WO2000078686A1 - Procédé de fabrication de matière première pour fibre optique - Google Patents

Procédé de fabrication de matière première pour fibre optique Download PDF

Info

Publication number
WO2000078686A1
WO2000078686A1 PCT/JP2000/004071 JP0004071W WO0078686A1 WO 2000078686 A1 WO2000078686 A1 WO 2000078686A1 JP 0004071 W JP0004071 W JP 0004071W WO 0078686 A1 WO0078686 A1 WO 0078686A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass pipe
optical fiber
glass rod
pipe
Prior art date
Application number
PCT/JP2000/004071
Other languages
English (en)
French (fr)
Inventor
Hideaki Ito
Masataka Kon
Takaharu Kinoshita
Nobusada Nagae
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26496380&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000078686(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP17495499A external-priority patent/JP3553423B2/ja
Priority claimed from JP19051799A external-priority patent/JP3576873B2/ja
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to EP00940791A priority Critical patent/EP1203755B1/en
Priority to KR1020017016197A priority patent/KR100632155B1/ko
Publication of WO2000078686A1 publication Critical patent/WO2000078686A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01245Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down by drawing and collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • a glass rod for a core or a glass rod for a core and a clad is inserted into a glass pipe for a clad, and the inside of the glass pipe is reduced while heating both, so that the glass pipe and the glass rod are integrated.
  • the present invention relates to a method for producing an optical fiber preform for forming and stretching. Background art
  • ⁇ VD Outside Vapor Deposition
  • VAD Vapor-phase Axial Deposition
  • MC VD Modified Chemical Vapor Deposition
  • the VAD method and the MC VD method from the viewpoint of productivity, after manufacturing a glass port for a core or a core and a clad, the clad, which occupies most of the optical fiber preform, is formed as described above.
  • a method of forming the outer periphery of the glass rod by a separate process is employed.
  • a so-called external method is known in which glass fine particles called soot are deposited on the glass rod and heated to form a transparent glass.
  • Japanese Patent Publication No. 56-45867 discloses that the above-mentioned core or the core and the glass rod for the clad are inserted into the glass pipe for the clad previously produced in a separate process.
  • a so-called rod-in-tube method for integrating a pipe and a glass rod is described.
  • the rod-in-tube method specifically, the above-mentioned glass pipe and glass port are heated by a flame of a perner, and the glass pipe is heated by a gas of the flame of the perforator.
  • a method is known in which the two are integrated by pressing them together. Also, unlike this, the pressure inside the glass pipe is reduced while heating the glass pipe and the glass rod in a heating furnace (heater) or the like.
  • a method of integrating them is also known.
  • the optical fiber preform manufactured by the above-described manufacturing method can be converted into an optical fiber by performing a drawing process.
  • Japanese Patent Application Laid-Open No. 50-83545 discloses the above-described drawing process. Is described at the same time as the production of the optical fiber preform by the rod-in-tube method.
  • a diameter reducing step of reducing the diameter of the large-diameter optical fiber preform to an optimum diameter that maximizes the yield is performed.
  • Japanese Patent Application Laid-Open No. 7-180580 discloses that the process of reducing the diameter of the optical fiber preform is performed simultaneously with the production of the optical fiber preform by the rod-in-tube method, thereby improving the productivity. It describes a way to improve it.
  • the first problem relates to the pressure inside the glass pipe when the glass pipe and the glass rod are integrated.
  • one of the causes of the above-mentioned air bubble generation is on the inner peripheral surface of the glass pipe. And gas and moisture adhering to the inner peripheral surface of the glass pipe. Therefore, in order to prevent the generation of air bubbles due to scratches on the inner peripheral surface of the glass pipe, the inner peripheral surface of the glass pipe is sufficiently washed, and the water and the like are completely removed. Is usually inserted into a glass pipe. Further, from the viewpoint of preventing the gas adhering to the inner peripheral surface of the glass pipe from remaining, when the glass pipe and the glass rod are integrated, the pressure in the glass pipe is reduced to an extremely low pressure (the degree of pressure reduction is reduced). Higher), so that both are integrated.
  • the amount of eccentricity of the core increases.
  • the amount of eccentricity of the core is large when a large glass pipe, for example, a thick glass pipe with a small inner / outer diameter ratio or a glass pipe with a large outer diameter, is used to manufacture a large optical fiber preform. Is especially prone to dogs.
  • the first problem in manufacturing the optical fiber preform by integrating the glass pipe and the glass rod is to prevent the generation of bubbles due to the scratches on the inner peripheral surface of the glass pipe. Preventing core eccentricity is a conflicting demand. In particular, in the production of a large optical fiber preform, it is extremely difficult to solve the first problem.
  • the second problem relates to the clearance (clearance) between the glass pipe and the glass rod.
  • the optical fiber preform when manufacturing the optical fiber preform by integrating the glass pipe and the glass rod, it is better to make the clearance smaller.
  • the integration of the eve and the glass rod is facilitated, and the eccentricity of the core is reduced when the two are integrated.
  • the first method is to make the glass pipe have the same outer diameter as the conventional one and only the inner diameter larger than the conventional one. This is a technique for increasing the clearance of the vehicle.
  • the dashed line in the figure indicates the inner diameter of the conventional glass pipe.
  • the core-cladding ratio (the value obtained by dividing the cladding diameter by the core diameter, hereinafter abbreviated as CZC) of the optical fiber preform needs to be a predetermined value.
  • a cross-sectional area is required.
  • the first method it is necessary to coat additional glass pipes with insufficient cross-sectional area in order to achieve the required CZC of the completed optical fiber preform. Need to do. For this reason, there is an inconvenience that, with an increase in production cost and an increase in the number of coatings, bubbles are generated at the interface of the additionally coated glass pipe and the risk of becoming a defective base material is increased.
  • the cross-sectional area of the glass pipe is the same as that of the conventional glass pipe, but the inner diameter and the outer diameter are both large. This is a technique for increasing the clearance of the vehicle.
  • the clearance between the glass pipe and the glass rod is increased by stretching the glass rod to reduce the diameter. It is a technique to do.
  • the dashed line in the figure indicates the outer diameter of the conventional glass rod.
  • the cross-sectional area of the core of the glass rod is reduced, and accordingly, the required cross-sectional area of the glass pipe is also reduced.
  • the CC of the completed optical fiber base material will increase to a predetermined value. Will exceed.
  • the base material becomes smaller.
  • the necessity of a flame polishing process, which is not originally required leads to an increase in the number of production processes, thereby increasing production costs.
  • the fourth method is a method that can be considered especially when manufacturing an optical fiber preform for a single mode optical fiber.As shown in FIG. 14, instead of stretching the glass rod, the glass rod is not used. In this method, the outer diameter is reduced while maintaining the core diameter by removing the cladding, thereby ensuring the clearance between the glass pipe and the glass rod. Even in the fourth method, although the above-mentioned rubbing between the glass pipe and the glass rod is avoided, the optical fiber obtained by drawing the completed optical fiber preform has a high loss. In other words, OH groups that absorb signal light propagating in the core of the optical fiber may remain at the interface between the glass rod and the glass pipe in the optical fiber preform.
  • the interface between the glass rod and the glass pipe is separated from the core, and even if OH groups remain at the interface between the glass rod and the glass pipe.
  • it is made hard to be affected by the absorption of the signal light by the OH group.
  • the outer diameter of the glass rod is approximately 3.6 times the outer diameter of the core of the glass rod (CZC is 3.6 times).
  • CZC uses about 4 glass rods.
  • the cladding in the glass rod is removed as in the fourth method, the interface becomes closer to the core, and the loss of the optical fiber increases due to the absorption of signal light by the ⁇ H groups remaining at this interface. What I will.
  • the second problem in manufacturing the optical fiber preform by integrating the glass pipe and the glass rod is that the clearances are increased by using the above-described first to fourth methods to increase the air bubbles. Attempts to prevent this would lead to increased core eccentricity, reduced productivity, and other problems, which would be extremely difficult to prevent together.
  • An object of the present invention is to prevent the generation of air bubbles in the production of an optical fiber preform for integrating and stretching a glass pipe and a glass rod, and in particular, the first aspect related to the prevention of the generation of air bubbles. And to solve the second problem. Disclosure of the invention
  • the present inventor focused on points such as the degree of decompression in the glass pipe, the heating temperature, and the feeding speed of the glass pipe and the glass rod to the heating furnace, and the like. Was repeated. As a result, they found the conditions for manufacturing an optical fiber preform capable of reliably preventing both the generation of bubbles and the eccentricity of the core, and completed the first invention.
  • the present inventor has repeated experiments focusing on this degree of pressure reduction.
  • the degree of pressure reduction in the glass pipe is such that the eccentricity of the core does not occur, and the generation of bubbles can be reliably prevented, that is, We have found the optimal degree of decompression.
  • any one of the glass pipe and the glass rod is required before the glass pipe and the glass rod are integrated. It has been found that one or both are stretched and then both are integrated.
  • the degree of decompression is too high, the glass pipe and glass rod After stretching, both of the cores are stretched. In this case, as described above, the eccentricity of the core is likely to occur.
  • the degree of decompression is too low, the glass pipe and the glass rod are not fully integrated but are each stretched sufficiently before they are integrated, but in this case, they are not completely integrated.
  • the degree of decompression is optimum, the glass pipe and the glass rod are integrated after one or both of the glass pipe and the glass rod are stretched. When one or both of the glass pipe and the glass rod are stretched in this way, when the glass pipe and the glass rod are integrated, both the generation of air bubbles and the eccentricity of the core are ensured.
  • a glass rod for a core or a glass rod for a core and a clad is inserted into a glass pipe for a clad, and the inside of the glass pipe is heated while heating the glass pipe and the glass rod.
  • the present invention is directed to a method for producing an optical fiber preform by reducing the pressure and integrating and stretching the glass pipe and the glass opening. Then, after extending one or both of the glass pipe and the glass rod, the glass pipe and the glass rod are integrated, and then the glass pipe is integrated until the outer diameter of the glass pipe becomes a predetermined diameter. And the extension of the glass rod.
