the displacement amount of the lens barrel 31 (projection system PL) in the Y direction is determined by the movable mirror 40 fixed to one Y-direction side surface of the lens barrel 31 (leaf spring 32A) and the laser interferometer 41.
  • a rotation angle around the Z axis and a rotation angle around the X axis are measured at a predetermined sampling rate, and a movable mirror 40 G fixed to a side surface in the Y direction of the balance member 128 (leaf spring 32 E);
  • the laser interferometer 41G With the laser interferometer 41G, the displacement amount of the balance member 128 in the Y direction, the rotation angle around the Z axis, and the rotation angle around the X axis are measured at a predetermined sampling rate.
  • the balance member 128 when the projection system PL is vibrated in the Y direction (mechanical vibration direction MV) based on these measured values, the balance member 128 is moved in the Y direction with the same amplitude and the opposite phase. Vibrate along. In other words, when the projection system PL is displaced by ⁇ YG1 in the + Y direction, the balance member 128 is displaced by AYG1 along the opposite Y direction.
  • the movable member the projection system PL itself in this example
  • the balance member (counter-mass) 128 while substantially satisfying the law of conservation of momentum.
  • the projection system PL can be vibrated and displaced stably, and the accuracy of the transfer position on the wafer, etc. Is improved.
  • Fig. 18 shows an example of the mechanical drive member of Fig. 17.
  • the leaf spring 32A that holds the lens barrel 31 can be extended and contracted on the surface in the Y direction.
  • the drive elements 11 A and 11 B are fixed, and the drive elements 11 C and 11 ID are also fixed to the + Y direction surface of the leaf spring 32A.
  • the driving elements are also provided in the leaf spring 32B and the leaf springs 32C and 32D in FIG. Fixed.
  • the extensible drive elements 12 9 A and 12 9 B are also fixed to the surface of the leaf spring 3 2 E holding the balance member 1 2 8 in the —Y direction, and the + Y direction of the leaf spring 3 2 E is fixed.
  • the expandable and contractible drive elements 129 / C and 1 / 29D are also fixed to the surface of each.
  • a driving element is similarly fixed to the leaf spring 32F.
  • the leaf springs 32A and 32B are bent in the vibration direction MV along the Y direction by controlling the amount of expansion and contraction of the drive elements. By bending the leaf springs 32E and 32F in the opposite vibration direction MG by the same amount, the position of the center of gravity G of the mechanical system including the projection system PL and the balance member 128 does not change.
  • a voice filter In the embodiment shown in FIG. 17 as well, a voice filter, an EI core type actuator, a linear motor, etc. may be used as the mechanical drive system.
  • a predetermined width for example, After the reduced image of each sub-region of the mask is transferred to the region of L 1
  • the wafer W is transferred to the region on the wafer W adjacent to the region in the Y direction to transfer the reduced image of each sub-region to Y.
  • the velocity components of the wafer stage 46 in the X direction and the Y direction are not simultaneously set to 0, that is, the wafer W sequentially follows the U-shaped and inverted U-shaped trajectories. It is desirable to move the wafer so that it moves. By driving the wafer stage 46 in this way, it is possible to improve the throughput and reduce the vibration.
  • the mask stage 20 when the mask stage 20 is moved in order to move the irradiation area of the electron beam between the main visual fields of the mask M1, the mask stage 20 is also substantially moved. So that the velocity components of the mask stage 20 in the X and Y directions do not become 0 at the same time. By doing so, it is possible to improve the throughput and reduce the vibration.
  • the rotation amount of the projection system PL around the X axis and the rotation amount around the Y axis are respectively measured by the measurement system including the laser interferometer 41 shown in FIG. 17, for example. It is desirable to measure constantly and continuously correct the relative positional relationship between the electron beam from the projection system PL and the wafer W based on the measurement result.
  • the rotation amount of the projection system PL about the Z axis may be measured during the scanning exposure, and at least one of the mask and the wafer may be rotated based on the measurement result.
  • the projection system PL has one axis, but in FIG. 1, a plurality of projection systems PL that can be driven by a mechanical MOL method are arranged at variable intervals in the Y direction. Is also good.
  • a control mechanism that adjusts the interval between the projection axes PL of the plurality of axes to be, for example, an integral multiple of the pitch of the shot array on the wafer to be exposed is provided.
  • the offset of the electron beam irradiation position of each projection system PL is input so as to cancel the difference (residual error), and exposure is performed in parallel using the projection systems PL using the same control system. This further improves the throughput.
  • a large fiducial mark member may be used to measure the distance between the exposure centers of the multi-axis projection system PL, and one fiducial mark may be used relative to the plurality of projection systems PL. You may move.
  • a part of the movable members of the projection system is driven by the mechanical MOL method.
  • a movable stage (hereinafter referred to as a “MOL stage”) is provided, and a plurality of movable members of the projection system are installed on the MOL stage so as to be drivable, and these movable members are moved according to the pitch of the shot arrangement on the wafer. The distance between the members may be adjusted.
  • a plurality of movable members can be displaced or vibrated in parallel using one MOL stage, so that the mechanism of the drive system can be simplified.
  • the shape of the electron beam on the wafer stage 46 and the mechanical MOL method are used.
  • the first part that generates a secondary electron beam by irradiating the electron beam onto the wafer stage 46 and the second part that does not generate a secondary electron beam Reference marks provided with the portions may be formed at predetermined intervals.
  • the output of the secondary electron beam when the electron beam is displaced by the mechanical M ⁇ L method is detected, and for example, the output is differentiated with respect to the position of the electron beam (differential calculation in the case of a digital signal). From the obtained signals, the position and shape of the electron beam can be calibrated.
  • a magnetic field exists near the mask stage or the wafer stage, the magnetic field may bend the electron beam and deteriorate the transfer accuracy. Therefore, for example, a reference plate for detecting the deflection error of the electron beam according to the magnetic field strength is installed on the wafer stage, and the deflection error of the electron beam is detected.
  • the speed at which the electron beam is vibrated by the MOL method, the position of the wafer stage, and the like may be controlled based on a predetermined table.
  • FIG. 19 shows an example of a semiconductor device manufacturing process.
  • a semiconductor device when manufacturing a semiconductor device, first, for example, a single crystal silicon ingot is sliced and polished to manufacture a wafer W. I do. At this time, a notch (notch or the like) serving as a reference for wafer alignment is provided on the outer periphery of the wafer W. In the next step ST1, for example, a metal film or an insulating film is deposited on the wafer W, and an electron beam resist is applied.
  • the reduced images of the patterns are sequentially joined and transferred into one shot area (area where a circuit pattern for one or a plurality of dies is transferred) 52 on the wafer W.
  • the reduced images of many character patterns are sequentially transferred to other shot areas 52 on the wafer W in the same manner.
  • the projection system PL is vibrated using a mechanical MOL method, the throughput of the exposure process is extremely high.
  • a pattern F is formed in each shot region 52 on the wafer W by performing development, etching (or ion implantation), and the like.
  • step ST4 When exposing the next layer, first, in step ST4, for example, a metal film or an insulating film is deposited on the wafer W and an electron beam resist is applied.
  • step ST5 the electron beam shown in FIG.
  • reduced images of a number of character patterns selected from the mask M in the character pattern transfer method from the mask M in a different order from step ST2 are sequentially placed in one shot area 52 on the wafer W. Transcribe.
  • reduced images of a large number of character patterns are sequentially transferred to other shot areas 52 on the wafer W.
  • the throughput of the exposure process is extremely high because the projection system PL is vibrated by using the mechanical MOL method.
  • step ST6 a pattern G is formed in each shot region 52 on the wafer W by performing development, etching, and the like.
  • step ST7 The above-described electron beam resist coating process to pattern forming process (steps ST1 to ST3 or steps ST4 to ST6) are repeated as many times as necessary to manufacture a desired semiconductor device (step ST7). Then, a semiconductor device SP as a product is manufactured through a dicing step (step ST8) for separating each chip CP on the wafer W (step ST8), a bonding step, a packaging step, and the like (step ST9).
  • a dicing step step ST8 for separating each chip CP on the wafer W (step ST8), a bonding step, a packaging step, and the like.
  • the throughput of the exposure step using the electron beam transfer device is extremely high, a high-performance device can be produced with a high throughput as a whole.
  • a mechanical M ⁇ L method is used when manufacturing a semiconductor device.
  • other devices such as an image pickup device (CCD, etc.), a liquid crystal display device, a plasma display, etc.
  • the present invention can also be applied to the manufacture of devices, thin-film magnetic heads, micro machines, and the like. Further, the present invention is also applicable to the production of photomasks (reticles) for optical projection exposure apparatuses or other X-ray exposure apparatuses (including EUV exposure apparatuses), masks for electron beam transfer apparatuses, and the like. Can be applied.
  • a pattern obtained by enlarging an original pattern is drawn on a glass substrate by the exposure method of the above-described embodiment, and development and etching are performed. Manufacture reticles. Then, as a second step, the pattern of the master reticle may be transferred onto a glass substrate for a working reticle using an optical projection exposure apparatus.
  • a wafer as a mask substrate is formed using the exposure method of the above embodiment. Then, a predetermined original pattern may be transferred.
  • the electron beam reduction transfer apparatus as the exposure apparatus of the above-described embodiment includes an illumination system composed of a plurality of electron lenses and deflectors, and a projection system as a movable member incorporated in the transfer apparatus main body. Manufacturing, by performing symmetrical adjustments, attaching a reticle stage or wafer stage consisting of many mechanical parts to the transfer device body, connecting wiring and piping, and performing comprehensive adjustments (electrical adjustment, operation confirmation, etc.) can do. It is desirable to manufacture the transfer device in a clean room where the temperature and cleanliness are controlled.
  • the exposure is performed by the character-pattern transfer method or the split transfer method.
  • the present invention also includes an electron beam transfer device using a variable shaped beam or a Gaussian beam type electron beam. It goes without saying that the present invention can be applied to a transfer device and the like.
  • the electron gun 1 is used in a low-acceleration system, but in addition to this, the electron gun is moderately accelerated (acceleration voltage of about 15 kV to 30 kV) or high.
  • acceleration is about 50 kV to about 100 kV).
  • an electron beam is used as a charged particle beam
  • the present invention can also be applied to a charged particle beam transfer device using an ion beam or the like as a charged particle beam.
  • the projection system can be displaced by the mechanical MOL method, the projection system can be formed on the object (exposure target) without increasing the size of the projection system. This has the advantage that the pattern can be transferred to a wide area.
  • the projection system can be vibrated by the mechanical MOL method, there is an advantage that the throughput when performing exposure on an object to be exposed can be increased. is there.
  • the transfer speed can be increased, so that the throughput can be increased.
  • such an exposure method can be performed. Further, according to the device manufacturing method of the present invention, a high-performance device can be manufactured with high throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

An exposure method and device therefor, which can enhance a throughput at exposing by enabling patterns to be transferred onto a wide area on an object to be exposed without substantially upsizing a projection system. Electron beams (EB) shot from an electron gun (1) are shone on transfer-receiving character patterns on a mask (M) via a field-of-vision-selecting deflector (7), the electron beams passed through the character patterns are deflected back by a deflector (25) and then applied onto a wafer (W) via a projection system (PL). The projection system (PL) is supported so as to be displaceable by a drive system (34) in a direction perpendicular to an optical axis, and the projection system (PL) is mechanically displaced or vibrated when the reduced images of character patterns respectively corresponding to a plurality of positions on the wafer (W) are to be transferred.