  • the optimal value of the degree of decompression depends on the temperature conditions of the heating furnace for heating the glass pipe and the glass rod, and the shape of the glass pipe and the glass rod such as the size of the gap between the glass pipe and the glass rod. It depends. For this reason, it is difficult to specify all the optimal manufacturing conditions by the degree of pressure reduction.
  • the present inventor has found that, instead of defining the degree of decompression, the optimal manufacturing conditions can be set by using the distance of the glass pipe and the glass rod in the longitudinal direction. It was completed.
  • L1 is a length from a position where one or both of the glass pipe and the glass rod starts stretching to a position where the glass pipe and the glass rod are integrated,
  • L2 is a length from the position where the glass pipe and the glass rod are integrated to the position where both extend and the outer diameter of the glass pipe becomes a predetermined diameter
  • the glass pipe and the glass rod are integrated and stretched so as to satisfy the following.
  • the inventor has found that the amount of eccentricity of the core also depends on the magnitude of the clearance. For example, when the clearance is large, the curvature of the glass pipe when the diameter of the glass pipe is reduced becomes large, so that the eccentricity of the core is easily caused. Then, they found the optimum manufacturing conditions defined by the clearance, and completed the third invention.
  • the outer diameter of the glass pipe is D0
  • the inner diameter is d0
  • the outer diameter of the glass pipe at the position where the glass pipe and the glass rod are integrated is D1
  • the inner diameter is dl.
  • the glass pipe and the glass rod are integrated and stretched so as to satisfy the following.
  • the method for producing an optical fiber preform according to the first to third inventions is also suitable for producing a large optical fiber preform.
  • a thick glass substrate having an inner diameter / outer diameter ratio of 0.5 or less is used. Even when using an Eve or when using a large outer diameter glass pipe having an outer diameter of 48 mm or more, it is possible to prevent the generation of bubbles and the eccentricity of the core, and to manufacture an optical fiber preform.
  • the present inventor has proposed that, instead of increasing the inner diameter of the glass pipe, the glass rod is stretched in order to secure the clearance between the glass pipe and the glass rod.
  • the improvement was made by focusing on the point that the diameter was reduced due to this. That is, when the glass rod is stretched as in the above-described third method, a disadvantage occurs in that the core of the glass rod is reduced in diameter.
  • the feed speed of feeding the drawn glass rod to the heating furnace is faster than the feed speed of the glass pipe, the cross-sectional area of the glass rod at the position where the two are integrated will be increased.
  • the fourth invention has been completed in view of the fact that the speed and the feed speed of the glass pipe are higher than in the case where they are the same.
  • a glass rod for a core, or a glass rod for a core and a clad is inserted into a glass pipe for a clad, and the inside of the glass pipe is depressurized while heating both of them by a heating furnace.
  • the present invention is directed to a method for manufacturing an optical fiber preform for integrating and stretching the above glass pipe and glass rod.
  • the feed speed of the glass rod to the heating furnace is adjusted so as to be higher than the feed speed of the glass pipe and not more than twice the feed speed of the glass pipe.
  • the glass rod is preferably reduced in diameter by, for example, stretching, that is, reduced in diameter without changing C / C in the glass rod.
  • the feed speed of the glass pipe is made larger than the feed speed of the glass pipe, so that the feed speed of the glass rod and the feed speed of the glass pipe are made equal to each other.
  • the glass pipe is integrated with the glass pipe in a state where the cross-sectional area of the glass pipe is enlarged.
  • the ratio of the cross-sectional area of the glass rod to the cross-sectional area of the glass pipe changes, and the two are integrated in a state where the cross-sectional area of the glass rod is relatively large with respect to the cross-sectional area of the glass pipe. .
  • the effect of the reduction in the core diameter due to the extension of the glass rod is cancelled, and the glass pipe and the glass rod are integrated.
  • the C-C of the optical fiber base material obtained by this process becomes the target CZC.
  • the feed speed of the glass rod is set to less than twice the feed speed of the glass pipe. For example, if the feed speed of the crow rod is too high than the feed speed of the glass pipe, the length of the glass rod becomes several times longer than the length of the glass pipe. In addition, a glass pipe and a long glass rod inserted into the glass pipe are sent to a heating furnace, and an extremely large facility for stretching an optical fiber preform is required. Since it is difficult to realize all of these problems, the glass rod feed speed should be less than twice the glass pipe feed speed.
  • the gap between the glass pipe and the glass rod is increased, Using a stretched glass rod with a smaller diameter than the cross-sectional area, adjust the feed rate of the above glass rod so that the core / clad ratio set when the above glass pipe and glass rod are integrated is set. Is the case.
  • the diameter of the glass rod by reducing the diameter of the glass rod, the clearance becomes relatively large without increasing the inner diameter of the glass pipe. Therefore, the friction between the glass pipe and the glass rod is avoided, and the generation of bubbles is prevented.
  • the target optical fiber preform of CZC is manufactured.
  • the inner diameter of the glass pipe does not become large, the diameter of the glass pipe is reduced uniformly, and the eccentricity of the core is avoided. Also, a large heating furnace is not required. Further, the glass pipe does not need to have a small cross-sectional area corresponding to the reduction in the diameter of the glass rod, and thus a large optical fiber preform can be manufactured.
  • the glass rod used in the production of such an optical fiber preform for example, produced by the VAD method or the like,
  • the core diameter, the refractive index difference between the core and the clad, or the CZC may change in the longitudinal direction. If such a glass rod whose structure changes in the longitudinal direction is integrated at the same feed speed as the glass pipe to form an optical fiber preform, the CZC of this optical fiber preform will change with the structural change in the longitudinal direction of the glass rod. Reflecting this, it has changed in the longitudinal direction.
  • the glass rod is divided in the longitudinal direction into a plurality of glass rods, and a target suitable for the structure of each of the divided glass rods so that the cutoff wavelength in the optical fiber becomes a desired value.
  • CZC is set and the manufacturing process is adjusted for each divided glass rod. For example, a portion of the glass rod having a large core diameter is cut out, and the cut glass rod is stretched, or a portion of the glass rod having a high refractive index difference between the core and the clad is cut out.
  • Set the target CZC higher than usual and set the glass rod and glass pie To integrate with the
  • the sixth invention solves this problem. Specifically, the feed rate of the glass rod is adjusted so that the glass pipe and the glass rod are integrated in the longitudinal direction at a desired core / cladding ratio. It is characterized by doing.
  • the glass pipe and the glass rod are integrated in the longitudinal direction at a desired core / cladding ratio” means that the core diameter of the glass rod, the refractive index difference between the core and the clad, or CZC is the longitudinal direction. This means that even if there is a variation, these variations are canceled out and the glass pipe and glass rod are integrated so as to become the optical fiber base material of the target CZC.
  • a desired CZC optical fiber preform can be obtained even if the core diameter, the refractive index difference between the core and the clad, or the glass rod whose C / C changes in the longitudinal direction.
  • the CZC increases from the end where integration begins to the end where integration ends
  • the rod is gradually integrated with the glass pipe by gradually increasing the feed speed of the glass rod, an optical fiber preform having a desired CZC in the longitudinal direction is manufactured.
  • CZC is almost constant in the longitudinal direction, but the difference in the refractive index between the core and the cladding increases from the end where integration starts to the end where integration ends
  • the glass rod is integrated with the glass pipe by gradually reducing the feed speed of the glass rod, an optical fiber preform having a desired CC in the longitudinal direction is manufactured.
  • the glass rod in which both the refractive index difference between the core and the clad and the CZC increase from the end where the integration starts to the end where the integration ends A target CZC is set for each minute section in the longitudinal direction, and the glass rod is set based on the set target CZC. If the feed rate is increased / decreased and integrated with the glass pipe, an optical fiber preform with the desired CZC in the longitudinal direction is manufactured.
  • An optical fiber drawn from a large optical fiber preform that has been treated in this way has a stable cut-off wavelength in the longitudinal direction, improving the yield of optical fibers and realizing low-cost production of optical fibers. I do.
  • the above-mentioned control of the feed speed of the glass rod is performed, for example, by integrating the glass rod core diameter, the refractive index difference between the core and the clad, or the amount of change in the CZC in the longitudinal direction before the glass rod and the glass pipe are integrated. It may be measured or predicted in advance, and may be performed by a control program configured based on the amount of change. If the difference in the refractive index between the core and the clad in the glass rod is substantially constant in the longitudinal direction, the core diameter is measured while the two are being integrated, and the glass rod is measured based on the measured value. Feedback control for controlling the feed speed of the motor may be performed.
  • glass rods and glass pipes are integrated after correcting their bending deformation.
  • glass rods and glass pipes are used. It becomes difficult to correct the bending of the glass rod-to-glass pipe because of the large size.
  • the eccentricity of the core in the optical fiber preform may increase.
  • the seventh invention solves this problem. Specifically, one or both of the glass pipe and the glass rod are rotated around the longitudinal axis of the glass pipe or the glass rod. The glass pipe and the glass rod are integrated.
  • the amount of core eccentricity is reduced. If this core eccentricity is reduced, the polarization dispersion characteristics are improved. Therefore, according to the method for manufacturing an optical fiber according to the seventh invention, a more accurate optical fiber can be obtained, and a large optical fiber preform can be obtained. It can be manufactured.
  • FIG. 1 is a perspective view showing a state during the production of the optical fiber preform.
  • FIG. 2 is a perspective view showing how the glass pipe and the glass rod are integrated by the method for manufacturing an optical fiber preform according to the first embodiment.
  • FIG. 3 is a view corresponding to FIG. 2, showing how a glass pipe and a glass rod are integrated by a conventional optical fiber preform manufacturing method.