Description

明 細 書 露光方法及び装置 技術分野  Description Exposure method and apparatus
本発明は、 例えば半導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 プラズマディスプレイ素子、 又は薄膜磁気へッド等のデバイスを製造す るためのリソグラフイエ程で所定のパターンをゥェ八等の基板上に転写 するために使用される露光方法及び装置に関し、 特に電子線やイオンビ ーム等の荷電粒子線を介してマスクパターンやキャラクタ一パターン等 の各種パターンを基板上に転写する荷電粒子線転写装置に使用して好適 なものである。 背景技術  The present invention relates to a lithographic apparatus for manufacturing a device such as a semiconductor device, an image pickup device (CCD or the like), a liquid crystal display device, a plasma display device, or a thin film magnetic head. The present invention relates to an exposure method and apparatus used for transferring onto a substrate, especially charged particles that transfer various patterns such as a mask pattern or a character pattern onto a substrate via a charged particle beam such as an electron beam or an ion beam. It is suitable for use in a line transfer device. Background art
近年、 転写パターンの解像度の向上とスループット (生産性) の向上 との両立を可能とした荷電粒子線転写装置の検討が進められている。 こ のような転写装置としては、 従来より感光性の基板としての 1枚のゥェ ハ上に形成される多数の集積回路 (半導体チップ等) の 1個分に相当す る 1ダイ分、 又は複数ダイ分のパターンを、 マスクから荷電粒子線に感 光するレジストが塗布されたウェハ上へ一括して転写する一括転写方式 の装置が検討されていた。 ところが、 一括転写方式は、 転写の原版とな るマスクの製作が困難で、 且つ 1ダイ分に相当する大きな光学フィ一ル ド内で荷電粒子投影系 (以下、 単に 「投影系」 と呼ぶ) の収差を所定範 囲内に収めることが難しい。  In recent years, studies have been made on a charged particle beam transfer apparatus capable of improving both the resolution of a transfer pattern and the throughput (productivity). Conventionally, such a transfer device is equivalent to one die corresponding to one integrated circuit (semiconductor chip, etc.) formed on one wafer as a photosensitive substrate, or A batch transfer type apparatus for transferring a pattern of a plurality of dies from a mask onto a wafer coated with a resist sensitive to a charged particle beam has been studied. However, in the batch transfer method, it is difficult to manufacture a mask serving as a transfer master, and a charged particle projection system (hereinafter simply referred to as a “projection system”) in a large optical field equivalent to one die. It is difficult to keep the aberration within a predetermined range.
これに関して、 半導体デバイス等においてウェハ等の基板上の 1ダイ 分の各レイヤの回路パターンは、 例えば複数種類の所定ピッチのライン • アンド · スペースパターンや所定形状の配線パターン等の予め定めら れたパターン (以下、 「キャラクターパターン (Character Pattern) 」 と呼ぶ) の像を、 組み合わせて転写することによつても形成することが できる。 そこで、 予めマスク上に多数の種類のキャラクターパターンを 形成しておき、 これらの中から順次選択されたキャラクタ一パターンの 像を所定配列で基板上に転写していく 「キャラクターパターン転写方式」 の荷電粒子線転写装置の開発が行われている。 なお、 説明の便宜上、 基 板上でそれぞれ 1ダイ分のパターンの像 (例えば縮小像) が転写される 領域をショッ ト領域と呼ぶことにする。 その基板の表面は縦横に所定ピ ツチで多数のショッ ト領域に分かれている。 In this regard, in a semiconductor device or the like, the circuit pattern of each layer of one die on a substrate such as a wafer is, for example, a plurality of types of lines having a predetermined pitch • It can also be formed by combining and transferring images of a predetermined pattern (hereinafter referred to as “character pattern”) such as an and space pattern or a wiring pattern having a predetermined shape. it can. Therefore, a “character pattern transfer method” is used in which a large number of types of character patterns are formed in advance on a mask, and images of one character pattern selected from these are sequentially transferred onto a substrate in a predetermined arrangement. Development of a particle beam transfer device is being performed. For convenience of explanation, an area where a pattern image (for example, a reduced image) of one die is transferred on the substrate is called a shot area. The surface of the substrate is divided vertically and horizontally into a number of shot areas at predetermined pitches.
そのキャラクターパターン転写方式の装置では、 マスク側で順次選択 されるキャラクターパターンを基板上の各ショット領域内に所定配列で できるだけ高速に (高スループットで) 転写する必要があるため、 投影 系の視野はできるだけ大きいことが望ましい。 しかしながら、 単に投影 系を大型化したのでは諸収差が大きくなつてしまうため、 投影系をあま り大型化することなく、 実質的に視野を広くするために、 投影系内の電 磁場の分布を変化させて電子的に投影系の電子光学系を光軸に垂直な方 向に変位させる MOL (Moving Objective Lens)方式が、 例えば文献 (E. Goto and T. Soma: Optik 48, No.3, 255-270 (1977)) で提案され ている。  In such a character pattern transfer type apparatus, it is necessary to transfer a character pattern sequentially selected on the mask side into each shot area on the substrate in a predetermined arrangement as quickly as possible (with high throughput), so that the field of view of the projection system is limited. It is desirable to be as large as possible. However, simply increasing the size of the projection system increases various aberrations.Therefore, in order to substantially increase the field of view without increasing the size of the projection system, the distribution of the electromagnetic field in the projection system must be increased. The MOL (Moving Objective Lens) method, which electronically displaces the electron optical system of the projection system in a direction perpendicular to the optical axis by changing the optical system, is described in the literature (E. Goto and T. Soma: Optik 48, No. 255-270 (1977)).
また、 基板に転写すべき回路パターンを 1ダイに相当する大きさより も小さい複数の副視野に分割し、 各副視野毎のパターンの縮小像を順次 基板上に転写する 「分割転写方式」 の荷電粒子線転写装置の開発も検討 されている。 この分割転写方式においても、 各副視野のパターンを高速 に基板上に転写するためには、 投影系の視野はできるだけ大きいことが 望ましい。 更に、 マスク上で光軸から離れた位置のパターン (キャラクタ一パ夕 —ン又は副視野のパターン等) を投影系を介して転写する場合にも収差 を小さくするためには、 荷電粒子線はできるだけ光軸に近い位置を通過 することが望ましいため、 M T P (Mov ing Traj ec tory Proj ec t ion) 方 式の光学系も提案されている。 この M T P方式は、 偏向器で荷電粒子線 の軌道を実質的に光軸に合わせた状態で投影系による縮小投影を行う方 式である。 In addition, the `` division transfer method '' is used to divide the circuit pattern to be transferred to the substrate into a plurality of sub-fields smaller than the size equivalent to one die, and transfer the reduced image of the pattern for each sub-field sequentially to the substrate. Development of a particle beam transfer device is also under consideration. Also in this division transfer method, it is desirable that the field of view of the projection system be as large as possible in order to transfer the pattern of each sub-field of view onto the substrate at high speed. Furthermore, even when a pattern (a character pattern or a sub-field pattern, etc.) at a position distant from the optical axis on the mask is transferred via the projection system, the charged particle beam must be Since it is desirable to pass through a position as close to the optical axis as possible, an MTP (Moving Trajectory Projection) optical system has been proposed. The MTP method is a method in which a deflector performs reduced projection using a projection system while the orbit of the charged particle beam is substantially aligned with the optical axis.
このようにキャラクターパターン転写方式、 又は分割転写方式でマス ク上から順次選択されたパターンの縮小像を基板上の異なる位置に転写 する際には、 狭い領域であれば偏向器によって荷電粒子線の位置をずら すことも可能である。 しかしながら、 偏向器のみでは基板上の 1つの広 ぃショッ ト領域内の各位置に順次対応するパターンの像を転写すること ができないため、 従来は基板用のステージによってその基板を機械的に 移動することによって、 基板上での像の転写位置を変えていた。 また、 必要に応じて基板側に設けた偏向器によってその基板上での転写位置の 補正を行っていた。  When a reduced image of a pattern sequentially selected from a mask is transferred to a different position on a substrate by the character pattern transfer method or the split transfer method as described above, when a narrow area is used, the deflector may use a charged particle beam. It is also possible to shift the position. However, the deflector alone cannot transfer the image of the pattern corresponding to each position in one wide shot area on the substrate sequentially, so that conventionally, the substrate is mechanically moved by the substrate stage. This changed the transfer position of the image on the substrate. Also, the transfer position on the substrate was corrected by a deflector provided on the substrate as needed.
上記の如き従来の荷電粒子線転写装置においては、 基板上の 1つのシ ヨッ ト領域 ( 1ダイ分の領域) 内の異なる位置にそれぞれ所定のパ夕一 ンの像を転写するために、 実質的に基板用のステージを機械的に 2次元 的に駆動していた。 この場合、 基板上の 1つのショッ ト領域内で、 マス ク上の 1つの最小単位のパターンの像で露光される最小の被露光領域を 「副露光領域」 と呼ぶものとすると、 従来は先ず基板用のステージを第 1の方向に移動することによって、 その基板上のほぼ 1つの副露光領域 分の幅の細長い 「主露光領域」 内に順次対応するパターンの像を転写し た後、 その基板ステージをその第 1の方向に直交する第 2の方向にステ ップ移動してから、 再びその基板ステージをその第 1の方向に移動して 次の主露光領域内に順次対応するパターンの像を転写するという動作が 繰り返されていた。 In the conventional charged particle beam transfer apparatus as described above, in order to transfer images of a predetermined pattern to different positions in one shot area (one die area) on the substrate, respectively. The substrate stage was mechanically driven two-dimensionally. In this case, within one shot area on the substrate, the smallest exposed area exposed by the image of one minimum unit pattern on the mask is called a "sub-exposure area". By moving the stage for the substrate in the first direction, the images of the corresponding patterns are sequentially transferred into the elongated “main exposure region” having a width corresponding to approximately one sub-exposure region on the substrate, and then transferred. Moving the substrate stage in a second direction orthogonal to the first direction, and then moving the substrate stage again in the first direction. The operation of successively transferring the images of the corresponding patterns in the next main exposure area was repeated.
そのため、 従来は 1つのショッ ト領域に露光する際に、 その基板用の ステージをその第 1の方向に繰り返して多数回走査する必要があり、 露 光時間が長くなり、 露光工程のスループットが低いという不都合があつ た。  Therefore, conventionally, when exposing one shot area, it is necessary to repeatedly scan the stage for the substrate in the first direction many times, which increases the exposure time and reduces the throughput of the exposure process. There was an inconvenience.
これに関して、 投影系の視野を大きくするためには、 単純に投影系を 大型化する方法も考えられるが、 収差を大きくすることなく投影系を大 型化するのは製造コストが大幅に上昇する恐れがある。 更に、 荷電粒子 線転写装置の荷電粒子線の光路は真空にする必要があるため、 真空容器 をできるだけ小型化して製造コストを低くするためにも、 投影系はでき るだけ小型化しておくことが望ましい。  In this regard, in order to increase the field of view of the projection system, a method of simply enlarging the projection system is conceivable, but enlarging the projection system without increasing the aberration significantly increases the manufacturing cost. There is fear. Furthermore, since the optical path of the charged particle beam of the charged particle beam transfer device needs to be evacuated, the projection system should be as small as possible in order to make the vacuum vessel as small as possible and reduce the manufacturing cost. desirable.
また、 従来の電子的な M〇L方式では、 投影系内の電磁場の分布を変 化させることによって、 基板上で 1つから 2つの副露光領域分程度の幅 では低収差で投影像の転写位置をずらすことが可能であったため、 この 電子的な M O L方式を用いてその基板ステージをその第 1の方向に走査 する際に、 例えば 2つの副露光領域分の幅の主露光領域に転写を行うも のとすると、 スループッ トは 2倍程度に改善することができる。 しかし ながら、 これでも 1つのショッ ト領域の全体に露光するにはその基板ス テージによる走査を多数回繰り返す必要があるため、 スループッ トを大 幅に改善する技術の開発が望まれていた。  In addition, in the conventional electronic M〇L method, by changing the distribution of the electromagnetic field in the projection system, the projected image is transferred with low aberration within a width of one to two sub-exposure areas on the substrate. Since the position could be shifted, when the substrate stage was scanned in the first direction using this electronic MOL method, the transfer was performed, for example, to the main exposure area with the width of two sub-exposure areas. If we do, the throughput can be improved by a factor of two. However, even in this case, it is necessary to repeat scanning by the substrate stage many times in order to expose the entire one shot region, and therefore, there has been a demand for the development of a technology for greatly improving the throughput.
本発明は斯かる点に鑑み、 投影系をあまり大型化することなく、 露光 対象の物体 (被露光体) 上の広い領域にパターンを転写できる露光方法 を提供することを第 1の目的とする。  In view of the above, it is a first object of the present invention to provide an exposure method capable of transferring a pattern to a wide area on an object to be exposed (object to be exposed) without increasing the size of a projection system. .
更に本発明は、 露光対象の物体に対して露光を行う際のスループット を高めることができる露光方法を提供することを第 2の目的とする。 更に本発明は、 露光対象の物体上にマスクから順次選択された小さい パターンの像を転写する場合に、 スループッ トを高めることができる露 光方法を提供することを第 3の目的とする。 It is a second object of the present invention to provide an exposure method that can increase the throughput when performing exposure on an object to be exposed. It is a third object of the present invention to provide an exposure method capable of increasing throughput when transferring an image of a small pattern sequentially selected from a mask onto an object to be exposed.
更に本発明は、 そのような露光方法を実施できる露光装置を提供する ことを第 4の目的とする。  Further, a fourth object of the present invention is to provide an exposure apparatus capable of performing such an exposure method.
また、 本発明はその露光方法を用いて高いスループッ卜で高機能のデ バイスを製造できるデバィス製造方法を提供することを第 5の目的とす る。 発明の開示  A fifth object of the present invention is to provide a device manufacturing method capable of manufacturing a high-performance device with high throughput by using the exposure method. Disclosure of the invention
本発明による第 1の露光方法は、 荷電粒子線で第 1物体 (M) を照射 し、 この第 1物体のパターンを経た荷電粒子線を投影系 (P L ) を介し て第 2物体 (W) に照射する露光方法において、 その第 2物体上の異な る複数の位置にそれぞれその第 1物体上の対応するパターンを経た荷電 粒子線を照射するために、 その投影系中の少なくとも一部の可動部材 ( P L ; 2 9 ) を変位させるものである。  The first exposure method according to the present invention comprises irradiating a first object (M) with a charged particle beam and projecting a charged particle beam having passed through the pattern of the first object (W) through a projection system (PL). In order to irradiate a plurality of different positions on the second object with charged particle beams having passed through corresponding patterns on the first object, at least a part of the The member (PL; 29) is displaced.
斯かる本発明によれば、 例えば図 1 0に示すようにその投影系 (P L ) の少なくとも一部の可動部材をその第 2物体 (W) の法線に垂直な方向 に、 又は照明系の光軸に垂直な方向に 1, A y 2だけ変位させると、 その第 2物体上での転写位置はその変位方向に沿ってそれぞれ Δ Υ 1, Δ Y 2だけ移動する。 このようにその投影系の少なくとも一部の可動部 材を機械的に変位させる方式を以下では 「機械的な M〇L (Moving Obj ec t ive Lens)方式」 と呼ぶ。 この機械的な M O L方式を用いることによ つて、 その投影系を大型化することなく、 その第 2物体上の異なる複数 の位置に、 即ち広い領域に、 対応するパターンの例えば縮小像を小さい 収差で転写できる。 この場合、 その投影系の光軸に実質的に垂直な平面内で、 更にその投 影系に対してその第 2物体を移動させることが望ましい。 これによつて、 その第 2物体上でより広い 2次元領域に所定の 1群のパターンを転写で さる。 According to the present invention, for example, as shown in FIG. 10, at least some of the movable members of the projection system (PL) are moved in a direction perpendicular to the normal line of the second object (W), or When displaced by 1, Ay2 in the direction perpendicular to the optical axis, the transfer position on the second object moves by ΔΥ1, ΔY2 along the direction of displacement. The method of mechanically displacing at least a part of the movable member of the projection system in this manner is hereinafter referred to as a “mechanical moving objective lens (M〇L) method”. By using this mechanical MOL method, it is possible to reduce, for example, a reduced image of a pattern corresponding to a plurality of different positions on the second object, that is, to a wide area, without increasing the size of the projection system. Can be transferred. In this case, it is desirable to move the second object in a plane substantially perpendicular to the optical axis of the projection system and further with respect to the projection system. Thereby, a predetermined group of patterns can be transferred to a wider two-dimensional area on the second object.
また、 その第 2物体を移動させる動作又はその可動部材を変位させる 動作に同期して、 その投影系内の電磁場を電気的に変化させてその荷電 粒子線のその第 2物体上での照射位置を補正することが望ましい。 これ は、 本発明の機械的な M〇L方式に対して、 従来の電子的な M O L方式 を併用することを意味する。 例えば図 1 1に示すように、 投影系 (P L ) の少なくとも一部を機械的に所定の方向に変位させている際に、 その投 影系を構成する電磁的なレンズ系の電磁場の分布を本来の点線で示す位 置 (2 7 A, 2 7 B , 2 9 A , 2 9 B ) から実線で示す位置 ( 2 7 , 2 9 ) に変化させることによって、 その第 2物体 (W) 上での転写位置を 同一の位置 ( 5 4 Β ) に設定することができる。 従って、 その第 2物体 上での転写位置の精度が向上し、 重ね合わせ露光時には重ね合わせ精度 が向上する。  Also, in synchronization with the operation of moving the second object or the operation of displacing the movable member, the electromagnetic field in the projection system is electrically changed, and the irradiation position of the charged particle beam on the second object is changed. Is desirably corrected. This means that the conventional electronic MOL method is used in combination with the mechanical M〇L method of the present invention. For example, as shown in Fig. 11, when at least a part of the projection system (PL) is mechanically displaced in a predetermined direction, the distribution of the electromagnetic field of the electromagnetic lens system constituting the projection system is changed. By changing the position (27 A, 27 B, 29 A, 29 B) shown by the original dotted line to the position (27, 29) shown by the solid line, the second object (W) The transfer position can be set to the same position (54Β). Therefore, the accuracy of the transfer position on the second object is improved, and the overlay accuracy is improved during the overlay exposure.
また、 その第 1物体上に複数の互いに異なるパターンを形成しておき、 その第 2物体上の照射位置に応じてその第 1物体上から選択されたパ夕 —ンを経た荷電粒子線をその投影系に導くことが望ましい。 これは、 本 発明の露光方法を、 キャラクターパターン転写方式又は分割転写方式等 に適用した場合に対応している。  In addition, a plurality of different patterns are formed on the first object, and the charged particle beam passing through the pattern selected from the first object according to the irradiation position on the second object is obtained. It is desirable to lead to a projection system. This corresponds to a case where the exposure method of the present invention is applied to a character pattern transfer method, a division transfer method, or the like.
また、 その可動部材の回転情報を検出し、 この回転情報に基づいてそ の荷電粒子線のその第 2物体上での照射位置を補正することが望ましい。 これによつて、 変位中にその可動部材が回転しても、 その第 2物体上で の転写位置を正確に補正できる。 更に、 その可動部材は第 1方向に変位 可能で、 その第 2物体はその第 1方向とほぼ直交する第 2方向に移動さ れる構成として、 その第 1方向に関してその可動部材の移動距離よりも 大きいその第 2物体上の領域にその第 1物体のパターンを転写すること が望ましい。 これによつてスループッ 卜が更に向上する。 It is also desirable to detect rotation information of the movable member and correct the irradiation position of the charged particle beam on the second object based on the rotation information. Accordingly, even if the movable member rotates during the displacement, the transfer position on the second object can be accurately corrected. Further, the movable member is displaceable in a first direction, and the second object is moved in a second direction substantially orthogonal to the first direction. It is preferable that the pattern of the first object is transferred to an area on the second object that is longer than the moving distance of the movable member in the first direction. This further improves throughput.
次に、 本発明の第 2の露光方法は、 荷電粒子線で第 1物体 (M) を照 射し、 この第 1物体のパターンを経た荷電粒子線を投影系 (P L ) を介 して第 2物体 (W) に照射する露光方法において、 その第 2物体上の異 なる複数の位置にそれぞれその第 1物体上の対応するパターンを経た荷 電粒子線を照射するために、 その投影系中の少なくとも一部の可動部材 ( P L ; 2 9 ) を所定方向に振動させるものである。  Next, in the second exposure method of the present invention, the first object (M) is irradiated with a charged particle beam, and the charged particle beam passing through the pattern of the first object is projected through a projection system (PL). In the exposure method of irradiating two objects (W), a plurality of different positions on the second object are each irradiated with a charged particle beam having passed through a corresponding pattern on the first object. Vibrates at least a part of the movable members (PL; 29) in a predetermined direction.
この第 2の露光方法は、 本発明の機械的な M〇L (Moving Obj ec t ive Lens)方式を適用してその投影系の少なくとも一部の可動部材をその所 定方向に振動させているため、 その第 2物体上でのパターンの転写位置 をその所定方向に沿って高速に移動させることができる。 この際に、 そ の第 2物体を位置決めするためのステージに比べて、 その投影系の少な くとも一部の可動部材の方がかなり軽量化できるため、 そのステージを 機械的にその所定方向に沿って駆動する場合に比べて、 大幅に改善され たスループッ 卜でその第 2物体上への露光を行うことができる。  In the second exposure method, at least a part of the movable members of the projection system is vibrated in a predetermined direction by applying the mechanical moving objective lens (M〇L) method of the present invention. Therefore, the pattern transfer position on the second object can be moved at high speed along the predetermined direction. At this time, at least some of the movable members of the projection system can be considerably reduced in weight compared to the stage for positioning the second object, so that the stage is mechanically moved in the predetermined direction. Exposure on the second object can be performed with greatly improved throughput compared to driving along.
この場合、 その可動部材を第 1方向 (Y方向) に沿って振動させるの と同期して、 その第 1方向に交差する第 2方向 (X方向) にその第 2物 体を移動させて、 その第 2物体上の 2次元領域にその第 1物体上の対応 するパターンを経た荷電粒子線を照射することが望ましい。 このように 機械的な M O L方式によるその第 1方向への振動と、 その第 2物体のそ の第 2方向への機械的な駆動とを組み合わせることによって、 例えばそ の第 2物体上の 1つのショッ ト領域 ( 1ダイ分の領域) に露光する際に、 その第 2物体をその第 2方向へ機械的に駆動する回数を少なくすること ができる。 従って、 露光工程のスループットが向上する。 この場合にも、 その可動部材を振動させる動作に同期して、 その投影 系内の電磁場を電気的に変化させてその荷電粒子線のその第 2物体上で の照射位置を補正することが望ましい。 例えば図 1 3 (A) に示すよう に、 単にその可動部材をその第 1方向 (Y方向) に振動させて、 その第 2物体をその第 2方向 (X方向) に移動させると、 その第 2物体上での パターンの転写位置は軌跡 (1 1 9) で示すように、 目標位置 (54A, 54 B, ···) から主にその第 2方向に外れてしまう。 そこで、 その位置 ずれ量を補正するように、 電子的な MOL方式を組み合わせて、 そのパ ターンの転写位置を主にその第 2方向に補正することによって、 その第 2物体上での転写位置は例えば図 1 3 (D) の軌跡 (1 2 1) で示すよ うに、 目標とする位置に沿って移動するようになる。 In this case, in synchronization with oscillating the movable member in the first direction (Y direction), the second object is moved in a second direction (X direction) crossing the first direction, It is desirable to irradiate a two-dimensional area on the second object with a charged particle beam having passed through a corresponding pattern on the first object. Thus, by combining the vibration in the first direction by the mechanical MOL method and the mechanical driving of the second object in the second direction, for example, one of the When exposing the shot area (area for one die), the number of times the second object is mechanically driven in the second direction can be reduced. Therefore, the throughput of the exposure process is improved. Also in this case, it is desirable to correct the irradiation position of the charged particle beam on the second object by electrically changing the electromagnetic field in the projection system in synchronization with the operation of vibrating the movable member. . For example, as shown in Fig. 13 (A), simply moving the movable member in the first direction (Y direction) and moving the second object in the second direction (X direction), The transfer position of the pattern on the two objects deviates mainly from the target position (54A, 54B,...) In the second direction as shown by the locus (1 19). Therefore, the transfer position on the second object is corrected by correcting the transfer position of the pattern mainly in the second direction by combining the electronic MOL method so as to correct the displacement amount. For example, as shown by the locus (1 2 1) in Fig. 13 (D), the robot moves along the target position.
更に、 例えば図 1 3 (D) の軌跡 (12 1) 上の時点 t 1, t 2, ··· において、 それぞれ転写位置が目標位置 (54A, 54 B, ···) に達し ているとすると、 その時点 t l, t 2 , …において極めて短時間だけ荷 電粒子線の照射を行うことによって、 その目標位置に対応するパターン を転写することができる。 但し、 より正確には、 例えばその第 2物体上 に感光材料が塗布されている場合、 荷電粒子線を所定の露光時間 Δ tだ けその第 2物体上に照射する必要がある。 この場合、 例えば時点 t lを 中心とした露光時間 Δ tの間だけ、 転写位置を目標位置 (54A) に維 持しておくためには、 電子的な MOL方式を用いてその第 1方向 (Y方 向) でも転写位置の補正を行う必要がある。  Furthermore, for example, at time points t1, t2,... On the locus (12 1) in FIG. 13D, the transfer positions have reached the target positions (54A, 54B,...), Respectively. Then, by irradiating the charged particle beam for a very short time at that time tl, t 2,..., The pattern corresponding to the target position can be transferred. However, more precisely, for example, when a photosensitive material is coated on the second object, it is necessary to irradiate the charged particle beam onto the second object for a predetermined exposure time Δt. In this case, for example, in order to keep the transfer position at the target position (54A) only during the exposure time Δt centered at the time point tl, the first direction (Y However, it is necessary to correct the transfer position.
この場合、 その第 2物体の感度に応じてその可動物体の振動周波数を 制御するようにしてもよい。 その荷電粒子線の強度が一定であるとする と、 その第 2物体の感度が低い場合には、 その露光時間 Δ tが長くなる ため、 その振動周波数を低くする必要がある。 一方、 その第 2物体の感 度が高い場合には、 その露光時間 Δ tは短くできるため、 その振動周波 数を高くすることができる。 In this case, the vibration frequency of the movable object may be controlled according to the sensitivity of the second object. Assuming that the intensity of the charged particle beam is constant, if the sensitivity of the second object is low, the exposure time Δt becomes long, so that the vibration frequency needs to be lowered. On the other hand, when the sensitivity of the second object is high, the exposure time Δt can be shortened, so that the vibration frequency The number can be higher.
これに対して、 例えば荷電粒子線源の強度の制御が安定にできるよう な場合には、 その第 2物体の感度に応じてその荷電粒子線の強度を制御 することが望ましい。 この場合には、 その可動部材の振動周波数を一定 にできるため、 機械的な駆動系の制御が容易である。  On the other hand, for example, when the intensity of the charged particle beam source can be stably controlled, it is desirable to control the intensity of the charged particle beam according to the sensitivity of the second object. In this case, since the vibration frequency of the movable member can be kept constant, it is easy to control the mechanical drive system.
また、 その可動部材に可撓性を有する部材を介してバランサ ( 1 2 8 ) を連結し、 その可動部材を振動させる際に、 その可動部材及びそのバラ ンサを含む機械系の重心位置 (G ) が変位しないように、 その可動部材 と逆位相でそのバランサを振動させることが望ましい。 これによつて、 その可動部材をより安定に振動させることができ、 その第 2物体上での 転写位置の精度が向上する。  In addition, when a balancer (128) is connected to the movable member via a flexible member, and the movable member is vibrated, the position of the center of gravity of the mechanical system including the movable member and the balancer (G It is desirable that the balancer be vibrated in phase opposite to that of the movable member so that the movable member does not move. Thereby, the movable member can be more stably vibrated, and the accuracy of the transfer position on the second object is improved.
更に、 本発明においても、 その可動部材の回転情報を検出し、 この回 転情報に基づいてその荷電粒子線のその第 2物体上での照射位置を補正 することが望ましい。 これによつて、 変位中にその可動部材が回転して も、 その第 2物体上での転写位置を正確に補正できる。  Further, also in the present invention, it is desirable to detect rotation information of the movable member and correct the irradiation position of the charged particle beam on the second object based on the rotation information. Thus, even if the movable member rotates during the displacement, the transfer position on the second object can be accurately corrected.
次に、 本発明による第 1の露光装置は、 荷電粒子線で第 1物体 (M ) を照射し、 この第 1物体のパターンを経た荷電粒子線を投影系 (P L ) を介して第 2物体 (W) に照射する露光装置において、 その第 2物体上 でのその荷電粒子線の照射位置を移動させるために、 その投影系の少な くとも一部の可動部材を変位させる機械的駆動系 (3 2 A , 3 2 B , 3 4 ) を設けたものである。  Next, the first exposure apparatus according to the present invention irradiates a first object (M) with a charged particle beam, and projects a charged particle beam having passed through the pattern of the first object through a projection system (PL). In the exposure apparatus for irradiating (W), in order to move the irradiation position of the charged particle beam on the second object, a mechanical drive system (at least one of the movable members of the projection system is displaced) 32 A, 32 B, 34) are provided.
この場合、 その投影系の光軸に実質的に垂直な平面内で、 その投影系 に対してその第 2物体を移動させる第 2物体用ステージ (4 6 ) を設け ることが望ましい。  In this case, it is desirable to provide a second object stage (46) for moving the second object with respect to the projection system in a plane substantially perpendicular to the optical axis of the projection system.
また、 その荷電粒子線のその第 2物体上での照射位置を補正するため に、 その投影系内での電磁場を電気的に変化させる電子的駆動系 (3 5 ) と、 その第 2物体用ステージの動作及びその機械的駆動系の動作に応じ てその電子的駆動系の動作を制御する制御系 ( 3 3 ) と、 を設けること が望ましい。 In addition, in order to correct the irradiation position of the charged particle beam on the second object, an electronic drive system for electrically changing an electromagnetic field in the projection system (35) And a control system (33) for controlling the operation of the electronic drive system according to the operation of the second object stage and the operation of the mechanical drive system.
また、 その第 1物体上に複数の互いに異なるパターン ( 1 5 A, 1 5 B , 1 5 C , '·· ) が形成されている場合に、 その第 1物体をその投影系 の光軸に実質的に垂直な平面内で移動させる第 1物体用ステージ (2 0 ) と、 その荷電粒子線をその第 1物体上から選択されたパターンに照射す る第 1偏向器 (7 ) と、 その第 1物体上で選択されたパターンを経た荷 電粒子線を振り戻す第 2偏向器 (2 5 ) と、 を設けることが望ましい。 斯かる本発明の露光装置によれば、 本発明の第 1の露光方法を実施す ることができる。  Also, when a plurality of different patterns (15A, 15B, 15C, '...) are formed on the first object, the first object is moved to the optical axis of the projection system. A first object stage (20) for moving in a substantially vertical plane, a first deflector (7) for irradiating the charged particle beam to a pattern selected from the first object, and It is desirable to provide a second deflector (25) for turning back the charged particle beam passing through the selected pattern on the first object. According to the exposure apparatus of the present invention, the first exposure method of the present invention can be performed.
また、 本発明による第 2の露光装置は、 荷電粒子線で第 1物体 (M) を照射し、 この第 1物体のパターンを経た荷電粒子線を投影系 (P L ) を介して第 2物体 (W) に照射する露光装置において、 その第 2物体上 でのその荷電粒子線の照射位置を移動させるために、 その投影系の少な くとも一部の可動部材を振動させる機械的駆動系 (3 2 A , 3 2 B , 3 4 ) を設けたものである。  Further, the second exposure apparatus according to the present invention irradiates the first object (M) with a charged particle beam, and emits a charged particle beam having passed through the pattern of the first object via a projection system (PL). W), the mechanical drive system (3) that vibrates at least some of the movable members of the projection system in order to move the irradiation position of the charged particle beam on the second object. 2 A, 32 B, 34).
この場合、 その機械的駆動系は、 その可動部材を第 1方向 (Y方向) に沿って振動させるものであり、 その第 2物体上の 2次元領域にその第 1物体上の対応するパターンを経た荷電粒子線を照射するために、 その 第 2物体をその第 1方向に交差する第 2方向 (X方向) に移動させる第 2物体用ステージ (4 6 ) を設けることが望ましい。  In this case, the mechanical drive system vibrates the movable member along the first direction (Y direction), and a corresponding pattern on the first object is stored in a two-dimensional area on the second object. In order to irradiate the charged particle beam, it is desirable to provide a second object stage (46) for moving the second object in a second direction (X direction) intersecting the first direction.
また、 その荷電粒子線のその第 2物体上での照射位置を移動させるた めに、 その投影系内での電磁場を電気的に変化させる電子的駆動系 (3 5 ) を設け、 その可動部材を振動させる動作及びその第 2物体用ステ一 ジの移動動作に同期して、 その電子的駆動系を介してその荷電粒子線の その第 2物体上での照射位置を補正することが望ましい。 Further, in order to move the irradiation position of the charged particle beam on the second object, an electronic drive system (35) for electrically changing an electromagnetic field in the projection system is provided, and the movable member is provided. Of the charged particle beam via the electronic drive system in synchronism with the operation of oscillating the beam and the movement of the stage for the second object. It is desirable to correct the irradiation position on the second object.
その機械的駆動系は、 一例としてその可動部材を挟むように配置され てそれぞれ可動性を持つ第 1及び第 2の板ばね部材 (32A, 32 B) と、 この板ばね部材を支持する支持部材 (57A, 57 B) と、 その 2 枚の板ばね部材が可撓性を持つ方向にその可動部材を駆動する駆動部材 (1 1 1 A〜1 1 1 D, 1 12A〜1 12D) と、 を有するものである。 また、 その機械的駆動系は、 その可動部材を囲むように配置されたバ ランサ (1 28) と、 その可動部材とそのバランサとを相対変位自在な 状態で保持するバランサ保持部材 (32 A〜32D, 32 E, 32 F,) と、 そのバランサを駆動するバランサ駆動部材 ( 1 1 1 A, 1 1 1 C, 1 29 A, 1 29 C) と、 を備え、 その機械的駆動系は、 その可動部材 及びそのバランサを含む機械系の重心位置 (G) が実質的に変位しない ように、 その可動部材と逆位相でそのバランサを振動させることが望ま しい。  The mechanical drive system includes, as an example, first and second leaf spring members (32A, 32B) arranged so as to sandwich the movable member and having mobility, and a support member for supporting the leaf spring member. (57A, 57B) and driving members (111A to 11D, 112A to 112D) for driving the movable member in a direction in which the two leaf spring members have flexibility. It has. Further, the mechanical drive system includes a balancer (128) arranged so as to surround the movable member, and a balancer holding member (32A to 32A) which holds the movable member and the balancer in a relatively displaceable state. 32D, 32E, 32F,) and a balancer driving member (111A, 1111C, 129A, 129C) for driving the balancer. It is desirable that the balancer be vibrated in a phase opposite to that of the movable member so that the center of gravity (G) of the mechanical system including the movable member and the balancer is not substantially displaced.
斯かる本発明の第 2の露光装置によって、 本発明の第 2の露光方法が 実施できる。  With the second exposure apparatus of the present invention, the second exposure method of the present invention can be performed.
この際に、 その可動部材の位置を計測する第 1の位置検出器 (40, 41) を備え、 この第 1の位置検出器の検出結果に応じてその機械的駆 動系の動作を制御することが望ましい。 これによつてその可動部材の位 置の制御精度、 ひいてはその第 2の物体上での転写位置の制御精度が向 上する。  At this time, a first position detector (40, 41) for measuring the position of the movable member is provided, and the operation of the mechanical drive system is controlled according to the detection result of the first position detector. It is desirable. As a result, the control accuracy of the position of the movable member and the control accuracy of the transfer position on the second object are improved.
また、 上記の露光装置にその第 1物体及びその第 2物体を搬入する経 路の少なくとも一部に、 内部の真空度をその他の部分とは独立に制御で きる予備室 (6 7, 69 ) を設けることが望ましい。 これによつて、 そ の露光装置と例えばその第 1物体又はその第 2物体を交換する機構とを 並行して動作させることができるため、 スループッ卜が向上する。 次に、 本発明の露光装置の製造方法は、 荷電粒子線で第 1物体 (M) を照射し、 この第 1物体のパターンを経た荷電粒子線を投影系 (PL) を介して第 2物体 (W) に照射する露光装置の製造方法において、 その 第 2物体上でのその荷電粒子線の照射位置を移動させるために、 その投 影系の少なくとも一部の可動部材 (PL ; 29) を変位自在、 又は振動 自在の状態で支持部材 (57A, 57 B) に取り付け、 その可動部材を 変位、 又は振動させるための機械的駆動系 (32 A, 32 B, 1 1 1 A, 1 1 2 A) を取り付けるものである。 斯かる製造方法によって、 本発明 の露光装置を効率的に製造できる。 In addition, at least a part of a path for carrying the first object and the second object into the above-described exposure apparatus has a spare chamber in which the degree of vacuum inside can be controlled independently of other parts. Is desirably provided. Thereby, the exposure apparatus and, for example, a mechanism for exchanging the first object or the second object can be operated in parallel, so that the throughput is improved. Next, the method of manufacturing an exposure apparatus according to the present invention includes irradiating a first object (M) with a charged particle beam, and projecting a charged particle beam having passed through the pattern of the first object through a projection system (PL). In the method of manufacturing an exposure apparatus for irradiating (W), at least a part of the movable member (PL; 29) of the projection system is moved to move the irradiation position of the charged particle beam on the second object. A mechanical drive system (32 A, 32 B, 11 A, 1 1 2) that is attached to the support member (57A, 57B) in a state where it can be displaced or vibrated, and displaces or vibrates the movable member. A) is to be attached. According to such a manufacturing method, the exposure apparatus of the present invention can be manufactured efficiently.
次に、 本発明によるデバイス製造方法は、 上記の本発明の露光方法を 用いてデバイスパターンをワークピース上に転写する工程を含むもので ある。 このデバイス製造方法によれば、 荷電粒子線を介することによつ て、 極めて微細なパターンを高精度にウェハ等の基板やマスク用のガラ ス基板などのワークピース上に転写できる。 また、 本発明の機械的な M OL方式の適用によって、 露光時のスループットが向上している。 図面の簡単な説明  Next, a device manufacturing method according to the present invention includes a step of transferring a device pattern onto a workpiece using the above-described exposure method of the present invention. According to this device manufacturing method, an extremely fine pattern can be transferred with high precision onto a workpiece such as a substrate such as a wafer or a glass substrate for a mask by using a charged particle beam. Further, by applying the mechanical MOL method of the present invention, the throughput at the time of exposure is improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態の電子線縮小転写装置を示す一部 を断面図とした構成図である。 図 2において、 (A) は図 1のマスク M のパターン配置を示す平面図、 (B) は図 2 (A) の B部を示す拡大平 面図、 (C) は図 2 (B) の C C線に沿う断面図である。 図 3において、 (A) は図 1のウェハ Wのパターン配置を示す平面図、 (B) は図 3 (A) の B部の拡大平面図である。 図 4は、 図 1の電子線縮小転写装置 がフレーム 60内に収納されている状態を示す一部を断面とした構成図 である。 図 5は、 図 4のマスクステージ 20及びこれに関連する部材を 示す一部を切り欠いた平面図である。 図 6は、 図 4のウェハステージ 4 6及びこれに関連する部材を示す一部を切り欠いた平面図である。 図 7 は、 図 1中の投影系 PLの機械的駆動系の一例を示す拡大斜視図である £ 図 8は、 図 7の機械的駆動系の動作の説明図である。 図 9は、 投影系 P Lの機械的駆動系の別の例を示す一部を切り欠いた平面図である。 図 1 0は、 図 7において機械的な MOL方式で投影系 PLを変位させて、 縮 小像の位置を変化させる場合の説明図である。 図 1 1は、 図 1 1におい て更に電子的な MOL方式で投影系 P Lの電子光学系の電磁場を変化さ せて、 縮小像の位置を変化させる場合の説明図である。 図 12は、 第 1 の実施の形態においてキャラクターパターン転写方式で露光を行う場合 の説明図である。 図 1 3は、 図 1 2の動作において、 機械的な MOL方 式の動作に更に電子的な MOL方式の動作を組み合わせる場合の説明図 である。 図 14は、 機械的な MOL方式で投影系 PLを時間に関して三 角波状に振動させる場合の、 ウェハ上での縮小像の軌跡を示す平面図で ある。 図 1 5は、 本発明の第 2の実施の形態において分割転写方式で露 光を行う場合の説明図である。 図 1 6は、 本発明の第 3の実施の形態に おいて機械的な MOL方式で投影系 P Lの一部の部材を変位又は振動さ せる場合の説明図である。 図 1 7は、 本発明の第 4の実施の形態におい てカウン夕一バランス方式で、 かつ機械的な M〇L方式で投影系 PLを 変位又は振動させる場合の駆動系を示す斜視図である。 図 18は、 図 1 7の駆動系の駆動素子の配置及び動作の説明図である。 図 19は、 半導 体デバイスの製造工程の一例を示す図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram showing a cross-sectional view of a part of an electron beam reduction transfer device according to a first embodiment of the present invention. In FIG. 2, (A) is a plan view showing the pattern arrangement of the mask M in FIG. 1, (B) is an enlarged plan view showing a portion B in FIG. 2 (A), and (C) is a plan view in FIG. It is sectional drawing which follows CC line. 3A is a plan view showing a pattern arrangement of the wafer W in FIG. 1, and FIG. 3B is an enlarged plan view of a portion B in FIG. 3A. FIG. 4 is a cross-sectional view of a part of a state where the electron beam reduction transfer device of FIG. FIG. 5 is a partially cutaway plan view showing the mask stage 20 of FIG. 4 and members related thereto. Figure 6 shows the wafer stage 4 in Figure 4. FIG. 6 is a partially cutaway plan view showing 6 and members related thereto. Figure 7 is an enlarged perspective view showing an example of a mechanical drive system of the projection system PL in FIG. 1 £ 8 is an explanatory diagram of the operation of the mechanical drive system of FIG. FIG. 9 is a partially cutaway plan view showing another example of the mechanical drive system of the projection system PL. FIG. 10 is an explanatory diagram in the case where the position of the reduced image is changed by displacing the projection system PL by the mechanical MOL method in FIG. FIG. 11 is an explanatory diagram of the case where the position of the reduced image is changed by changing the electromagnetic field of the electron optical system of the projection system PL by the electronic MOL method in FIG. 11. FIG. 12 is an explanatory diagram in the case where exposure is performed by the character pattern transfer method in the first embodiment. FIG. 13 is an explanatory diagram in the case of combining the operation of the mechanical MOL method with the operation of the electronic MOL method in the operation of FIG. FIG. 14 is a plan view showing a locus of a reduced image on a wafer when the projection system PL is vibrated in a triangular waveform with respect to time by a mechanical MOL method. FIG. 15 is an explanatory diagram in the case where exposure is performed by the division transfer method in the second embodiment of the present invention. FIG. 16 is an explanatory diagram in the case where some members of the projection system PL are displaced or vibrated by the mechanical MOL method in the third embodiment of the present invention. FIG. 17 is a perspective view showing a drive system when the projection system PL is displaced or vibrated by the counterbalance method and the mechanical M〇L method in the fourth embodiment of the present invention. . FIG. 18 is an explanatory diagram of the arrangement and operation of the drive elements of the drive system in FIG. FIG. 19 is a diagram illustrating an example of a manufacturing process of a semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい第 1の実施の形態につき図 1〜図 14を参照 して説明する。 本例は、 キャラクターパターン転写方式で荷電粒子線と して電子線を用いる縮小転写装置、 即ち電子ビーム露光装置に本発明を 適用したものである。 Hereinafter, a first preferred embodiment of the present invention will be described with reference to FIGS. In this example, the present invention is applied to a reduction transfer apparatus using an electron beam as a charged particle beam in a character pattern transfer method, that is, an electron beam exposure apparatus. Applied.
先ず、 図 1は露光装置としての本例の電子線縮小転写装置の概略構成 を示し、 この図 1において、 電子銃 1から放出された電子線 E Bはコン デンサレンズ 2で平行ビームとされた後、 ブランキング用の偏向器 3の 間を通過して所定形状 (本例では正方形) の開口が形成されたァパーチ ャ板 4に入射する。 転写時にアパーチャ板 4の開口を通過して断面形状 が整形された電子線 E Bは、 第 1コンデンサレンズ 6 A及び第 2コンデ ンサレンズ 6 Bよりなるコンデンサレンズ系 5を経て再び平行ビームと なった後、 第 1偏向器 8 A及び第 2偏向器 8 Bよりなる視野選択用の偏 向器 7により 2次元的に偏向されて第 1物体としてのマスク M上の 1つ のキヤラクタ一パターンに導かれる。  First, FIG. 1 shows a schematic configuration of an electron beam reduction transfer apparatus of the present example as an exposure apparatus. In FIG. 1, an electron beam EB emitted from an electron gun 1 is converted into a parallel beam by a capacitor lens 2, and The light passes between the blanking deflectors 3 and is incident on an aperture plate 4 having an opening of a predetermined shape (square in this example). The electron beam EB whose cross-sectional shape has been shaped by passing through the aperture of the aperture plate 4 during transfer passes through the condenser lens system 5 including the first condenser lens 6A and the second condenser lens 6B, and then becomes a parallel beam again. Are deflected two-dimensionally by a deflector 7 for selecting a field of view composed of a first deflector 8A and a second deflector 8B, and guided into one character pattern on a mask M as a first object. .
電子銃 1、 コンデンサレンズ 2、 アパーチャ板 4、 及びコンデンサレ ンズ系 5より照明系が構成されており、 その照明系の光軸 A X 1は、 マ スク Mのパターン面に対して垂直であり、 本例ではそのパターン面はほ ぼ水平面に合致している。 この場合、 電子銃 1としては、 例えば熱電子 放射型のランタンへキサボライ ト (L a B 6 ) 、 又はタンタル (T a ) 等を用いることができる。 また、 電子銃 1は、 一例として加速電圧が数 1 0 0 V〜5 k V程度のいわゆる低加速方式で使用される。 更に、 電子 線 E Bの光路は、 例えば 1 0— 7 T o r r程度の高真空に設定される。 そ して、 ブランキング用の偏向器 3を動作させて、 電子線 E Bを点線の光 路 1 1で示すようにアパーチャ板 4の開口から外すことによって、 任意 にマスク Mに対する電子線 E Bの照射を中断させることができる。 また、 視野選択用の偏向器 7によって、 マスク M上で光軸 A X 1から X方向、 Y方向に或る程度離れた位置にある一つのキャラクターパターン上にほ ぼ垂直に電子線 E Bを照射できるように構成されている。 偏向器 3によ る電子線 E Bの開閉動作、 及び偏向器 7における偏向量は、 装置全体の 動作を統轄制御する主制御系 1 0が偏向量設定部 9を介して制御する。 以下、 その照明系の光軸 AX 1に平行に Z軸を取り、 Z軸に垂直な平 面内で図 1の紙面に垂直な方向に X軸を、 図 1の紙面に平行な方向に Y 軸を取って説明する。 An illumination system is composed of an electron gun 1, a condenser lens 2, an aperture plate 4, and a condenser lens system 5, and the optical axis AX 1 of the illumination system is perpendicular to the pattern surface of the mask M. In this example, the pattern surface almost matches the horizontal plane. In this case, as the electron gun 1, for example, a thermionic emission type lanthanum hexaborite (L a B 6 ) or tantalum (T a) can be used. In addition, the electron gun 1 is used in a so-called low acceleration method in which the acceleration voltage is, for example, about several hundred V to 5 kV. Furthermore, the optical path of the electron beam EB is set to, for example, a high vacuum of about 1 0- 7 T orr. The mask M is arbitrarily irradiated with the electron beam EB by operating the blanking deflector 3 to remove the electron beam EB from the opening of the aperture plate 4 as shown by the dotted optical path 11. Can be interrupted. Further, the electron beam EB can be irradiated almost vertically on one character pattern located at a certain distance in the X direction and the Y direction from the optical axis AX 1 on the mask M by the deflector 7 for selecting the visual field. It is configured as follows. The opening and closing operation of the electron beam EB by the deflector 3 and the amount of deflection in the deflector 7 are A main control system 10 that controls and controls the operation is controlled via a deflection amount setting unit 9. Hereinafter, the Z-axis is taken parallel to the optical axis AX1 of the illumination system, the X-axis is set in the direction perpendicular to the paper of Fig. 1 in the plane perpendicular to the Z-axis, and the Y-axis is set in the direction A description will be given taking the axis.
マスク M上の 1つのキャラクターパターンを通過した電子線 E Bは、 第 1偏向器 2 6 A及び第 2偏向器 2 6 Bよりなる振り戻し用の偏向器 2 5によって、 再びその照明系の光軸 AX 1に沿って進む。 偏向器 2 5に おける電子線 E Bの偏向量は、 主制御系 1 0が偏向量設定部 3 6を介し て設定する。 偏向器 8 A, 8 B及び偏向器 2 6 A, 2 6 Bはそれぞれ例 えば 4極の静電偏向器であるが、 その代わりにフェライ ト製のコアの内 側に装着されたコイルを備えた電磁偏向器を使用してもよい。  The electron beam EB that has passed through one character pattern on the mask M is returned to the optical axis of the illumination system again by the swingback deflector 25 composed of the first deflector 26 A and the second deflector 26 B. Continue along AX 1. The deflection amount of the electron beam EB in the deflector 25 is set by the main control system 10 via a deflection amount setting unit 36. Each of the deflectors 8A and 8B and the deflectors 26A and 26B is, for example, a four-pole electrostatic deflector, but instead includes a coil mounted inside a ferrite core. Alternatively, an electromagnetic deflector may be used.
その後、 電子線 E Bは、 結像系よりなる投影系 P Lを介して縮小倍率 β ( 3は例ぇば1 //5、 1 / 1 0 , 又は 1 2 0等) で第 2物体として のゥェ八 W上の被露光領域 (副露光領域) に、 キャラクタ一パターンの 縮小像を形成する。 即ち、 第 1物体としてのマスク Μのパターン面は投 影系 P Lの物体面に位置し、 第 2物体 (又は被露光体) としてのウェハ Wの表面は投影系 P Lの像面に位置している。 また、 ウェハ Wの表面に は電子線レジストが塗布されている。 ウェハ (wafer) Wは例えば半導体 (シリコン等) 又は S〇 I (silicon on insulator)等の円板状の基板で ある。  After that, the electron beam EB passes through a projection system PL composed of an imaging system to reduce the electron beam EB as a second object at a reduction magnification β (for example, 3 is 1/5, 1/10, or 120). A reduced image of one character pattern is formed in the exposed area (sub-exposure area) on W8. That is, the pattern surface of the mask Μ as the first object is located on the object surface of the projection system PL, and the surface of the wafer W as the second object (or object to be exposed) is located on the image surface of the projection system PL. I have. An electron beam resist is applied to the surface of the wafer W. The wafer W is a disk-shaped substrate such as a semiconductor (silicon or the like) or S 等 I (silicon on insulator).
本例の投影系 P Lは、 一例として第 1 レンズ 2 8 A及び第 2レンズ 2 8 Bよりなる前群 2 7と、 第 1 レンズ 3 0 A及び第 2レンズ 3 0 Bより なる後群 2 9とから構成される両側テレセントリックな電子光学系であ り、 前群 2 7及び後群 2 9は円筒状の鏡筒 3 1内に収納されている。 レ ンズ 2 8 A, 2 8 B及びレンズ 3 0 A, 3 0 Bは一例としてそれぞれ 8 極の静電レンズであるが、 その代わりに電磁レンズを使用してもよい。 そして、 投影系 PL内で電子線 EBは、 前群 27によって一度集束され てクロスオーバ (電子線源の像) 42を形成した後、 後群 29によって ウェハ W上に投影像を形成している。 投影系 P Lの光軸 AX 2は、 照明 系の光軸 A X 1に平行であり、 初期状態では投影系 P Lの光軸 AX 2は 照明系の光軸 AX 1に合致していると共に、 鏡筒 3 1の対称軸 (中心軸) とも合致している。 As an example, the projection system PL of this example includes a front group 27 including a first lens 28A and a second lens 28B, and a rear group 29 including a first lens 30A and a second lens 30B. The front group 27 and the rear group 29 are housed in a cylindrical lens barrel 31. The lenses 28A and 28B and the lenses 30A and 30B are each an eight-pole electrostatic lens as an example, but an electromagnetic lens may be used instead. Then, in the projection system PL, the electron beam EB is once focused by the front group 27 to form a crossover (image of the electron beam source) 42, and thereafter, the rear group 29 forms a projection image on the wafer W. . The optical axis AX2 of the projection system PL is parallel to the optical axis AX1 of the illumination system.In the initial state, the optical axis AX2 of the projection system PL matches the optical axis AX1 of the illumination system and the lens barrel. 3 The axis of symmetry (center axis) of 1 also matches.
また、 投影系 PLが収納された鏡筒 3 1は、 Y方向に 1対のそれぞれ 可撓性を有する部材としての板ばね 32 A及び 32 Bで挟まれて支持さ れており、 板ばね 32 A及び 32 Bの X方向の両端部は、 不図示の安定 に保持された支持部材 57 A, 57 B (図 7参照) に固定されている。 従って、 鏡筒 3 1 (投影系 PL) は、 Y方向に所定範囲内で変位及び振 動できるように支持されている。 そして、 板ばね 32A, 328を丫方 向に変位及び振動させるための駆動系 34が備えられ、 駆動系 34の動 作は、 主制御系 1 0の管理下にある同期駆動制御系 33によって制御さ れている。 更に、 鏡筒 3 1の Y方向の側面には移動鏡 40が固定され、 移動鏡 40にレーザ干渉計 41から計測用の複数軸のレーザビームが照 射され、 レーザ干渉計 41は、 不図示の参照鏡の位置を基準として鏡筒 3 1の Y方向への変位量、 X軸の回りの回転角、 及び Z軸の回りの回転 角を計測し、 計測結果を所定のサンプリングレートで駆動系 34、 及び 後述のァライメント制御系 39に供給している。 駆動系 34は、 レーザ 干渉計 41の計測データ、 及び同期駆動制御系 33の制御情報に基づい て、 鏡筒 3 1 (投影系 PL) を光軸 AX 2が光軸 AX 1に平行な状態で Y方向に変位させる。 即ち、 本例の投影系 PLは、 板ばね 32A, 32 B、 レーザ干渉計 41、 及び駆動系 34を含んで構成される機械的駆動 系によって、 機械的な M〇L (Moving Objective Lens)方式で Y方向に 変位及び振動できるように構成されている。 従って、 本例では投影系 Ρ しが、 全体として可動部材となっている。 The lens barrel 31 in which the projection system PL is housed is supported by a pair of leaf springs 32A and 32B as members having flexibility in the Y direction. Both ends in the X direction of A and 32B are fixed to stably held support members 57A and 57B (not shown) (see FIG. 7). Therefore, the lens barrel 31 (projection system PL) is supported so that it can be displaced and vibrated within a predetermined range in the Y direction. A drive system 34 for displacing and vibrating the leaf springs 32A and 328 in the directions is provided, and the operation of the drive system 34 is controlled by a synchronous drive control system 33 under the control of the main control system 10. Has been done. Further, a movable mirror 40 is fixed to a side surface of the lens barrel 31 in the Y direction, and the movable mirror 40 is irradiated with a laser beam of a plurality of axes for measurement from a laser interferometer 41, and the laser interferometer 41 is not shown. The displacement of the lens barrel 31 in the Y direction, the rotation angle around the X axis, and the rotation angle around the Z axis are measured based on the position of the reference mirror of 34 and the alignment control system 39 described later. The drive system 34 moves the lens barrel 31 (projection system PL) in a state where the optical axis AX 2 is parallel to the optical axis AX 1 based on the measurement data of the laser interferometer 41 and the control information of the synchronous drive control system 33. Displace in the Y direction. That is, the projection system PL of this example is a mechanical M〇L (Moving Objective Lens) system using a mechanical drive system including the leaf springs 32A and 32B, the laser interferometer 41, and the drive system 34. , So that it can be displaced and vibrated in the Y direction. Therefore, in this example, the projection system Ρ However, the whole is a movable member.
この場合、 投影系 PLは、 一例として物体面 (マスク Mのパターン面) から像面 (ウェハ Wの表面) までの間隔が 100〜1 50mm程度の小 型の電子光学系であるため、 機械的な MOL方式によって高速、 かつ高 精度に変位及び振動させることが可能である。  In this case, the projection system PL is, for example, a small electron optical system in which the distance from the object plane (the pattern plane of the mask M) to the image plane (the surface of the wafer W) is about 100 to 150 mm. The MOL method enables high-speed, high-precision displacement and vibration.
また、 本例の投影系 PLは、 電子的な M〇L (Moving Objective Len s)方式を用いて内部の電磁場 (本例では電場) の分布を、 点線の仮想的 なレンズ 44, 45で示すように変化させることによって、 鏡筒 3 1の 対称軸に対して光軸 AX 2を X方向、 Y方向に所定範囲内で変位できる ように構成されている。 但し、 機械的な MOL方式による投影系 P L (光軸 AX2) の変位量に対して、 収差を許容範囲内に抑えた状態での 電子的な MOL方式による光軸 AX 2の変位量は、 例えば 1 1 0程度 となっており、 本例では機械的な M〇L方式で比較的大きく投影系 P L を変位又は振動させた場合の、 ウェハ W上での転写位置の補正を行うた めに電子的な MOL方式で光軸 AX2を変位させるようにしている。 そ のため、 投影系 P Lを構成する電子光学系としてのレンズ 28 A, 28 B及びレンズ 3 OA, 30 Bはそれぞれ電子的駆動系としてのレンズ駆 動系 35によって駆動され、 レンズ駆動系 35は同期駆動制御系 33に よって制御されている。  In the projection system PL of this example, the distribution of the internal electromagnetic field (in this example, the electric field) is indicated by dotted virtual lenses 44 and 45, using the electronic M〇L (Moving Objective Lens) method. Thus, the optical axis AX2 can be displaced within a predetermined range in the X direction and the Y direction with respect to the symmetry axis of the lens barrel 31. However, with respect to the displacement of the projection system PL (optical axis AX2) by the mechanical MOL method, the displacement of the optical axis AX2 by the electronic MOL method with the aberration kept within the allowable range is, for example, In this example, when the projection system PL is displaced or oscillated relatively large by the mechanical M〇L method, the transfer position on the wafer W is corrected. The optical axis AX2 is displaced by a typical MOL method. Therefore, the lenses 28 A and 28 B and the lenses 3 OA and 30 B as the electron optical systems constituting the projection system PL are respectively driven by the lens driving system 35 as the electronic driving system, and the lens driving system 35 is It is controlled by the synchronous drive control system 33.
次に、 マスク Mはマスクステージ 20上に XY平面と平行に、 電子線 に影響を与えないようにした静電吸着等によって保持され、 マスクステ ージ 20は、 マスクベース 2 1上で例えばリニアモータ方式で X方向、 Y方向にステップ移動できるように構成されている。 本例の転写装置の 露光部は真空中に配置されるため、 マスクステージ 20は真空の空間に 対する影響を殆どなくしたエアーベアリング方式、 又は電子線に対する シールドを厳密に施した磁気浮上型のベアリング方式でほぼ非接触状態 でマスクべ一ス 2 1上に載置されている。 Next, the mask M is held on the mask stage 20 in parallel with the XY plane by electrostatic attraction so as not to affect the electron beam, and the mask stage 20 is placed on the mask base 21 by, for example, a linear motor. It is configured to be able to move stepwise in the X and Y directions. Since the exposure unit of the transfer device of this example is placed in a vacuum, the mask stage 20 is an air-bearing type that has almost no effect on the vacuum space, or a magnetic levitation type bearing that strictly shields the electron beam. Almost non-contact state On the mask base 21.
本例のマスク M上にはそれぞれ複数のキャラクターパターンが近接し て配置された複数のキャラクタ一パターン群が形成されており (詳細後 述) 、 先ずマスクステージ 2 0の移動によって次に使用されるキャラク ターパターン群の中心がほぼ光軸 A X 1付近に位置決めされた後、 その キャラクタ一パターン群中から一つのキャラクタ一パターンを選択する ために、 視野選択用の偏向器 7が使用される。  On the mask M of this example, a group of a plurality of character patterns in each of which a plurality of character patterns are arranged close to each other (described later in detail), is first used by moving the mask stage 20. After the center of the character pattern group is positioned approximately in the vicinity of the optical axis AX1, a deflector 7 for selecting a visual field is used to select one character and one pattern from the character and pattern group.
マスクステージ 2 0に固定された移動鏡 2 2 (実際には X軸用及び Y 軸用よりなる) にマスク側のレーザ干渉計 2 3から複数軸のレーザビー ムが照射され、 レーザ干渉計 2 3は、 マスクステージ 2 0の X方向、 Y 方向の位置、 及び X軸の回りの回転角、 Y軸の回りの回転角、 Z軸の回 りの回転角 (ョーイング量) を計測し、 計測値をァライメント制御系 3 A moving mirror 22 fixed to the mask stage 20 (actually composed of an X-axis and a Y-axis) is irradiated with a multi-axis laser beam from the laser interferometer 23 on the mask side. Measures the position of the mask stage 20 in the X and Y directions, the rotation angle around the X axis, the rotation angle around the Y axis, and the rotation angle around the Z axis (jowing amount). Alignment control system 3
9及びマスクステージ制御系 2 4に供給する。 ァライメント制御系 3 9 は、 主制御系 1 0に計測値及びァライメント情報を供給し、 マスクステ —ジ制御系 2 4はその計測値、 及び主制御系 1 0からの制御情報に基づ いてマスクステージ 2 0 (マスク M) を X Y平面に平行にすると共に、 その位置や速度及びョーィング量を制御する。 9 and the mask stage control system 24. The alignment control system 39 supplies measured values and alignment information to the main control system 10, and the mask stage control system 24 supplies a mask stage based on the measured values and control information from the main control system 10. 20 (Mask M) is made parallel to the XY plane, and its position, speed, and jogging amount are controlled.
また、 マスクステージ 2 0の斜め上方にマスク Mからの反射電子等を 検出するためのマスク用の反射電子検出器 3 7が配置され、 反射電子検 出器 3 7の検出信号がァライメント制御系 3 9に供給されている。 反射 電子検出器 3 7によって電子線 E Bがマスク M上の所定のァライメント マークに照射された状態を検出できるため、 この検出結果に基づいてマ スク Mのァライメントを行うことができる。  Further, a masked backscattered electron detector 37 for detecting backscattered electrons and the like from the mask M is disposed diagonally above the mask stage 20, and a detection signal of the backscattered electron detector 37 is supplied to an alignment control system 3. Supplied to 9. Since the state in which the electron beam EB is irradiated on the predetermined alignment mark on the mask M can be detected by the reflection electron detector 37, the mask M can be aligned based on the detection result.
一方、 ウェハ Wは、 不図示のウェハホルダを介して電子線に影響を与 えないようにした静電吸着等によって、 X Y平面と平行にウェハステー ジ 4 6上に保持されている。 ウェハステージ 4 6は、 ウェハベース 4 7 上で例えばリニァモー夕方式で X方向に連続移動できると共に、 X方向 及び Y方向にステップ移動できるように構成されている。 ウェハステー ジ 4 6は真空の空間に対する影響を殆どなくしたエア一ベアリング方式、 又は電子線に対するシールドを厳密に施した磁気浮上型のベアリング方 式でほぼ非接触状態でウェハベース 4 7上に載置されている。 更に、 ゥ ェハステージ 4 6には、 ウェハ Wの表面の Z方向の位置 (フォーカス位 置) 、 及びその 2次元的な傾斜角を制御する Zレべリング機構も組み込 まれている。 ウェハ Wの表面の複数の計測点でのフォーカス位置の情報 力 不図示の光学式で多点式のオートフォーカスセンサ (A Fセンサ) によって計測されており、 露光時にウェハステージ 4 6内の Zレベリン グ機構は、 その A Fセンサの計測値に基づいてオートフォーカス方式で ウェハ Wの表面を投影系 P Lの像面に合焦させる。 On the other hand, the wafer W is held on the wafer stage 46 in parallel with the XY plane by an electrostatic chuck or the like that does not affect the electron beam via a wafer holder (not shown). The wafer stage 4 6 is the wafer base 4 7 Above, for example, it is configured to be able to continuously move in the X direction by a linear motion method, and to be able to move stepwise in the X direction and the Y direction. The wafer stage 46 is mounted on the wafer base 47 almost in a non-contact state by an air-bearing system that has almost no effect on the vacuum space or a magnetic levitation type bearing system that strictly shields the electron beam. Have been. Further, the wafer stage 46 also incorporates a Z leveling mechanism for controlling the position (focus position) of the surface of the wafer W in the Z direction and its two-dimensional inclination angle. Information on the focus position at multiple measurement points on the surface of the wafer W Force is measured by an optical, multipoint autofocus sensor (AF sensor) (not shown), and Z leveling in the wafer stage 46 during exposure. The mechanism focuses the surface of the wafer W on the image plane of the projection system PL by an autofocus method based on the measurement value of the AF sensor.
ウェハステージ 4 6の側面に固定された移動鏡 4 8 (これも X軸用及 び Y軸用からなる) にウェハ側のレーザ干渉計 4 9から複数軸のレーザ ビームが照射されており、 レーザ干渉計 4 9は、 ウェハステージ 4 6の X方向、 Y方向の位置、 及び X軸の回りの回転角 (ローリング量) 、 Y 軸の回りの回転角 (ピッチング量) 、 Z軸の回りの回転角 (ョーイング 量) を計測し、 計測値をァライメント制御系 3 9及びウェハステージ制 御系 5 0に供給し、 ウェハステージ制御系 5 0はその計測値及び同期駆 動制御系 3 3からの制御情報に基づいてウェハステージ 4 6 (ウェハ W) を χ γ平面に平行にすると共に、 その位置及びョ一^ rング量を制御する。 また、 ウェハステージ 4 6の斜め上方にウェハ Wからの反射電子等を 検出するためのウェハ用の反射電子検出器 3 8が配置され、 反射電子検 出器 3 8の検出信号がァライメント制御系 3 9に供給されている。 反射 電子検出器 3 8によって電子線 E Bがウェハ W上の所定のァライメント マークに照射された状態を検出するができるため、 この検出結果に基づ いてウェハ Wのァライメントを行うことができる。 A movable mirror 48 fixed to the side of the wafer stage 46 (also composed of X-axis and Y-axis) is irradiated with a laser beam of multiple axes from a laser interferometer 49 on the wafer side. The interferometer 49 is used to determine the position of the wafer stage 46 in the X and Y directions, the rotation angle around the X axis (the amount of rolling), the rotation angle around the Y axis (the amount of pitching), and the rotation around the Z axis. The angle (jowing amount) is measured, and the measured value is supplied to the alignment control system 39 and the wafer stage control system 50. The wafer stage control system 50 controls the measured value and the synchronous drive control system 33. Based on the information, the wafer stage 46 (wafer W) is made parallel to the χγ plane, and its position and amount of movement are controlled. A reflected electron detector 38 for the wafer for detecting backscattered electrons and the like from the wafer W is disposed obliquely above the wafer stage 46, and a detection signal of the backscattered electron detector 38 is used for the alignment control system 3. Supplied to 9. The reflected electron detector 38 can detect the state in which the electron beam EB irradiates a predetermined alignment mark on the wafer W, and based on this detection result, The wafer W can be aligned.
図 1において、 不図示の露光デ一夕記憶装置より、 露光対象のマスク Mのパターン構成や、 ウェハ W上の複数のショット領域の配列情報等の 露光デ一夕が主制御系 1 0に供給される。 この露光データに基づいて、 主制御系 1 0はマスクステージ駆動系 24及び偏向量設定部 9, 24を 介して、 順次マスク M上から選択された複数のキャラクターパターン上 に電子線 EBを照射すると共に、 同期駆動制御系 33を介してウェハス テージ 46の走査及び投影系 P Lの機械的及び電子的な MOL方式の駆 動を行うことによって、 それらの選択されたキャラクタ一パターンの縮 小像をウェハ W上の露光対象のショット領域内に継ぎ合わせて転写して いく。 これによつて、 ウェハ W上の各ショッ ト領域にはそれぞれ目標と するパターンの縮小像が転写される。  In FIG. 1, the exposure data such as the pattern configuration of the mask M to be exposed and the arrangement information of a plurality of shot areas on the wafer W are supplied to the main control system 10 from an exposure data storage device (not shown). Is done. Based on the exposure data, the main control system 10 sequentially irradiates the electron beam EB onto a plurality of character patterns selected from the mask M via the mask stage drive system 24 and the deflection amount setting units 9 and 24. At the same time, by scanning the wafer stage 46 and driving the projection system PL mechanically and electronically by the MOL system via the synchronous drive control system 33, a reduced image of the selected character and one pattern is formed on the wafer. It is transferred to the shot area to be exposed on W. Thus, a reduced image of the target pattern is transferred to each shot area on the wafer W.
ここで、 本例のマスク Mのパターン配置、 及びゥェ八 W上のショッ ト 配列の一例につき説明する。  Here, an example of the pattern arrangement of the mask M of the present example and an example of the shot arrangement on the wafer W will be described.
図 2 (A) は転写対象のマスク Mの一例を示す平面図、 図 2 (B) は 図 2 (A) 中の B部の拡大図、 図 2 (C) は図 2 (B) の CC線に沿う 断面図である。 図 2 (A) において、 マスク Mのパターン領域には X方 向、 及び Y方向に所定ピッチでキャラクターパターン群 1 3が形成され、 そのパターン領域を Y方向に挟むように 1対の 2次元の金属膜よりなる ァライメントマーク 14A, 14Bが形成されている。 マスク Mはシリ コンウェハの内部に多数のキャラクターパターンを形成したものであり、 その外周部には角度検出用のノッチ部 1 2が形成されている。 マスク M 上の各キャラクターパターン群 1 3中には図 2 (B) に示すように、 X 方向及び Y方向に所定ピッチで互いに異なるキャラクタ一パターン 1 5 A, 1 5 B, 1 5 C, …, 1 5 Yが形成されている。  2 (A) is a plan view showing an example of a mask M to be transferred, FIG. 2 (B) is an enlarged view of a portion B in FIG. 2 (A), and FIG. 2 (C) is a CC in FIG. 2 (B). It is sectional drawing which follows a line. In FIG. 2A, a character pattern group 13 is formed at a predetermined pitch in the X direction and the Y direction in the pattern area of the mask M, and a pair of two-dimensional patterns is sandwiched between the pattern areas in the Y direction. Alignment marks 14A and 14B made of a metal film are formed. The mask M has a large number of character patterns formed inside a silicon wafer, and a notch portion 12 for angle detection is formed on an outer peripheral portion thereof. As shown in FIG. 2 (B), each character pattern group 13 on the mask M has different character patterns 15 A, 15 B, 15 C,... At different pitches in the X and Y directions. , 15 Y are formed.