  • Figure 4 shows the experimental results of evaluating the bubbles inside the optical fiber preform and the core eccentricity measured by drawing the optical fiber when the optical fiber preform was manufactured by changing L IZ (L 1 + L2). is there.
  • Figure 5 shows the experimental results of evaluating the bubble eccentricity inside the optical fiber preform and the core eccentricity measured by drawing the optical fiber when the optical fiber preform was manufactured by changing (d OZDO) / (d lZDl). It is.
  • FIG. 6 is a view corresponding to FIG. 2, showing how the glass pipe and the glass rod are integrated when the clearance is small.
  • FIG. 7 is a view corresponding to FIG. 2, showing how the glass pipe and the glass rod are integrated when the clearance is large.
  • FIG. 8 is a diagram showing the relationship between L 1 Z (L 1 + L2) obtained by the experiment, the core eccentricity, and the number of generated bubbles.
  • FIG. 9 is a diagram showing the relationship between (d OZDO) / (d 1 / D 1) obtained from the experiment and the core eccentricity.
  • FIG. 10 is a view corresponding to FIG. 2, showing how a glass pipe and a glass rod are integrated by the method for manufacturing an optical fiber preform according to the second embodiment.
  • FIG. 11 is a diagram corresponding to FIG. 2 showing how the glass pipe and the glass rod are integrated when a glass pipe having a large inner diameter is used.
  • FIG. 12 is a diagram corresponding to Fig. 2 showing how the glass pipe and the glass rod are integrated when a glass pipe having both large inner and outer diameters is used.
  • FIG. 13 is a diagram showing a glass rod.
  • FIG. 3 is a diagram corresponding to FIG. 2, showing a state in which a glass pipe and a glass rod are integrated with each other when a material whose outer diameter is reduced by stretching is used.
  • FIG. 14 is a diagram corresponding to FIG. 2 showing a state in which the glass pipe and the glass rod are integrated when a clad portion is removed and the outer diameter is reduced as the glass rod.
  • FIG. 15 is a view corresponding to FIG. 2, showing how the glass pipe and the glass rod are integrated when the clearance is reduced.
  • Figure 16 shows the evaluation of the bubbles inside the optical fiber preform and the core eccentricity measured by drawing the optical fiber when the optical fiber preform was manufactured by changing the size of the clearance and the feed speed of the glass rod.
  • the first embodiment corresponds to the first to third inventions.
  • FIG. 1 shows a state during the production of the optical fiber preform according to the first embodiment, wherein 1 is a glass pipe for cladding, 2 is a core or a glass rod for core and cladding, 3 is the glass pipe 1 and It is a night to heat both glass rods 2.
  • the glass pipe 1 for example, a pipe manufactured by an OVD method or the like may be used.
  • the glass rod 2 is obtained by sintering a glass fine particle deposit obtained by depositing glass fine particles by a VAD method, or forming a solid core by forming a core glass on the inner peripheral surface of a clad pipe by an MCVD method. And it is sufficient.
  • the heating furnace provided with the heater 3 specifically, a carbon resistance heating furnace or a high-frequency induction heating furnace may be used.
  • the manufacturing procedure of the optical fiber preform will be described.
  • the upper end of the glass pipe 1 and the upper end of the glass rod 2 are held by a holding device (not shown), Insert glass rod 2 so that Then, while reducing the pressure in the glass pipe 1 by a pressure reducing device (not shown), the glass pipe 1 and the glass rod 2 are moved downward by the gripping device so as to be positioned in the heater 3. (See the arrow in the figure).
  • the glass pipe 1 and the glass rod 2 are heated by the heater 3 and when the glass pipe 1 is melted, the pressure difference between the inside and outside of the glass pipe 1 causes the glass pipe and the glass rod 2 to be integrated. I do.
  • the integrated optical fiber preform 4 is taken up by a take-off device (not shown) provided below the heater 3 and is extended downward (see the arrow in the figure). Thus, the integration of the glass pipe 1 and the glass rod 2 and the stretching of the optical fiber preform 4 are performed simultaneously.
  • the glass rod 2 is stretched in advance before the glass pipe 1 and the glass rod 2 are integrated. After that, the two are integrated. That is, the position where the glass rod 2 starts to extend is positioned higher than the position where the glass pipe 1 and the glass rod 2 are integrated (see L1 in the figure).
  • L2 is outside the glass pipe 1 by extending the integrated glass pipe 1 and glass rod 2 from the position where the glass pipe 1 and the glass rod 2 are integrated. The length to the position where the diameter becomes the predetermined diameter D2 is shown.
  • Fig. 4 shows the results of changing the value of L 1 Z (L 1 + L 2) as a parameter by changing the degree of decompression in the glass pipe 1 using various glass pipes 1 and glass rods 2.
  • FIG. 9 shows the results of an experiment in which bubbles generated in the optical fiber preform 4 and the amount of core eccentricity in an optical fiber obtained by drawing the optical fiber preform 4 when the optical fiber preform 4 is manufactured are shown.
  • Fig. 5 shows that the gap (clearance: (d0ZD0) Z (d1noD1)) between the glass pipe 1 and the glass rod 2 is small using various glass pipes 1 and glass rods 2.
  • D0 and d0 are the outer and inner diameters of the glass pipe 1 before drawing
  • Dl and dl are the outer and inner diameters of the glass pipe 1 at the integrated position
  • D2 and d2 are the drawing operations completed.
  • D is the outer diameter of the glass rod 2 before stretching.
  • Example 1 to 8 in FIG. 4 the optical fiber motherboard was adjusted by adjusting the degree of decompression in the glass pipe 1 so that the glass rod 2 was stretched before the glass pipe 1 and the glass rod 2 were integrated.
  • Material 4 was manufactured (see Fig. 2).
  • Examples 1 to 5 are examples in which the outer diameter D0 of the glass pipe 1 is relatively small.
  • Example 6 to Example 8 are examples in which the outer diameter D0 of the glass pipe 1 is relatively large.
  • Examples 9 to 14 in FIG. 5 the degree of pressure reduction in the glass pipe 1 was adjusted so that the glass rod 2 was stretched before the glass pipe 1 and the glass port 2 were integrated.
  • the value of LI / (L 1 + L 2) is plotted on the horizontal axis, the number of bubbles (black squares) generated in the optical fiber preform and the core eccentricity of the optical fiber (black square).
  • Figure 8 shows a plot plotted with the white triangles on the vertical axis. From the figure, it can be seen that when the value of L IZ (L 1 + L 2) is 0.1 or more and 0.8 or less, both generation of bubbles and eccentricity of the core are prevented. This tendency is the same even when the outer diameter D0 of the glass pipe 1 is large as in Examples 6 and 7, and the glass pipe 1 is large in diameter (DO is large) or thick (d OZDO is large). It can be seen that even with (small), the generation of air bubbles and the eccentricity of the core are reliably prevented.
  • FIG. 9 shows a plot in which the value of (d OZD O) / (dlZDl) is plotted on the horizontal axis and the amount of core eccentricity is plotted on the vertical axis. From the figure, if the value of (d 0 / D 0) Z (d lZD l) is 2 or less, that is, if the clearance is When it is relatively small, it can be seen that core eccentricity is prevented.
  • the second embodiment corresponds to the fourth to seventh inventions. Since the basic structure of the optical fiber preform according to the second embodiment is substantially the same as that of the first embodiment (see FIG. 1), only different points will be described.
  • the gripping device (not shown) that grips the upper ends of the glass pipe 1 and the glass rod 2 moves the glass pipe 1 and the glass rod 2 downward, respectively.
  • the feed speed of the glass pipe 1 and the glass rod 2 is set to be different from each other.
  • the gripping device is configured to be able to rotate the glass rod 2 around its central axis X in the longitudinal direction. If necessary, the glass rod 2 is rotated while being integrated with the glass pipe 1. It has become to be.
  • the glass rod 2 used in the second embodiment has a relatively small diameter by stretching (see d in FIG. 10).
  • the glass pipe 1 has been conventionally used. As a result, a gap (clearance) between the glass rod 2 and the glass pipe 1 is relatively large.
  • the glass The glass pipe 1 and the glass rod 2 are moved downward while the pressure in the pipe 1 is reduced by the pressure reducing device.
  • the feed speed V R of the glass rod 2 is set to the feed speed V P of the glass pipe 1.
  • the feed rate is set to be faster than that.
  • the feed rate V ⁇ of the glass rod 2 is adjusted by a preset control program, and the CZC of the optical fiber preform 4 is changed.
  • the specified CZC is set.
  • the optical fiber preform 4 having a predetermined C / C can be manufactured and the large optical fiber preform 4 can be manufactured even if the glass pipe 1 does not have a small cross-sectional area.
  • the glass pipe 1 can be used as it is in a size conventionally used, the cost required for changing the size of the glass pipe 1 is not increased.
  • the glass pipe 1 does not have a large outer diameter and inner diameter, the glass pipe 1 is uniformly reduced in diameter when the glass pipe 1 and the glass rod 2 are integrated. Thus, eccentricity of the core is avoided.
  • an optical fiber preform having a desired CZC can be manufactured.
  • the glass rod 2 is integrated with the glass pipe 1 while rotating around the central axis X in the longitudinal direction, so that the axial symmetry of the optical fiber preform 4 with respect to the central axis X in the longitudinal direction is achieved. And the eccentricity of the core of the optical fiber preform 4 can be reduced.
  • the feed rate V R of the glass rod 2 is determined, for example, by measuring the core diameter of the optical fiber preform 4 while the glass pipe 1 and the glass rod 2 are being integrated, and based on the measured core diameter. it may perform feedback control for controlling the feed speed V R.
  • the glass pipe 1 may be rotated around the longitudinal center axis X. Even in this case, the axial symmetry with respect to the longitudinal center axis X of the optical fiber preform 4 is improved, and the core eccentricity of the optical fiber preform 4 is reduced. Further, both the glass pipe 1 and the glass mouth 2 may be rotated.
  • Figure 1 6 is a variety of glass pipe 1 and with a glass rod 2 parameters Isseki and to clearance of the magnitude of, and to produce a fiber-I Ba preform by changing the feed speed V R of the glass rod 2
  • experimental results are shown for evaluating bubbles generated in the optical fiber preform and core eccentricity measured by drawing the optical fiber.
  • d is the diameter of the glass rod 2 before stretching
  • dl and dl ' are the outer diameter of the glass rod 2 (the inner diameter of the glass pipe 1) at the integrated position.
  • the glass pipe 1 and the glass rod an example in which an optical fiber preform was produced without 2 are Sureawa, among this, embodiment, the glass rod 2 to send at a faster feed rate than the glass pipe 1 (V R Z
  • V P> 1) which is an example of manufacturing an optical fiber preform.
  • Comparative Example 3 is an example in which the glass pipe 1 and the glass rod 2 rub against each other to produce an optical fiber preform because the clearance is small as shown in FIG.
  • Comparative Examples 1 and 2 having a large clearance bubbles were prevented from being generated due to friction between the glass pipe 1 and the glass rod 2, but the cutoff wavelength was large compared to the target value. They are different (Comparative Example 1) and the eccentricity of the core is large (Comparative Example 2).
  • Comparative Example 3 where the clearance is small it can be seen that bubbles are generated due to the glass pipe 1 and the glass rod 2 rubbing each other.
  • the cutoff wavelength of the optical fiber is close to the target cutoff wavelength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