図 2 (C) に示すように、 マスク Mにおいてキャラクターパターン群 1 3が形成されている部分 1 7は他の領域よりも薄く形成されており、 その部分 1 7中でキャラクターパターンに相当する部分 (電子線を透過 する部分) が抜き穴とされている。 その部分 1 7はシリコン (S i ) の 薄膜でもよいが、 その部分 1 7を例えば窒化シリコン (S i N ) 等の薄 膜としてもよい。 このように、 本例のマスク Mはいわゆる穴あきステン シルマスクであるが、 マスク Mとしては、 電子線を透過する膜の上に夕 ングステン (W) 等の電子線を散乱する薄膜を設けたいわゆる散乱マス クを使用してもよい。 As shown in Fig. 2 (C), the character pattern group in the mask M A portion 17 where 13 is formed is formed thinner than other regions, and a portion corresponding to the character pattern (a portion that transmits an electron beam) in the portion 17 is a hole. The portion 17 may be a thin film of silicon (Si), but the portion 17 may be a thin film of, for example, silicon nitride (SiN). As described above, the mask M of this example is a so-called perforated stencil mask, and the mask M is a so-called so-called stencil mask provided with a thin film for scattering electron beams such as tungsten (W) on a film that transmits electron beams. A scattering mask may be used.
図 2 ( B ) において、 各キャラクタ一パターン 1 5 A〜 1 5 Yは、 そ れぞれ幅 Dの正方形の領域内に形成されており、 隣接するキャラクタ一 パターンの間の境界部は電子線を透過しない領域、 又は電子線を散乱す る領域 (非パターン領域) となっている。 また、 図 1の電子線 E Bによ る図 2 ( B ) 上での照射領域 1 4は、 幅が Dより僅かに大きい正方形で あり、 キャラクターパターン群 1 3中から選択された一つのキャラクタ 一パターン (例えば 1 5 A等) のみを照射領域 1 4によって完全に覆う ことができるように構成されている。 また、 異なるキャラクターパター ン群 1 3にはそれぞれ互いに異なる複数のキャラクターパターンが形成 されている。 なお、 各キャラクターパターン 1 5 A〜1 5 Yは、 分割転 写方式の場合には、 大きい原版パターンを分割した最小単位のパターン である 「副視野」 に対応する。  In FIG. 2B, each character pattern 15A to 15Y is formed in a square area having a width D, and the boundary between adjacent character patterns is an electron beam. This is a region that does not transmit light or a region that scatters electron beams (non-pattern region). Further, the irradiation area 14 in FIG. 2 (B) by the electron beam EB in FIG. 1 is a square having a width slightly larger than D, and one character selected from the character pattern group 13 is selected. It is configured such that only the pattern (for example, 15 A) can be completely covered by the irradiation area 14. Also, a plurality of different character patterns are formed in different character pattern groups 13 respectively. In the case of the division transfer method, each of the character patterns 15A to 15Y corresponds to a “sub-field of view” which is a minimum unit pattern obtained by dividing a large original pattern.
更に、 キャラクターパターン群 1 3の 4隅には電子線を反射する金属 膜よりなる 2次元 (ここでは十字型) のァライメントマーク 1 6 A〜l 6 Dが形成されている。 この場合、 例えば図 1において、 マスクステ一 ジ 2 0を駆動してマスク M上の図 2 (A) のァライメントマーク 1 4 A , 1 4 Bを順次ほぼ光軸 A X 1の近傍に移動した後、 偏向器 7を駆動して 電子線 E Bを X方向、 Y方向に走査しながら反射電子検出器 3 7からの 検出信号を処理することによって、 ァライメントマーク 1 4 A , 1 4 B の座標を検出し、 この検出結果よりマスク Mの中心座標及び回転誤差を 算出する。 その後、 例えばその回転誤差を相殺するようにマスクステ一 ジ 2 0を回転することによって、 マスク M上の各キャラクタ一パターン 群 1 3の配列座標を算出することができる。 Further, at the four corners of the character pattern group 13, two-dimensional (here, cross-shaped) alignment marks 16 A to 16 D made of a metal film that reflects an electron beam are formed. In this case, for example, in FIG. 1, after driving the mask stage 20 to sequentially move the alignment marks 14 A and 14 B of FIG. 2A on the mask M substantially in the vicinity of the optical axis AX 1 By driving the deflector 7 and scanning the electron beam EB in the X and Y directions, By processing the detection signal, the coordinates of the alignment marks 14A and 14B are detected, and the center coordinate and the rotation error of the mask M are calculated from the detection result. Thereafter, for example, by rotating the mask stage 20 so as to cancel the rotation error, the array coordinates of each character and pattern group 13 on the mask M can be calculated.
そして、 このように算出された配列座標に基づいて、 マスクステージ 2 0を駆動することによって、 図 2 (A) 上で露光に使用するキャラク ターパターン群 1 3の中心を図 1の照明系の光軸 A X 1上にほぼ位置決 めする。 この状態で、 偏向器 7を駆動して電子線 E Bを X方向、 Y方向 に走査して反射電子検出器 3 7からの検出信号を処理することによって、 図 2 ( B ) のァライメントマ一ク 1 6 A〜 1 6 D中の少なくとも 2つの ァライメントマークの座標を検出する。 その後、 得られた 2箇所のァラ ィメントマークの座標を処理することによって、 そのキャラクターパ夕 ーン群 1 3内の各キャラクターパターン 1 5 A〜 1 5 Yの光軸 A X 1を 原点とする配列座標を高精度に算出することができる。 このように算出 される配列座標に基づいて図 1の偏向器 7を駆動することによって、 キ ャラクターパ夕一ン 1 5 A〜 1 5 Y中の所望のキャラクターパターン上 に正確に電子線の照射領域 1 4を移動することができると共に、 その所 望のキャラクタ一パターンを透過した電子線を、 図 1の偏向器 2 5を介 して高精度に光軸 A X 1上に振り戻すことができる。 即ち、 本例では、 各キャラクターパターン群 1 3内のキャラクタ一パターン 1 5 A〜 1 5 Yの配列座標を、 最終的にァライメン卜マーク 1 6 A〜 l 6 Dの位置に 基づいて求めているため、 図 1のマスクステージ 2 0の位置決め精度は それ程高くする必要が無い。  Then, by driving the mask stage 20 based on the array coordinates calculated in this way, the center of the character pattern group 13 used for exposure in FIG. Almost positioned on the optical axis AX1. In this state, the deflector 7 is driven to scan the electron beam EB in the X and Y directions to process the detection signal from the backscattered electron detector 37, thereby obtaining the alignment mark 1 in FIG. 2 (B). Detect the coordinates of at least two alignment marks in 6A to 16D. Then, by processing the obtained coordinates of the two alignment marks, the optical axis AX1 of each of the character patterns 15A to 15Y in the character pattern group 13 is set as the origin. Can be calculated with high accuracy. By driving the deflector 7 of FIG. 1 based on the array coordinates calculated in this way, the electron beam irradiation area can be accurately placed on the desired character pattern in the character pattern 15A to 15Y. 14 can be moved, and the electron beam transmitted through the desired character pattern can be returned to the optical axis AX1 with high precision via the deflector 25 in FIG. That is, in this example, the arrangement coordinates of the character-to-character patterns 15A to 15Y in each character pattern group 13 are finally obtained based on the positions of the alignment marks 16A to 16D. Therefore, the positioning accuracy of the mask stage 20 in FIG. 1 does not need to be so high.
キャラクタ一パターン 1 5 A〜 l 5 Yの外形の幅 Dは例えば 1 0 0 m〜 l 0 0 0 /z m程度であり、 本例では各キャラクタ一パターン群 1 3 内にはそれぞれ 5行 X 5列のキャラクタ一パターンが形成されているが、 各キャラクターパターン群 1 3内にはそれぞれ 5行 X 5列〜 2 0行 X 2 0列程度のキャラクターパターンを形成することができる。 The width D of the outer shape of the character one pattern 15 A to 15 Y is, for example, about 100 m to l 00 / zm. In this example, each character one pattern group 1 3 Each character pattern of 5 rows x 5 columns is formed in each character pattern, but in each character pattern group 13, character patterns of about 5 rows x 5 columns to 20 rows x 20 columns are formed. be able to.
一方、 図 3 (A) は、 ゥェ八 Wを示す平面図、 図 3 ( B ) は図 3 ( A ) 中の B部の拡大図であり、 図 3 ( A ) において、 ウェハ Wの表面には X 方向、 Y方向に所定ピッチで多数のショット領域 5 2が配置され、 各シ ョッ ト領域 5 2にそれぞれ 1ダイ分の回路パターンが転写される。 なお、 各ショッ ト領域 5 2にそれぞれ複数ダイ分の回路パターンを転写しても よい。 また、 それらのショット領域 5 2を Y方向に挟むように、 1対の 2次元の金属膜よりなるサーチァライメントマーク 5 3 A , 5 3 Bが形 成されており、 ウェハ Wの外周部には角度検出用のノッチ部 5 1が形成 されている。  On the other hand, FIG. 3 (A) is a plan view showing the wafer W, FIG. 3 (B) is an enlarged view of a portion B in FIG. 3 (A), and FIG. A large number of shot areas 52 are arranged at predetermined pitches in the X and Y directions, and a circuit pattern for one die is transferred to each shot area 52. Note that a circuit pattern for a plurality of dies may be transferred to each shot area 52. In addition, a pair of two-dimensional metal film search alignment marks 53 A and 53 B are formed so as to sandwich the shot regions 52 in the Y direction. Has a notch 51 for angle detection.
図 3 ( B ) に示すように、 各ショッ ト領域 5 2は、 それぞれ一つのキ ャラク夕一パターンの縮小像が転写される最小単位の被露光領域である 多数の 「副露光領域 5 4」 を X方向、 Y方向に密着して配列したもので ある。 また、 図 1の投影系 P Lによる一つのキャラクターパターンの縮 小像を図 3 ( B ) の縮小像 4 3とすると、 キャラクターパターンの外形 の幅 D及び投影系 P Lの投影倍率) 3を用いて、 縮小像 4 3及び副露光領 域 5 4はそれぞれ幅 )3 · Dの正方形の領域である。 そして、 順次変化す る縮小像 4 3に対してショット領域 5 2を X方向、 Y方向に相対移動す ることによって、 ショッ ト領域 5 2の全部の副露光領域 5 4にそれぞれ 対応するキャラクターパターンの縮小像が転写される。  As shown in FIG. 3 (B), each shot area 52 is a minimum unit exposure area to which a reduced image of one character pattern is transferred. Are arranged closely in the X and Y directions. Also, assuming that a reduced image of one character pattern by the projection system PL in Fig. 1 is a reduced image 43 in Fig. 3 (B), the width D of the outer shape of the character pattern and the projection magnification of the projection system PL are used. Each of the reduced image 43 and the sub-exposure area 54 is a square area of width 3D. Then, by moving the shot area 52 relative to the sequentially changing reduced image 43 in the X and Y directions, the character pattern corresponding to all the sub-exposure areas 54 of the shot area 52 is obtained. Is transferred.
マスク M上の各キャラクタ一パターンの大きさを 5 0 0 /x m角、 投影 倍率 /3を 1 1 0とすると、 ウェハ W上のショット領域 5 2内の各副露 光領域 5 4は 5 0 角であり、 ショッ ト領域 5 2は例えば一辺の長さ が 2 0〜3 0 mm程度の矩形又は正方形の領域である。 本例ではショッ ト領域 5 2内の全部の副露光領域 5 4に対応するキャラクターパターン の縮小像を高スループッ 卜で転写するために、 後述のように投影系 P L を機械的に変位又は振動させている。 Assuming that the size of each character pattern on the mask M is 500 / xm square and the projection magnification / 3 is 110, each sub-exposure area 54 in the shot area 52 on the wafer W is 50 The shot area 52 is, for example, a rectangular or square area having a side length of about 20 to 30 mm. In this example, The projection system PL is mechanically displaced or vibrated as described later in order to transfer a reduced image of the character pattern corresponding to all the sub-exposure regions 54 in the projection region 52 at a high throughput.
ここで、 本例の電子線縮小転写装置の全体の機械的な構成につき図 4 〜図 6を参照して説明する。  Here, the overall mechanical configuration of the electron beam reduction transfer apparatus of the present embodiment will be described with reference to FIGS.
図 4は、 本例の転写装置の全体を示す断面図であり、 この図 4におい て、 本例の転写装置は、 内部を気密状態に維持することができる箱状の 堅固なフレーム 6 0内に配置されている。 フレーム 6 0は、 更に大きい チャンバ (不図示) 内に収納され、 そのチャンバ内のフレーム 6 0の周 囲には、 例えばほぼ大気圧で温度制御されて高度に防塵が行われたドラ ィエア一等が供給されている。 フレーム 6 0は、 防振台 6 4 A , 6 4 B (実際には 3箇所又は 4箇所に配置されている) を介してベース部材 6 5上に載置され、 フレーム 6 0の内部は、 特に気密性の高い露光室 6 6 と、 マスク Mを交換する際に使用されるマスク側の減圧室 6 7と、 外気 (フレーム 6 0を囲むチャンバの内部の気体) と連通しているマスク収 納室 6 8と、 ウェハ Wを交換する際に使用されるウェハ側の減圧室 6 9 と、 外気と連通しているゥェ八収納室 7 0とに分かれている。 減圧室 6 7 , 6 9が本発明の予備室に対応している。 露光室 6 6を囲む側壁には 上部から底部にかけて複数の排気孔が形成され、 これらの排気孔がそれ ぞれ排気管 6 2 A〜 6 2 Eを介して真空ポンプ 6 3に接続され、 露光時 には真空ポンプ 6 3によって露光室 6 6の内部は例えば 1 0— 7 T o r r 程度の高真空状態に維持される。 FIG. 4 is a cross-sectional view showing the entirety of the transfer device of the present example. In FIG. 4, the transfer device of the present example has a box-shaped solid frame 60 capable of maintaining the inside in an airtight state. Are located in The frame 60 is housed in a larger chamber (not shown). Around the frame 60 in the chamber, for example, a dry air or the like, which is temperature-controlled at a substantially atmospheric pressure and is highly dust-proof, is provided. Is supplied. The frame 60 is mounted on the base member 65 via the vibration isolating tables 64 A and 64 B (actually arranged at three or four places). A particularly airtight exposure chamber 66, a mask-side decompression chamber 67 used when replacing the mask M, and a mask chamber communicating with outside air (gas inside the chamber surrounding the frame 60). It is divided into a storage room 68, a wafer-side decompression room 69 used when exchanging the wafer W, and a Jehachi storage room 70 communicating with the outside air. The decompression chambers 67 and 69 correspond to the spare chamber of the present invention. A plurality of exhaust holes are formed from the top to the bottom on the side wall surrounding the exposure chamber 66, and these exhaust holes are connected to the vacuum pump 63 via exhaust pipes 62A to 62E, respectively. internal exposure chamber 6 6 is maintained at a high vacuum of about 1 0- 7 T orr example by a vacuum pump 6 3 when.
また、 マスク側の減圧室 6 7を囲むように仕切り板 9 3 (図 5参照) が設けられ、 露光室 6 6と減圧室 6 7との境界部には駆動部 7 7 Aによ つて開閉されるシャツタ部材 7 6 Aが設置され、 減圧室 6 7とマスク収 納室 6 8との境界部には駆動部 7 7 Bによって開閉されるシャツ夕部材 7 6 Bが設置されている。 同様に、 ウェハ側の減圧室 6 9を囲むように 仕切り板 9 4 (図 6参照) が設けられ、 露光室 6 6と減圧室 6 9との境 界部には駆動部 8 7 Aによって開閉されるシャツ夕部材 8 6 Aが設置さ れ、 減圧室 6 9とウェハ収納室 7 0との境界部には駆動部 8 7 Bによつ て開閉されるシャツ夕部材 8 6 Bが設置されている。 また、 減圧室 6 7 及び 6 9の隔壁の 2箇所の開口には、 それぞれ真空ポンプ 6 3に通じる 排気管 6 2 F及び 6 2 Gと、 周囲の気体を随時取り込むための開閉自在 の電磁バルブ 7 8及び 8 8を備えた給気管とが接続されている。 更に、 減圧室 6 7及び 6 9内にはそれぞれマスク及びゥェ八を受け渡すための テーブル 7 9及び 8 9が配置されている。 Further, a partition plate 93 (see FIG. 5) is provided so as to surround the decompression chamber 67 on the mask side, and a boundary between the exposure chamber 66 and the decompression chamber 67 is opened and closed by a drive unit 77A. At the boundary between the decompression chamber 67 and the mask storage chamber 68, there is a shirt member that is opened and closed by the drive unit 77B. 7 6 B is installed. Similarly, a partition plate 94 (see FIG. 6) is provided so as to surround the decompression chamber 69 on the wafer side, and the boundary between the exposure chamber 66 and the decompression chamber 69 is opened and closed by a drive unit 87A. At the boundary between the decompression chamber 69 and the wafer storage room 70, a shirt evening member 86B that is opened and closed by a drive unit 87B is installed. ing. At the two openings of the partition walls of the decompression chambers 67 and 69, there are exhaust pipes 62F and 62G, respectively, which lead to a vacuum pump 63, and a solenoid valve that can be opened and closed to take in ambient gas as needed. A supply line with 788 and 88 is connected. Further, tables 79 and 89 are provided in the decompression chambers 67 and 69 for transferring a mask and a wafer, respectively.
そして、 露光室 6 6において、 フレーム 6 0の上部の密閉されたカバ 一 6 1内に電子銃 1が配置され、 電子銃 1の下に順次コンデンサレンズ 2、 コンデンサレンズ系 5、 視野選択用の偏向器 7及びマスク Mが配置 されている。 なお、 図面を分かり易くするため、 図 1中のアパーチャ板 4などの部材は図 4では図示省略している。 また、 マスクベース 2 1は フレーム 6 0に対して固定されており、 マスク Mを保持するマスクステ ージ 2 0を駆動するための粗動ステージ 7 3が配置され、 粗動ステージ 7 3は、 そのマスクべ一ス 2 1に対して Y方向に 1対のリニァモー夕 7 4 A及び 7 4 Bによって駆動される。 図 4においても、 マスク側の移動 鏡 2 2及びレーザ干渉計 2 3等からなるマスクステージ用の計測システ ムは、 実際には図 5に示すように 2軸分の要素から構成されている。 図 5は、 図 4中のマスクステージ 2 0の駆動系及び計測システムを示 す一部を断面とした平面図であり、 この図 5において、 マスクステージ 2 0の X方向及び Y方向の側面にそれぞれ X軸の移動鏡 2 2 X及び Y軸 の移動鏡 2 2 Yが固定され、 マスクべ一ス 2 1上に移動鏡 2 2 X及び 2 2 Yに平行にそれぞれ参照鏡 2 2 R X及び 2 2 R Yが固定されている。 そして、 X軸のレーザ干渉計 2 3 Xからフレーム 6 0に設けた窓部材 7 1 Xを介して、 移動鏡 2 2 X及び参照鏡 2 2 R Xに対して X軸に沿って それぞれ複数軸及び 1軸のレーザビームが照射され、 Y軸のレーザ干渉 計 2 3 Yからフレーム 6 0に設けた窓部材 7 1 Yを介して、 移動鏡 2 2 Y及び参照鏡 2 2 R Yに対して Y軸に沿ってそれぞれ複数軸及び 1軸の レーザビームが照射され、 レ一ザ干渉計 2 3 X及び 2 3 Yは、 参照鏡 2 2 R X及び 2 2 R Yを基準として移動鏡 2 2 X , 2 2 Y (マスクステー ジ 2 0 ) の X座標、 Y座標、 及び 3軸の回りの回転角を計測している。 また、 マスクステージ 2 0は、 横に U字型の粗動ステージ 7 3内に配 置されており、 粗動ステージ 7 3は、 マスクべ一ス 2 1に対して Y軸に 実質的に平行なガイ ド面 2 1 aに沿ってリニアモー夕 7 4 A, 7 4 Bに よって Y方向に駆動される。 そして、 粗動ステージ 7 3の内面には実質 的に X軸に平行なガイ ド面 7 3 aが形成され、 ガイ ド面 7 3 aに沿って 摺動自在にガイ ド部材 9 6が配置され、 ガイ ド部材 9 6に対してそれぞ れ Y方向に伸縮自在の 2箇所のァクチユエ一夕 9 5 A, 9 5 Bを介して マスクステージ 2 0が配置されている。 ァクチユエ一夕 9 5 A , 9 5 B としては、 例えば E字型のコアを持つ電磁石と I字型のコアとを有する いわゆる E Iコア方式の非接触のァクチユエ一夕、 ローレンツ力を推力 として用いる非接触のァクチユエ一夕、 又は小型のリニアモー夕等が使 用できる。 Then, in the exposure room 66, the electron gun 1 is arranged in the sealed cover 61 above the frame 60, and the condenser lens 2, the condenser lens system 5, and the field selection The deflector 7 and the mask M are arranged. In addition, members such as the aperture plate 4 in FIG. 1 are not shown in FIG. 4 for easy understanding of the drawing. Further, the mask base 21 is fixed to the frame 60, and a coarse movement stage 73 for driving the mask stage 20 holding the mask M is arranged. The mask base 21 is driven by a pair of linear motors 74 A and 74 B in the Y direction with respect to the mask base 21. In FIG. 4 as well, the measurement system for the mask stage including the movable mirror 22 on the mask side and the laser interferometer 23 is actually composed of elements for two axes as shown in FIG. FIG. 5 is a plan view in which a part of a drive system and a measurement system of the mask stage 20 in FIG. 4 is shown in cross section. In FIG. 5, the side surfaces of the mask stage 20 in the X direction and the Y direction are shown. X-axis movable mirror 2 2 X and Y-axis movable mirror 2 2 Y are fixed, and reference mirrors 2 2 RX and 2 are placed on mask base 2 1 in parallel with movable mirrors 2 2 X and 2 2 Y, respectively. 2 RY is fixed. Then, from the laser interferometer 23 X on the X axis, through the window member 71 X provided on the frame 60, the moving mirror 22 X and the reference mirror 22 RX are moved along the X axis with respect to a plurality of axes, respectively. A single-axis laser beam is irradiated, and the Y-axis laser interferometer 23 Y is moved to the moving mirror 22 Y and the reference mirror 22 RY via the window member 71 Y provided on the frame 60. The laser interferometers 23 X and 23 Y are irradiated with laser beams of multiple axes and one axis, respectively, along with, and the moving mirrors 22 X and 22 Y are referenced with respect to the reference mirrors 22 RX and 22 RY. The X coordinate and Y coordinate of Y (mask stage 20) and the rotation angle around three axes are measured. Further, the mask stage 20 is disposed in the U-shaped coarse movement stage 73, and the coarse movement stage 73 is substantially parallel to the Y axis with respect to the mask base 21. It is driven in the Y direction by linear motors 74A and 74B along the simple guide surface 21a. A guide surface 73a substantially parallel to the X-axis is formed on the inner surface of the coarse movement stage 73, and a guide member 96 is slidably disposed along the guide surface 73a. The mask stage 20 is disposed via two actuating sections 95A and 95B that can be extended and contracted in the Y direction with respect to the guide member 96, respectively. Examples of the actuary 95A and 95B include, for example, a so-called EI core type non-contact actuator having an electromagnet having an E-shaped core and an I-shaped core. One-touch contact or a small linear motor can be used.
そして、 マスクステージ 2 0の + Y方向の端部に固定された可動子と、 粗動ステージ 7 3の一方の辺部に固定された固定子とからリ二ァモ一夕 7 4 Dが構成され、 ガイ ド部材 9 6に固定された可動子と、 粗動ステー ジ 7 3の他方の辺部に固定された固定子とからリニアモータ 7 4 Cが構 成され、 1対のリニアモー夕 7 4 C, 7 4 Dによってガイ ド部材 9 6及 びマスクステージ 2 0は一体的に粗動ステージ 7 3に対して X方向に駆 動される。 更に、 2軸のァクチユエ一夕 9 5 A, 9 5 Bの伸縮量を制御 することによって、 マスクステージ 2 0の粗動ステージ 7 3 (マスクべ ース 2 1 ) に対する回転角 (ョーイング量) を制御することができる。 また、 露光室 6 6内の減圧室 6 7との境界部の近くに、 減圧室 6 7内の テーブル 7 9とマスクステージ 2 0との間で、 マスクの位置関係を所定 の状態に保ったままでマスクの受け渡しを行うロポッ トアーム 7 5が設 置されている。 A mover fixed to the end in the + Y direction of the mask stage 20 and a stator fixed to one side of the coarse movement stage 73 constitute a linear motor 74 D. The linear motor 74 C is composed of a mover fixed to the guide member 96 and a stator fixed to the other side of the coarse movement stage 73. The guide member 96 and the mask stage 20 are integrally driven in the X direction with respect to the coarse movement stage 73 by 4C and 74D. Be moved. Further, by controlling the amount of expansion and contraction of the two-axis factories 95A and 95B, the rotation angle (jowing amount) of the mask stage 20 with respect to the coarse movement stage 73 (mask base 21) is controlled. Can be controlled. The positional relationship between the mask and the table 79 in the decompression chamber 67 is maintained close to the boundary between the decompression chamber 67 and the mask stage 20 in the exposure chamber 66. A robot arm 75 for transferring the mask up to the mask is provided.
そして、 減圧室 6 7の右側のマスク収納室 6 8において、 マスクを一 時載置するための回転テーブル 8 1が設置され、 回転テーブル 8 1の周 囲に撮像方式の位置検出装置 8 2 A〜8 2 Cが設置されている。 更に、 マスク収納室 6 8の外気と連通する開口部の近傍にマスクライブラリ 9 7が設置され、 マスクライブラリ 9 7内に、 マスク Mに形成された複数 のキャラクターパターン群とは異なる種類の複数のキャラクターパター ン群が形成された複数枚のマスク (その最上部のマスク M Nが現れてい る) が収納されている。 そして、 マスクライブラリ 9 7と回転テーブル 8 1と減圧室 6 7内のテーブル 7 9との間で、 マスクの位置関係を所定 の状態に保ったままでマスクの受け渡しを行うロポットアーム 8 0が設 置されている。 ロボッ トアーム 7 5、 テーブル 7 9、 及び口ポットァー ム 8 0等からマスクローダ系が構成されている。  In the mask storage chamber 68 on the right side of the decompression chamber 67, a rotary table 81 for temporarily mounting a mask is installed, and an imaging type position detecting device 82A around the rotary table 81. ~ 82 C has been installed. Further, a mask library 97 is installed near the opening communicating with the outside air of the mask storage room 68, and a plurality of types of character patterns different from the plurality of character patterns formed on the mask M are provided in the mask library 97. A plurality of masks on which a character pattern group is formed (the uppermost mask MN appears) are stored. A robot arm 80 for transferring a mask between the mask library 97, the rotary table 81, and the table 79 in the decompression chamber 67 while maintaining the positional relationship of the mask in a predetermined state is installed. Have been. A mask loader system is composed of the robot arm 75, the table 79, the mouth pot 80, and the like.
この場合、 マスクライブラリ 9 7から取り出して回転テーブル 8 1上 の位置 P 2に載置されたマスクの外周部のノッチ部、 及びそれ以外の 2 箇所のエッジ部の位置を位置検出装置 8 2 A〜8 2 Cで検出することに よって、 そのマスクのノッチ部を基準とした回転誤差及び 2次元的な位 置の誤差を検出することができる。 そこで、 その回転誤差を相殺するよ うに回転テーブル 8 1を回転して、 その 2次元的な位置の誤差を相殺す るようにロボッ トアーム 8 0を介してそのマスクを減圧室 6 7内のテ一 ブル 7 9上の位置 P 1に載置した後、 そのテーブル 7 9上のマスクを露 光室 6 6内のロボットアーム 7 5を介して、 回転角等が変化しないよう にマスクステージ 2 0上に載置することによって、 露光対象のマスクの ブリアライメントを行うことができる。 In this case, the position of the notch at the outer periphery of the mask placed at the position P2 on the rotary table 81 taken out of the mask library 97 and the other two edges are detected by the position detecting device 82A. By detecting at up to 82 C, it is possible to detect a rotation error and a two-dimensional position error based on the notch of the mask. Then, the rotary table 81 is rotated so as to cancel the rotation error, and the mask is moved through the robot arm 80 so as to cancel the two-dimensional position error. one After placing the mask on the table 7 9 on the table 7 9 via the robot arm 75 in the exposure chamber 6 6 so that the rotation angle and the like do not change, By mounting the mask on the substrate, the mask to be exposed can be aligned.
図 4に戻り、 マスク収納室 6 8内の回転テーブル 8 1上の位置 P 2か ら減圧室 6 7内のテーブル 7 9上の位置 P 1にマスクを搬入する際には、 シャツ夕部材 7 6 Aを閉じてシャツタ部材 7 6 Bが開いた状態となり、 マスクが位置 P 1に載置された状態で、 シャツ夕部材 7 6 B及び電磁バ ルブ 7 8も閉じられる。 そして、 排気管 6 2 Fを介して排気を行って減 圧室 6 7内が真空状態になつてから、 シャツ夕部材 7 6 Aが開かれて位 置 P 1からマスクステージ 2 0上にマスクが搬入される。 一方、 マスク ステージ 2 0の露光済みのマスク Mが減圧室 6 7内のテ一ブル 7 9上に 搬出された後は、 シャツ夕部材 7 6 A, 7 6 Bを閉じて電磁バルブ 7 8 を開いて減圧室 6 7内を大気圧にした後、 シャツタ部材 7 6 Bを開いて テーブル 7 9上のマスクがマスク収納室 6 8内のマスクライブラリ 9 7 (図 5参照) に戻される。 このように本例では減圧室 6 7が設けられて いるため、 真空状態の露光室 6 6内と大気圧のマスク収納室 6 8との間 で迅速にマスクの交換を行うことができる。  Returning to FIG. 4, when carrying the mask from the position P 2 on the rotary table 8 1 in the mask storage chamber 6 8 to the position P 1 on the table 7 9 in the decompression chamber 67, the shirt evening member 7 6A is closed, the shirt member 76B is opened, and the shirt member 76B and the electromagnetic valve 78 are closed with the mask placed at the position P1. Then, after evacuation is performed through the exhaust pipe 62F and the inside of the decompression chamber 67 is evacuated, the shirt member 76A is opened and the mask is placed on the mask stage 20 from the position P1. Is carried in. On the other hand, after the exposed mask M of the mask stage 20 is carried out onto the table 79 in the decompression chamber 67, the shirt members 76A and 76B are closed and the electromagnetic valve 78 is turned on. After being opened, the inside of the decompression chamber 67 is brought to the atmospheric pressure, the shirt member 76B is opened, and the mask on the table 79 is returned to the mask library 97 in the mask storage chamber 68 (see FIG. 5). Thus, in this example, since the decompression chamber 67 is provided, the mask can be quickly exchanged between the vacuum exposure chamber 66 and the atmospheric pressure mask storage chamber 68.
次に、 露光室 6 6中でマスクベース 2 1の下方に順次、 振り戻し用の 偏向器 2 5、 投影系 P L及びウェハ Wが配置され、 投影系 P Lを鏡筒 3 1及び板ばね 3 2 A, 3 2 B (図 1参照) を介して保持する支持部材 5 7 A , 5 7 Bは、 フレーム 6 0に安定に固定され、 ウェハ Wはウェハホ ルダ 9 8を介してウェハステージ 4 6上に保持され、 ウェハステージ 4 6は、 ウェハベース 4 7上に 2次元的に移動自在に載置されている。 ゥ ェハベース 4 7はフレーム 6 0の底面上に固定されており、 ウェハべ一 ス 4 7上にはウェハステージ 4 6を駆動するための粗動ステージ 8 3が 配置され、 粗動ステージ 8 3は、 そのウェハベース 4 7に対して Y方向 に 1対のリニアモー夕 8 4 A及び 8 4 Bによって駆動される。 図 4にお いて、 ウェハ側の移動鏡 4 8及びレ一ザ干渉計 4 9等からなるウェハス テージ用の計測システムも、 実際には図 6に示すように 2軸分の要素か ら構成されている。 Next, a deflector 25 for rewinding, a projection system PL and a wafer W are sequentially arranged below the mask base 21 in the exposure chamber 66, and the projection system PL is connected to the lens barrel 31 and the leaf spring 3 2. The supporting members 57 A and 57 B, which are held via A and 32 B (see FIG. 1), are stably fixed to the frame 60, and the wafer W is placed on the wafer stage 46 via the wafer holder 98. The wafer stage 46 is mounted on a wafer base 47 so as to be movable two-dimensionally. The wafer base 47 is fixed on the bottom surface of the frame 60, and a coarse movement stage 83 for driving the wafer stage 46 is mounted on the wafer base 47. The coarse movement stage 83 is arranged and driven by a pair of linear motors 84 A and 84 B in the Y direction with respect to the wafer base 47. In FIG. 4, the measurement system for the wafer stage, which includes the moving mirror 48 on the wafer side and the laser interferometer 49, etc., is actually composed of elements for two axes as shown in FIG. ing.
図 6は、 図 4中のウェハステージ 4 6の駆動系及び計測システムを示 す一部を断面とした平面図であり、 この図 6において、 ウェハステージ 4 6の X方向及び Y方向の側面にそれぞれ X軸の移動鏡 4 8 X及び Y軸 の移動鏡 4 8 Yが固定され、 ウェハベース 4 7上に移動鏡 4 8 X及び 4 8 Yに平行にそれぞれ参照鏡 4 8 R X及び 4 8 R Yが固定されている。 そして、 X軸のレーザ干渉計 4 9 Xからフレーム 6 0に設けた窓部材 7 2 Xを介して、 移動鏡 4 8 X及び参照鏡 4 8 R Xに対して X軸に沿って それぞれ複数軸及び 1軸のレーザビームが照射され、 Y軸のレーザ干渉 計 4 9 Yからフレーム 6 0に設けた窓部材 7 2 Yを介して、 移動鏡 4 8 Y及び参照鏡 4 8 R Yに対して Y軸に沿ってそれぞれ複数軸及び 1軸の レーザビームが照射され、 レーザ干渉計 4 9 X及び 4 9 Yは、 参照鏡 4 FIG. 6 is a plan view in which a part of a drive system and a measurement system of the wafer stage 46 in FIG. 4 is shown in cross section. In FIG. 6, the side surfaces of the wafer stage 46 in the X direction and the Y direction are shown. The X-axis movable mirror 48 and the X- and Y-axis movable mirrors 48 Y are fixed, respectively, and the reference mirrors 48 RX and 48 RY are mounted on the wafer base 47 in parallel with the movable mirrors 48 X and 48 Y, respectively. Has been fixed. Then, from the laser interferometer 49 X on the X axis, via the window member 72 X provided on the frame 60, the moving mirror 48 X and the reference mirror 48 RX are respectively moved along the X axis to the plural axes and A single-axis laser beam is irradiated, and a Y-axis laser interferometer 49 Y is applied to a moving mirror 48 Y and a reference mirror 48 RY via a window member 72 Y provided in a frame 60. The laser interferometers 49 X and 49 Y are illuminated by a multi-axis and a single-axis laser beam, respectively.
8 R X及び 4 8 R Yを基準として移動鏡 4 8 X, 4 8 Y (ウェハステ一 ジ 4 6 ) の X座標、 Y座標、 及び 3軸の回りの回転角を計測している。 また、 ウェハステージ 4 6は、 横に U字型の粗動ステージ 8 3内に配 置されており、 粗動ステージ 8 3は、 ウェハベース 4 7に対して Y軸に 実質的に平行なガイ ド面 4 7 aに沿ってリニアモー夕 8 4 A , 8 4 Bに よって Y方向に駆動される。 そして、 粗動ステージ 8 3の内面には実質 的に X軸に平行なガイド面 8 3 aが形成され、 ガイ ド面 8 3 aに沿って 摺動自在にガイ ド部材 1 0 0が配置され、 ガイ ド部材 1 0 0に対してそ れぞれ Y方向に非接触方式で伸縮自在の 2箇所のァクチユエ一夕 9 9 A ,The X- and Y-coordinates of the movable mirror 48 X, 48 Y (wafer stage 46) and the rotation angles around three axes are measured with reference to 8 RX and 48 RY. The wafer stage 46 is disposed in a U-shaped coarse movement stage 83 laterally, and the coarse movement stage 83 is a guide substantially parallel to the Y axis with respect to the wafer base 47. Driven in the Y direction by linear motors 84 A and 84 B along the drive surface 47 a. A guide surface 83 a substantially parallel to the X-axis is formed on the inner surface of the coarse movement stage 83, and a guide member 100 is slidably disposed along the guide surface 83 a. , Each of which is non-contact and extendable and contractible in the Y direction with respect to the guide member 100.
9 9 Bを介してウェハステージ 4 6が配置されている。 そして、 図 5のマスクステージ 2 0と同様に、 図 6のウェハステージ 4 6及びガイ ド部材 1 0 0は、 1対のリニアモー夕 8 4 C, 8 4 Dによ つて一体的に粗動ステージ 8 3に対してガイ ド面 8 3 aに沿って X方向 に駆動される。 更に、 2軸のァクチユエ一夕 9 9 A, 9 9 Bの伸縮量を 制御することによって、 ウェハステージ 4 6の粗動ステージ 8 3 (ゥェ ハベース 4 7 ) に対する回転角 (ョ Γング量) を制御することができ る。 また、 露光室 6 6内で減圧室 6 9との境界部の近くに、 減圧室 6 9 内のテーブル 8 9とウェハステージ 4 6との間で、 ウェハの位置関係を 所定の状態に保ったままでウェハの受け渡しを行うロボッ トアーム 8 5 が設置されている。 A wafer stage 46 is arranged via 9 9 B. As in the case of the mask stage 20 of FIG. 5, the wafer stage 46 and the guide member 100 of FIG. 6 are integrally moved by a pair of linear motors 84 C and 84 D. Driven in the X direction along guide surface 83a with respect to 83. Further, by controlling the amount of expansion and contraction of the two-axis actuators 99A and 99B, the rotation angle (jewing amount) of the wafer stage 46 with respect to the coarse movement stage 83 (the wafer base 47) is controlled. Can be controlled. Further, the positional relationship of the wafer is maintained in a predetermined state in the exposure chamber 66 near the boundary with the decompression chamber 69, and between the table 89 and the wafer stage 46 in the decompression chamber 69. A robot arm 85 that transfers wafers to the robot is installed.
そして、 減圧室 6 9の右側のウェハ収納室 7 0において、 ウェハを一 時載置するための回転テーブル 9 1が設置され、 回転テーブル 9 1の周 囲に撮像方式の 3個の位置検出装置 9 2 A〜9 2 Cが設置されている。 更に、 ウェハ収納室 7 0の外気と連通する開口部の近傍にウェハカセッ ト 1 0 1が設置され、 ウェハカセッ ト 1 0 1内に、 露光済み又は未露光 のウェハ (その最上部のウェハ WNが現れている) が収納されている。 そして、 ウェハカセット 1 0 1と回転テーブル 9 1と減圧室 6 9内のテ 一ブル 8 9との間で、 ウェハの位置関係を所定の状態に保ったままでゥ ェハの受け渡しを行うロポッ 卜アーム 9 0が設置されている。 口ポッ ト アーム 8 5、 テーブル 8 9、 及びロボットアーム 9 0等からウェハロー ダ系が構成されている。  Then, in the wafer storage room 70 on the right side of the decompression room 69, a rotary table 91 for temporarily mounting a wafer is installed, and around the rotary table 91, three image-sensing type position detecting devices are provided. 9 2 A to 92 C are installed. Further, a wafer cassette 101 is installed near the opening communicating with the outside air of the wafer storage room 70, and the exposed or unexposed wafer (the uppermost wafer WN appears in the wafer cassette 101). Is stored. Then, a wafer is transferred between the wafer cassette 101, the rotary table 91, and the table 89 in the decompression chamber 69 while maintaining a predetermined positional relationship of the wafer. Arm 90 is installed. The wafer loader system is composed of the mouth pot arm 85, the table 89, the robot arm 90, and the like.
そして、 マスク収納室 6 8と同様に、 ウェハ収納室 7 0においても、 ウェハカセット 1 0 1から取り出して回転テーブル 9 1上の位置 P 4に 載置されたウェハの外周部のノツチ部、 及びそれ以外の 2箇所のエッジ 部の位置を位置検出装置 9 2 A〜9 2 Cで検出して、 回転誤差及び 2次 元的な位置誤差を算出する。 その後、 その回転誤差及び位置誤差を相殺 するようにロボッ トアーム 9 0を介してそのウェハを減圧室 6 9内のテ 一ブル 8 9上の位置 P 3に載置した後、 そのテーブル 8 9上のウェハを 露光室 6 6内の口ポットアーム 8 5を介して、 ウェハホルダ 9 8上に載 置することによって、 露光対象のウェハのブリアライメントを行うこと ができる。 And, like the mask storage room 68, also in the wafer storage room 70, the notch portion of the outer peripheral portion of the wafer taken out of the wafer cassette 101 and placed on the position P4 on the rotary table 91, and The positions of the other two edge portions are detected by the position detection devices 92A to 92C, and the rotation error and the two-dimensional position error are calculated. After that, the rotation error and position error are cancelled. After placing the wafer at a position P3 on the table 89 in the decompression chamber 69 via the robot arm 90 so that the wafer can be moved, the wafer on the table 89 is loaded into the opening in the exposure chamber 66. By placing the wafer on the wafer holder 98 via the pot arm 85, the wafer to be exposed can be realigned.