明糸田書 光ファイバ母材の製造方法 技術分野
本発明は、 クラッド用ガラスパイプ内に、 コア用ガラスロッド、 又はコア及び クラッド用ガラスロッドを挿入し、 両者を加熱しながら上記ガラスパイプ内を減 圧して、 上記ガラスパイプとガラスロッドとの一体化及び延伸を行う光ファイバ 母材の製造方法に関する。 背景技術
光ファイバ母材の製造方法の主なものとしては、 〇VD (Outside Vapor Depo si t ion) 法、 V AD (Vapor-phase Axial Deposition) 法、 MC VD (Modified Chemical Vapor Deposition) 法の 3つが挙げられる。 ここで、 VAD法や MC VD法においては、 生産性の観点から、 コア用又はコア及びクラッド用ガラス口 ッドを製造した後に、 光ファイバ母材の大部分を占めることとなるクラッドを、 上記ガラスロッドの外周囲に別工程によって形成する手法が採用されている。 具体的に上記クラッドの形成方法としては、 例えば上記ガラスロッドに対して スー卜と呼ばれるガラス微粒子を堆積させ、 これを加熱して透明ガラス化する、 いわゆる外付け法が知られている。
これに対し、 例えば、 日本の特公昭 56— 45867号公報には、 別工程にお いて予め製造されたクラッド用ガラスパイプ内に、 上記コア若しくはコア及びク ラッド用ガラスロッドを挿入し、 このガラスパイプとガラスロッドとを一体化さ せる、 いわゆるロッドインチューブ法が記載されている。 このロッドインチュ一 ブ法としては、 具体的には、 パーナ火炎によって上記ガラスパイプ及びガラス口 ッドを加熱し、 このパーナ火炎のガスによって上記ガラスパイプをガラスロッド に押し付けるようにして両者を一体化させる方法が知られている。 また、 これと は異なり、 上記ガラスパイプ及びガラスロッドを加熱炉 (ヒー夕) 等によって加 熱しつつ、 上記ガラスパイプ内の圧力を減圧するようにして、 このガラスパイプ 内外の圧力差によって、 両者を一体化させる方法も知られている。
上記のような製法によつて製造された光ファィバ母材は、 線引き工程を行うこ とによって光ファイバとなる力 例えば、 特開昭 5 0— 8 5 3 4 5号公報には、 上記線引き工程を上記ロッドィンチューブ法による光ファイバ母材の製造と同時 に行う方法が記載されている。
また、 近年、 生産コストの低減化等の観点から、 光ファイバ母材を大型化する ことが求められており、 この要求を満たすため、 上記光ファイバ母材を大径にす ることが行われている。 ところが、 大径の光ファイバ母材をそのまま線引きする と、 目標径の光ファイバに安定させるまでに長時間を要することとなってしまレ 大量の母材を消費してしまうようになってしまう。
そこで、 通常は、 線引きを行う前に、 大径の光ファイバ母材を歩留まりが最大 となる最適の径まで縮径させる縮径工程を行うようにしている。 例えば、 特開平 7 - 1 0 5 8 0号公報には、 この光ファイバ母材の縮径工程を上記ロッドィンチ ュ一ブ法による光ファイバ母材の製造と同時に行うようにして、 その生産性を向 上させようとする方法が記載されている。
ところで、 上記のガラスパイプとガラスロッドとを一体化させて光ファイバ母 材を製造する場合には、 ガラスパイプとガラスロッドとの間に気泡等が発生する 場合がある。 この気泡は、 光ファイバの損失不良や接続不良の原因となるため、 光ファイバ母材の製造の際に気泡の発生を確実に防止しなければならない。 とこ ろが、 この気泡の発生の防止に関係して以下の第 1及び第 2の問題が存在する。 まず、 第 1の問題は、 ガラスパイプとガラスロッドとを一体化する際のガラス パイプ内の圧力に関係する。
つまり、 上記気泡が発生する原因の内の一つは、 ガラスパイプ内周面に存在す る傷やガラスパイプ内周面に付着した水分及びガスにある。 そこで、 このガラス パイプ内周面の傷等に起因する気泡の発生を防止するために、 上記ガラスパイプ の内周面を十分に洗浄し、 かつ水分等を完全に除去した上で、 上記ガラスロッド をガラスパイプ内に挿入することが、 通常行われている。 さらに、 上記ガラスパ イブの内周面に付着したガスの残留を防止する観点から、 ガラスパイプとガラス ロッドとを一体化する際にはこのガラスパイプ内の圧力を極めて低圧にして (減 圧度を高くして) 、 両者の一体化を行うようにしている。
しかしながら、 気泡の発生防止を目的として、 ガラスパイプ内の減圧度を高く すれば、 このガラスパイプが急激に縮径しょうとすることから、 その縮径部分の 曲率が大となり、 偏肉量の増加を招いてしまう。 その結果、 両者を一体化したと きに、 コアの偏心量が大きくなつてしまうという不都合がある。 このコアの偏心 量は、 大型の光ファイバ母材を製造する目的で、 大型のガラスパイプ、 例えばそ の内外径比が小である厚肉のガラスパイプや外径の大きいガラスパイプを用いる 場合には、 特に犬になりやすい。 このコアの偏心を防止するには、 ガラスパイプ 内の減圧度を低くした状態でガラスパイプとガラスロッドとの一体化を行うこと が有効であるが、 減圧度を低くすれば、 上述したように光ファイバ母材の内部に 気泡が発生する虞がある。
このように、 ガラスパイプとガラスロッドとを一体化させて光フアイバ母材を 製造する場合における第 1の問題は、 上記ガラスパイプ内周面の傷等に起因する 気泡の発生を防止することと、 コアの偏心を防止することとは相反する要求とな つてしまうことである。 特に大型の光ファイバ母材の製造においては、 上記第 1 の問題を解決することは極めて困難である。
次に、 第 2の問題は、 ガラスパイプとガラスロッドとの間の隙間 (クリアラン ス) に関係する。
つまり、 上記のガラスパイプとガラスロッドとを一体化させて光フアイバ母材 を製造する場合においては、 上記クリアランスを小さくした方が、 上記ガラスパ イブとガラスロッドとの一体化が容易になり、 しかも、 両者を一体化した際にそ のコアの偏心量が小さくなる。
ところが、 上記クリアランスを小さくすれば、 上記ガラスロッドをガラスパイ プ内に挿入する際に両者が擦れ合ってしまい、 この擦れ合いによってガラスパイ プの内周面やガラスロッドの外周面に傷が生じてしまう。 その結果、 ガラスパイ プとガラスロッドとの間に気泡等が発生してしまう虞がある。 特に、 長尺の光フ アイバ母材を製造する場合には、 長尺のガラスロッドを長尺のガラスパイプ内に 挿入することになるため、 両者の擦れ合いを回避することは極めて困難なことと なってしまう。
そこで、 上記ガラスパイプとガラスロッドとのクリアランスを大きくして両者 の一体化及び延伸を行うことが考えられ、 具体的には、 以下の 4つの手法が考え られる。
まず、 第 1の手法は、 図 1 1に示すように、 ガラスパイプを、 その外径が従来 と同じであって内径のみが従来よりも大きいものとすることによって、 上記ガラ スパイプとガラスロッドとのクリアランスを大きくする手法である。 尚、 同図に おける一点鎖線は、 従来のガラスパイプの内径を示している。 この第 1の手法で は、 上記ガラスパイプとガラスロッドとの擦れ合いは回避されるものの、 上記ガ ラスパイプの断面積が小さくなり、 両者を一体化した際にクラッド部分の面積が 不足してしまうという不都合がある。 つまり、 光ファイバ母材のコア ·クラッド 比 (クラッド径をコア径で割った値、 以下 C Z Cと略す) は所定の値にする必要 があり、 ガラスロッドにおけるコアの断面積に応じたガラスパイプの断面積が必 要となる。 第 1の手法では、 完成した光ファイバ母材の C Z Cを所定の値にする には、 不足した分の断面積を有するガラスパイプを追加して被覆する必要があり、 2回以上のガラスパイプ被覆を行う必要がある。 このため、 生産コストの増大、 また、 被覆回数が増加することに伴い、 追加して被覆したガラスパイプの界面に 気泡の発生して不良母材となるリスクが高くなつてしまうという不都合がある。 第 2の手法は、 図 1 2に示すように、 ガラスパイプを、 その断面積は従来と同 様であるが、 内径及び外径が共に大きいものとすることによって、 上記ガラスパ イブとガラスロッドとのクリアランスを大きくする手法である。 この第 2の手法 でも、 上記ガラスパイプとガラスロッドとの擦れ合いは回避されるものの、 上記 ガラスパイプの内径がガラスロッドの外径となるまで、 このガラスパイプを大幅 に縮径させる必要がある。 このため、 上記ガラスパイブが均一に縮径せずに、 光 ファイバ母材におけるコアの偏心量が大きくなつてしまう虞がある。 また、 ガラ スパイプの断面積が従来のものと同じであることから、 内径を大きくする分だけ 外径が大きくなつてしまう。 特に、 シングルモード光ファイバのようにコアに対 してクラッドが大きい光ファイバを製造する場合には、 上記ガラスパイプは、 断 面積が大なるものを用いる必要があり、 これに伴いガラスパイプはより一層大外 径のものとなってしまう。 この場合、 上述したような不都合が生じる他に、 大型 のガラスパイプは入手が困難でありかつ高価であるという不都合や、 ガラスパイ プが大外径であることから、 加熱炉等の製造設備も大型にしなければならず、 設 備コストゃ運転コス卜が増大してしまうという不都合もある。
第 3の手法は、 図 1 3に示すように、 ガラスパイプの内径を大とするのではな く、 ガラスロッドを延伸して小径にすることによって、 上記ガラスパイプとガラ スロッドとのクリアランスを大きくする手法である。 尚、 同図における一点鎖線 は、 従来のガラスロッドの外径を示す。 この第 3の手法でも、 上記ガラスパイプ とガラスロッドとの擦れ合いは回避されるものの、 ガラスパイプの断面積が、 ガ ラスロッドにおけるコアの断面積に対し大きくなりすぎてしまい、 完成した光フ アイバ母材の C Z Cを所定の値にすることが困難となってしまう。 つまり、 ガラ スロッドを延伸することによって、 ガラスロッドにおけるコアの断面積が小さく なり、 これに伴い必要なガラスパイプの断面積も小さくなる。 ところが、 上記ガ ラスパイプは従来と同じ断面積を有するため、 上記ガラスパイプとガラスロッド との一体化及び延伸すれば、 完成した光フアイバ母材の C Cは所定値を大きく 上回ってしまう。 このような光ファイバ母材の C Z Cを所定の値とするために、 ガラスパイプにおける不必要な部分を火炎研磨等によつて除去することも考えら れるが、 ガラスパイプ部分を除去すれば光ファイバ母材が小型になってしまう。 また、 本来必要としない火炎研磨工程を必要とすることから生産工程数の増大を 招き、 生産コストが増大してしまう。 尚、 上記ガラスパイプとして、 延伸したガ ラスロッドの径に応じた断面積のものを用いれば、 所定の C Z Cとなった光ファ ィバ母材が得られるが、 この場合は、 光ファイバ母材が小型化してしまい、 生産 性が低下するという問題がある。
第 4の手法は、 特に、 シングルモード光ファイバ用の光ファイバ母材を製造す る場合に考えられる手法であり、 図 1 4に示すように、 ガラスロッドを延伸する のではなく、 ガラスロッドにおけるクラッド部分を除去することによって、 コア の径を確保したまま外径を小径化し、 ガラスパイプとガラスロッドとのクリアラ ンスを確保する手法である。 第 4の手法でも、 上記ガラスパイプとガラスロッド との擦れ合いは回避されるものの、 完成した光ファイバ母材を線引きした光ファ ィバは損失が高いものとなってしまう。 つまり、 光ファイバ母材におけるガラス ロッドとガラスパイプとの界面には、 光ファイバにおけるコア内を伝播する信号 光を吸収する O H基が残留してしまう場合がある。 そこで、 通常は、 ガラスロッ ドの外径を大きくすることにより、 上記ガラスロッドとガラスパイプとの界面が コアから離れるようにして、 たとえガラスロッドとガラスパイプとの界面に O H 基が残留しても、 この O H基による信号光の吸収の影響を受け難くなるようにし ている。 例えば 1 . 3 z m帯シングルモード光ファイバ用の光ファイバ母材を製 造する場合は、 上記ガラスロッドの外径が、 ガラスロッドにおけるコアの外径の 約 3 . 6倍 (C Z Cが 3 . 6 ) 以上必要であり、 通常は、 C Z Cが約 4のガラス ロッドを用いるようにしている。 ところ力 第 4の手法のように上記ガラスロッ ドにおけるクラッド部分を除去すると、 上記界面がコアに近くなつてしまい、 こ の界面に残留する〇H基による信号光の吸収によって光ファイバの損失が高くな つてしまう。