図 4に戻り、 ウェハ収納室 7 0内の位置 P 4から減圧室 6 9内の位置 P 3にウェハを搬入する際には、 シャツ夕部材 8 6 Aを閉じてシャツ夕 部材 8 6 Bが開いた状態となり、 ウェハが位置 P 3に載置された状態で、 シャツタ部材 8 6 B及び電磁バルブ 8 8も閉じられる。 そして、 減圧室 6 9内が真空状態になつてから、 シャツ夕部材 8 6 Aが開かれて位置 P 3からウェハホルダ 9 8上にウェハが搬入される。 一方、 ウェハステ一 ジ 4 6上の露光済みのウェハ Wが減圧室 6 9内のテーブル 8 9上に搬出 された後は、 シャツ夕部材 8 6 A, 8 6 Bを閉じて電磁バルブ 8 8を開 いて減圧室 6 9内を大気圧にした後、 シャツ夕部材 8 6 Bを開いてテー ブル 8 9上のウェハがウェハ収納室 7 0内のウェハカセッ ト 1 0 1 (図 6参照) に戻される。 このように本例では減圧室 6 9が設けられている ため、 真空状態の露光室 6 6内と大気圧のウェハ収納室 7 0との間で迅 速にウェハの交換を行うことができる。  Referring back to FIG. 4, when carrying the wafer from the position P4 in the wafer storage chamber 70 to the position P3 in the decompression chamber 69, the shirt evening member 86A is closed and the shirt evening member 86B is moved. The shutter member 86B and the electromagnetic valve 88 are also closed in a state where the wafer is opened and the wafer is placed at the position P3. Then, after the inside of the decompression chamber 69 becomes a vacuum state, the shirt member 86 A is opened, and the wafer is loaded onto the wafer holder 98 from the position P 3. On the other hand, after the exposed wafer W on the wafer stage 46 is carried out onto the table 89 in the decompression chamber 69, the shirt members 86A and 86B are closed and the electromagnetic valve 88 is turned on. After opening the vacuum chamber 69 to atmospheric pressure, the shirt member 86B is opened and the wafer on the table 89 is returned to the wafer cassette 101 in the wafer storage chamber 70 (see Fig. 6). It is. As described above, in this example, since the decompression chamber 69 is provided, the wafer can be quickly exchanged between the vacuum exposure chamber 66 and the atmospheric pressure wafer storage chamber 70.
なお、 上記のウェハ口一ダ系 (マスクローダ系も同様) をロード系と アンロード系とに分けて、 ウェハ (マスク) の交換時間の短縮を図るよ うにしてもよい。 また、 例えば図 6において、 ウェハステージ 4 6を少 なくとも 2台配置し、 1枚のウェハの露光と並行して次のウェハのロー ドゃァライメントなどの各種動作を実行するようにしてもよい。 なお、 ウェハ上の各ショッ ト領域の 2層目以降のレイヤにマスクパターンを転 写するために、 ウェハ上の複数のァライメントマークがマーク検出系で 検出され、 この検出結果に基づいてゥェ八上の各ショッ ト領域内の副露 光領域と対応するマスク上の副視野の縮小像とが正確に位置合わせされ る。 このマーク検出系は本例では電子線で被検マークを検出しているが、 その代わりに光学式のマーク検出系を用いてもよい。 Note that the wafer opening system (the same applies to the mask loader system) may be divided into a load system and an unload system so as to shorten the wafer (mask) replacement time. Further, for example, in FIG. 6, at least two wafer stages 46 may be arranged to execute various operations such as load alignment of the next wafer in parallel with exposure of one wafer. . In order to transfer the mask pattern to the second and subsequent layers of each shot area on the wafer, a plurality of alignment marks on the wafer are detected by a mark detection system, and a pattern is detected based on the detection result. Sub-dew in each shot area on Yagami The light region and the corresponding reduced image of the sub-field on the mask are accurately aligned. In this embodiment, the mark detection system detects the mark to be inspected by an electron beam, but an optical mark detection system may be used instead.
次に、 図 1中の投影系 P Lを Y方向に機械的に駆動する駆動系 3 4の 具体的な構成例、 並びに本例の機械的な M O L方式及び電子的な M O L 方式の動作の一例につき図 7〜図 1 1を参照して説明する。  Next, a specific configuration example of the drive system 34 that mechanically drives the projection system PL in the Y direction in FIG. 1 and an example of the operation of the mechanical MOL method and the electronic MOL method of this example will be described. This will be described with reference to FIGS.
図 7は、 図 1の視野選択用の偏向器 7〜ウェハ Wまでの部材の一例を 示す一部を切り欠いた拡大斜視図であり、 この図 7において、 マスク M 上の露光対象のキャラクターパターン群 1 3の中心が照明系の光軸 A X 1にほぼ合致している。 また、 図 2 ( B ) のァライメントマーク 1 6 A 〜 1 6 D中の少なくとも 2つのァライメントマ一クの位置を検出するこ とによって、 キャラクターパターン群 1 3中のそれぞれ幅 Dの正方形の 領域内のキャラクターパターン 1 5 A〜 1 5 Yの光軸 A X 1を原点とす る配列座標は高精度に求められているものとする。  FIG. 7 is an enlarged perspective view, partially cut away, showing an example of members from the field-of-view selection deflector 7 to the wafer W in FIG. 1. In FIG. 7, the character pattern to be exposed on the mask M is shown. The center of group 13 almost coincides with the optical axis AX1 of the illumination system. In addition, by detecting the positions of at least two alignment marks in the alignment marks 16A to 16D in FIG. 2 (B), the positions of the squares each having a width D in the character pattern group 13 are detected. It is assumed that the arrangement coordinates with the optical axis AX1 of the character pattern 15A to 15Y as the origin are determined with high precision.
図 7において、 例えばマスク M上のキャラクターパターン 1 5 Nの縮 小像をウェハ W上の一つのショッ ト領域 5 2内に転写する場合、 偏向器 7によって電子線 E Bの照射領域 1 4がそのキャラクターパターン 1 5 N上に移動し、 キャラクターパターン 1 5 Nを透過した電子線 E Bは、 振り戻し用の偏向器 2 5によって正確に光軸 A X 1上に移動する。 図 7 の状態では、 照明系の光軸 A X 1と投影系 P Lの光軸 A X 2とは合致し ている。 そして、 光軸 A X 1上に移動した電子線 E Bは、 レンズ 2 8 A, 2 8 B等からなる投影系 P Lによって、 ショット領域 5 2を構成する多 数のそれぞれ幅 d ( = β · D ) の正方形の副露光領域 5 4の内の一つの 副露光領域上に、 キャラクタ一パターン 1 5 Nを投影倍率 3で縮小した 縮小像 4 3を形成する。  In FIG. 7, for example, when a reduced image of the character pattern 15 N on the mask M is transferred into one shot area 52 on the wafer W, the irradiation area 14 of the electron beam EB is The electron beam EB that has moved on the character pattern 15 N and has passed through the character pattern 15 N is accurately moved on the optical axis AX 1 by the deflector 25 for swingback. In the state shown in FIG. 7, the optical axis AX1 of the illumination system coincides with the optical axis AX2 of the projection system PL. Then, the electron beam EB moved on the optical axis AX 1 is transformed into a plurality of widths d (= β · D) of the shot region 52 by the projection system PL including the lenses 28 A and 28 B. On one sub-exposure area of the square sub-exposure area 54, a reduced image 43 obtained by reducing the character pattern 15N at a projection magnification of 3 is formed.
そして、 投影系 P Lは鏡筒 3 1内に収納され、 鏡筒 3 1は 1対の板ば ね 32A, 32 Bによって Y方向に挟むように保持され、 板ばね 32A, 32 Bの X方向の両端部は支持部材 57 A, 57 Bに固定されている。 従って、 投影系 PLは、 板ばね 32A, 32 Bによって Y方向に変位及 び振動できるように支持されている。 そして、 板ばね 32 A及び 32 B の一 Y方向の面にはそれぞれピエゾ素子からなる伸縮自在の駆動素子 1 1 1 A, 1 1 1 B及び 1 12 A, 1 12 Bが接着等によって固定され、 板ばね 32 A及び 32 Bの + Y方向の面にもそれぞれ駆動素子 1 1 1 A, 1 1 18及び1 1 2八, 1 12 Bに対向するように、 ピエゾ素子からな る伸縮自在の駆動素子 1 1 1 C, 1 1 10及び1 12 (:, 1 1 2Dが固 定されている。 なお、 駆動素子 1 1 1A〜: L 1 1D, 1 12A〜1 12 Dとしては、 ピエゾ素子以外の電歪素子又は磁歪素子等を使用してもよ レ^ 本例では不図示の制御部によって、 1組の駆動素子 1 1 1A, 1 1 1 B, 1 12 A, 1 12 Bと別の 1組の駆動素子 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 Dとを互いに位相が反転した状態で一定周期で伸縮さ せることによって、 投影系 PLを全体として Y軸に平行な方向 (Y方向) に振動させる。 即ち、 投影系 PLの機械的な振動方向 MVは Y方向であ る。 その駆動素子 1 1 1 A〜 1 1 1 D, 1 1 2 A〜 1 1 2 D及びその制 御系が図 1の駆動系 34に対応している。 Then, the projection system PL is housed in the lens barrel 31, and the lens barrel 31 is a pair of plates. The leaf springs 32A and 32B are held so as to be sandwiched in the Y direction, and both ends of the leaf springs 32A and 32B in the X direction are fixed to support members 57A and 57B. Therefore, the projection system PL is supported by the leaf springs 32A and 32B so as to be able to be displaced and vibrated in the Y direction. The extensible drive elements 111 A, 111 B, 112 A, and 112 B, each composed of a piezo element, are fixed to one surface of the leaf springs 32 A and 32 B in the Y direction by bonding or the like. The leaf springs 32A and 32B also have expandable and contractible piezo elements so as to face the drive elements 11A, 1118 and 1128, and 112B on the + Y direction surfaces, respectively. Driving elements 1 1 1C, 1 1 10 and 1 12 (:, 1 1 2D are fixed. Note that driving elements 1 1 1A to: L 1 1D, 1 12A to 1 12D are piezo elements. It is also possible to use an electrostrictive element or a magnetostrictive element other than the above. In this example, a control unit (not shown) separates one set of drive elements 11A, 11B, 12A, and 12B. By expanding and contracting a set of the driving elements 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 D at a constant period while the phases are inverted, the projection system PL as a whole Y Vibrates in the direction parallel to the axis (Y direction). The mechanical vibration direction MV of the projection system PL is in the Y direction The drive elements 111 A to 111 D, 112 A to 112 D, and the control system are the drive system shown in Fig. 1. 34 is supported.
図 8は、 駆動素子 1 1 1A〜: L 1 1 D, 1 1 2A〜1 12 Dの伸縮の 状態と投影系 PL (鏡筒 3 1) の変位との関係を示し、 まず図 8 (A) のようにそれらの駆動素子の伸縮量が 0であるときには投影系 P Lは変 位しない。 それに対して、 図 8 (B) に示すように、 1組の駆動素子 1 1 1 A, 1 1 1 B, 1 1 2 A, 1 1 2 Bが縮んで別の 1組の駆動素子 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 Dが伸びると、 板ばね 32 A, 3 2 Bが + Y方向に撓んで投影系 P Lも + Y方向 (方向 MVA) に変位す る。 一方、 図 8 (C) に示すように、 1組の駆動素子 1 1 1A, 1 1 1 B, 1 1 2 A, 1 1 2 Bが伸びて別の 1組の駆動素子 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 Dが縮むと、 板ばね 32 A, 32 Bが— Y方向に 橈んで投影系 P Lも一 Y方向 (方向 MVB) に変位する。 このように、 2組の駆動素子を位相が反転した状態で一定周期 (一定周波数) で伸縮 させることによって、 投影系 PLを Y方向に振動させることができる。 また、 その 2組の駆動素子の伸縮量の最大値を制御することによって、 投影系 P Lの振動時の振幅を制御することができる。 Fig. 8 shows the relationship between the expansion and contraction state of the driving elements 111A and L11D and 112A to 112D and the displacement of the projection system PL (barrel 31). As shown in), when the expansion and contraction amount of those driving elements is 0, the projection system PL is not displaced. On the other hand, as shown in FIG. 8 (B), one set of drive elements 1 1 1 A, 1 1 1 B, 1 1 2 A, 1 1 2 B shrinks and another set of drive elements 1 1 When 1 C, 1 1 1 D, 1 1 2 C and 1 1 2 D are extended, the leaf springs 32 A and 32 B are bent in the + Y direction, and the projection system PL is also displaced in the + Y direction (direction MVA). You. On the other hand, as shown in Fig. 8 (C), one set of driving elements 1 1 1A and 1 1 1 When B, 1 12 A, 1 12 B expands and another set of driving elements 1 1 1 C, 1 1 1 D, 1 1 2 C, 1 1 2 D contracts, leaf springs 32 A, 32 When B moves in the Y direction, the projection system PL is also displaced in one Y direction (direction MVB). In this way, the projection system PL can be oscillated in the Y direction by expanding and contracting the two driving elements at a constant period (constant frequency) with the phases inverted. Further, by controlling the maximum value of the amount of expansion and contraction of the two drive elements, the amplitude of the projection system PL during vibration can be controlled.
また、 図 7において、 鏡筒 3 1の— Y方向の側面に ZX平面にほぼ平 行な反射面を持つミラ一よりなる移動鏡 40が固定され、 移動鏡 40に ほぼ平行に参照鏡 40 Rが配置されている。 参照鏡 4 O Rは、 支持部材 57 A, 57 Bに対して相対変位しないように不図示の支持部材に固定 されている。 そして、 その支持部材に固定されたレーザ干渉計 41から 移動鏡 40に対して 3軸のレーザビームが照射され、 参照鏡 40 Rに例 えば 1軸のレーザビームが照射され、 レーザ干渉計 41は、 参照鏡 40 Rを基準として移動鏡 40及び鏡筒 3 1 (投影系 PL) の Y方向への変 位量、 Z軸の回りの回転角、 及び X軸の回りの回転角を所定のサンプリ ングレー卜で計測している。 この計測値は連続的に駆動素子 1 1 1A〜 1 1 1 D, 1 1 2 A〜l 1 2Dの制御系に供給され、 この制御系は、 そ の計測値に基づいて駆動素子 1 1 1 A〜: L 1 1 D, 1 12 A〜 1 12 D の伸縮量を制御することによって、 鏡筒 3 1及び投影系 PLを回転が無 い状態で、 所定の振幅で、 かつ所定の周波数で機械的な振動方向 MVに 沿って振動させる。  Further, in FIG. 7, a movable mirror 40 composed of a mirror having a reflecting surface substantially parallel to the ZX plane is fixed to a side surface in the Y direction of the lens barrel 31, and a reference mirror 40 R substantially parallel to the movable mirror 40. Is arranged. The reference mirror 4OR is fixed to a support member (not shown) so as not to be displaced relative to the support members 57A and 57B. Then, the laser interferometer 41 fixed to the supporting member irradiates the movable mirror 40 with a three-axis laser beam, and irradiates the reference mirror 40R with, for example, a one-axis laser beam. The displacement amount of the moving mirror 40 and the lens barrel 31 (projection system PL) in the Y direction, the rotation angle around the Z axis, and the rotation angle around the X axis with respect to the reference mirror 40R as a predetermined sample. It is measured with the grating. These measured values are continuously supplied to the control system of the driving elements 111A to 111D and 112A to 112D, and the control system controls the driving elements 111 based on the measured values. A ~: By controlling the amount of expansion and contraction of L11D, 112A ~ 112D, the lens barrel 31 and the projection system PL are rotated at a predetermined amplitude and at a predetermined frequency without rotation. Vibrates along the mechanical vibration direction MV.
このように本例では投影系 P Lの変位量及び回転角を実際にレーザ干 渉計 4 1によって計測し、 この計測値を駆動系にフィードバックしてい るため、 機械的な MOL方式によって投影系 PLを全体として Y方向に 安定に振動させることができる。 なお、 投影系 PLの変位量をモニタす るために、 板ばね 32 A, 32 Bのそれぞれの少なくとも一面に歪ゲー ジ等の伸縮量計測素子を被着しておき、 その伸縮量計測素子で板ばね 3Thus, in this example, the displacement and rotation angle of the projection system PL are actually measured by the laser interferometer 41, and the measured values are fed back to the drive system. Can be stably vibrated in the Y direction as a whole. The displacement of the projection system PL is monitored. For this purpose, an expansion / contraction measuring element such as a strain gauge is attached to at least one surface of each of the leaf springs 32A and 32B, and the expansion / contraction measuring element is used as the leaf spring 3A.
2 A, 32 Bの伸縮量を直接計測するようにしてもよい。 更に、 投影系 P Lの変位量をモニタするために、 非接触方式の静電容量センサや光学 式のギャップセンサ等を使用してもよい。 The amount of expansion and contraction of 2 A and 32 B may be directly measured. Further, in order to monitor the amount of displacement of the projection system PL, a non-contact capacitance sensor or an optical gap sensor may be used.
なお、 図 7の実施の形態では、 1枚の板ばね 32 A (32 Bについて も同様) に 2対の駆動素子 1 1 1A〜1 1 I Dが被着されているが、 3 対以上の駆動素子、 例えば Z方向に 2列ずつの 4対の駆動素子を板ばね In the embodiment shown in FIG. 7, two pairs of drive elements 11 1A to 11 ID are attached to one leaf spring 32A (the same applies to 32B). Elements, for example, four pairs of drive elements in two rows in the Z direction
32 Aに被着するようにしてもよい。 これによつて、 投影系 PLの振幅 を大きくすることができる。 なお、 例えば駆動素子 1 1 1Aの伸縮特性 が向上したような場合には、 1枚の板ばね 32A (32 Bについても同 様) に 1対の駆動素子、 又は 1つの駆動素子のみを被着するだけでもよ い。 It may be attached to 32 A. Thus, the amplitude of projection system PL can be increased. For example, when the expansion and contraction characteristics of the driving element 111A are improved, a pair of driving elements or only one driving element is attached to one leaf spring 32A (the same applies to 32B). Just do it.
上記のように本例の投影系 P Lの機械的駆動系は、 伸縮自在の駆動素 子を使用しているが、 それ以外に例えばボイスコイルモー夕やリニアモ —夕等を用いて投影系 P Lを機械的に変位させてもよい。  As described above, the mechanical drive system of the projection system PL of this example uses a telescopic drive element. In addition, for example, the projection system PL is configured using a voice coil motor or linear motor. It may be mechanically displaced.
図 9は、 ボイスコイルモータ方式で投影系 P Lを駆動する機械的駆動 系の構成例を示し、 この図 9において、 投影系 PLが収納された鏡筒 3 1は板ばね 32 A, 32 Bによって挟むように保持され、 板ばね 32A, 32 Bは支持部材 5 7 A, 5 7 Bに固定されている。 そして、 板ばね 3 2 A, 32 Bの外面にそれぞれ非磁性体よりなる円筒部材 1 1 3 A, 1 1 3 Bが固定され、 円筒部材 1 1 3 A, 1 1 3 Bの先端部にコイル 1 1 Fig. 9 shows an example of the configuration of a mechanical drive system that drives the projection system PL using a voice coil motor system. In Fig. 9, the lens barrel 31 in which the projection system PL is housed is formed by leaf springs 32A and 32B. The leaf springs 32A and 32B are fixed to support members 57A and 57B. A cylindrical member 1 13 A, 1 13 B made of a non-magnetic material is fixed to the outer surface of each of the leaf springs 32 A, 32 B, and a coil is attached to the tip of the cylindrical member 1 13 A, 1 13 B. 1 1
4 A, 1 14 Bが巻回されている。 また、 円筒部材 1 1 3 A, 1 13 B の内部に発磁体としての永久磁石 1 1 5A, 1 1 5 Bが非接触状態で挿 入され、 永久磁石 1 1 5 A, 1 1 5 Bには円筒部材 1 13A, 1 13 B を非接触状態で挟むように磁性体よりなる先端が円筒状のヨーク 1 1 6 A, 1 1 6 Bが固定されている。 永久磁石 1 1 5 A, 1 1 5 B及びョー ク 1 1 6A, 1 1 6 Bは、 支持部材 57 A, 57 Bに対して相対変位し ないように不図示の支持部材に固定されている。 4 A and 1 14 B are wound. In addition, permanent magnets 115A and 115B as magnets are inserted into the cylindrical members 113A and 113B in a non-contact state, and inserted into the permanent magnets 115A and 115B. Is a yoke with a cylindrical tip made of a magnetic material so as to sandwich the cylindrical members 113A and 113B in a non-contact state. A, 1 16 B are fixed. The permanent magnets 1 15 A, 1 15 B and the yoke 1 16 A, 1 16 B are fixed to a support member (not shown) so as not to be displaced relative to the support members 57 A, 57 B. .
コイル 1 14A, 1 14 B、 永久磁石 1 1 5 A, 1 1 5 B及びヨーク 1 1 6 A, 1 1 6 Bよりボイスコイルモ一夕 (VCM) が構成されてい る。 この場合、 コイル 1 14 A及び 1 14 Bに電流を流すことによって、 板ばね 32A, 32 Bが可撓性を持つ方向、 即ち機械的な振動方向 MV に沿ってコイル 1 14 A, 1 14 Bに同じ方向にローレンツ力よりなる 推力を発生させる。 これによつて、 その方向に板ばね 32 A, 32 Bが 橈んで鏡筒 3 1 (投影系 PL) も変位する。 この際に、 コイル 1 14A, 1 14 Bに例えば所定周波数で所定振幅の交流電流を供給することによ つて、 振動方向 MVに沿って投影系 PLをその所定周波数で、 かつ所定 の振幅で振動させることができる。  The voice coil motor (VCM) is composed of coils 114A and 114B, permanent magnets 115A and 115B, and yokes 1116A and 116B. In this case, by passing a current through the coils 114A and 114B, the coils 114A and 114B move along the direction in which the leaf springs 32A and 32B have flexibility, that is, the mechanical vibration direction MV. A thrust consisting of Lorentz force is generated in the same direction. As a result, the leaf springs 32A and 32B are radiused in that direction, and the lens barrel 31 (projection system PL) is also displaced. At this time, for example, by supplying an alternating current having a predetermined frequency and a predetermined amplitude to the coils 114A and 114B, the projection system PL is vibrated at the predetermined frequency and the predetermined amplitude along the vibration direction MV. Can be done.
この場合にも、 鏡筒 3 1 (投影系 PL) の変位量をモニタするために、 板ばね 32 A, 32 Bの内面にそれぞれ歪ゲージよりなる伸縮量計測素 子 127A, 1 27 Bが被着されており、 この計測値を用いてそのボイ スコイルモー夕を駆動することによって、 投影系 P Lを高精度に振動さ せることができる。 なお、 図 9の例においても、 鏡筒 31の変位量をモ 二夕するために、 レーザ干渉計等を使用してもよい。 また、 特にボイス コイルモータ方式では、 投影系 PLを安定に振動方向 MVに沿って所望 の量だけ高精度に変位させて静止させることができる。  Also in this case, in order to monitor the displacement of the lens barrel 31 (projection system PL), the inner surfaces of the leaf springs 32A and 32B are covered with expansion and contraction measuring elements 127A and 127B, respectively, each composed of a strain gauge. By driving the voice coil motor using the measured values, the projection system PL can be vibrated with high accuracy. In the example shown in FIG. 9, a laser interferometer or the like may be used to monitor the displacement of the lens barrel 31. In particular, in the case of the voice coil motor system, the projection system PL can be stably displaced along the vibration direction MV by a desired amount with high accuracy and stopped.
図 7に戻り、 本例でマスク M上の一つ又は複数のキャラクタ一パター ンを順次ウェハ W上のショッ ト領域 52内に転写する際の基本的な動作 にっき説明する。 本例では駆動素子 1 1 1 A〜 l 1 1D, 1 12A〜1 12Dを伸縮させて板ばね 32 A, 32 Bを Y方向に橈ませることによ つて、 投影系 P Lを Y方向に沿った振動方向 MVに所定周波数で所定振 幅で振動させる。 これによつて、 ウェハ W上のショッ ト領域 5 2内の Y 方向の幅が L 1の主露光領域 1 1 0 A内の一列の副露光領域 54にそれ ぞれ対応するマスク M上のキャラクターパターンの縮小像を転写する。 幅 L 1は、 一例として副露光領域 5 4の幅 dの 1 0倍〜 3 0倍程度であ るが、 図 7では分かり易くするため、 幅 L 1は幅 dの 9倍に設定されて いる。 Returning to FIG. 7, the basic operation of sequentially transferring one or a plurality of character patterns on the mask M into the shot area 52 on the wafer W in this example will be described. In this example, the projection system PL was moved along the Y direction by expanding and contracting the drive elements 111A to 111D and 112A to 112D to deflect the leaf springs 32A and 32B in the Y direction. Vibration direction Predetermined vibration at predetermined frequency in MV Vibrate by width. As a result, the characters on the mask M corresponding to the sub-exposure areas 54 in the row in the main exposure area 110 A having the width L in the Y direction in the shot area 52 on the wafer W, respectively. Transfer a reduced image of the pattern. The width L1 is, for example, about 10 to 30 times the width d of the sub-exposure area 54, but for simplicity in FIG. 7, the width L1 is set to 9 times the width d. I have.
図 1 0は、 投影系 P Lを Y方向に振動させる状態を示し、 この図 1 0 において、 図 1 0 (A) では照明系の光軸 AX 1に対して投影系 Pしの 光軸 AX 2が合致しており、 マスク M上のキャラクターパターン 1 5 B の投影系 P Lによる縮小像がウェハ W上の副露光領域 54 Aに露光され ている。 次に、 図 1 0 (B) に示すように、 マスク M上のキャラクタ一 パターン 1 5 Cを通過した電子線 E Bを光軸 A X 1上に振り戻した状態 で、 投影系 P Lを方向 MVA ( + Y方向) に Δ γ ΐだけ変位させる。  FIG. 10 shows a state in which the projection system PL is vibrated in the Y direction. In FIG. 10, in FIG. 10A, the optical axis AX 2 of the projection system P is compared with the optical axis AX 1 of the illumination system. The reduced image of the character pattern 15 B on the mask M by the projection system PL is exposed on the sub-exposure area 54 A on the wafer W. Next, as shown in FIG. 10 (B), with the electron beam EB passing through the character-to-pattern 15 C on the mask M turned back onto the optical axis AX1, the projection system PL is moved in the direction MVA ( + Y direction) by Δγΐ.
この場合、 本例の投影系 P Lは、 前群 2 7及び後群 2 9よりなる反転 投影系であるとすると、 投影倍率 /3 (]3< 1 ) を用いて縮小像の + Y方 向への変位量 ΔΥ 1は、 次のようになる。  In this case, assuming that the projection system PL of this example is an inverted projection system composed of the front group 27 and the rear group 29, the projection image / 3 (] 3 <1) and the + Y direction of the reduced image are used. The displacement amount ΔΥ 1 is as follows.
ΔΥ 1 = ( 1 + β ) Δ γ ΐ ( 1 )  ΔΥ 1 = (1 + β) Δ γ ΐ (1)
従って、 変位量 ΔΥ 1を、 ウェハ W上の副露光領域 54の幅 d (配列 ピッチ) にすることによって、 ウェハ W上で副露光領域 5 4 Aに隣接す る副露光領域 5 4 Bにキャラクターパターン 1 5 Cの縮小像を露光する ことができる。  Therefore, by setting the displacement amount ΔΥ1 to the width d (arrangement pitch) of the sub-exposure area 54 on the wafer W, the character is added to the sub-exposure area 54B adjacent to the sub-exposure area 54A on the wafer W. A reduced image of the pattern 15 C can be exposed.
同様に、 図 1 0 (C) に示すように、 マスク M上のキャラクターパ夕 ーン 1 5 Aの縮小像をウェハ W上の副露光領域 54 Bに隣接する副露光 領域 5 4 Cに露光するには、 キャラクターパターン 1 5 Aを透過した電 子線 E Bを光軸 AX 1上に振り戻した状態で、 投影系 P Lの方向 MVA への変位量 Δ y 2による縮小像の変位量 ΔΥ 2 (= ( 1 + 3 ) Δ y 2) が 2 · dになるようにすればよい。 Similarly, as shown in FIG. 10 (C), a reduced image of the character pattern 15A on the mask M is exposed on the sub-exposure area 54C adjacent to the sub-exposure area 54B on the wafer W. The displacement of the reduced image due to the displacement Δy2 of the projection system PL in the direction MVA with the electron beam EB transmitted through the character pattern 15 A turned back onto the optical axis AX1 (= (1 + 3) Δ y 2) Should be 2 · d.
但し、 図 1 0 (A) , (B) , (C) のように、 投影系 PLによる縮 小像の変位量が 0, Δ Y 1, Δ Y 2となる時点を t 1, t 2 , t 3、 時 点 t l , t 2 , t 3の間隔の最小値を Τとするとすると、 ウェハ W上の 電子線レジストの感度が高い (必要露光量が少ない) 場合には、 ほぼそ の時点 t l , t 2 , t 3を中心とした露光時間△ t 1 (厶 1は間隔丁 よりもかなり短い) だけそれぞれ図 1のブランキング用の偏向器 3を非 動作状態として、 マスク M上に電子線 EBを照射することによって、 ゥ ェハ W上の異なる副露光領域 54 A, 54 B, 54 Cにそれぞれ対応す るキャラクタ一パターンの縮小像を露光できる。 この場合、 例えばゥェ ハ W上のレイヤによって電子線レジストの感度が或る程度変化するとき には、 その感度に応じて図 1の電子銃 1の出力、 即ち電子線 EBの強度 を制御するようにしてもよい。 即ち、 電子線レジストの感度がやや低い (適正露光量がやや大きい) ときには電子線 EBの強度を高くして、 電 子線レジストの感度がやや高い (適正露光量がやや小さい) ときには電 子線 EBの強度を小さくしてもよい。 この露光量制御方法は、 電子線 E Bの強度を所定範囲内で高精度に、 かつ安定に制御できる場合に有効で あり、 これによつて、 容易に露光量制御を行うことができる。  However, as shown in FIGS. 10 (A), (B), and (C), the time points at which the displacement of the reduced image by the projection system PL becomes 0, ΔY1, ΔY2 are t1, t2, Assuming that the minimum value of the interval between t 3 and time points tl, t 2, and t 3 is Τ, when the sensitivity of the electron beam resist on the wafer W is high (the required exposure amount is small), it is almost at the time point tl. The deflector 3 for blanking shown in FIG. 1 is deactivated for the exposure time △ t 1 (where m 1 is considerably shorter than the spacing plate) around t, t 2, and t 3. By irradiating the EB, a reduced image of one character pattern corresponding to each of the different sub-exposure areas 54A, 54B, and 54C on the wafer W can be exposed. In this case, for example, when the sensitivity of the electron beam resist changes to some extent by the layer on the wafer W, the output of the electron gun 1 in FIG. 1, that is, the intensity of the electron beam EB is controlled according to the sensitivity. You may do so. That is, when the sensitivity of the electron beam resist is slightly low (appropriate exposure amount is slightly large), the intensity of the electron beam EB is increased, and when the sensitivity of the electron beam resist is slightly high (appropriate exposure amount is slightly small), the electron beam is increased. The strength of the EB may be reduced. This exposure amount control method is effective when the intensity of the electron beam EB can be controlled accurately and stably within a predetermined range, and thus the exposure amount can be easily controlled.
これに対して、 例えばウェハ W上の電子線レジス トの感度が低い (適 正露光量が大きい) 場合には、 その時点 t 1, t 2 , t 3を中心とした 露光時間 2は、 間隔 Τより短いが、 その間隔 Τに近付く恐れがある。 この場合に、 単に露光時間△ t 2だけマスク M上に電子線 EBを照射す ると、 ウェハ W上の縮小像が Y方向に移動するために、 副露光領域 54 A〜 54 Cに転写される像の解像度が劣化する恐れがある。 そこで、 本 例では投影系 P Lが Y方向に移動している際に、 ウェハ W上の縮小像を それぞれ各副露光領域 54 A〜 54 C上に静止させるために、 電子的な P 04707 On the other hand, for example, when the sensitivity of the electron beam resist on the wafer W is low (the appropriate exposure amount is large), the exposure time 2 around the time points t1, t2, and t3 is the interval Shorter than Τ, but may approach the interval Τ. In this case, simply irradiating the electron beam EB onto the mask M for the exposure time △ t2, the reduced image on the wafer W moves in the Y direction, and is transferred to the sub-exposure areas 54A to 54C. Image resolution may be degraded. Thus, in this example, when the projection system PL is moving in the Y direction, the reduced images on the wafer W are stopped on the respective sub-exposure areas 54A to 54C, so that an electronic P 04707
39 39
MOL方式を適用して投影系 P Lの光軸を電子的に変位させる。 ここで、 説明の便宜上、 投影系 P Lの初期状態 (電子的な MOL方式で光軸を変 位させる前の状態) での光軸を光軸 AX 2として、 電子的な MOL方式 で変位した後の光軸を光軸 AX 3と呼ぶ (図 1 1参照) 。 The optical axis of the projection system PL is electronically displaced by applying the MOL method. Here, for convenience of explanation, the optical axis in the initial state of the projection system PL (before the optical axis is displaced by the electronic MOL method) is set to the optical axis AX2, and after being displaced by the electronic MOL method. The optical axis is called the optical axis AX3 (see Fig. 11).
そして、 例えば図 1 0 (B) において時点 t 2を中心として露光時間 Δ t 2だけ、 ウェハ W上の副露光領域 54 Bにキャラクターパターン 1 5 Cの縮小像を露光するものとすると、 先ず時点 ( t 2— Δ t 2 2) では、 図 1 1 (A) に示すように、 電子的な MOL方式で前群 2 7及び 後群 2 9の電磁場を点線 2 7 A及び 2 9 Aで示す初期状態から変化させ て、 光軸 AX 3を初期状態の光軸 AX 2に対して + Y方向に変位させる。 これによつて、 縮小像は点線の軌跡 1 1 7 Aから実線の軌跡に移動して、 副露光領域 5 4 Bにその縮小像が転写される。 この際の光軸 AX 3の変 位量 <5 yと、 縮小像のウェハ W上での変位量 δ Yとの関係も、 ( 1 ) 式 と同様の次式で表される。  Then, for example, assuming that a reduced image of the character pattern 15C is to be exposed on the sub-exposure area 54B on the wafer W for an exposure time Δt2 around the time point t2 in FIG. 10 (B). In (t 2-Δt 2 2), the electromagnetic fields of the front group 27 and the rear group 29 are indicated by dotted lines 27 A and 29 A in the electronic MOL method as shown in Fig. 11 (A). The optical axis AX3 is displaced in the + Y direction with respect to the optical axis AX2 in the initial state by changing from the initial state. As a result, the reduced image moves from the dotted line locus 117A to the solid line locus, and the reduced image is transferred to the sub-exposure area 54B. At this time, the relationship between the displacement <5 y of the optical axis AX3 and the displacement δY of the reduced image on the wafer W is also expressed by the following equation similar to the equation (1).
δ Υ= ( 1 + β) 6 y (2)  δ Υ = (1 + β) 6 y (2)
従って、 光軸 AX 2と副露光領域 54 (露光対象領域) の中心との位 置ずれ量が <5 Y aであれば、 電子的な M〇L方式による光軸 AX 3の変 位量 6 yを、 次式のようにすればよい。  Therefore, if the displacement between the optical axis AX2 and the center of the sub-exposure area 54 (exposure target area) is <5Ya, the displacement of the optical axis AX3 by the electronic M〇L method 6 y can be expressed by the following equation.
6 y = 6 Y a/ ( 1 + ^3) ( 3)  6 y = 6 Ya / (1 + ^ 3) (3)
その後、 次第に光軸 AX 3の光軸 AX 2に対する変位量を少なくして、 時点 t 2の状態を示す図 1 1 (B) では、 光軸 AX 3を光軸 AX 2に合 致させる。 その後は、 副露光領域 5 4に対して光軸 AX 2が + Y方向に ずれるようになるため、 図 1 1 (C) に示すように、 電子的な MOL方 式で前群 2 7及び後群 2 9の電磁場 (光軸 AX 3) を点線 2 7 B及び 2 9 Bで示す初期状態 (光軸 AX 2 ) に対して一 Y方向に変位させる。 こ れによって、 縮小像は点線の軌跡 1 1 7 Bから実線の軌跡に移動して、 副露光領域 54 Bにその縮小像が転写される。 Thereafter, the displacement of the optical axis AX3 with respect to the optical axis AX2 is gradually reduced, and in FIG. 11B showing the state at the time point t2, the optical axis AX3 is matched with the optical axis AX2. After that, since the optical axis AX2 shifts in the + Y direction with respect to the sub-exposure area 54, the front group 27 and the rear group 27 are formed by an electronic MOL method as shown in Fig. 11 (C). The electromagnetic field (optical axis AX3) of group 29 is displaced in one Y direction with respect to the initial state (optical axis AX2) indicated by dotted lines 27B and 29B. As a result, the reduced image moves from the dotted locus 1 17 B to the solid locus, The reduced image is transferred to the sub-exposure area 54B.
このように、 各時点 t 1, t 2 , t 3, …を中心とした露光時間 Δ t 2において、 電子的な M〇L方式で投影系 PLの電磁場分布によって定 まる光軸 AX 3を変位させることによって、 ウェハ W上の機械的な振動 方向 MVに沿って一列の副露光領域 54 A, 54 B, 54C, …にそれ ぞれ対応するキャラクターパターンの縮小像を高い解像度で転写するこ とができる。 また、 レジスト感度が更に低くなつて露光時間 Δ t 2が各 時点の最小間隔 T以上になるような場合には、 投影系 PLの機械的な振 動周波数を低くしてその間隔 Tを長くしてもよい。 逆に、 レジスト感度 が高く露光時間△ t 2が短いときには、 投影系 PLの機械的な振動周波 数を高くしてもよい。 更に、 投影系 PLの機械的な振動周波数の制御と、 電子線 E Bの強度の制御とを組み合わせて露光量制御を行ってもよい。  Thus, the optical axis AX3 determined by the electromagnetic field distribution of the projection system PL is displaced by the electronic M〇L method at the exposure time Δt2 around each time point t1, t2, t3, ... In this way, the reduced images of the corresponding character patterns are transferred with high resolution to the sub-exposure areas 54 A, 54 B, 54 C,... In a row along the mechanical vibration direction MV on the wafer W. Can be. If the exposure time Δt 2 becomes longer than the minimum interval T at each point due to a further decrease in the resist sensitivity, the mechanical oscillation frequency of the projection system PL is lowered to increase the interval T. You may. Conversely, when the resist sensitivity is high and the exposure time Δt 2 is short, the mechanical vibration frequency of the projection system PL may be increased. Further, the exposure amount control may be performed by combining the control of the mechanical vibration frequency of the projection system PL and the control of the intensity of the electron beam EB.
また、 本例では後述のように電子的な MOL方式でウェハ W上での縮 小像の位置を X方向にも補正する。  In this example, the position of the reduced image on the wafer W is also corrected in the X direction by an electronic MOL method as described later.
図 7に戻り、 上述のように本例では機械的な MOL方式で投影系 PL を Y方向に振動させると共に、 電子的な MOL方式で縮小像 43の位置 を補正することによって、 Y方向の幅 L 1の主露光領域 1 1 OA中で Y 方向に配列された一列の幅 dの副露光領域 54に対応するキャラクター パターンの縮小像を転写できる。 そして、 その主露光領域 1 10 A内で 順次一列の副露光領域 54に対応するキャラクタ一パターンの縮小像を 露光するため、 本例ではその投影系 PLの Y方向への振動動作に同期し て、 ウェハ Wを Y方向に直交する +X方向に所定速度で連続的に移動さ せる。 即ち、 ウェハ Wを投影系 PLに対して相対的に + X方向に走査す る。 従って、 ウェハ Wの走査方向 MS Aは + X方向であり、 走査方向 M S Aは投影系 P Lの機械的な振動方向 MVに直交している。  Returning to FIG. 7, as described above, in this example, the projection system PL is oscillated in the Y direction by the mechanical MOL method, and the position of the reduced image 43 is corrected by the electronic MOL method, thereby obtaining the width in the Y direction. A reduced image of the character pattern corresponding to the sub-exposure area 54 having a width d of one row arranged in the Y direction in the main exposure area 11 1 OA of L1 can be transferred. Then, in order to expose a reduced image of one character pattern corresponding to one row of the sub-exposure area 54 sequentially in the main exposure area 110A, in this example, the projection system PL is synchronized with the oscillation operation in the Y direction in the Y direction. Then, the wafer W is continuously moved at a predetermined speed in the + X direction orthogonal to the Y direction. That is, the wafer W is scanned in the + X direction relative to the projection system PL. Therefore, the scanning direction MSA of the wafer W is in the + X direction, and the scanning direction MSA is orthogonal to the mechanical vibration direction MV of the projection system PL.
この場合、 投影系 P Lを振動方向 MVに沿って振動させる際の周波数 を ί M0L 、 周期を T OL —— 丄 ^ / 丄 MOL )とすると、 本例では 1周期 T MOL の間に 2列の副露光領域 54に露光を行うため、 1周期 TMOL の間にゥ ェハ Wを走査方向 MS Aに沿って副露光領域 54の幅の 2倍である 2 · dだけ移動させる必要がある。 従って、 ゥェ八 Wの走查方向 MS Aに対 する走査速度 Vw は、 次のようになる。 In this case, the frequency at which the projection system PL is vibrated along the vibration direction MV Is M0L and the period is T OL —— 丄 ^ / 丄 MOL). In this example, two rows of sub-exposure areas 54 are exposed during one period T MOL. It is necessary to move the wafer W along the scanning direction MSA by 2 · d which is twice the width of the sub-exposure area 54. Accordingly, the scanning speed Vw in the running direction MSA of Jehwa W is as follows.
MOL (4)  MOL (4)
そして、 主露光領域 1 1 OAに対する露光が終了した後に、 ウェハ W を Y方向に間隔 L 1だけステップ移動した後、 機械的な MOL方式で投 影系 P Lを Y方向に振動させるのと同期して、 ウェハ Wを— X方向に走 查することで、 隣接する主露光領域 1 1 0 B内に順次対応するキャラク ターパターンの縮小像を露光する。 以下、 隣接する主露光領域 1 1 0 C, …にも順次ウェハ Wの走査方向を反転しながら露光を行うことで、 ショ ット領域 52の全面に目標とする回路パターンの像を転写することがで さる。  Then, after the exposure of the main exposure area 11 OA is completed, the wafer W is moved stepwise in the Y direction by an interval L1, and then synchronized with the mechanical MOL method of oscillating the projection system PL in the Y direction. Then, by moving the wafer W in the −X direction, the reduced images of the corresponding character patterns are sequentially exposed in the adjacent main exposure area 110B. Hereinafter, the image of the target circuit pattern is transferred onto the entire surface of the shot area 52 by sequentially exposing the adjacent main exposure areas 110C,... While reversing the scanning direction of the wafer W. There is a monkey.
この場合、 キャラクタ一パターン 1 5 A〜 1 5 Yの外形の幅 Dを 50 In this case, the width D of the outer shape of the character
0 m程度として、 投影系 PLの投影倍率 /3を 1ノ1 0とすると、 ゥェ 八 W上の副露光領域 54の幅 dは 50 m程度である。 更に、 主露光頜 域 1 1 OAの Y方向の幅 L 1は、 副露光領域 54の幅. dの 20倍とする と、 幅 L 1は 2mm (± lmm) 程度である。 従って、 (1) 式を用い ると、 機械的な MOL方式で投影系 PLを Y方向に振動させる際の振幅 の最小値はほぼ L IZ ( 1 + )3) 、 即ちほぼ 1. 82mmとなる。 この 場合、 投影系 PLの物体面側の有効視野の幅はほぼ (D + L 1Z (1 + β ) ) 以上であればよい。 即ち、 その有効視野は直径が 2. 3mm程度 以上の円形領域であればよい。 なお、 実際には余裕を持たせるために、 投影系 PLの振幅は、 その最小値の 1. 2倍〜 1. 6倍程度として、 そ の内のウェハの表面で幅 L 1の範囲内でのみキャラクタ一パターンの縮 小像の転写を行うようにしてもよい。 Assuming that the projection magnification of the projection system PL is about 1 m and the projection magnification / 3 of the projection system PL is 1 to 10, the width d of the sub-exposure area 54 on the bottom surface is about 50 m. Furthermore, if the width L 1 of the main exposure area 11 OA in the Y direction is 20 times the width .d of the sub-exposure area 54, the width L 1 is about 2 mm (± lmm). Therefore, using equation (1), the minimum value of the amplitude when the projection system PL is vibrated in the Y direction by the mechanical MOL method is approximately L IZ (1 +) 3), that is, approximately 1.82 mm. . In this case, the width of the effective visual field on the object plane side of the projection system PL only needs to be approximately (D + L1Z (1 + β)) or more. That is, the effective visual field may be a circular area having a diameter of about 2.3 mm or more. In addition, in order to provide a margin, the amplitude of the projection system PL is set to about 1.2 to 1.6 times the minimum value, and is set within the range of the width L1 on the surface of the wafer. Only one character pattern reduction Small images may be transferred.
また、 機械的な MOL方式で投影系 P Lを Y方向に沿って振動させる 際の周波数 f MOL は、 一例として 40〜60Hz程度である。 この際の 振動方式としては、 投影系 P Lを時間に関して正弦波状に振動させるの が安定性の点から優れている。 しかしながら、 後述のように電子的な M OL方式で X方向の転写位置を補正する際の制御を容易にする観点から は、 投影系 P Lを時間に関してほぼ三角波状に振動させるようにしても よい。 具体的に、 周波数 f M0L を 50 H z (周期 T MOL が 20 m s e c ) 、 副露光領域 54の幅 dを 50 _imとすると、 ウェハ Wの + X方向 に対する走査速度 Vw は、 (4) 式より SmmZs e cとなる。 The frequency f MOL when the projection system PL is vibrated in the Y direction by a mechanical MOL method is, for example, about 40 to 60 Hz. As a vibration method at this time, it is excellent in terms of stability to vibrate the projection system PL in a sinusoidal waveform with respect to time. However, from the viewpoint of facilitating control when the transfer position in the X direction is corrected by the electronic MOL method as described later, the projection system PL may be vibrated in a substantially triangular waveform with respect to time. Specifically, assuming that the frequency f M0L is 50 Hz (period T MOL is 20 msec) and the width d of the sub-exposure area 54 is 50 _im, the scanning speed Vw of the wafer W in the + X direction is given by the following equation (4). SmmZs ec.
次に、 本例の図 1の縮小転写装置を用いて、 キャラクタ一パターン転 写方式でウェハ上の一つのショット領域に所定のパターンを転写する動 作の一例につき図 1 2〜図 1 3を参照して説明する。  Next, FIGS. 12 to 13 show an example of an operation of transferring a predetermined pattern to one shot area on a wafer by the character-to-pattern transfer method using the reduction transfer apparatus of FIG. 1 of the present embodiment. It will be described with reference to FIG.
図 1 2 (A) は、 露光対象のマスク Mのパターン配置の一例を示し、 この図 12 (A) において、 マスク M上のキャラクタ一パターン群 1 3 A内のキャラクタ一パターン 1 5 A〜 1 5 Yとして符号 A 1〜Y 1で示 すパターンが形成され、 別のキャラクターパターン群 1 3 Β, 1 3 C, 13 D内のキャラクタ一パターン 1 5Α, …としてもそれぞれ符号 Α2, ···、 A3, ···、 及び Α4, …で示すパターンが形成されている。 この場 合、 マスク Μ上で電子線の照射領域 14を軌跡 1 1 8に沿って相対移動 させることによって、 キャラクタ一パターン群 13 Α内のパターン Β 1, C 1 , …の縮小像を順次図 12 (B) のウェハ W上のショット領域 52 内の幅 L 1で長さ L 5の主露光領域 1 1 OA内の副露光領域 54A, 5 4 B, 54 C, …に順次転写するものとする。 このために、 図 7を参照 して説明したように、 第 1段階として機械的な MOL方式で投影系 PL を振動方向 MV (Y方向) に振動させて、 縮小像 43を振動させるのと 同期して、 ウェハ Wを + X方向に沿った走査方向 MS Aに走査する。 この際の投影系 P Lの振動が時間に関して正弦波状に行われるものと すると、 ウェハ W上の主露光領域 1 1 0 Aに対する縮小像 43の中心の 相対的な軌跡は、 図 1 3 (A) の実線の軌跡 1 19のように正弦波状に なる。 なお、 図 1 2〜図 14では、 説明の便宜上、 主露光領域 1 1 0 A の Y方向の幅 L 1は、 副露光領域 54 A, 54 B, …の幅 dの 1 0倍で あるとしている。 FIG. 12 (A) shows an example of a pattern arrangement of a mask M to be exposed. In FIG. 12 (A), a character pattern 15 A to 1 A in a character pattern group 13 A on the mask M is shown. Patterns represented by symbols A1 to Y1 are formed as 5Y, and symbols {2,...,... , A3,... And Α4,... Are formed. In this case, the electron beam irradiation area 14 is relatively moved along the trajectory 118 on the mask Μ, so that the reduced images of the patterns Β1, C1,... The main exposure area 11 having a width L1 and a length L5 in the shot area 52 on the wafer W of FIG. 12 (B) 11 is sequentially transferred to the sub-exposure areas 54A, 54B, 54C,. I do. Therefore, as described with reference to FIG. 7, as the first step, the projection system PL is vibrated in the vibration direction MV (Y direction) by the mechanical MOL method, and the reduced image 43 is vibrated. Synchronously, the wafer W is scanned in the scanning direction MSA along the + X direction. Assuming that the vibration of the projection system PL is sinusoidal with respect to time at this time, the relative locus of the center of the reduced image 43 with respect to the main exposure area 110 A on the wafer W is shown in FIG. The trajectory of the solid line of FIG. In FIGS. 12 to 14, for convenience of explanation, it is assumed that the width L1 of the main exposure area 110A in the Y direction is 10 times the width d of the sub-exposure areas 54A, 54B,. I have.
図 1 3 (A) において、 投影系 PLによる縮小像 43は、 主露光領域 1 1 OAに対して軌跡 1 1 9に沿って X方向にピッチ 2 · dで正弦波状 に相対移動して、 時点 t l, t 2 , t 3, ···, t 20でそれぞれ縮小像 43の中心の Y座標が副露光領域 54 A, 54 B, 54 C, …, 54U の中心の Y座標に合致している。 この際に、 単に時点 t l, t 2 , …で 電子線を照射して対応するキャラクタ一パターンの縮小像 43を露光す ると、 X方向で副露光領域 54 Α, 54 Β, …に対して縮小像 43の位 置がずれてしまう。 そこで、 第 2段階として本例では、 投影系 PLを Υ 方向に振動させる動作に同期して、 電子的な MOL方式で投影系 Pしの 電子光学系の電磁場を変化させることによって、 投影系 PLの光軸 (図 1 1の光軸 AX 3に対応する) を X方向 (振動方向に直交する方向) に 周期的に変位させて、 図 1 3 (B) に示すように縮小像 43の転写位置 を変位させる。  In FIG. 13 (A), the reduced image 43 by the projection system PL moves relative to the main exposure area 11 OA in a sinusoidal shape at a pitch 2 At tl, t2, t3,..., t20, the Y coordinate of the center of the reduced image 43 matches the Y coordinate of the center of the sub-exposure areas 54A, 54B, 54C,…, 54U, respectively. . At this time, if the reduced image 43 of the corresponding character pattern is exposed simply by irradiating an electron beam at the time points tl, t 2,…, the sub-exposure areas 54 Α, 54 Β,… in the X direction The position of the reduced image 43 is shifted. Therefore, in this example, as the second step, the projection system PL is changed by changing the electromagnetic field of the electron optical system of the projection system P using the electronic MOL method in synchronization with the operation of oscillating the projection system PL in the Υ direction. The optical axis (corresponding to the optical axis AX 3 in Fig. 11) is periodically displaced in the X direction (the direction orthogonal to the vibration direction), and the reduced image 43 is transferred as shown in Fig. 13 (B). Displace the position.
図 1 3 (B) において、 時点 t 1, t 5, t 10, t i lにおける投 影系 PLの鏡筒 3 1の位置が、 図 1 3 (A) に対応させて示されている。 この場合、 時点 t lでは、 縮小像 43を一 X方向に変位させ、 時点 t 5 では縮小像 43を殆ど変位させる必要がなく、 時点 t 1 0では縮小像 4 3を + X方向に変位させる必要がある。 また、 時点 t 10に続く時点 t 1 1では、 X方向に隣接する副露光領域 54 Lに露光を行うために、 縮 小像 43を一 X方向に変位させる必要がある。 これをまとめると、 図 1 3 (C) に示すように、 投影系 PLの鏡筒 3 1を Y方向に振幅 L4で振 動させる機械的な MOL方式によって、 縮小像 43を振幅 L 1 (= ( 1 + 3) · L 4) で振動させる動作に同期して、 電子的な M〇L方式によ つて軌跡 1 20で示すように縮小像 43を X方向にほぼ振幅 dで周期的 に変位させればよいことになる。 機械的な MOL方式での投影系 Pしの Y方向への振動の周波数 と、 電子的な MOL方式での縮小像 43 の X方向への振動の周波数 FM0L とは等しいが、 電子的な MOL方式に よる縮小像 43の動きには、 図 1 3 (C) において、 投影系 PLが端部 に位置しているときに、 縮小像 43がそれぞれほぼ瞬間的に位置 43 B から、 又は位置 43 Aに幅 dだけ X方向に移動する動きが必要である。 言い換えると、 電子的な MOL方式によって縮小像 43は、 周波数 2 • f MOL で時間に関して鋸歯状波的に X方向 (投影系 PLの機械的な振 動方向に直交する方向) にほぼ振幅 dで振動することになる。 投影系 P Lの機械的な MOL方式の振動と、 電子的な MOL方式の振動とを合わ せると、 縮小像 43は像面 (ウェハ W) 上でほぼ 「8の字」 型の軌跡に 沿って移動するようになる。 In FIG. 13 (B), the position of the lens barrel 31 of the projection system PL at the time points t1, t5, t10, and til is shown corresponding to FIG. 13 (A). In this case, at the time tl, the reduced image 43 is displaced in the X direction, and at the time t5, the reduced image 43 does not need to be displaced substantially, and at the time t10, the reduced image 43 needs to be displaced in the + X direction. There is. At time t11 following time t10, the contraction is performed to expose the sub-exposure area 54L adjacent in the X direction. It is necessary to displace small image 43 in one X direction. To summarize, as shown in Fig. 13 (C), the reduced image 43 is converted to the amplitude L 1 (= 1) by the mechanical MOL method that vibrates the lens barrel 31 of the projection system PL in the Y direction with the amplitude L4. Synchronized with the operation of oscillating at (1 + 3) L4), the reduced image 43 is periodically displaced in the X direction with almost the amplitude d in the X direction as shown by the locus 120 by the electronic M〇L method. That is all we need to do. The frequency of the vibration in the Y direction of the projection system P in the mechanical MOL method is equal to the frequency F M0L of the vibration of the reduced image 43 in the X direction in the electronic MOL method, but the electronic MOL In the movement of the reduced image 43 by the method, as shown in Fig. 13 (C), when the projection system PL is located at the end, the reduced image 43 is almost instantaneously moved from the position 43B or from the position 43B. A must move in the X direction by width d in A. In other words, due to the electronic MOL method, the reduced image 43 has a sawtooth-like waveform with respect to time at a frequency of 2 • f MOL with almost the amplitude d in the X direction (direction perpendicular to the mechanical vibration direction of the projection system PL). It will vibrate. When the mechanical MOL vibration of the projection system PL and the electronic MOL vibration are combined, the reduced image 43 follows an approximately “8-shaped” locus on the image plane (wafer W). To move.
このように機械的な MOL方式による投影系 P Lの Y方向への振動と、 ウェハ W上の主露光領域 1 1 OAの X方向への走査と、 電子的な MOL 方式による縮小像 43の X方向への変位とを同期して行った場合には、 主露光領域 1 1 OAに対する縮小像 43の中心の相対的な軌跡は、 図 1 As described above, the projection system PL in the Y direction by the mechanical MOL method, the scanning of the main exposure area 11 OA on the wafer W in the X direction, and the X direction of the reduced image 43 by the electronic MOL method When the displacement is performed in synchronization with the main exposure area 11 OA, the relative locus of the center of the reduced image 43 with respect to the main exposure area 11 OA is
3 (D) の実線の軌跡 1 2 1のように矩形波状になる。 3 It becomes a rectangular wave like the locus 1 2 1 of the solid line in (D).
図 1 3 (D) において、 投影系 PLによる縮小像 43は、 主露光領域 1 1 OAに対して軌跡 1 2 1に沿って X方向にピッチ 2 · dで矩形波状 に相対移動して、 時点 t 1 , t 2, t 3, -, t 20でそれぞれ縮小像 In Fig. 13 (D), the reduced image 43 by the projection system PL moves relative to the main exposure area 11 OA in the form of a rectangular wave at a pitch of 2 Reduced images at t 1, t 2, t 3,-, t 20 respectively
43の中心が副露光領域 54 A, 54 B, 54 C, …, 54Uの中心に 合致している。 この際に、 時点 t l, t 2 , …で電子線を照射すること で、 副露光領域 54 Α〜54 Uに対してそれぞれ対応するキャラクタ一 パターンの縮小像を露光することができる。 また、 ウェハ W上の電子線 レジストの感度が低く、 時点 t l , t 2, …の間隔の最小値 Tに対して 必要な露光時間 Δ t 2が近付くような場合には、 図 1 1を参照して説明 したように、 時点 t l, t 2 , …を中心とした露光時間 Δ t 2の間にそ れぞれ電子的な MOL方式で縮小像 43の転写位置を Y方向にも補正し てやればよい。 The center of 43 is in the center of the sub-exposure area 54 A, 54 B, 54 C,…, 54U Agree. At this time, by irradiating the electron beam at the points in time tl, t 2,..., The reduced images of the corresponding character patterns can be exposed in the sub-exposure areas 54 領域 to 54U. Also, if the sensitivity of the electron beam resist on the wafer W is low and the required exposure time Δt2 approaches the minimum value T of the interval between the time points tl, t2, ..., see Fig. 11 As described above, the transfer position of the reduced image 43 is also corrected in the Y direction by the electronic MOL method during the exposure time Δt 2 around the time points tl, t 2,. You can do it.
なお、 機械的な MOL方式で投影系 P Lを時間に関して三角波状に Y 方向に振動させて、 ウェハ Wを X方向に走査すると、 電子的な MOL方 式の駆動を行わない状態では、 主露光領域 1 1 OAに対する縮小像 43 の中心の相対的な軌跡は、 図 14の実線の軌跡 122のように三角波状 になる。 この場合には、 電子的な MOL方式による縮小像 43の X方向 への補正量が時間に関して一次関数で表されるため、 電子的な MOL方 式の駆動制御が容易である。  Note that when the projection system PL is vibrated in the Y direction in a triangular waveform with respect to time by the mechanical MOL method and the wafer W is scanned in the X direction, the main exposure area is not driven when the electronic MOL method is not driven. The relative locus of the center of the reduced image 43 with respect to 11 OA has a triangular wave shape as shown by the solid line locus 122 in FIG. In this case, since the correction amount of the reduced image 43 in the X direction by the electronic MOL method is expressed by a linear function with respect to time, the drive control of the electronic MOL method is easy.
図 1 2に戻り、 図 13を参照して説明した方法で露光を継続して、 図 1 2 (A) において、 マスク Mのキャラクターパターン群 1 3 Aのキヤ ラクタ一パターン V 1の転写の後に、 隣のキャラクタ一パターン群 1 3 Cのキャラクターパターン A 3の転写を行う際には、 図 1のマスクステ ージ 20を X方向にステップ移動することによって、 キャラクタ一パタ —ン群 1 3 Cの中心を照明系の光軸 AX 1近傍に移動する。 そして、 図 1の偏向器 7を介して電子線 E Bをそのキャラクターパターン A 3上に 照射する。 同様に、 キャラクタ一パターン A3の転写後に、 キャラクタ 一パターン W1の転写を行う場合、 キャラクタ一パターン X 1の転写後 に、 キャラクタ一パターン U 2の転写を行う場合、 及びキャラクタ一パ 夕一ン U 2の転写後に、 キャラクタ一パターン A 4の転写を行う場合等 707 Returning to FIG. 12, exposure is continued in the manner described with reference to FIG. 13, and in FIG. 12 (A), after the transfer of the character pattern group 13 A of the character pattern group 13 A of the mask M after the transfer of the character pattern V 1. When transferring the character pattern A 3 of the next character-pattern group 13 C, the mask stage 20 of FIG. 1 is step-moved in the X direction, so that the character-pattern group 13 C is transferred. Move the center to near the optical axis AX1 of the illumination system. Then, the electron beam EB is irradiated onto the character pattern A3 via the deflector 7 in FIG. Similarly, when transferring the character-pattern W1 after transferring the character-pattern A3, transferring the character-pattern U2 after transferring the character-pattern X1, and character-pattern U When transferring character-to-pattern A4 after transfer of 2, etc. 707
46 にもそれぞれマスクステージ 20によってマスク Mのステップ移動が行 われる。 At step 46, the mask stage 20 moves the mask M stepwise.
このように本例では、 マスク M上の多数のキャラクタ一パターンから 転写対象のキャラクターパターンを選択する際に、 マスクステージ 20 のステップ移動によってキャラクタ一パターン群 1 3 A, 1 3 B, …を 選択した後、 視野選択用の偏向器 7を用いているため、 多数のキャラク 夕一パターン中から転写対象のキャラクターパターンを高速、 かつ効率 的に選択することができる。  As described above, in this example, when selecting a character pattern to be transferred from a large number of character patterns on the mask M, the character stage pattern group 13 A, 13 B,… is selected by the step movement of the mask stage 20. After that, since the deflector 7 for selecting the field of view is used, a character pattern to be transferred can be selected quickly and efficiently from a large number of characters and patterns.
上記のようにして、 図 1 2 (B) の主露光領域 1 1 OAへの露光が終 わると、 次に図 1のウェハステージ 46を Y方向に幅 L 1だけステップ 移動した後、 投影系 PLを Y方向に振動させる動作と同期して、 ウェハ Wを— X方向 (即ち、 隣の主露光領域 1 1 0 Bの走査方向 MSB) に走 查することで、 その主露光領域 1 1 0 Bに対する露光が行われ、 以下隣 接する主露光領域 1 10 C, 1 1 0D, 1 1 0 E毎に交互に逆の走査方 向 MSA, MSB, MS Aにウェハ Wの走査が行われて、 最終的にショ ッ卜領域 52の全面に所定のレイヤの回路パターンの像が転写される。 同様に、 ウェハ W上の他のショッ ト領域にもそれぞれ同一の、 又は別の 回路パターンの像が転写される。 これに続いて、 ウェハ Wの表面のレジ ストの現像工程、 及びエッチングやイオン注入等のパターン形成工程を 経ることで、 そのレイヤの回路パターンが形成される。  As described above, when the exposure to the main exposure area 11 OA in FIG. 12B is completed, the wafer stage 46 in FIG. By moving the wafer W in the X direction (ie, the scanning direction MSB of the adjacent main exposure area 110B) in synchronization with the operation of vibrating the PL in the Y direction, the main exposure area 110 Exposure to B is performed, and thereafter, the wafer W is scanned in the opposite scanning directions MSA, MSB, and MSA alternately for each of the adjacent main exposure areas 110C, 110D, and 110E. Finally, an image of a circuit pattern of a predetermined layer is transferred onto the entire surface of the shot area 52. Similarly, the same or another circuit pattern image is transferred to other shot areas on the wafer W, respectively. Subsequently, the circuit pattern of the layer is formed through a development process of a resist on the surface of the wafer W and a pattern formation process such as etching and ion implantation.
この際に本例では、 主露光領域 1 10 A, 1 1 0 B, …の Y方向の幅 L 1が 1つの副露光領域 54 A, 54 B, …の幅の 1 0倍〜 30倍程度 であるため、 例えば一列の副露光領域 54毎にウェハ Wを機械的に走査 して露光を行う場合に比べて露光工程のスループッ 卜が 1 0倍〜 30倍 程度に大幅に向上する。  At this time, in this example, the width L1 in the Y direction of the main exposure areas 110A, 110B, ... is about 10 to 30 times the width of one sub-exposure area 54A, 54B, ... Therefore, for example, the throughput of the exposure process is greatly improved to about 10 to 30 times as compared with the case where the wafer W is mechanically scanned and exposed for each row of the sub-exposure areas 54.
これに関して、 例えば機械的な MOL方式で投影系 P Lを振動させる ことなく、 図 1 2 (C) に示すように、 上記の電子的な MOL方式によ つて縮小像 43を Y方向に、 一つの副露光領域の幅 d程度で振動させて 露光を行うことも考えられる。 この場合には、 ウェハ Wを X方向に 1回 走査させる毎に、 2列程度の副露光領域に露光を行うことができるが、 これでも図 1 2 (B) を参照して説明した本例の露光方法に比べると、 スループッ トは 1 5〜; L/1 5程度である。 In this regard, for example, the projection system PL is vibrated by the mechanical MOL method. Without exposure, as shown in Fig. 12 (C), exposure can be performed by vibrating the reduced image 43 in the Y direction with the width d of one sub-exposure area by the electronic MOL method. Conceivable. In this case, each time the wafer W is scanned once in the X direction, it is possible to expose about two rows of sub-exposure areas. However, even in this example described with reference to FIG. The throughput is about 15 to about;
なお、 上記の実施の形態では、 機械的な MOL方式で投影系 P Lを振 動させると共に、 ゥェ八 Wを走査する際に、 例えば図 13 (A) の縮小 像 43の中心の軌跡 1 1 9を一連の副露光領域 54 A, 54 B, 54 C, …の中心に合わせるために電子的な MOL方式で投影系 P Lの光軸を変 位させているが、 その代わりに例えば図 1において、 投影系 PLとゥェ ハ Wとの間に偏向器 7, 25と同様の照射位置補正用の偏向器を配置し て、 この照射位置補正用の偏向器によって縮小像 43の位置を補正して もよい。 更に、 別途照射位置補正用の偏向器を設ける代わりに、 例えば 振り戻し用の偏向器 25によって、 投影系 PLに入射する電子線 EBの 位置を光軸 A X 1から変位させるようにしてもよい。  In the above-described embodiment, the projection system PL is vibrated by the mechanical MOL method, and at the time of scanning the wedge W, for example, the locus 11 1 of the center of the reduced image 43 in FIG. The optical axis of the projection system PL is displaced by an electronic MOL method in order to align 9 with the center of a series of sub-exposure areas 54 A, 54 B, 54 C,. An irradiation position correction deflector similar to the deflectors 7 and 25 is arranged between the projection system PL and the wafer W, and the position of the reduced image 43 is corrected by the irradiation position correction deflector. You may. Further, instead of separately providing a deflector for correcting the irradiation position, the position of the electron beam EB incident on the projection system PL may be displaced from the optical axis AX1 by, for example, a deflector 25 for rewinding.
また、 上記の実施の形態では投影系 PLを振動させているが、 例えば ウェハ W上にテストパターンを転写するような場合には、 投影系 PLを Y方向に次第に変位させながら対応するパターンを順次転写するように してもよい。 更に、 上記の実施の形態では投影系 PLを 1次元的に変位 又は振動させているが、 投影系 P Lを光軸に垂直な面内で直交する 2方 向に変位自在に支持する支持機構を設け、 投影系 P Lを X方向及び Y方 向に 2次元的に変位又は振動させるようにしてもよい。 このように投影 系 P Lを 2次元的に変位又は振動させる場合には、 投影系 P Lの X方向、 Y方向の位置、 及び 3軸の回りの回転角を検出できる計測システム (例 えばレーザ干渉計) を設けることが望ましい。 また、 可動部材としての投影系 PLを変位自在に支持するために、 投 影系 P Lの 4箇所を板ばねによって支持し、 これらの板ばねを伸縮自在 の駆動素子で振動させてもよい。 又は、 その駆動素子の代わりに、 E字 型の電磁石部と I字型のコア部とを有する E Iコア方式の 3軸、 又は 4 軸のァクチユエ一夕で駆動してもよい。 Further, in the above embodiment, the projection system PL is vibrated. For example, when a test pattern is transferred onto the wafer W, the corresponding patterns are sequentially shifted while gradually displacing the projection system PL in the Y direction. It may be transcribed. Further, in the above embodiment, the projection system PL is displaced or vibrated one-dimensionally. However, a support mechanism that supports the projection system PL so as to be freely displaceable in two directions orthogonal to a plane perpendicular to the optical axis is provided. The projection system PL may be displaced or vibrated two-dimensionally in the X direction and the Y direction. When the projection system PL is displaced or vibrated two-dimensionally in this way, a measurement system (for example, a laser interferometer) that can detect the position of the projection system PL in the X and Y directions and the rotation angle around three axes ) Is desirable. Further, in order to support the projection system PL as a movable member so as to be displaceable, four portions of the projection system PL may be supported by leaf springs, and these leaf springs may be vibrated by telescopic drive elements. Alternatively, instead of the drive element, the actuator may be driven by an EI core type 3-axis or 4-axis actuator having an E-shaped electromagnet section and an I-shaped core section.
また、 上記の実施の形態では、 図 1のウェハステージ 46の位置は、 所定の参照鏡 22 RX, 22 RYを基準として計測されているが、 その ウェハステージ 46の位置を、 投影系 PLに固定された参照鏡を基準と して計測し、 投影系 P Lの位置の計測値とウェハステージ 46の位置の 計測値との差分に基づいてウェハステージ 46の位置を制御してもよい。 次に本発明の第 2の実施の形態につき図 1 5を参照して説明する。 上 記の第 1の実施の形態は、 キャラクタ一パターン転写方式で露光を行う 場合に本発明を適用したものであるが、 この第 2の実施の形態は、 本発 明を分割転写方式で露光を行う場合に適用したものである。 なお、 この 実施の形態でも、 図 1の第 1の実施の形態と同じ電子線縮小転写装置を 用いて露光を行うものとする。  In the above embodiment, the position of the wafer stage 46 in FIG. 1 is measured with reference to the predetermined reference mirrors 22 RX and 22 RY, but the position of the wafer stage 46 is fixed to the projection system PL. The position of wafer stage 46 may be controlled based on the difference between the measured value of the position of projection system PL and the measured value of the position of wafer stage 46, with reference to the reference mirror obtained as a reference. Next, a second embodiment of the present invention will be described with reference to FIG. In the above-described first embodiment, the present invention is applied to the case where the exposure is performed by the character-to-pattern transfer method. In the second embodiment, the present invention is applied to the exposure by the split transfer method. This is applied when performing. Also in this embodiment, the exposure is performed by using the same electron beam reduction transfer device as the first embodiment in FIG.
図 1 5は、 図 1の電子線縮小転写装置を用いて分割転写方式で露光を 行う場合のマスク Ml、 及びウェハ Wを示し、 図 1 5 (A) に示すよう に、 マスク M 1のパターン面には X方向、 Y方向に所定ピッチで主視野 1 3A 1, 1 3 B 1, 1 3 C 1 , 1 3 D 1, …が配置され、 各主視野 1 3A1 , 1 3 B 1 , …の内部に X方向、 Y方向に所定ピッチで形成され た副視野 1 5には、 それぞれ所定の一つの回路パターンを拡大したパ夕 ーン (符号 A, B, C, Dで表されている) を 5行 X 5列 (この際の分 割数は実際には例えば 5行 X 5列〜 20行 X 20列程度である。)に分割 して得られた原版パターンが形成されている。 また、 図 1 5 (B) に示 すように、 ウェハ W上の 1つ又は複数個のダイ分の回路パターンの像が 露光される領域であるショット領域 52 Aは、 Y方向に複数の主露光領 域 1 2 5 A〜l 2 5 Fに分割され、 各主露光領域 12 5 A〜l 25 Fは 本例ではそれぞれ X方向に被露光ユニット 1 24 A, 124 B, …に分 割され、 これらの被露光ユニット 124 A, 1 24 B, …はそれぞれ 5 行 X 5列の副露光領域 54 A 1から構成されている。 その副露光領域 5 4 A 1にそれぞれマスク M 1上の対応する副視野 1 5の原版パターンの 縮小像 43が転写される。 FIG. 15 shows the mask Ml and the wafer W when performing the exposure by the division transfer method using the electron beam reduction transfer apparatus of FIG. 1, and as shown in FIG. 15 (A), the pattern of the mask M1 is shown. On the surface, the main fields of view 13A1, 13B1, 13C1, 13D1, ... are arranged at predetermined pitches in the X and Y directions, and each of the main fields of view 13A1, 13B1, ... In the sub-field of view 15 formed at predetermined pitches in the X and Y directions inside the pattern, a pattern (a code A, B, C, D is shown) in which a predetermined circuit pattern is enlarged. ) Is divided into 5 rows and 5 columns (the number of divisions in this case is, for example, about 5 rows and 5 columns to 20 rows and 20 columns) to form an original pattern. Also, as shown in FIG. 15 (B), an image of a circuit pattern for one or more dies on the wafer W is formed. The shot area 52A, which is an area to be exposed, is divided into a plurality of main exposure areas 125 A to 125 F in the Y direction, and each main exposure area 125 A to 125 F The exposure units 124 A, 124 B,… are divided in the X direction, and these exposure units 124 A, 124 B,… are each composed of 5 rows × 5 columns of sub-exposure areas 54 A 1. I have. A reduced image 43 of the original pattern in the corresponding sub-field of view 15 on the mask M1 is transferred to the sub-exposure area 54A1.
本例では、 このマスク Mlを図 1のマスクステージ 20上に載置して、 ウェハ Wを図 1のウェハステージ 46上に載置する。 そして、 マスクス テ一ジ 20及び視野選択用の偏向器 7を駆動して、 図 1 5 (A) におい て、 電子線 EBの照射領域 14を、 主視野 1 3 A1中の 1番目の副視野、 2番目の副視野、 ···、 25番目の副視野に順次規則的に移動させて、 そ れぞれ所定の露光時間だけ電子線 E Bを照射する。  In this example, the mask Ml is placed on the mask stage 20 in FIG. 1, and the wafer W is placed on the wafer stage 46 in FIG. Then, by driving the mask stage 20 and the deflector 7 for selecting the field of view, in FIG. 15 (A), the irradiation area 14 of the electron beam EB is changed to the first sub-field of the main field of view 13 A1. , The second sub-field of view,..., And the 25th sub-field of view are sequentially moved, and each is irradiated with the electron beam EB for a predetermined exposure time.
これに対応して、 図 1において、 機械的な MOL方式で投影系 PLを Y方向 (機械的な振動方向 MV) に振動させて、 ウェハ Wを + X方向 (機械的な走査方向 MS A) に走査すると共に、 電子的な MOL方式で 縮小像の照射位置の補正を行うことで、 図 1 5 (B) に示すように、 ゥ ェハ W上の主露光領域 125 A内の 5行 X 5列の副露光領域 54 A 1よ りなる第 1の被露光ュニット 1 24 Aに、 符号 Aで表される回路パター ンの縮小像が転写される。  Corresponding to this, in Fig. 1, the projection system PL is vibrated in the Y direction (mechanical vibration direction MV) by the mechanical MOL method, and the wafer W is moved in the + X direction (mechanical scanning direction MS A). As shown in Fig. 15 (B), 5 lines X in the main exposure area 125A on wafer W are scanned by correcting the irradiation position of the reduced image using the electronic MOL method. A reduced image of a circuit pattern represented by a symbol A is transferred to a first exposure unit 124A composed of five rows of sub-exposure areas 54A1.
その後、 図 1 5 (A) において、 電子線の照射領域 14をマスク Ml 上の隣の主視野 1 3 B 1中の 1番目の副視野、 2番目の副視野、 …と規 則的に移動させて、 機械的な MOL方式で投影系 PLを Y方向に振動さ せる動作と、 ウェハ Wを走査方向 MS Aに走査する動作とを実行するこ とで、 図 1 5 (B) に示すように、 主露光領域 125 A内の第 2、 第 3、 …の被露光ユニット 1 24 B, 1 24 C, …にそれぞれ符号 B, C, … で表される回路パターンの縮小像が転写される。 そして、 主露光領域 1 2 5 Aへの露光が終わった後は、 順次隣接する主露光領域 1 25 B, 1 2 5 C, …に対してウェハ Wを交互に逆の走査方向 MS B, MSA, … に走査することによつて分割転写方式で露光が行われる。 Then, in FIG. 15 (A), the electron beam irradiation area 14 is regularly moved as the first sub-field of view, the second sub-field of the next main field of view 13 B 1 on the mask Ml, and so on. Then, the operation of oscillating the projection system PL in the Y direction by the mechanical MOL method and the operation of scanning the wafer W in the scanning direction MSA are performed as shown in Fig. 15 (B). , The second, third,... Exposed units 124 B, 124 C,... In the main exposure area 125 A are denoted by B, C,. The reduced image of the circuit pattern represented by is transferred. After the exposure to the main exposure area 125A is completed, the wafer W is alternately moved in the opposite scanning direction MSB, MSA to the adjacent main exposure areas 125B, 125C,. Exposure is performed by the division transfer method by scanning in the order of.
このように本例では、 分割転写方式で転写を行う際に、 機械的な M〇 L方式で縮小像 43 (投影系 PL) を Y方向に振動させており、 各主露 光領域 1 25 A, 1 25 B, …の Y方向の幅を広くできるため、 露光ェ 程のスループットが向上する。 なお、 図 1 5の例では、 マスク Ml上の 主視野 1 3 A 1, 1 3 B 1 , …内の拡大パターンの分割数と、 対応する ウェハ W上の被露光ユニット 1 24 A, 124 B, …内の副露光領域の 分割数とが同じ (5行 X 5列) であるが、 主視野 1 3A1, 1 3 B 1, …内の拡大パターンの分割数と、 被露光ユニッ ト 1 24A, 124 B, …内の副露光領域の分割数とを異ならせておいてもよい。 更に、 分割転 写方式では、 ゥェ八 W上の隣接する副露光領域 54 A 1の境界部に重な り部 (継ぎ部) を設け、 その重なり部で隣接する原版パターンの縮小像 を重ね合わせて露光するようにしてもよい。 これによつて、 継ぎ誤差が 小さくなる。  Thus, in this example, when performing the transfer by the division transfer method, the reduced image 43 (projection system PL) is vibrated in the Y direction by the mechanical M〇L method, and each main exposure area 125 A , 125 B,... In the Y direction can be increased, thereby improving the throughput of the exposure process. In the example of FIG. 15, the number of divisions of the enlarged pattern in the main field of view 13 A 1, 13 B 1,... On the mask Ml and the corresponding exposed units 124 A, 124 B on the wafer W ,… Have the same number of divisions in the sub-exposure area (5 rows x 5 columns), but the main field of view 13A1, 13B1,… , 124 B,... May be different from the number of divisions of the sub-exposure area. Furthermore, in the division transfer method, an overlapping portion (joint portion) is provided at the boundary of the adjacent sub-exposure area 54A1 on the wafer W, and a reduced image of the adjacent original pattern is overlapped at the overlapping portion. Exposure may be performed together. This reduces splice errors.