このように、 ガラスパイプとガラスロッドとを一体化させて光ファイバ母材を 製造する場合における第 2の問題は、 上記の第 1〜第 4の各手法を用いることに よりクリアランスを大として気泡の発生を防止しょうとしても、 コアの偏心量の 増大や生産性の低下その他の問題を招いてしまうことになり、 それらを共に防止 することは極めて困難なものとなってしまうことである。
本発明は、 ガラスパイプとガラスロッドとの一体化及び延伸を行う光ファイバ 母材の製造において気泡の発生の防止を目的とするものであって、 特に、 気泡の 発生の防止に関係した第 1及び第 2の問題を解決することを目的とする。 発明の開示
まず、 上記第 1の問題を解決するために、 本発明者は、 ガラスパイプ内の減圧 度、 加熱温度、 及びガラスパイプとガラスロッドとの加熱炉への送り速度等の点 に着目して実験を繰り返した。 その結果、 気泡の発生とコアの偏心との双方を確 実に防止し得る光ファイバ母材の製造条件を見出し、 第 1の発明を完成するに至 つた。
つまり、 ガラスパイプとガラスロッドとの一体化及び延伸を行う場合に、 気泡 の発生及びコアの偏心の双方を防止するためには、 ガラスパイプ内の減圧度を最 適にすることが特に重要であることが判明した。 そこで、 本発明者は、 この減圧 度に着目して実験を繰り返した結果、 コアの偏心が生じない程度であって、 かつ、 気泡の発生が確実に防止できるガラスパイプ内の減圧度、 すなわち、 最適な減圧 度を見出すに至った。 そして、 このような最適な減圧度でもってガラスパイプと ガラスロッドとの一体化及び延伸を行ったときには、 上記ガラスパイプとガラス ロッドとが一体化する前に、 このガラスパイプ及びガラスロッドのいずれか一方 又は双方が延伸し、 その後両者が一体化するようになつていることを見出した。 例えば、 減圧度が高すぎる場合には、 上記ガラスパイプとガラスロッドとがー体 化した後に双方が延伸するようになってしまい、 この場合は、 上述したように、 コアの偏心が生じ易くなつてしまう。 一方、 減圧度が低すぎる場合には、 上記ガ ラスパイプとガラスロッドとが一体化することなくそれぞれ十分に延伸した後に この両者が一体化しようとするが、 この場合は、 完全には一体化しない。 これに 対し、 最適な減圧度の場合には、 ガラスパイプ及びガラスロッドのいずれか一方 又は双方が延伸された後に、 上記ガラスパイプ及びガラスロッドが一体化するよ うになる。 そして、 このようにガラスパイプ及びガラスロッドのいずれか一方又 は双方が延伸された後に、 上記ガラスパイプ及びガラスロッドが一体化する場合 には、 気泡の発生とコアの偏心との双方が確実に防止されることが確認された。 また、 大径のガラスパイプや厚肉のガラスパイプを用いる場合であっても、 気泡 の発生とコアの偏心との双方が確実に防止されることが確認されて、 第 1の発明 を完成するに至った。
具体的に第 1の発明は、 クラッド用ガラスパイプ内に、 コア用ガラス□ッド、 又はコア及びクラッド用ガラスロッドを挿入し、 このガラスパイプとガラスロッ ドとを加熱しながら上記ガラスパイプ内を減圧して、 上記ガラスパイプとガラス 口ッドとの一体化及び延伸を行ぅ光フアイバ母材の製造方法を対象とする。 そして、 上記ガラスパイプ及びガラスロッドのいずれか一方又は双方を延伸し た後に上記ガラスパイプとガラスロッドとを一体化し、 その後このガラスパイプ の外径が所定径となるまで上記一体化させたガラスパイプ及びガラスロッドの延 伸を行うことを特徴とする。
ここで、 最適な減圧度の値は、 上記ガラスパイプ及びガラスロッドを加熱する 加熱炉の温度条件や、 ガラスパイプとガラスロッドとの間の隙間の大きさ等のガ ラスパイプ及びガラスロッドの形状に依存するものである。 このため、 減圧度に よって最適な製造条件を全て規定することは困難である。 そこで、 本発明者は、 上記減圧度を規定する代わりに、 ガラスパイプ及びガラスロッドの長手方向に対 する距離を利用すれば最適な製造条件を設定し得ることを見出し、 第 2の発明を 完成するに至った。
具体的に第 2の発明は、 ガラスパイプ及びガラスロッドのいずれか一方又は双 方が延伸を開始する位置から、 上記ガラスパイプとガラスロッドとが一体化する 位置までの長さを L 1とし、 上記ガラスパイプとガラスロッドとが一体化する位 置から、 この両者が延伸して上記ガラスパイプの外径が所定径となる位置までの 長さを L 2としたときに、
0. 1≤L 1/ (L 1 +L 2) ≤ 0. 8
を満たすように上記ガラスパイプとガラスロッドとの一体化及び延伸を行うこと を特徴とする。
さらに、 本発明者は、 コアの偏心量は、 クリアランスの大きさにも依存するこ とを見出した。 例えば、 上記クリアランスが大きい場合には、 上記ガラスパイプ が縮径する際におけるガラスパイプの曲率が大きくなるため、 コァの偏心が生じ 易くなつてしまう。 そして、 上記クリアランスによって規定した最適な製造条件 を見出し、 第 3の発明を完成するに至った。
具体的に第 3の発明は、 ガラスパイプの外径を D 0, 内径を d 0とし、 上記ガ ラスパイプとガラスロッドとが一体化する位置における上記ガラスパイプの外径 を D 1 , 内径を d lとしたときに、
(d 0/D 0) / (d 1ZD 1) ≤2
を満たすように上記ガラスパイプとガラスロッドとの一体化及び延伸を行うこと を特徴とする。
例えば、 (d OZDO) Z (d l/D l) の値が大きい、 すなわちクリアラン スが大きいときは、 ガラスパイプの縮径の曲率が大きくなつてしまいコアの偏心 が生じる虞があるが、 上記第 3の発明のように、 (d OZD O) / (d 1/D 1) の値を 2以下とすることによって、 コアの偏心が確実に防止される。
第 1〜第 3の発明に係る光ファイバ母材の製造方法は、 大型の光ファイバ母材 の製造にも適しており、 例えば、 その内径外径比が 0. 5以下の厚肉のガラスパ イブを用いる場合や、 外径が 4 8 mm以上の大外径のガラスパイプを用いる場合 でも、 気泡の発生及びコアの偏心を防止して、 光ファイバ母材を製造することが 可能となる。
一方、 上記第 2の問題を解決するために、 本発明者は、 ガラスパイプとガラス ロッドとのクリアランスを確保することとして、 ガラスパイプの内径を大とする のではなく、 ガラスロッドを延伸することによって小径化する点に着目し改良加 えた。 すなわち、 上述の第 3の手法のようにガラスロッドを延伸すると、 このガ ラスロッドにおけるコアが小径化されることに伴う不都合が生じてしまう。 とこ ろが、 延伸したガラスロッドを加熱炉へ送るときの送り速度を、 ガラスパイプの 送り速度よりも速くすれば、 両者が一体化する位置における上記ガラスロッドの 断面積が、 上記ガラスロッドの送り速度とガラスパイプの送り速度とが同じ場合 に比べて大きくなる点に鑑みて第 4の発明を完成するに至ったものである。 具体的に第 4の発明は、 クラッド用ガラスパイプ内に、 コア用ガラスロッド、 又はコア及びクラッド用ガラスロッドを挿入し、 この両者を加熱炉によって加熱 しながら上記ガラスパイプ内を減圧して、 上記ガラスパイプとガラスロッドとの 一体化及び延伸を行う光ファイバ母材の製造方法を対象とする。
そして、 上記ガラスロッドの上記加熱炉への送り速度を、 上記ガラスパイプの 送り速度よりも速い速度であって、 上記ガラスパイプの送り速度の 2倍以下の速 度となるように調整することを特徴とする。
ここで、 上記ガラスロッドは、 例えば延伸することによって小径化したもの、 すなわち、 ガラスロッドにおける C / Cを変更せずに小径化したものとするのが よい。
上記第 4の発明によると、 ガラスパイプの送り速度をガラスパイプの送り速度 よりも大とすることによって、 上記ガラスロッドの送り速度とガラスパイプの送 り速度とを同じにした場合と比較して、 上記ガラスパイプの断面積が拡大した状 態で上記ガラスパイプと一体化する。 つまり、 上記ガラスロッドの送り速度とガ ラスパイプの送り速度とを同じにした場合は、 ガラスロッドの断面積とガラスパ イブの断面積との比は常に一定に保たれるが、 ガラスロッドの送り速度をガラス パイプの送り速度よりも速くすることによって、 ガラスロッドの断面積とガラス パイプの断面積との比が変化し、 ガラスパイプの断面積に対してガラスロッドの 断面積が相対的に大になった状態で両者が一体化される。 このように、 ガラスパ イブとガラスロッドとの断面積比を増大させることによって、 ガラスロッドを延 伸したことによるコア径の細径化の影響がキャンセルされ、 上記ガラスパイプと ガラスロッドとを一体化させることによって得られた光ファィバ母材の Cノ Cは 目標 C Z Cになる。
ここで、 ガラスロッドの送り速度をガラスパイプの送り速度の 2倍以下の速度 とするのは、 次の理由による。 例えばこのカラスロッドの送り速度がガラスパイ プの送り速度よりも余りに速い速度であれば、 上記ガラスロッドの長さは、 ガラ スパイプの長さに比べて数倍のものとなってしまう。 また、 ガラスパイプと、 こ のガラスパイプ内に挿入された長尺なガラスロッドとを加熱炉に送ると共に、 光 ファイバ母材を延伸させる極めて大型の設備が必要となってしまう。 これらの全 て実現するのが困難であるという不都合が生じるため、 ガラスロッドの送り速度 としては、 ガラスパイプの送り速度の 2倍以下の速度とするのがよい。
上記第 4の発明に係る光ファイバ母材の製造方法として特に有効となるのは、 第 5の発明の如く、 ガラスパイプとガラスロッドとの間の隙間が大となるように、 このガラスパイプの断面積と比較して小径にされた延伸ガラスロッドを用い、 上 記ガラスロッドの送り速度を、 上記ガラスパイプとガラスロッドとが一体化する ときに設定したコア ·クラッド比となるように調整する場合である。
この場合、 ガラスロッドを小径とすることによって、 ガラスパイプの内径を大 径としなくてもクリアランスは比較的大となる。 このため、 ガラスパイプとガラ スロッドとの擦れ合いが回避されて、 気泡の発生が防止される。 また、 ガラス口 ッドが小径であっても、 ガラスロッドの送り速度を速くすることによって、 上述 したように目標 C Z Cの光ファイバ母材が製造される。 さらに、 ガラスパイプの 内径が大径とならないため、 このガラスパイプが均一に縮径してコアの偏心が回 避される。 また、 大型の加熱炉も必要としない。 さらに、 ガラスパイプを、 ガラ スロッドの小径化に対応した断面積の小さいものとしなくてもよく、 これにより、 大型の光ファイバ母材が製造可能になる。
この第 4及び第 5の発明のように、 ガラスパイプの送り速度 V Pとガラスロッド の送り速度 V Rの比 (V RZ V P) を 1ぐ (V R Z V P) 2に設定すれば、 例えば外 径が 2 5〜4 5 mm程度のガラスロッドと、 内径が 5 0〜5 5 mm程度のガラス パイプとを用いて、 クリアランスが 5〜 1 5 mm程度に設定された大型かつ長尺 の光ファイバ母材の製造する場合でも、 気泡の発生及びコアの偏心その他の不都 合が確実に回避される。