なお、 マスク M 1上で電子線の照射領域 14を、 例えば主視野 1 3 A 1から隣接する主視野 1 3 B 1に切り換えるとき、 電子線を偏向する代 わりに、 或いはそれに加えてマスクステージ 20を移動するようにして もよい。 本例では、 特にウェハ上の各ショット領域に転写すべきマスク パターンを単純にマトリックス状に分割して多数の副領域にそれぞれ分 割パターンを形成するときに、 マスクステージ 20がウェハステージ 4 6と同様に移動されることになる。  When the electron beam irradiation area 14 on the mask M 1 is switched from the main field of view 13 A 1 to the adjacent main field of view 13 B 1, for example, instead of or in addition to deflecting the electron beam, a mask stage 20 is used. May be moved. In this example, in particular, when the mask pattern to be transferred to each shot area on the wafer is simply divided into a matrix and divided patterns are formed in a number of sub-areas, the mask stage 20 and the wafer stage 46 are used. It will be moved similarly.
次に、 本発明の第 3の実施の形態につき図 1 6を参照して説明する。 上記の第 1の実施の形態は、 機械的な MOL方式で投影系 P Lの全体を 変位又は振動させているが、 この第 3の実施の形態では、 投影系 PLの 一部の部材を機械的に変位又は振動させる。 Next, a third embodiment of the present invention will be described with reference to FIG. In the first embodiment, the entire projection system PL is mechanically MOL-based. In the third embodiment, some members of the projection system PL are mechanically displaced or vibrated.
図 1 6は、 図 1 0に対応させて示した本例のマスク Mからウェハ Wま での部材を示す概略図であり、 この図 1 6 (A) において、 マスク M上 のキャラクターパターン 1 5 Bの投影系 PLによる縮小像がウェハ W上 の副露光領域 54 Aに投影されている。 本例の投影系 PLも前群 27及 び後群 29より構成されており、 説明の便宜上、 前群 27の光軸を光軸 AX2とすると、 光軸 AX 2は照明系の光軸 AX 1に合致している。 本 例では可動部材としての後群 29のみが、 その光軸 AX 2に対して垂直 な方向に変位及び振動できるように配置されている。 即ち、 後群 29を 保持する副鏡筒 126が、 例えば図 1の板ばね 32 A, 32 Bによって 保持され、 この板ばね 32A, 32 Bを図 1の駆動系 34で Y方向に変 位、 及び振動できるように構成されている。  FIG. 16 is a schematic diagram showing members from the mask M to the wafer W of the present example corresponding to FIG. 10 and, in FIG. 16 (A), the character pattern 15 on the mask M is shown. The reduced image by the projection system PL of B is projected on the sub-exposure area 54A on the wafer W. The projection system PL in this example also includes the front group 27 and the rear group 29. For convenience of explanation, if the optical axis of the front group 27 is the optical axis AX2, the optical axis AX2 is the optical axis AX1 of the illumination system. Is matched. In this example, only the rear group 29 as a movable member is arranged so as to be able to displace and vibrate in a direction perpendicular to the optical axis AX2. That is, the sub lens barrel 126 holding the rear group 29 is held by, for example, the leaf springs 32A and 32B in FIG. 1, and the leaf springs 32A and 32B are displaced in the Y direction by the drive system 34 in FIG. And it can be vibrated.
この場合、 図 16 (B) に示すように、 マスク M上のキャラクタ一パ 夕一ン 1 5 Cの縮小像をゥェ八 W上の隣の副露光領域 54 B上に転写す る際には、 キャラクタ一パターン 1 5 Cを透過した電子線を偏向器 25 によって光軸 AX 1上に振り戻すと共に、 投影系 P Lの後群 29を副鏡 筒 126と共に + Y方向 (振動方向 MVA) に Ayだけ変位させる。 こ れによって、 前群 27の光軸 AX 2に対して、 後群 29の光軸八 28 が Ayだけ +Y方向に変位するため、 縮小像の位置は + Y方向に Δ Yだ け変位するが、 本例では次のように Δ yと△ Yとは等しい。  In this case, as shown in FIG. 16 (B), when the reduced image of the character 15 C on the mask M is transferred onto the adjacent sub-exposure area 54 B on the wafer W, The electron beam transmitted through the character 1 pattern 15 C is returned to the optical axis AX 1 by the deflector 25, and the rear group 29 of the projection system PL is moved together with the sub-barrel 126 in the + Y direction (vibration direction MVA). Displace by Ay. As a result, the optical axis AX 28 of the rear group 29 is displaced by Ay in the + Y direction with respect to the optical axis AX 2 of the front group 27, so that the position of the reduced image is displaced by ΔY in the + Y direction. However, in this example, Δy and △ Y are equal as follows.
Δ Υ = Δγ (5)  Δ Υ = Δγ (5)
従って、 その変位量 ΔΥを副露光領域 54 Α, 54 Βの間隔 (d) に 合致させることによって、 キャラクターパターン 1 5 Cの縮小像を副露 光領域 54 Bに転写することができる。  Therefore, the reduced image of the character pattern 15C can be transferred to the sub-exposure area 54B by matching the displacement ΔΥ with the interval (d) between the sub-exposure areas 54 ° and 54 °.
なお、 後群 29を可動部材とする代わりに前群 27を可動部材とする ことも可能である。 しかしながら、 投影系 PLが縮小系である場合に、 投影倍率 3. (/3く 1 ) を用いると、 前群 27の変位量 Ay Fに対する縮 小像の変位量 AYFは次のようになる。Instead of using the rear group 29 as a movable member, the front group 27 is used as a movable member. It is also possible. However, if the projection system PL is a reduction system and the projection magnification 3. (/ 3 × 1) is used, the displacement AYF of the reduced image with respect to the displacement Ay F of the front group 27 is as follows.
Figure imgf000054_0001
Figure imgf000054_0001
そのため、 縮小像を AYFだけ変位させるには、 前群 27を AYFZ β、 即ち AYFより大きく変位させる必要があるため、 変位量が大きく なって機械的駆動系の構成が複雑化する。 更に、 投影系 PLのような縮 小系では前群 27に比べて後群 29の方が小型化及び軽量化できる可能 性が高いため、 後群 29を変位させることで機械的駆動系の設計及び製 造が容易になる利点がある。  Therefore, in order to displace the reduced image by AYF, it is necessary to displace the front group 27 more than AYFZβ, that is, AYF, so that the displacement amount increases and the configuration of the mechanical drive system becomes complicated. Further, in a reduced system such as the projection system PL, the rear group 29 is more likely to be smaller and lighter than the front group 27, so the mechanical drive system is designed by displacing the rear group 29. Also, there is an advantage that the manufacturing becomes easy.
次に、 本発明の第 4の実施の形態につき図 1 7、 図 18を参照して説 明する。 上記の第 1の実施の形態は、 機械的な MOL方式で投影系 P L の全体を変位又は振動させているが、 この第 4の実施の形態では、 変位 又は振動の際の重心の移動を防止するためにカウン夕一バランス用の部 材を設けている。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. In the first embodiment described above, the entire projection system PL is displaced or vibrated by the mechanical MOL method, but in the fourth embodiment, the displacement of the center of gravity during displacement or vibration is prevented. In order to carry out the council, components for the balance of the evening and evening are provided.
図 1 7は、 図 7に対応させて示した本例の投影系 PLの機械的駆動系 を示し、 この図 1 7において、 投影系 PLは鏡筒 3 1内に収納され、 鏡 筒 3 1は 2対の板ばね 32 A, 328及び32 (:, 32Dによって Y方 向に挟むように保持され、 板ばね 32 A〜32Dの X方向の両端部は支 持部材 57A 1, 57 B 1に固定されている。 また、 鏡筒 3 1の中央部 を非接触状態で囲むようにリング状のバランス部材 128が配置され、 バランス部材 1 28も 1対の板ばね 32 E, 32 Fによって Y方向に挟 むように保持され、 板ばね 32 E, 32 Fの X方向の両端部も支持部材 57 A 1 , 57 B 1に固定されている。 従って、 投影系 PL及びバラン ス部材 1 28は、 板ばね 32 A〜32 Fを介して Y方向に相対変位及び 相対振動できるように支持されている。 この場合、 投影系 PL、 鏡筒 3 1、 及び板ばね 32 A〜 32Dを合わせた部材の重量と、 バランス部材 (カウン夕一マス) 128及び板ばね 32 E, 32 Fを合わせた部材の 重量とはほぼ等しく設定されている。 FIG. 17 shows a mechanical drive system of the projection system PL of the present example corresponding to FIG. 7. In FIG. 17, the projection system PL is housed in the lens barrel 31 and the lens barrel 3 1 Are held so as to be sandwiched in the Y direction by two pairs of leaf springs 32A, 328, and 32 (:, 32D. Both ends of the leaf springs 32A to 32D in the X direction are supported by supporting members 57A1, 57B1. A ring-shaped balance member 128 is arranged so as to surround the center of the lens barrel 31 in a non-contact state, and the balance member 128 is also moved in the Y direction by a pair of leaf springs 32E and 32F. And both ends of the leaf springs 32E and 32F in the X direction are also fixed to the support members 57A1 and 57B 1. Therefore, the projection system PL and the balance member 128 are formed by the leaf springs. It is supported so that it can perform relative displacement and relative vibration in the Y direction via 32 A to 32 F. In this case, the projection system PL and the lens barrel 3 1, and the weight of the member including the leaf springs 32A to 32D is substantially equal to the weight of the member including the balance member (counterhead) 128 and the leaf springs 32E and 32F.
また、 鏡筒 3 1 (板ばね 32A) の一 Y方向の側面に固定された移動 鏡 40と、 レーザ干渉計 41とによって、 鏡筒 3 1 (投影系 PL) の Y 方向への変位量、 Z軸の回りの回転角、 及び X軸の回りの回転角が所定 のサンプリングレートで計測され、 バランス部材 128 (板ばね 32 E) の— Y方向の側面に固定された移動鏡 40 Gと、 レーザ干渉計 41 Gと によって、 バランス部材 1 28の Y方向への変位量、 Z軸の回りの回転 角、 及び X軸の回りの回転角が所定のサンプリングレートで計測されて いる。 本例では、 これらの計測値に基づいて、 投影系 PLを Y方向 (機 械的な振動方向 MV) に沿って振動させる際には、 同じ振幅でかつ逆位 相でバランス部材 128を Y方向に沿って振動させる。 言い換えると、 投影系 PLを + Y方向に Δ YG 1だけ変位させる際には、 バランス部材 128を逆方向である一 Y方向に沿って AYG 1だけ変位させる。 これ は可動部材 (本例では投影系 P Lそのもの) をパランス部材 (カウン夕 —マス) 128と共に、 運動量保存則を実質的に満たした状態で振動、 及び変位させることを意味している。 これによつて、 投影系 PL及びバ ランス部材 1 28を含む機械系の重心位置が変化しないため、 投影系 P Lを安定に振動及び変位させることができ、 ウェハ上への転写位置の精 度等が向上する。  Further, the displacement amount of the lens barrel 31 (projection system PL) in the Y direction is determined by the movable mirror 40 fixed to one Y-direction side surface of the lens barrel 31 (leaf spring 32A) and the laser interferometer 41. A rotation angle around the Z axis and a rotation angle around the X axis are measured at a predetermined sampling rate, and a movable mirror 40 G fixed to a side surface in the Y direction of the balance member 128 (leaf spring 32 E); With the laser interferometer 41G, the displacement amount of the balance member 128 in the Y direction, the rotation angle around the Z axis, and the rotation angle around the X axis are measured at a predetermined sampling rate. In this example, when the projection system PL is vibrated in the Y direction (mechanical vibration direction MV) based on these measured values, the balance member 128 is moved in the Y direction with the same amplitude and the opposite phase. Vibrate along. In other words, when the projection system PL is displaced by ΔYG1 in the + Y direction, the balance member 128 is displaced by AYG1 along the opposite Y direction. This means that the movable member (the projection system PL itself in this example) is vibrated and displaced together with the balance member (counter-mass) 128 while substantially satisfying the law of conservation of momentum. As a result, since the position of the center of gravity of the mechanical system including the projection system PL and the balance member 128 does not change, the projection system PL can be vibrated and displaced stably, and the accuracy of the transfer position on the wafer, etc. Is improved.
図 1 8は、 図 1 7の機械系の駆動部材の一例を示し、 図 18 (A) に おいて、 鏡筒 3 1を保持する板ばね 32 Aの— Y方向の面にはそれぞれ 伸縮自在の駆動素子 1 1 1 A, 1 1 1 Bが固定され、 板ばね 32 Aの + Y方向の面にもそれぞれ駆動素子 1 1 1 C, 1 1 IDが固定されている。 板ばね 32 B及び図 1 7の板ばね 32 C, 32 Dにも同様に駆動素子が 固定されている。 また、 バランス部材 1 2 8を保持する板ばね 3 2 Eの —Y方向の面にも伸縮自在の駆動素子 1 2 9 A , 1 2 9 Bが固定され、 板ばね 3 2 Eの + Y方向の面にもそれぞれ伸縮自在の駆動素子 1 2 9 C, 1 2 9 Dが固定されている。 板ばね 3 2 Fにも同様に駆動素子が固定さ れている。 本例においても、 図 1 8 ( B ) に示すように、 それらの駆動 素子の伸縮量を制御して、 板ばね 3 2 A , 3 2 Bを Y方向に沿った振動 方向 M Vに橈ませると共に、 板ばね 3 2 E , 3 2 Fを逆の振動方向 M G に同じ量だけ撓ませることによって、 投影系 P Lとバランス部材 1 2 8 とを含む機械系の重心 Gの位置が変化しない。 Fig. 18 shows an example of the mechanical drive member of Fig. 17. In Fig. 18 (A), the leaf spring 32A that holds the lens barrel 31 can be extended and contracted on the surface in the Y direction. The drive elements 11 A and 11 B are fixed, and the drive elements 11 C and 11 ID are also fixed to the + Y direction surface of the leaf spring 32A. Similarly, the driving elements are also provided in the leaf spring 32B and the leaf springs 32C and 32D in FIG. Fixed. The extensible drive elements 12 9 A and 12 9 B are also fixed to the surface of the leaf spring 3 2 E holding the balance member 1 2 8 in the —Y direction, and the + Y direction of the leaf spring 3 2 E is fixed. The expandable and contractible drive elements 129 / C and 1 / 29D are also fixed to the surface of each. A driving element is similarly fixed to the leaf spring 32F. Also in this example, as shown in FIG. 18 (B), the leaf springs 32A and 32B are bent in the vibration direction MV along the Y direction by controlling the amount of expansion and contraction of the drive elements. By bending the leaf springs 32E and 32F in the opposite vibration direction MG by the same amount, the position of the center of gravity G of the mechanical system including the projection system PL and the balance member 128 does not change.
なお、 図 1 7の実施の形態においても、 機械的駆動系としてボイスコ ィルモ一夕、 E Iコア方式のァクチユエ一夕、 又はリニアモ一夕等を使 用してもよい。  In the embodiment shown in FIG. 17 as well, a voice filter, an EI core type actuator, a linear motor, etc. may be used as the mechanical drive system.
なお、 上記の各実施の形態において、 例えば図 1 2 ( B ) 、 図 1 5 ( B ) に示したように、 ウェハ Wを X方向に移動させながら Y方向に関 して所定幅 (例えば幅 L 1 ) の領域にマスクの各副領域の縮小像を転写 した後、 Y方向に関して当該領域に隣接するウェハ W上の領域に各副領 域の縮小像を転写するために、 ウェハ Wを Y方向にステップ移動させる とき、 ウェハステージ 4 6の X方向、 Y方向の速度成分が同時に 0とな らないように、 即ちゥェ八 Wが順次 U字型、 及び逆 U字型の軌跡に沿つ て移動するように、 ウェハを移動させることが望ましい。 このようにゥ ェハステージ 4 6を駆動することによって、 スル一プットの向上、 及び 振動の低減などを図ることができる。  In each of the above embodiments, for example, as shown in FIGS. 12 (B) and 15 (B), while moving the wafer W in the X direction, a predetermined width (for example, After the reduced image of each sub-region of the mask is transferred to the region of L 1), the wafer W is transferred to the region on the wafer W adjacent to the region in the Y direction to transfer the reduced image of each sub-region to Y. When stepping in the direction, the velocity components of the wafer stage 46 in the X direction and the Y direction are not simultaneously set to 0, that is, the wafer W sequentially follows the U-shaped and inverted U-shaped trajectories. It is desirable to move the wafer so that it moves. By driving the wafer stage 46 in this way, it is possible to improve the throughput and reduce the vibration.
また、 特に上記の第 2の実施の形態で、 マスク M 1の主視野間で電子 線の照射領域を移動させるために、 マスクステージ 2 0を移動させると きにも、 マスクステージ 2 0を実質的に停止させないように、 即ちマス クステージ 2 0の X方向、 Y方向の速度成分が同時に 0とならないよう にすることによって、 スループッ トの向上、 及び振動の低減などを図る ことができる。 In particular, in the second embodiment described above, when the mask stage 20 is moved in order to move the irradiation area of the electron beam between the main visual fields of the mask M1, the mask stage 20 is also substantially moved. So that the velocity components of the mask stage 20 in the X and Y directions do not become 0 at the same time. By doing so, it is possible to improve the throughput and reduce the vibration.
更に、 上記の各実施の形態では、 投影系 P L (鏡筒 3 1 ) の少なくと も一部の可動部材を振動又は移動させるため、 その移動等に伴ってその 可動部材が傾く力 又は回転することがある。 そこで、 ウェハ Wの走査 露光中に、 例えば図 1 7に示したレーザ干渉計 4 1を含む計測システム によって、 投影系 P Lの X軸回りの回転量と Y軸回りの回転量とをそれ ぞれ常時計測し、 その計測結果に基づいて連続的に投影系 P Lからの電 子線とウェハ Wとの相対位置関係を補正することが望ましい。 これによ り、 マスク上の副視野の縮小像とゥェ八 W上の副露光領域との位置合わ せ (ァライメン卜) 精度を一層向上させることが可能となる。 なお、 そ の走査露光中に投影系 P Lの Z軸回りの回転量も計測し、 この計測結果 に基づいてマスクとウェハとの少なくとも一方を回転させるようにして もよい。  Further, in each of the above embodiments, at least a part of the movable member of the projection system PL (barrel 31) is vibrated or moved, so that the movable member is inclined or rotated with the movement or the like. Sometimes. Therefore, during the scanning exposure of the wafer W, the rotation amount of the projection system PL around the X axis and the rotation amount around the Y axis are respectively measured by the measurement system including the laser interferometer 41 shown in FIG. 17, for example. It is desirable to measure constantly and continuously correct the relative positional relationship between the electron beam from the projection system PL and the wafer W based on the measurement result. This makes it possible to further improve the alignment (alignment) accuracy between the reduced image of the sub-field of view on the mask and the sub-exposure area on the wafer. The rotation amount of the projection system PL about the Z axis may be measured during the scanning exposure, and at least one of the mask and the wafer may be rotated based on the measurement result.
また、 上記の各実施の形態では、 投影系 P Lは 1軸であるが、 図 1に おいて、 機械的な M O L方式で駆動できる投影系 P Lを Y方向に可変間 隔で複数軸配置してもよい。 この場合、 その複数軸の投影系 P Lの間隔 が、 一例として露光対象のウェハ上のショット配列のピッチの整数倍に なるように調整する制御機構を設け、 その間隔とそのピッチの整数倍と の差分 (残留誤差) を相殺するように各投影系 P Lの電子線の照射位置 のオフセットを入力し、 同じ制御系を用いてそれらの投影系 P Lを用い て並列に露光を行う。 これによつて、 スループットが更に向上する。 こ の際に、 複数軸の投影系 P Lの露光中心の間隔を計測するために大型の 基準マーク部材を使用してもよく、 更には一つの基準マークを複数の投 影系 P Lに対して相対移動してもよい。  Further, in each of the above embodiments, the projection system PL has one axis, but in FIG. 1, a plurality of projection systems PL that can be driven by a mechanical MOL method are arranged at variable intervals in the Y direction. Is also good. In this case, a control mechanism that adjusts the interval between the projection axes PL of the plurality of axes to be, for example, an integral multiple of the pitch of the shot array on the wafer to be exposed is provided. The offset of the electron beam irradiation position of each projection system PL is input so as to cancel the difference (residual error), and exposure is performed in parallel using the projection systems PL using the same control system. This further improves the throughput. In this case, a large fiducial mark member may be used to measure the distance between the exposure centers of the multi-axis projection system PL, and one fiducial mark may be used relative to the plurality of projection systems PL. You may move.
また、 機械的な M O L方式で投影系の少なくとも一部の可動部材を駆 動するステージ (以下、 「M O L用ステージ」 と呼ぶ) を設け、 この M O L用ステージに複数の投影系の可動部材を駆動可能に設置し、 ウェハ 上のショッ 卜配列のピッチに応じてそれらの可動部材の間隔を調整する ようにしてもよい。 この機構では、 一つの M O L用ステージを用いて複 数の可動部材を並列に変位、 又は振動させることができるため、 駆動系 の機構部が簡素化できる。 Also, at least a part of the movable members of the projection system is driven by the mechanical MOL method. A movable stage (hereinafter referred to as a “MOL stage”) is provided, and a plurality of movable members of the projection system are installed on the MOL stage so as to be drivable, and these movable members are moved according to the pitch of the shot arrangement on the wafer. The distance between the members may be adjusted. In this mechanism, a plurality of movable members can be displaced or vibrated in parallel using one MOL stage, so that the mechanism of the drive system can be simplified.
次に、 上記の実施の形態の低加速電圧の電子線を用いた転写装置 (低 加速電子線転写装置) において、 ウェハステージ 4 6上での電子線の形 状、 及び機械的な M O L方式で電子線を振動させる際の電子線の振幅を 計測するために、 ウェハステージ 4 6上に電子線の照射によって二次電 子線を発生する第 1部と、 二次電子線を発生しない第 2部とを備えた基 準マークを所定間隔で形成してもよい。 この場合、 電子線を機械的な M 〇L方式で変位させたときの二次電子線の出力を検出し、 例えばその出 力をその電子線の位置について微分 (デジタル信号では差分演算) して 得られる信号より、 その電子線の位置及び形状のキャリブレーションを 行うことができる。  Next, in the transfer device using a low-acceleration voltage electron beam (low-acceleration electron beam transfer device) according to the above embodiment, the shape of the electron beam on the wafer stage 46 and the mechanical MOL method are used. In order to measure the amplitude of the electron beam when oscillating the electron beam, the first part that generates a secondary electron beam by irradiating the electron beam onto the wafer stage 46 and the second part that does not generate a secondary electron beam Reference marks provided with the portions may be formed at predetermined intervals. In this case, the output of the secondary electron beam when the electron beam is displaced by the mechanical M〇L method is detected, and for example, the output is differentiated with respect to the position of the electron beam (differential calculation in the case of a digital signal). From the obtained signals, the position and shape of the electron beam can be calibrated.
また、 低加速電子線転写装置においては、 マスクステージ、 又はゥェ ハステージの近傍に磁場が存在すると、 その磁場によって電子線が曲げ られて、 転写精度が劣化する恐れがある。 そこで、 例えばウェハステー ジ上に磁場強度に応じた電子線の偏向誤差を検出するための基準プレー トを設置し、 電子線の偏向誤差を検出し、 この偏向誤差を相殺するよう に、 機械的な M O L方式で電子線を振動させる際の速度、 及びウェハス テージの位置等を予め定められたテーブルに基づいて制御するようにし てもよい。  Also, in a low-acceleration electron beam transfer apparatus, if a magnetic field exists near the mask stage or the wafer stage, the magnetic field may bend the electron beam and deteriorate the transfer accuracy. Therefore, for example, a reference plate for detecting the deflection error of the electron beam according to the magnetic field strength is installed on the wafer stage, and the deflection error of the electron beam is detected. The speed at which the electron beam is vibrated by the MOL method, the position of the wafer stage, and the like may be controlled based on a predetermined table.
次に、 露光装置としての上記の実施の形態の電子線縮小転写装置を用 いた半導体デバイスの製造工程の一例につき図 1 9を参照して説明する。 図 1 9は、 半導体デバイスの製造工程の一例を示し、 この図 1 9にお いて、 半導体デバイスを製造する際には、 先ず例えば単結晶のシリコン インゴットをスライス及び研磨等してウェハ Wを製造する。 この際に、 ウェハ Wの外周にウェハァライメントの基準となる切欠き部 (ノツチ等) を設けておく。 次のステップ S T 1において、 ウェハ W上に例えば金属 膜や絶縁膜等を蒸着し、 電子線レジストを塗布する。 それに続くステツ プ S T 2において、 図 1の電子線縮小転写装置を用いて、 キャラクター パターン転写方式でマスク M上の複数のキャラクタ一パターン群 1 3中 から所定の順序で選択された多数のキャラクタ—パターンの縮小像を、 ウェハ W上の一つのショッ ト領域 ( 1つ又は複数個のダイ分の回路パタ —ンが転写される領域) 5 2内に順次継ぎ合わせて転写する。 そして、 ウェハ W上の他のショット領域 5 2にも同様に多数のキャラクターパ夕 ーンの縮小像を順次転写する。 この際に、 機械的な M O L方式を用いて 投影系 P Lを振動させるため、 露光工程のスループッ トは極めて高くな つている。 その後、 ステップ S T 3において、 現像及びエッチング (又 はイオン注入) 等を行うことにより、 ウェハ W上の各ショット領域 5 2 にパターン Fが形成される。 Next, an example of a manufacturing process of a semiconductor device using the electron beam reduction transfer device of the above embodiment as an exposure device will be described with reference to FIG. FIG. 19 shows an example of a semiconductor device manufacturing process. In this FIG. 19, when manufacturing a semiconductor device, first, for example, a single crystal silicon ingot is sliced and polished to manufacture a wafer W. I do. At this time, a notch (notch or the like) serving as a reference for wafer alignment is provided on the outer periphery of the wafer W. In the next step ST1, for example, a metal film or an insulating film is deposited on the wafer W, and an electron beam resist is applied. In a subsequent step ST2, a large number of characters selected in a predetermined order from a plurality of character-one pattern groups 13 on the mask M by the character pattern transfer method using the electron beam reduction transfer device of FIG. The reduced images of the patterns are sequentially joined and transferred into one shot area (area where a circuit pattern for one or a plurality of dies is transferred) 52 on the wafer W. Then, similarly, the reduced images of many character patterns are sequentially transferred to other shot areas 52 on the wafer W in the same manner. At this time, since the projection system PL is vibrated using a mechanical MOL method, the throughput of the exposure process is extremely high. Thereafter, in step ST3, a pattern F is formed in each shot region 52 on the wafer W by performing development, etching (or ion implantation), and the like.
次のレイヤへの露光の際にも、 先ずステップ S T 4において、 ウェハ W上に例えば金属膜や絶縁膜等を蒸着して電子線レジストを塗布し、 ス テツプ S T 5において、 図 1の電子線縮小転写装置を用いて、 キャラク ターパターン転写方式でマスク M上からステップ S T 2とは異なる順序 で選択された多数のキャラクターパターンの縮小像を、 ウェハ W上の一 つのショット領域 5 2内に順次転写する。 そして、 ウェハ W上の他のシ ョット領域 5 2にも同様に多数のキャラクタ一パターンの縮小像を順次 転写する。 この際にも、 機械的な M O L方式を用いて投影系 P Lを振動 させるため、 露光工程のスループッ トは極めて高くなつている。 その後、 ステップ ST6において、 現像及びエッチング等を行うことにより、 ゥ ェハ W上の各ショッ ト領域 52にパターン Gが形成される。 When exposing the next layer, first, in step ST4, for example, a metal film or an insulating film is deposited on the wafer W and an electron beam resist is applied. In step ST5, the electron beam shown in FIG. Using a reduction transfer device, reduced images of a number of character patterns selected from the mask M in the character pattern transfer method from the mask M in a different order from step ST2 are sequentially placed in one shot area 52 on the wafer W. Transcribe. Similarly, reduced images of a large number of character patterns are sequentially transferred to other shot areas 52 on the wafer W. At this time, the throughput of the exposure process is extremely high because the projection system PL is vibrated by using the mechanical MOL method. afterwards, In step ST6, a pattern G is formed in each shot region 52 on the wafer W by performing development, etching, and the like.
以上の電子線レジスト塗布工程〜パターン形成工程 (ステップ S T 1 〜ST3又はステップ ST4〜ST6) は、 所望の半導体デバイスを製 造するのに必要な回数だけ繰り返される (ステップ ST7) 。 そして、 ウェハ W上の各チップ CPを切り離すダイシング工程 (ステップ ST8) や、 ボンディング工程、 及びパッケージング工程等 (ステップ ST9) を経ることによって、 製品としての半導体デバイス S Pが製造される。 この際に本例では、 電子線転写装置を用いる露光工程のスループッ卜が 極めて高いため、 高機能のデバイスを全体として高いスループッ トで生 産することができる。  The above-described electron beam resist coating process to pattern forming process (steps ST1 to ST3 or steps ST4 to ST6) are repeated as many times as necessary to manufacture a desired semiconductor device (step ST7). Then, a semiconductor device SP as a product is manufactured through a dicing step (step ST8) for separating each chip CP on the wafer W (step ST8), a bonding step, a packaging step, and the like (step ST9). In this case, in this example, since the throughput of the exposure step using the electron beam transfer device is extremely high, a high-performance device can be produced with a high throughput as a whole.
また、 上記の実施の形態では、 半導体デバイスを製造する際に機械的 な M〇L方式を用いているが、 他のデバイス、 例えば撮像素子 (CCD 等) 、 液晶表示素子、 プラズマディスプレイ等の表示素子、 薄膜磁気へ ッド、 及びマイクロマシーン等を製造する際にも本発明を適用すること ができる。 更に、 本発明は、 例えば光学式の投影露光装置用のフォトマ スク (レチクル) 又は他の X線露光装置 (EUV露光装置を含む) ゃ電 子線転写装置用のマスク等を製造する場合にも適用することができる。 即ち、 フォトマスクを製造する場合には、 例えば第 1段階として原版パ ターンを拡大したパターンを上記の実施の形態の露光方法でガラス基板 上に描画して、 現像及びエッチング等を行うことでマスターレチクルを 製造する。 そして、 第 2段階としてそのマスターレチクルのパターンを 光学式の投影露光装置を用いてワーキングレチクル用のガラス基板上に 転写すればよい。  Further, in the above embodiment, a mechanical M〇L method is used when manufacturing a semiconductor device. However, other devices such as an image pickup device (CCD, etc.), a liquid crystal display device, a plasma display, etc. The present invention can also be applied to the manufacture of devices, thin-film magnetic heads, micro machines, and the like. Further, the present invention is also applicable to the production of photomasks (reticles) for optical projection exposure apparatuses or other X-ray exposure apparatuses (including EUV exposure apparatuses), masks for electron beam transfer apparatuses, and the like. Can be applied. That is, in the case of manufacturing a photomask, for example, as a first step, a pattern obtained by enlarging an original pattern is drawn on a glass substrate by the exposure method of the above-described embodiment, and development and etching are performed. Manufacture reticles. Then, as a second step, the pattern of the master reticle may be transferred onto a glass substrate for a working reticle using an optical projection exposure apparatus.
また、 X線露光装置又は電子線転写装置用のマスクを製造する場合に は、 上記の実施の形態の露光方法を用いてマスク基板としてのウェハ上 に所定の原版パターンを転写すればよい。 Further, when manufacturing a mask for an X-ray exposure apparatus or an electron beam transfer apparatus, a wafer as a mask substrate is formed using the exposure method of the above embodiment. Then, a predetermined original pattern may be transferred.
また、 上記の実施の形態の露光装置としての電子線縮小転写装置は、 複数の電子レンズや偏向器等から構成される照明系、 及び可動部材とし ての投影系を転写装置本体に組み込み電子光学的調整をして、 多数の機 械部品からなるレチクルステージやウェハステージを転写装置本体に取 り付けて配線や配管を接続し、 更に総合調整 (電気調整、 動作確認等) をすることにより製造することができる。 なお、 その転写装置の製造は 温度及びクリーン度等が管理されたクリーンルームで行うことが望まし い。  Further, the electron beam reduction transfer apparatus as the exposure apparatus of the above-described embodiment includes an illumination system composed of a plurality of electron lenses and deflectors, and a projection system as a movable member incorporated in the transfer apparatus main body. Manufacturing, by performing symmetrical adjustments, attaching a reticle stage or wafer stage consisting of many mechanical parts to the transfer device body, connecting wiring and piping, and performing comprehensive adjustments (electrical adjustment, operation confirmation, etc.) can do. It is desirable to manufacture the transfer device in a clean room where the temperature and cleanliness are controlled.
また、 上記の実施の形態は、 キャラクタ一パターン転写方式又は分割 転写方式で露光を行っているが、 本発明はそれ以外にも可変成形ビーム を用いた電子線転写装置やガウスビームタイプの電子線転写装置等にも 適用することができるのは言うまでもない。 これに関して、 上記の実施 の形態では、 電子銃 1は、 低加速方式で使用されているが、 それ以外に 電子銃を中加速 (加速電圧 1 5 k V〜3 0 k V程度) 、 又は高加速 (加 速電圧 5 0 k V〜 1 0 0 k V程度) で使用する場合にも本発明を適用す ることができる。  In the above-described embodiment, the exposure is performed by the character-pattern transfer method or the split transfer method. However, the present invention also includes an electron beam transfer device using a variable shaped beam or a Gaussian beam type electron beam. It goes without saying that the present invention can be applied to a transfer device and the like. In this regard, in the above embodiment, the electron gun 1 is used in a low-acceleration system, but in addition to this, the electron gun is moderately accelerated (acceleration voltage of about 15 kV to 30 kV) or high. The present invention can also be applied to a case where acceleration is used (acceleration voltage is about 50 kV to about 100 kV).
更に、 上記の実施の形態では、 荷電粒子線として電子線が使用されて いるが、 本発明は荷電粒子線としてイオンビーム等を用いた荷電粒子線 転写装置にも適用できる。  Further, in the above embodiment, an electron beam is used as a charged particle beam, but the present invention can also be applied to a charged particle beam transfer device using an ion beam or the like as a charged particle beam.
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱 しない範囲で種々の構成を取り得る。 また、 明細書、 特許請求の範囲、 図面、 及び要約を含む 1 9 9 9年 7月 1 9日付け提出の日本国特許出願 第 1 1一 2 0 4 1 9 5号の全ての開示内容は、 そっくりそのまま引用し て本願に組み込まれている。 産業上の利用の可能性 It should be noted that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, all disclosures in Japanese Patent Application No. 111-210, filed on July 19, 1999, including the specification, claims, drawings, and abstract, are as follows: , Which are hereby incorporated by reference in their entirety. Industrial applicability
本発明の第 1の露光方法によれば、 機械的な M O L方式で投影系を変 位させることができるため、 投影系をあまり大型化することなく、 露光 対象の物体 (被露光体) 上の広い領域にパターンを転写できる利点があ る。  According to the first exposure method of the present invention, since the projection system can be displaced by the mechanical MOL method, the projection system can be formed on the object (exposure target) without increasing the size of the projection system. This has the advantage that the pattern can be transferred to a wide area.
また、 本発明の第 2の露光方法によれば、 機械的な M O L方式で投影 系を振動させることができるため、 露光対象の物体に対して露光を行う 際のスループットを高めることができる利点がある。  Further, according to the second exposure method of the present invention, since the projection system can be vibrated by the mechanical MOL method, there is an advantage that the throughput when performing exposure on an object to be exposed can be increased. is there.
また、 本発明を露光対象の物体上にマスクから順次選択された小さい パターンの像を転写する場合に適用した場合には、 転写速度を高めるこ とができるため、 スループットを高めることができる。  Further, when the present invention is applied to the case of transferring an image of a small pattern sequentially selected from a mask onto an object to be exposed, the transfer speed can be increased, so that the throughput can be increased.
また、 本発明の露光装置によれば、 そのような露光方法を実施できる。 また、 本発明のデバイス製造方法によれば、 高いスループットで高機能 のデバイスを製造できる。  According to the exposure apparatus of the present invention, such an exposure method can be performed. Further, according to the device manufacturing method of the present invention, a high-performance device can be manufactured with high throughput.