ところで、 特に大型かつ長尺の光ファイバ母材の製造において問題となる点で あるが、 このような光ファイバ母材の製造に用いられる、 例えば V A D法等によ つて製造されるガラスロッドは、 コア径、 コアとクラッドとの間の屈折率差、 又 は C Z Cがその長手方向に変化したものとなってしまう場合がある。 このような 長手方向に構造が変化したガラスロッドを、 ガラスパイプと同じ送り速度で一体 化させて光ファイバ母材とすれば、 この光ファイバ母材の C Z Cは、 ガラスロッ ドの長手方向に対する構造変化を反映して、 長手方向に変化したものとなってし まう。
このため、 通常は、 ガラスロッドを長手方向に分割して複数のガラスロッドに し、 光ファイバにおけるカットオフ波長が所望の値となるように、 上記分割した 各ガラスロッド毎の構造に適した目標 C Z Cを設定して、 分割した各ガラスロッ ド毎に製造工程を調整している。 例えば、 ガラスロッドにおけるコア径の大きい 部分を切り出し、 この切り出したガラスロッドを延伸したり、 ガラスロッドにお けるコアとクラッドとの間の屈折率差が高い部分を切り出し、 このガラスロッド については、 目標 C Z Cを通常よりも高めに設定してガラスロッドとガラスパイ プとの一体化を行うようにしている。
しかしながら、 このようにガラスロッドを複数に分割して、 分割したガラス口 ッド毎に個別に製造工程を調整するのでは、 歩留まりの低下を招いたり、 製造ェ 程の管理が複雑になってしまう等の問題がある。
第 6の発明は、 この問題を解決するものであり、 具体的には、 ガラスロッドの 送り速度を、 ガラスパイプとガラスロッドとが長手方向に所望のコア ·クラッド 比で一体化するように調整することを特徴とする。
ここで、 「ガラスパイプとガラスロッドとが長手方向に所望のコア ·クラッド 比で一体化する」 とは、 ガラスロッドにおけるコア径、 コアとクラッドとの間の 屈折率差、 又は C Z Cが長手方向にばらついていても、 これらのばらつきをキヤ ンセルして、 目標 C Z Cの光フアイバ母材となるように上記ガラスパイプとガラ スロッドとを一体化させることを意味する。
この第 6の発明によると、 コア径、 コアとクラッドとの間の屈折率差、 又は C / Cが長手方向に変化したガラスロッドであっても、 所望の C Z Cの光ファイバ 母材が得られる。 例えば、 コアとクラッドとの間の屈折率差は長手方向にほぼ一 定であるが、 C Z Cは一体化が開始される端部から一体化が終了する端部に向か つて増大しているガラスロッドは、 このガラスロッドの送り速度を次第に増速さ せてガラスパイプと一体化させれば、 長手方向に所望の C Z Cとなった光フアイ バ母材が製造される。 また、 例えば、 C Z Cは長手方向にほぼ一定であるが、 コ ァとクラッドとの間の屈折率差は一体化が開始される端部から一体化が終了する 端部に向かって増加しているガラスロッドは、 このガラスロッドの送り速度を次 第に減速させてガラスパイプと一体化させれば、 長手方向に所望の C Cとなつ た光ファイバ母材が製造される。 さらに、 例えば、 コアとクラッドとの間の屈折 率差及び C Z Cの双方が一体化が開始される端部から一体化が終了する端部に向 かって増大しているガラスロッドは、 このガラスロッドの長手方向に対する微少 区間毎に目標 C Z Cを設定し、 この設定した目標 C Z Cに基づきガラスロッドの 送り速度を増減速させてガラスパイプと一体化させれば、 長手方向に所望の C Z Cとなった光フアイバ母材が製造される。
このような処理を行った大型光ファイバ母材を線引きした光ファイバは、 長手 方向に安定したカツトオフ波長を持つことになり、 光ファイバの歩留まりが向上 して低コス卜の光ファイバの製造が実現する。
上記ガラスロッドの送り速度の制御は、 例えば、 ガラスロッドとガラスパイプ とを一体化する前にガラスロッドのコア径、 コアとクラッドとの間の屈折率差又 は C Z Cの長手方向に対する変化量を予め測定又は予測しておき、 この変化量に 基づいて組まれた制御プログラムによって行ってもよい。 また、 ガラスロッドに おけるコアとクラッドとの間の屈折率差が長手方向にほぼ一定である場合には、 両者を一体化している最中にコア径を測定し、 この測定値に基づいてガラスロッ ドの送り速度を制御するフィードバック制御を行ってもよい。
尚、 ガラスパイプの送り速度を調整することによつても、 上記と同様の作用 · 効果が得られる。
また、 通常、 ガラスロッドやガラスパイプはその曲がり変形を修正した上で、 一体化を行うようにしているが、 特に大型かつ長尺の光ファイバ母材を製造する 場合にはガラスロッド及びガラスパイプが大型化するため、 ガラスロッドゃガラ スパイプの曲がりを修正することが困難となる。 一方、 この曲がりを修正するこ となく両者を一体化させれば、 光フアイバ母材におけるコアの偏心量が大きくな つてしまう虞がある。
第 7の発明は、 この問題を解決するものであり、 具体的には、 ガラスパイプ及 びガラスロッドのいずれか一方又は双方を、 このガラスパイプ又はガラスロッド の長手方向軸回りに回転させながら、 上記ガラスパイプとガラスロッドとの一体 化を行うことを特徴とする。
第 7の発明のように、 ガラスパイプ及びガラスロッドのいずれか一方又は双方 を長手方向中心軸回りに回転させながら両者を一体化させると、 光ファイバ母材 T/JP00/04071
15 における長手方向中心軸に対する軸対称性が向上するため、 コア偏心量が低減す る。 このコア偏心量が低減すれば偏波分散特性が向上することから、 第 7の発明 に係る光ファイバの製造方法によると、 より高精度の光ファイバが得られる、 大 型の光フアイバ母材が製造可能となる。
図面の簡単な説明
図 1は光ファイバ母材の製造中の状態を示す斜視図である。
図 2は第 1実施形態に係る光ファイバ母材の製造方法によってガラスパイプと ガラスロッドとを一体化させる様子を示す斜視図である。
図 3は従来の光ファイバ母材の製造方法によってガラスパイプとガラスロッド とを一体化させる様子を示す図 2対応図である。
図 4は L IZ (L 1 +L2) を変えて光ファイバ母材を製造した場合の光ファ ィバ母材内部の気泡と光ファイバに線引きして測定したコア偏心量について評価 した実験結果である。
図 5は (d OZDO) / (d lZDl) を変えて光ファイバ母材を製造した場 合の光ファイバ母材内部の気泡と光ファイバに線引きして測定したコア偏心量に ついて評価した実験結果である。
図 6はクリアランスが小さい場合のガラスパイプとガラスロッドとを一体化さ せる様子を示す図 2対応図である。
図 7はクリアランスが大きい場合のガラスパイプとガラスロッドとを一体化さ せる様子を示す図 2対応図である。
図 8は実験により得られた L 1 Z (L 1+L2) とコア偏心量及び発生した気 泡の数との関係を示す図である。
図 9は実験により得られた (d OZDO) / (d 1 /D 1 ) とコア偏心量との 関係を示す図である。
図 10は第 2実施形態に係る光ファイバ母材の製造方法によってガラスパイプ とガラスロッドとを一体化させる様子を示す図 2対応図である。 図 1 1はガラスパイプとして、 その内径が大きいものを用いた場合のガラスパ イブとガラスロッドとを一体化させる様子を示す図 2対応図である。
図 1 2はガラスパイプとして、 その内径及び外径が共に大きいものを用いた場 合のガラスパイプとガラスロッドとを一体化させる様子を示す図 2対応図である 図 1 3はガラスロッドとして、 延伸することによりその外径を小さくしたもの を用いた場合のガラスパイプとガラスロッドとを一体化させる様子を示す図 2対 応図である。
図 1 4はガラスロッドとして、 クラッド部分を削除してその外径を小さくした ものを用いた場合のガラスパイプとガラスロッドとを一体化させる様子を示す図 2対応図である。
図 1 5はクリアランスを小さくした場合のガラスパイプとガラスロッドとを一 体化させる様子を示す図 2対応図である。
図 1 6はクリアランスの大きさ及びガラスロッドの送り速度を変えて光フアイ バ母材を製造した場合の光ファイバ母材内部の気泡と光ファイバに線引きして測 定したコア偏心量とについて評価した実験結果である。 発明を実施するための最良の形態
一第 1実施形態一
第 1実施形態は、 第 1〜第 3の発明に対応するものである。
図 1は、 第 1実施形態に係る光ファイバ母材の製造中の状態を示していて、 1 はクラッド用ガラスパイプ、 2はコア、 又はコア及びクラッド用ガラスロッド、 3は上記ガラスパイプ 1及びガラスロッド 2の双方を加熱するヒ一夕である。 上 記ガラスパイプ 1としては、 例えば、 O V D法等によって製造されたものを用い るようにすればよい。 また、 上記ガラスロッド 2は、 V A D法によってガラス微 粒子を堆積させたガラス微粒子堆積体を焼結したものや、 M C V D法によってク ラッドパイプ内周面にコアガラスを形成して中実化したものとすればよい。 さら に、 上記ヒー夕 3を備える加熱炉としては、 具体的には、 カーボン抵抗加熱炉ゃ 高周波誘導加熱炉を用いるようにすればよい。
次に、 光ファイバ母材の製造手順について説明すると、 まず、 上記ガラスパイ プ 1及びガラスロッド 2の上端をそれぞれ図示省略の把持装置によって把持した 状態で、 ガラスパイプ 1内にこのガラスパイプ 1と同軸となるようにガラスロッ ド 2を挿入する。 そして、 上記ガラスパイプ 1内を、 図示省略の減圧装置によつ て減圧しながら、 上記把持装置によって上記ガラスパイプ 1とガラスロッド 2と が上記ヒー夕 3内に位置するように下方に移動させる (同図の矢印参照) 。
上記ガラスパイプ 1及びガラスロッド 2は、 上記ヒー夕 3によって加熱される ようになり、 上記ガラスパイプ 1が溶融するとこのガラスパイプ 1の内外圧力差 によって上記ガラスパイプと上記ガラスロッド 2とが一体化する。 この一体化し た光ファイバ母材 4は、 上記ヒータ 3の下方に備えられた図示省略の引取り装置 に引き取られて下方に延伸されるようになっていて (同図の矢印参照) 、 これに より、 ガラスパイプ 1とガラスロッド 2との一体化と、 光ファイバ母材 4の延伸 とが同時に行われるようになつている。
第 1実施形態では、 図 2に示すように、 ガラスパイプ 1内の減圧度を調整する ことによって、 上記ガラスパイプ 1とガラスロッド 2とが一体化する前に、 上記 ガラスロッド 2を予め延伸させてから、 両者 2の一体化が行われる。 すなわ ち、 ガラスロッド 2が延伸し始める位置が、 ガラスパイプ 1とガラスロッド 2と が一体化する位置よりも上方に位置するようにしている (同図の L 1参照) 。 尚、 同図における L 2は、 上記ガラスパイプ 1とガラスロッド 2とが一体化する位置 から、 この一体化したガラスパイプ 1及びガラスロッド 2が延伸されることによ り上記ガラスパイプ 1の外径が所定径 D 2となる位置までの長さを示している。 一方、 図 3は、 従来の光ファイバ製造方法における上記ガラスパイプ 1とガラ スロッド 2との一体化の様子を示しており、 この場合、 上記ガラスパイプ 1及び ガラスロッド 2のいずれも延伸することなく両者 1, 2が一体化し、 一体化後の 光ファイバ母材 4が延伸するようになっているため、 L 1が存在していない。 次に、 第 1実施形態に係る光ファイバ母材の製造方法について行った実験につ いて説明する。
図 4は、 各種のガラスパイプ 1及びガラスロッド 2を用い、 上記ガラスパイプ 1内の減圧度を変更することによってパラメ一夕としての L 1 Z ( L 1 + L 2 ) の値を変化させて光フアイバ母材 4を製造した場合における、 光ファイバ母材 4 内に発生する気泡と、 この光ファイバ母材 4を線引きした光ファイバにおけるコ ァ偏心量とについて評価した実験結果を示している。 また、 図 5は、 各種のガラ スパイプ 1及びガラスロッド 2を用い、 ガラスパイプ 1とガラスロッド 2との間 の隙間 (クリアランス : (d 0 ZD 0 ) Z ( d 1ノ D 1 ) ) が小さいとき (図 6 参照) と、 クリアランスが大きいとき (図 7参照) とで光ファイバ母材 4を製造 した場合における、 光ファイバ母材 4内に発生する気泡と、 光ファイバにおける コア偏心量とについて評価した実験結果を示している。
ここで、 D 0, d 0は延伸前のガラスパイプ 1の外径及び内径、 D l , d lは 一体化した位置におけるガラスパイプ 1の外径及び内径、 D 2, d 2は延伸作業 が終了したときのガラスパイプ 1の外径 (光ファイバ母材径) 及び内径である。 また、 dは延伸前のガラスロッド 2の外径である。
図 4における実施例 1〜実施例 8は、 上記ガラスパイプ 1とガラスロッド 2と が一体化する前にガラスロッド 2が予め延伸するよう、 ガラスパイプ 1内の減圧 度を調整して光ファイバ母材 4を製造した例であり (図 2参照) 、 上記実施例 1 〜実施例 8の内、 実施例 1〜実施例 5は、 ガラスパイプ 1の外径 D 0が比較的小 さい例、 実施例 6〜実施例 8は、 上記ガラスパイプ 1の外径 D 0が比較的大きい 例である。
また、 図 5における実施例 9〜実施例 1 4は、 上記ガラスパイプ 1とガラス口 ッド 2とが一体化する前にガラスロッド 2が予め延伸するよう、 ガラスパイプ 1 内の減圧度を調整して光ファィバ母材 4を製造した例であり、 上記実施例 9〜実 施例 14の内、 実施例 9〜実施例 1 2は、 ガラスパイプ 1の外径 D 0が比較的小 さい例、 実施例 1 3〜実施例 14は、 上記ガラスパイプ 1の外径 D 0が比較的大 きい例である。
一方、 従来例 1又は従来例 2は、 上記ガラスパイプ 1及びガラスロッド 2のい ずれも予め延伸することなく、 両者 2が一体化し、 一体化後に両者 1, 2が 延伸するようにして光ファイバ母材 4を製造した例であり (図 3参照) 、 従来例 1は、 ガラスパイプ 1の外径 D 0が比較的小さい例、 従来例 2は、 ガラスパイプ 1の外径 D 0が比較的大きい例である。
さらに、 図 4における比較例 1は、 ガラスパイプ 1内の減圧度を小さくした例 であって、 ガラスパイプ 1とガラスロッド 2とが完全には一体化しなかった例で ある (L 2 = 0) 。
この図 4及び図 5に基づいて、 L I/ (L 1 +L 2) の値を横軸に、 光フアイ バ母材内に発生した気泡の数 (黒四角) 及び光ファイバのコア偏心量 (白抜き三 角) を縦軸にしてプロットした図を図 8に示す。 同図から、 L IZ (L 1 +L 2) の値が 0. 1以上 0. 8以下であれば、 気泡の発生及びコアの偏心が共に防 止されていることがわかる。 この傾向は、 例えば実施例 6, 7のように上記ガラ スパイプ 1の外径 D 0が大きくなつても同様であり、 上記ガラスパイプ 1が大径 (D Oが大) あるいは厚肉 (d OZDOが小) であっても、 気泡の発生及びコア 偏心が確実に防止されることがわかる。
以上の結果から、 0. 1≤L 1/ (L 1 +L 2) ≤ 0. 8となるように、 ガラ スパイプ 1及びガラスロッド 2の一体化及び延伸を行うようにすることで、 気泡 の発生及び偏心を防止して、 光ファイバ母材 4を製造することができることが確 認できる。
また、 図 4及び図 5に基づいて、 (d OZD O) / (d lZD l) の値を横軸 に、 コア偏心量を縦軸にしてプロットした図を図 9に示す。 同図から、 上記 (d 0/D 0) Z (d lZD l) の値が 2以下であれば、 すなわち、 クリアランスが 比較的小さい場合には、 コア偏心が防止されていることがわかる。
以上の結果から、 (d O ZD O ) / ( d 1 / D 1 ) ≤2となるように、 ガラス パイプ 1及びガラスロッド 2の一体化及び延伸を行うようにすることで、 コア偏 心を防止して、 光ファイバ母材 4を製造することができることが確認できる。 尚、 この第 1実施形態における光ファイバ母材の製造方法は、 図 1に示すもの とは逆に、 ガラスパイプ 1及びガラスロッド 2を上方に延伸させるようにしても 同様の効果が得られる。 一第 2実施形態一
第 2実施形態は、 第 4〜第 7の発明に対応するものである。 この第 2実施形態 に係る光フアイバ母材の製造の基本的な構成は、 上記第 1実施形態のものとほぼ 同様であるため (図 1参照) 、 異なっている点についてのみ説明する。
上記ガラスパイプ 1及びガラスロッド 2の上端を把持する図示省略の把持装置 は、 上記ガラスパイプ 1とガラスロッド 2とをそれぞれ下方に移動させるように なっているが、 その移動速度 (ヒー夕 3への送り速度) は、 上記ガラスパイプ 1 とガラスロッド 2とで互いに異なる送り速度とすることができるように構成され ている。
また、 上記把持装置は、 ガラスロッド 2をその長手方向中心軸 X回りに回転さ せることが可能に構成されており、 必要に応じて、 上記ガラスロッド 2を回転さ せながらガラスパイプ 1と一体化させるようになつている。
次に、 上記光ファイバ母材 4の製造について説明すると、 第 2実施形態におい て用いられるガラスロッド 2は延伸することによつて比較的小径にされたもので ある一方 (図 1 0の d参照) 、 ガラスパイプ 1は従来から用いられているもので ある。 これにより、 このガラスロッド 2とガラスパイプ 1との間の隙間 (クリア ランス) は、 比較的大になっている。
そして、 上記ガラスパイプ 1内にガラスロッド 2を揷入した状態で、 上記ガラ スパイプ 1内を減圧装置によつて減圧しながら上記ガラスパイプ 1とガラスロッ ド 2とをそれぞれ下方に移動させるが、 このとき、 ガラスロッド 2の送り速度 V Rは、 ガラスパイプ 1の送り速度 V Pよりも速い送り速度となるようにされている。 これにより、 上記ガラスロッド 2がガラスパイプ 1と一体化する位置におけるガ ラスロッド 2の外径が、 光ファイバ母材 4が設定 C / Cとなるために必要なガラ スロッド 2の外径 d 1となり、 その結果、 一体化した光ファイバ母材 4は目標 C Z Cとなる。
また、 上記ガラスロッド 2における C Z C等が長手方向に対して変化している 場合には、 予め設定した制御プログラムによって、 ガラスロッド 2の送り速度 V κが調整されて光ファイバ母材 4の C Z Cが所定 C Z Cとなるようにされている。 このように、 ガラスロッド 2の外径を小径とすることによって、 クリアランス を比較的大とすれば、 ガラスパイプ 1とガラスロッド 2との擦れ合いを回避して 気泡の発生を防止することができる。 また、 ガラスロッド 2の外径を小径として もガラスロッド 2の送り速度 V Rを速くすることによって、 単位時間当たりのガラ スロッド 2の送り量は低下しない。 このため、 ガラスパイプ 1を、 断面積の小さ いものとしなくても所定 C / Cの光ファイバ母材 4が製造されると共に、 大型の 光ファイバ母材 4が製造可能となる。 また、 ガラスパイプ 1は、 従来から用いら れている大きさのものをそのまま利用することが可能であるため、 ガラスパイプ 1の大きさを変更すること等に要するコストの増大を招くことなく、 しかも、 加 熱炉を大型のものに変更する必要もない。 また、 上記ガラスパイプ 1は外径及び 内径が大なるものではないため、 ガラスパイプ 1とガラスロッド 2とが一体化す る際にガラスパイプ 1が均一に縮径する。 このため、 コアの偏心が回避される。 また、 ガラスロッド 2におけるコア径、 C / C、 又はコアとクラッドと間の屈 折率差が長手方向に変化していても、 このガラスロッドの送り速度 V Rを増減速調 整することによって、 所望の C Z Cとなった光ファイバ母材を製造することがで さる。 さらに、 必要に応じて、 ガラスロッド 2をその長手方向中心軸 X回りに回転さ せながらガラスパイプ 1と一体化させることによって、 光ファイバ母材 4におけ る長手方向中心軸 Xに対する軸対称性が向上するようになり、 光フアイバ母材 4 のコアの偏心量を低減することができる。
尚、 ガラスロッド 2の送り速度 V Rは、 例えばガラスパイプ 1とガラスロッド 2 とを一体化している最中に、 光ファイバ母材 4のコア径を測定し、 この測定した コア径に基づいて送り速度 V Rを制御するフィードバック制御を行うようにしても よい。
また、 ガラスロッド 2の送り速度 V Rを調整するのではなく、 ガラスパイプ 1の 送り速度を調整するようにしてもよい。 このようにしても、 上記と同様の作用 · 効果が得られる。
さらに、 ガラスロッド 2をその長手方向中心軸 X回りに回転させるのではなく、 ガラスパイプ 1を上記長手方向中心軸 X回り回転させるようにしてもよい。 この ようにしても、 光ファイバ母材 4の長手方向中心軸 Xに対する軸対称性が向上し、 光ファイバ母材 4のコア偏心量が低減する。 また、 ガラスパイプ 1及びガラス口 ッド 2の双方を回転させてもよい。
また、 この第 2実施形態における光ファイバ母材の製造方法は、 ガラスパイプ 1及びガラスロッド 2を上方に延伸させるようにしても同様の効果が得られる。 次に、 第 2実施形態に係る光ファイバ母材の製造方法について行った実験につ いて説明する。
図 1 6は、 各種のガラスパイプ 1及びガラスロッド 2を用いてパラメ一夕とし てのクリアランスの大きさ、 及び、 ガラスロッド 2の送り速度 V Rを変えて光ファ ィバ母材を製造した場合の、 光フアイバ母材内に発生する気泡と光ファイバに線 引きして測定したコァ偏心量とについて評価した実験結果を示している。
ここで、 dは延伸前のガラスロッド 2の怪、 d l, d l ' は一体化した位置に おけるガラスロッド 2の外径 (ガラスパイプ 1の内径) である。 また、 V R, V P 00/04071
23 はそれぞれガラスロッド 2の送り速度、 ガラスパイプ 1の送り速度である。
そして、 図 1 6における実施例、 比較例 1及び比較例 2は、 図 1 0、 図 1 3及 び図 1 2に示すように、 クリアランスが比較的大であるため、 ガラスパイプ 1と ガラスロッド 2とが擦れ合わずに光ファイバ母材が製造された例であり、 この内、 実施例は、 ガラスロッド 2をガラスパイプ 1よりも速い送り速度で送って (V RZ
V P> 1 ) 、 光ファイバ母材を製造した例である。
一方、 比較例 3は、 図 1 5に示すように、 クリアランスが小であるため、 ガラ スパイプ 1とガラスロッド 2とが擦れ合って光ファイバ母材が製造された例であ る。
この図 1 6から、 クリアランスが大きい比較例 1及び比較例 2では、 ガラスパ イブ 1とガラスロッド 2とが擦れ合うことに起因する気泡の発生は防止されてい るが、 カットオフ波長が目標値と大きく異なったり (比較例 1 ) 、 コアの偏心量 が大きくなつてたりしている (比較例 2 ) 。 また、 クリアランスが小さい比較例 3では、 ガラスパイプ 1とガラスロッド 2とが互いに擦れ合うことに起因する気 泡が発生していることがわかる。
これに対し、 クリアランスが大きい場合でかつガラスロッド 2の送り速度 V Rを ガラスパイプ 1の送り速度よりも速くした実施例では、 気泡の発生及びコアの偏 心が共に防止され、 しかも、 得られた光ファイバのカットオフ波長は、 目標カツ トオフ波長に近い値となっている。
以上の結果から、 第 2実施形態に係る光ファイバ母材の製造方法によれば、 気 泡の発生とコア偏心とを確実に防止し、 かつ、 目標カットオフ波長の光ファイバ が得られる大型光フアイバ母材が製造できることが確認できる。

Claims

言青求の範囲
1 . クラッド用ガラスパイプ内に、 コア用ガラスロッド、 又はコア及びクラッド 用ガラスロッドを揷入し、 このガラスパイプとガラスロッドとを加熱しながら上 記ガラスパイプ内を減圧して、 上記ガラスパイプとガラスロッドとの一体化及び 延伸を行う光ファイバ母材の製造方法において、
上記ガラスパィプ及びガラスロッドのいずれか一方又は双方を延伸した後に上 記ガラスパイプとガラスロッドとを一体化し、 その後このガラスパイプの外径が 所定径となるまで上記一体化させたガラスパイプ及びガラスロッドの延伸を行う ことを特徴とする光ファイバ母材の製造方法。
2 . 請求項 1に記載の光ファイバ母材の製造方法において、
ガラスパイプ及びガラスロッドのいずれか一方又は双方が延伸を開始する位置 から、 上記ガラスパイプとガラスロッドとが一体化する位置までの長さを L 1と し、
上記ガラスパイプとガラスロッドとが一体化する位置から、 この両者が延伸し て上記ガラスパイプの外径が所定径となる位置までの長さを L 2としたときに、
0 . 1≤L 1 / ( L 1 + L 2 ) ≤0 . 8
を満たすように上記ガラスパイプとガラスロッドとの一体化及び延伸を行うこと を特徴とする光ファイバ母材の製造方法。
3 . 請求項 1又は請求項 2に記載の光ファィバ母材の製造方法において、 ガラスパイプの外径を D 0, 内径を d 0とし、
上記ガラスパイプとガラスロッドとが一体化する位置における上記ガラスパイ プの外径を D l, 内径を d lとしたときに、
( d 0 / D 0 ) / ( d 1 /D 1 ) ≤ 2
を満たすように上記ガラスパイプとガラスロッドとの一体化及び延伸を行うこと を特徴とする光ファイバ母材の製造方法。
4 . クラッド用ガラスパイプ内に、 コア用ガラスロッド、 又はコア及びクラッド 用ガラスロッドを揷入し、 この両者を加熱炉によって加熱しながら上記ガラスパ ィプ内を減圧して、 上記ガラスパイプとガラスロッドとの一体化及び延伸を行う 光ファイバ母材の製造方法において、
上記ガラスロッドの上記加熱炉への送り速度を、 上記ガラスパイプの送り速度 よりも速い速度であって、 上記ガラスパイプの送り速度の 2倍以下の速度となる ように調整することを特徴とする光ファイバ母材の製造方法。
5 . 請求項 4に記載の光ファイバ母材の製造方法において、
ガラスパイプとガラスロッドとの間の隙間が大となるように、 このガラスパイ プの断面積と比較して小径にされた延伸ガラスロッドを用い、
上記ガラスロッドの送り速度を、 上記ガラスパイプとガラスロッドとが一体化 するときに設定したコア ·クラッド比となるように調整することを特徴とする光 ファイバ母材の製造方法。
6 . 請求項 4又は請求項 5に記載の光ファイバ母材の製造方法において、 ガラスロッドの送り速度を、 ガラスパイプとガラスロッドとが長手方向に所望 のコア ·クラッド比で一体化するように調整することを特徴とする光ファイバ母 材の製造方法。
7 . 請求項 4又は請求項 5に記載の光ファィバ母材の製造方法において、 ガラスパイプ及びガラスロッドのいずれか一方又は双方を、 このガラスパイプ 又はガラスロッドの長手方向軸回りに回転させながら、 上記ガラスパイプとガラ スロッドとの一体化を行うことを特徴とする光ファイバ母材の製造方法。
PCT/JP2000/004071 1999-06-22 2000-06-21 Procédé de fabrication de matière première pour fibre optique WO2000078686A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00940791A EP1203755B1 (en) 1999-06-22 2000-06-21 Production method for optical fiber base material
KR1020017016197A KR100632155B1 (ko) 1999-06-22 2000-06-21 광섬유 모재의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17495499A JP3553423B2 (ja) 1999-06-22 1999-06-22 光ファイバ母材の製造方法
JP11/174954 1999-06-22
JP11/190517 1999-07-05
JP19051799A JP3576873B2 (ja) 1999-07-05 1999-07-05 光ファイバ母材の製造方法

Publications (1)

Publication Number Publication Date
WO2000078686A1 true WO2000078686A1 (fr) 2000-12-28

Family

ID=26496380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004071 WO2000078686A1 (fr) 1999-06-22 2000-06-21 Procédé de fabrication de matière première pour fibre optique

Country Status (3)

Country Link
EP (2) EP1203755B1 (ja)
KR (1) KR100632155B1 (ja)
WO (1) WO2000078686A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964548B1 (ko) * 2001-08-22 2010-06-21 미츠비시 덴센 고교 가부시키가이샤 광섬유 모재의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559269B2 (ja) * 2002-07-11 2004-08-25 三菱電線工業株式会社 光ファイバ母材の製造方法、並びに該製造方法により製造された光ファイバ母材及び光ファイバ
CN106396361A (zh) * 2016-08-26 2017-02-15 江苏亨通光导新材料有限公司 一种光纤预制棒套管烧结装置及其烧结方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932162A (en) * 1974-06-21 1976-01-13 Corning Glass Works Method of making glass optical waveguide
GB1427826A (en) * 1973-10-09 1976-03-10 Sumitomo Electric Industries Method of producing an optical transmission line
JPS5590431A (en) * 1978-12-28 1980-07-09 Fujitsu Ltd Preparation of single mode glass fiber
JPS55144434A (en) * 1979-04-24 1980-11-11 Nippon Telegr & Teleph Corp <Ntt> Producing optical communication fiber
US4578096A (en) * 1980-08-13 1986-03-25 Warner-Lambert Technologies, Inc. Gradient index optical components
US4749369A (en) * 1987-03-13 1988-06-07 Wang Shun H Connector
US4820322A (en) * 1986-04-28 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Method of and apparatus for overcladding a glass rod
JPH0585345A (ja) 1991-09-25 1993-04-06 Kubota Corp 走行車両に着脱自在なリヤローダ
JPH0710580A (ja) 1993-06-25 1995-01-13 Mitsubishi Cable Ind Ltd 光ファイバ母材の製造方法
JPH0710586A (ja) * 1993-06-25 1995-01-13 Fujikura Ltd 光ファイバ用スートプリフォームの製造方法
WO1998033746A1 (en) * 1997-02-05 1998-08-06 Corning Incorporated Method of having optical fiber having depressed index core region

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085345A (ja) 1973-11-28 1975-07-09
JPS5510458A (en) 1978-07-08 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of fiber base material for light communication
JPS5575933A (en) * 1978-11-30 1980-06-07 Sumitomo Electric Ind Ltd Production of fiber for light transmission
CA1317464C (en) * 1986-04-28 1993-05-11 William Malcolm Flegal Method of and apparatus for overcladding an optical preform rod
JP3379074B2 (ja) * 1994-04-25 2003-02-17 日本電信電話株式会社 光ファイバの製造方法
JP3607351B2 (ja) * 1995-04-04 2005-01-05 三菱電線工業株式会社 光ファイバ用ガラス母材の製造方法
EP0881993B1 (en) * 1996-02-23 2001-06-13 Corning Incorporated Method of making dispersion decreasing and dispersion managed optical fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1427826A (en) * 1973-10-09 1976-03-10 Sumitomo Electric Industries Method of producing an optical transmission line
US3932162A (en) * 1974-06-21 1976-01-13 Corning Glass Works Method of making glass optical waveguide
JPS5590431A (en) * 1978-12-28 1980-07-09 Fujitsu Ltd Preparation of single mode glass fiber
JPS55144434A (en) * 1979-04-24 1980-11-11 Nippon Telegr & Teleph Corp <Ntt> Producing optical communication fiber
US4578096A (en) * 1980-08-13 1986-03-25 Warner-Lambert Technologies, Inc. Gradient index optical components
US4820322A (en) * 1986-04-28 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Method of and apparatus for overcladding a glass rod
US4749369A (en) * 1987-03-13 1988-06-07 Wang Shun H Connector
JPH0585345A (ja) 1991-09-25 1993-04-06 Kubota Corp 走行車両に着脱自在なリヤローダ
JPH0710580A (ja) 1993-06-25 1995-01-13 Mitsubishi Cable Ind Ltd 光ファイバ母材の製造方法
JPH0710586A (ja) * 1993-06-25 1995-01-13 Fujikura Ltd 光ファイバ用スートプリフォームの製造方法
WO1998033746A1 (en) * 1997-02-05 1998-08-06 Corning Incorporated Method of having optical fiber having depressed index core region

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1203755A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964548B1 (ko) * 2001-08-22 2010-06-21 미츠비시 덴센 고교 가부시키가이샤 광섬유 모재의 제조방법

Also Published As

Publication number Publication date
EP1203755B1 (en) 2012-10-10
EP1203755A1 (en) 2002-05-08
EP2423170A2 (en) 2012-02-29
EP2423170B1 (en) 2013-08-21
KR100632155B1 (ko) 2006-10-11
EP2423170A3 (en) 2012-06-13
KR20020013925A (ko) 2002-02-21
EP1203755A4 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
CN101302076B (zh) 提高光纤预制件中低包层-纤芯比(D/d)的芯棒的D/d比
CN108585470B (zh) 一种vad制备高掺锗芯棒的装置及方法
US7437893B2 (en) Method for producing optical glass
JP3782923B2 (ja) 分散制御光ファイバ
JP4359183B2 (ja) 光ファイバ・プリフォームの楕円度修正方法
WO2000078686A1 (fr) Procédé de fabrication de matière première pour fibre optique
WO2011136324A1 (ja) ガラス母材製造方法
JP6459585B2 (ja) 光ファイバ用プリフォーム製造方法
WO2007054961A2 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP3576873B2 (ja) 光ファイバ母材の製造方法
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
WO2008003613A1 (en) Method for producing a tubular semifinished product from fluorine-doped quartz glass
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JPH0463018B2 (ja)
JP4495070B2 (ja) 光ファイバ用多孔質母材の製造方法
CN113716861A (zh) 一种采用外气相沉积法制备弯曲不敏感光纤的方法
JP5533205B2 (ja) ガラス母材製造方法
US20110011135A1 (en) Method of making a glass preform
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP2003226545A (ja) 光ファイバ母材の製造方法と光ファイバ母材の製造装置
JP4404214B2 (ja) 光ファイバ用ガラス母材の製造方法
RU2243943C2 (ru) Оптическое волокно, заготовка оптического волокна и способ их изготовления
WO2003018493A1 (fr) Procede de production d&#39;un support en fibre optique
JP3553423B2 (ja) 光ファイバ母材の製造方法
JPH0986948A (ja) 光ファイバ用多孔質ガラス母材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017016197

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018369

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2000940791

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2000940791

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017016197

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000940791

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017016197

Country of ref document: KR