Claims

請 求 の 範 囲 The scope of the claims
1 . 荷電粒子線で第 1物体を照射し、 該第 1物体のパターンを経た荷電 粒子線を投影系を介して第 2物体に照射する露光方法において、 1. An exposure method for irradiating a first object with a charged particle beam and irradiating a second object via a projection system with a charged particle beam having passed through the pattern of the first object,
前記第 2物体上の異なる複数の位置にそれぞれ前記第 1物体上の対応 するパターンを経た荷電粒子線を照射するために、 前記投影系中の少な くとも一部の可動部材を変位させることを特徴とする露光方法。  Displacing at least some of the movable members in the projection system to irradiate a plurality of different positions on the second object with charged particle beams having passed through corresponding patterns on the first object, respectively. Characteristic exposure method.
2 . 前記投影系の光軸に実質的に垂直な平面内で、 更に前記投影系に対 して前記第 2物体を移動させることを特徴とする請求の範囲 1記載の露 光方法。  2. The exposure method according to claim 1, wherein the second object is moved within a plane substantially perpendicular to the optical axis of the projection system, and further with respect to the projection system.
3 . 前記第 2物体を移動させる動作又は前記可動部材を変位させる動作 に同期して、 前記投影系内の電磁場を電気的に変化させて前記荷電粒子 線の前記第 2物体上での照射位置を補正することを特徴とする請求の範 囲 2記載の露光方法。  3. The irradiation position of the charged particle beam on the second object by electrically changing an electromagnetic field in the projection system in synchronization with an operation of moving the second object or an operation of displacing the movable member. 3. The exposure method according to claim 2, wherein the correction is performed.
4 . 前記第 1物体上に複数の互いに異なるパターンを形成しておき、 前 記第 2物体上の照射位置に応じて前記第 1物体上から選択されたパター ンを経た荷電粒子線を前記投影系に導くことを特徴とする請求の範囲 1、 2、 又は 3記載の露光方法。 4. A plurality of different patterns are formed on the first object, and the charged particle beam having passed through the pattern selected from the first object according to the irradiation position on the second object is projected. 4. The exposure method according to claim 1, 2 or 3, wherein the exposure method is directed to a system.
5 . 前記可動部材の回転情報を検出し、 該回転情報に基づいて前記荷電 粒子線の前記第 2物体上での照射位置を補正することを特徴とする請求 の範囲 1〜4の何れか一項記載の露光方法。  5. The rotation information of the movable member is detected, and an irradiation position of the charged particle beam on the second object is corrected based on the rotation information. Exposure method according to the item.
6 . 前記可動部材は第 1方向に変位可能で、 前記第 2物体は前記第 1方 向とほぼ直交する第 2方向に移動され、 前記第 1方向に関して前記可動 部材の移動距離よりも大きい前記第 2物体上の領域に前記第 1物体のパ 夕一ンを転写することを特徴とする請求の範囲 1〜 5の何れか一項記載 の露光方法。 6. The movable member is displaceable in a first direction, and the second object is moved in a second direction substantially orthogonal to the first direction, and is larger than a moving distance of the movable member in the first direction. The exposure method according to any one of claims 1 to 5, wherein a pattern of the first object is transferred to an area on a second object.
7 . 荷電粒子線で第 1物体を照射し、 該第 1物体のパターンを経た荷電 粒子線を投影系を介して第 2物体に照射する露光方法において、 前記第 2物体上の異なる複数の位置にそれぞれ前記第 1物体上の対応 するパターンを経た荷電粒子線を照射するために、 前記投影系中の少な くとも一部の可動部材を所定方向に振動させることを特徴とする露光方 法。 7. An exposure method for irradiating a first object with a charged particle beam, and irradiating a second object with a charged particle beam having passed through the pattern of the first object via a projection system, comprising a plurality of different positions on the second object. An exposure method characterized by vibrating at least some of the movable members in the projection system in a predetermined direction in order to irradiate a charged particle beam having passed through a corresponding pattern on the first object.
8 . 前記可動部材を第 1方向に沿って振動させるのと同期して、 前記第 1方向に交差する第 2方向に前記第 2物体を移動させて、 前記第 2物体 上の 2次元領域に前記第 1物体上の対応するパターンを経た荷電粒子線 を照射することを特徴とする請求の範囲 7記載の露光方法。  8. Synchronize with vibrating the movable member along the first direction, move the second object in a second direction intersecting the first direction, and move the second object to a two-dimensional area on the second object. 8. The exposure method according to claim 7, further comprising irradiating a charged particle beam having passed through a corresponding pattern on the first object.
9 . 前記可動部材を前記第 1方向に沿って時間に関して正弦波状に振動 させることを特徴とする請求の範囲 7又は 8記載の露光方法。  9. The exposure method according to claim 7, wherein the movable member is vibrated in a sine wave shape with respect to time in the first direction.
1 0 . 前記可動部材を振動させる動作に同期して、 前記投影系内の電磁 場を電気的に変化させて前記荷電粒子線の前記第 2物体上での照射位置 を補正することを特徴とする請求の範囲 8又は 9記載の露光方法。  10. In synchronization with the operation of vibrating the movable member, the electromagnetic field in the projection system is electrically changed to correct the irradiation position of the charged particle beam on the second object. 10. The exposure method according to claim 8 or 9, wherein
1 1 . 前記第 2物体の感度に応じて前記可動部材の振動周波数を制御す ることを特徴とする請求の範囲 7〜 1 0の何れか一項記載の露光方法。 11. The exposure method according to any one of claims 7 to 10, wherein a vibration frequency of the movable member is controlled according to a sensitivity of the second object.
1 2 . 前記第 2物体の感度に応じて前記荷電粒子線の強度を制御するこ とを特徴とする請求の範囲 7〜 1 0の何れか一項記載の露光方法。 12. The exposure method according to any one of claims 7 to 10, wherein the intensity of the charged particle beam is controlled according to the sensitivity of the second object.
1 3 . 前記可動部材に可撓性を有する部材を介してバランサを連結し、 前記可動部材を振動させる際に、 前記可動部材及び前記バランサを含 む機械系の重心位置が変位しないように、 前記可動部材と逆位相で前記 バランサを振動させることを特徴とする請求の範囲 7〜 1 2の何れか一 項記載の露光方法。  13. A balancer is connected to the movable member via a flexible member, and when the movable member is vibrated, the center of gravity of a mechanical system including the movable member and the balancer is not displaced. The exposure method according to any one of claims 7 to 12, wherein the balancer is vibrated in a phase opposite to that of the movable member.
1 4 . 荷電粒子線で第 1物体を照射し、 該第 1物体のパターンを経た荷 電粒子線を投影系を介して第 2物体に照射する露光装置において、 前記第 2物体上での前記荷電粒子線の照射位置を移動させるために、 前記投影系の少なくとも一部の可動部材を変位させる機械的駆動系を設 けたことを特徴とする露光装置。 14. An exposure apparatus that irradiates a first object with a charged particle beam and irradiates a second object via a projection system with a charged particle beam having passed through the pattern of the first object, An exposure apparatus, comprising: a mechanical drive system for displacing at least a part of a movable member of the projection system in order to move an irradiation position of the charged particle beam on the second object.
1 5 . 前記投影系の光軸に実質的に垂直な平面内で、 前記投影系に対し て前記第 2物体を移動させる第 2物体用ステージを設けたことを特徴と する請求の範囲 1 4記載の露光装置。  15. A second object stage for moving the second object with respect to the projection system in a plane substantially perpendicular to the optical axis of the projection system. Exposure apparatus according to the above.
1 6 . 前記荷電粒子線の前記第 2物体上での照射位置を補正するために、 前記投影系内での電磁場を電気的に変化させる電子的駆動系と、  16. An electronic drive system for electrically changing an electromagnetic field in the projection system to correct an irradiation position of the charged particle beam on the second object;
前記第 2物体用ステージの動作及び前記機械的駆動系の動作に応じて 前記電子的駆動系の動作を制御する制御系と、 を設けたことを特徴とす る請求の範囲 1 5記載の露光装置。  16. The exposure according to claim 15, further comprising: a control system that controls an operation of the electronic drive system according to an operation of the second object stage and an operation of the mechanical drive system. apparatus.
1 7 . 前記第 1物体上に複数の互いに異なるパターンが形成されており、 前記第 1物体を前記投影系の光軸に実質的に垂直な平面内で移動させ る第 1物体用ステージと、  17. A first object stage in which a plurality of different patterns are formed on the first object, and the first object stage moves the first object in a plane substantially perpendicular to the optical axis of the projection system.
前記荷電粒子線を前記第 1物体上から選択されたパターンに照射する 第 1偏向器と、  A first deflector that irradiates the charged particle beam onto a pattern selected from the first object,
前記第 1物体上で選択されたパターンを経た荷電粒子線を振り戻す第 2偏向器と、 を設けたことを特徴とする請求の範囲 1 4、 1 5、 又は 1 6記載の露光装置。  17. The exposure apparatus according to claim 14, further comprising: a second deflector for turning back a charged particle beam having passed through a pattern selected on the first object.
1 8 . 前記可動部材の回転情報を検出する計測系を設け、  1 8. Provide a measurement system to detect the rotation information of the movable member,
前記計測系で検出される回転情報に基づいて前記荷電粒子線の前記第 2物体上での照射位置を補正することを特徴とする請求の範囲 1 4〜 1 7の何れか一項記載の露光装置。  The exposure according to any one of claims 14 to 17, wherein an irradiation position of the charged particle beam on the second object is corrected based on rotation information detected by the measurement system. apparatus.
1 9 . 前記可動部材は第 1方向に変位可能で、 前記第 2物体は前記第 1 方向とほぼ直交する第 2方向に移動され、 前記第 1方向に関して前記可 動部材の移動距離よりも大きい前記第 2物体上の領域に前記第 1物体の パターンを転写することを特徴とする請求の範囲 1 4〜 1 8の何れか一 項記載の露光装置。 19. The movable member is displaceable in a first direction, the second object is moved in a second direction substantially orthogonal to the first direction, and is larger than a moving distance of the movable member in the first direction. The area of the first object is The exposure apparatus according to any one of claims 14 to 18, wherein the pattern is transferred.
2 0 . 荷電粒子線で第 1物体を照射し、 該第 1物体のパターンを経た荷 電粒子線を投影系を介して第 2物体に照射する露光装置において、 前記第 2物体上での前記荷電粒子線の照射位置を移動させるために、 前記投影系の少なくとも一部の可動部材を振動させる機械的駆動系を設 けたことを特徴とする露光装置。  20. An exposure apparatus that irradiates a first object with a charged particle beam and irradiates a second object via a projection system with a charged particle beam having passed through the pattern of the first object, wherein the second object on the second object is An exposure apparatus comprising: a mechanical drive system that vibrates at least a part of a movable member of the projection system in order to move an irradiation position of a charged particle beam.
2 1 . 前記機械的駆動系は、 前記可動部材を第 1方向に沿って振動させ るものであり、  21. The mechanical drive system vibrates the movable member along a first direction.
前記第 2物体上の 2次元領域に前記第 1物体上の対応するパターンを 経た荷電粒子線を照射するために、 前記第 2物体を前記第 1方向に交差 する第 2方向に移動させる第 2物体用ステージを設けたことを特徴とす る請求の範囲 2 0記載の露光装置。  Moving a second object in a second direction intersecting with the first direction to irradiate a two-dimensional area on the second object with a charged particle beam having passed through a corresponding pattern on the first object; 20. The exposure apparatus according to claim 20, further comprising an object stage.
2 2 . 前記荷電粒子線の前記第 2物体上での照射位置を移動させるため に、 前記投影系内での電磁場を電気的に変化させる電子的駆動系を設け、 前記可動部材を振動させる動作及び前記第 2物体用ステージの移動動 作に同期して、 前記電子的駆動系を介して前記荷電粒子線の前記第 2物 体上での照射位置を補正することを特徴とする請求の範囲 2 1記載の露 光装置。  22. In order to move the irradiation position of the charged particle beam on the second object, an electronic drive system for electrically changing an electromagnetic field in the projection system is provided, and an operation of vibrating the movable member is provided. And correcting the irradiation position of the charged particle beam on the second object via the electronic drive system in synchronization with the movement operation of the second object stage. 21 Exposure device as described in 1.
2 3 . 前記機械的駆動系は、 2 3. The mechanical drive system is
前記可動部材を挟むように配置されてそれぞれ可動性を持つ第 1及び 第 2の板ばね部材と、  First and second leaf spring members arranged so as to sandwich the movable member and having mobility, respectively;
該板ばね部材を支持する支持部材と、  A support member for supporting the leaf spring member;
前記 2枚の板ばね部材が可撓性を持つ方向に前記可動部材を駆動する 駆動部材と、 を有することを特徵とする請求の範囲 2 0〜2 2の何れか 一項記載の露光装置。 The exposure apparatus according to any one of claims 20 to 22, further comprising: a driving member that drives the movable member in a direction in which the two leaf spring members have flexibility.
2 4 . 前記駆動部材は、 前記第 1及び第 2の板ばね部材のそれぞれの両 面に 1対ずつ固定された伸縮自在の素子を備え、 24. The driving member includes a pair of expandable and contractible elements fixed on both surfaces of the first and second leaf spring members.
該 1対ずつの伸縮自在の素子がそれぞれ逆位相で伸縮することを特徴 とする請求の範囲 2 3記載の露光装置。  24. The exposure apparatus according to claim 23, wherein said pair of expandable and contractible elements expand and contract in opposite phases, respectively.
2 5 . 前記投影系は縮小投影系であり、  25. The projection system is a reduction projection system,
前記可動部材は、 前記投影系中で前記第 2物体に近い側の一部の電子 光学系であることを特徴とする請求の範囲 2 0〜2 4の何れか一項記載 の露光装置。  The exposure apparatus according to any one of claims 20 to 24, wherein the movable member is a part of the electron optical system on the side closer to the second object in the projection system.
2 6 . 前記可動部材は、 前記投影系の全体であることを特徴とする請求 の範囲 2 0〜 2 4の何れか一項記載の露光装置。  26. The exposure apparatus according to any one of claims 20 to 24, wherein the movable member is the entirety of the projection system.
2 7 . 前記機械的駆動系は、  2 7. The mechanical drive system is
前記可動部材を囲むように配置されたバランサと、  A balancer arranged to surround the movable member,
前記可動部材と前記バランサとを相対変位自在な状態で保持するバラ ンサ保持部材と、  A balancer holding member for holding the movable member and the balancer in a state where they can be relatively displaced;
前記バランサを駆動するバランサ駆動部材と、 を備え、  And a balancer driving member for driving the balancer.
前記機械的駆動系は、 前記可動部材及び前記バランサを含む機械系の 重心位置が実質的に変位しないように、 前記可動部材と逆位相で前記バ ランサを振動させることを特徴とする請求の範囲 2 0〜2 6の何れか一 項記載の露光装置。  The mechanical drive system vibrates the balancer in a phase opposite to that of the movable member so that the center of gravity of the mechanical system including the movable member and the balancer does not substantially displace. The exposure apparatus according to any one of 20 to 26.
2 8 . 前記可動部材の位置を計測する第 1の位置検出器を備え、  28. A first position detector for measuring the position of the movable member,
該第 1の位置検出器の検出結果に応じて前記機械的駆動系の動作を制 御することを特徴とする請求の範囲 2 0〜 2 7の何れか一項記載の露光  The exposure according to any one of claims 20 to 27, wherein the operation of the mechanical drive system is controlled according to a detection result of the first position detector.
2 9 . 前記可動部材及び前記バランサの位置をそれぞれ計測する第 1及 び第 2の位置検出器を備え、 2 9. A first and a second position detector for measuring the positions of the movable member and the balancer, respectively.
該 2つの位置検出器の検出結果に応じて前記機械的駆動系の動作を制 御することを特徴とする請求の範囲 2 7記載の露光装置。 The operation of the mechanical drive system is controlled according to the detection results of the two position detectors. 28. The exposure apparatus according to claim 27, wherein the exposure apparatus is controlled.
3 0 . 前記露光装置に前記第 1物体及び前記第 2物体を搬入する経路の 少なくとも一部に、 内部の真空度をその他の部分とは独立に制御できる 予備室が設けられたことを特徴とする請求の範囲 1 4〜2 9の何れか一 項記載の露光装置。  30. A spare chamber capable of controlling the degree of vacuum inside independently of other parts is provided at least in a part of a path for carrying the first object and the second object into the exposure apparatus. The exposure apparatus according to any one of claims 14 to 29, wherein:
3 1 . 荷電粒子線で第 1物体を照射し、 該第 1物体のパターンを経た荷 電粒子線を投影系を介して第 2物体に照射する露光装置の製造方法にお いて、  31. A method for manufacturing an exposure apparatus, which irradiates a first object with a charged particle beam and irradiates a second object via a projection system with a charged particle beam having passed through the pattern of the first object,
前記第 2物体上での前記荷電粒子線の照射位置を移動させるために、 前記投影系の少なくとも一部の可動部材を変位自在、 又は振動自在の状 態で支持部材に取り付け、  In order to move the irradiation position of the charged particle beam on the second object, at least a part of the movable member of the projection system is attached to a support member in a displaceable or vibrable state,
前記可動部材を変位、 又は振動させるための機械的駆動系を取り付け ることを特徴とする露光装置の製造方法。  A method for manufacturing an exposure apparatus, comprising: attaching a mechanical drive system for displacing or vibrating the movable member.
3 2 . 前記投影系の光軸に実質的に垂直な平面内で、 前記投影系に対し て前記第 2物体を移動させる第 2物体用ステージを設け、  32. A second object stage for moving the second object with respect to the projection system in a plane substantially perpendicular to the optical axis of the projection system,
前記荷電粒子線の前記第 2物体上での照射位置を移動させるために、 前記投影系内での電磁場を電気的に変化させる電子的駆動系を更に設け たことを特徴とする請求の範囲 3 1記載の露光装置の製造方法。  An electronic drive system for electrically changing an electromagnetic field in the projection system for moving an irradiation position of the charged particle beam on the second object is further provided. 2. The method for manufacturing the exposure apparatus according to 1.
3 3 . 請求の範囲 1〜 1 3の何れか一項記載の露光方法を用いてデバィ スパターンをワークピース上に転写する工程を含むデバイス製造方法。 33. A device manufacturing method including a step of transferring a device pattern onto a work piece using the exposure method according to any one of claims 1 to 13.
PCT/JP2000/004707 1999-07-19 2000-07-13 Exposure method and device therefor WO2001006549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU60152/00A AU6015200A (en) 1999-07-19 2000-07-13 Exposure method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20419599 1999-07-19
JP11/204195 1999-07-19

Publications (1)

Publication Number Publication Date
WO2001006549A1 true WO2001006549A1 (en) 2001-01-25

Family

ID=16486417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004707 WO2001006549A1 (en) 1999-07-19 2000-07-13 Exposure method and device therefor

Country Status (3)

Country Link
AU (1) AU6015200A (en)
TW (1) TW460933B (en)
WO (1) WO2001006549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107955A1 (en) * 2007-03-02 2008-09-12 Advantest Corporation Mask for multicolumn electron beam exposure, electron beam exposure device and exposure method employing mask for multicolumn electron beam exposure
US7501214B2 (en) 2003-10-21 2009-03-10 Kabushiki Kaisha Toshiba Semiconductor device fabrication method and fabrication apparatus using a stencil mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151289A (en) * 1992-10-30 1994-05-31 Nec Corp Magnetic field type electron lens alignment mechanism
JPH10255706A (en) * 1997-03-14 1998-09-25 Nikon Corp Adjusting method of axis moving type electro magnetic lens
JPH1126371A (en) * 1997-07-08 1999-01-29 Nikon Corp Electron beam transfer apparatus
JP2000150367A (en) * 1998-04-27 2000-05-30 Toshiba Corp Charged beam drawer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151289A (en) * 1992-10-30 1994-05-31 Nec Corp Magnetic field type electron lens alignment mechanism
JPH10255706A (en) * 1997-03-14 1998-09-25 Nikon Corp Adjusting method of axis moving type electro magnetic lens
JPH1126371A (en) * 1997-07-08 1999-01-29 Nikon Corp Electron beam transfer apparatus
JP2000150367A (en) * 1998-04-27 2000-05-30 Toshiba Corp Charged beam drawer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501214B2 (en) 2003-10-21 2009-03-10 Kabushiki Kaisha Toshiba Semiconductor device fabrication method and fabrication apparatus using a stencil mask
US7977653B2 (en) 2003-10-21 2011-07-12 Kabushiki Kaisha Toshiba Semiconductor device fabrication method and fabrication apparatus using a stencil mask
WO2008107955A1 (en) * 2007-03-02 2008-09-12 Advantest Corporation Mask for multicolumn electron beam exposure, electron beam exposure device and exposure method employing mask for multicolumn electron beam exposure
US8196067B2 (en) 2007-03-02 2012-06-05 Advantest Corp. Mask for multi-column electron beam exposure, and electron beam exposure apparatus and exposure method using the same
JP5175713B2 (en) * 2007-03-02 2013-04-03 株式会社アドバンテスト Multi-column electron beam exposure mask, electron beam exposure apparatus and exposure method using multi-column electron beam exposure mask

Also Published As

Publication number Publication date
AU6015200A (en) 2001-02-05
TW460933B (en) 2001-10-21

Similar Documents

Publication Publication Date Title
KR101489521B1 (en) Holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US6788385B2 (en) Stage device, exposure apparatus and method
TW574632B (en) Stage apparatus and exposure apparatus
US20080225261A1 (en) Exposure apparatus and device manufacturing method
US6836093B1 (en) Exposure method and apparatus
US6333572B1 (en) Article positioning apparatus and exposing apparatus having the article positioning apparatus
JP2004072076A (en) Exposure device, stage unit and method for manufacturing device
WO1999016113A1 (en) Stage device, a scanning aligner and a scanning exposure method, and a device manufactured thereby
US6583430B1 (en) Electron beam exposure method and apparatus
JP3862639B2 (en) Exposure equipment
JP3993334B2 (en) Charged beam lithography system
JP4204964B2 (en) Lithographic apparatus
JP2004055767A (en) Electron beam exposure system and method for manufacturing semiconductor device
JPWO2005036620A1 (en) Exposure method, exposure apparatus, and device manufacturing method
WO1999066543A1 (en) Position sensing method, position sensor, exposure method, exposure apparatus, and production process thereof, and device and device manufacturing method
EP1191580A1 (en) Stage device and exposure device
US20020021428A1 (en) Charged-particle-beam microlithography stage including actuators for moving a reticle or substrate relative to the stage, and associated methods
JP2004158610A (en) Aligner and aligning method
WO2001006549A1 (en) Exposure method and device therefor
JPH10256355A (en) Positioning device, substrate holding device, and exposure device provided with the holding device
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
US11276558B2 (en) Exposure apparatus and exposure method, lithography method, and device manufacturing method
JP2004260116A (en) Stage unit, exposure system, and method for manufacturing device
JP6744588B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JP6575796B2 (en) Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 511720

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase