WO2000078466A1 - High-efficiency gas dissolving device - Google Patents

High-efficiency gas dissolving device Download PDF

Info

Publication number
WO2000078466A1
WO2000078466A1 PCT/JP2000/004013 JP0004013W WO0078466A1 WO 2000078466 A1 WO2000078466 A1 WO 2000078466A1 JP 0004013 W JP0004013 W JP 0004013W WO 0078466 A1 WO0078466 A1 WO 0078466A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
nozzle
diameter
enlarged
Prior art date
Application number
PCT/JP2000/004013
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Yamamoto
Kenji Taguchi
Original Assignee
Fukuoka Prefectural Government
Riken Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government, Riken Company Limited filed Critical Fukuoka Prefectural Government
Publication of WO2000078466A1 publication Critical patent/WO2000078466A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone

Definitions

  • the present invention relates to a high-efficiency gas dissolving apparatus, and more particularly, to a gas dissolving apparatus capable of extremely efficiently reducing the size of a gas by destructively miniaturizing the gas by using the shear force and cavitation of water.
  • This gas dissolving apparatus is suitable for efficiently increasing the amount of dissolved oxygen in water near the bottom soil where organic matter such as bait and excrement accumulates, as in a culture pond, or for the treatment of wastewater in industry and the like.
  • biopesticides Recently, from a pathological standpoint, research and development of viral bacterial agents called biopesticides have been promoted. At the same time, however, the aquaculture industry is urgently required to establish sediment treatment technology from the viewpoint of increasing the oxygen concentration in water.
  • Wastewater treatment facilities such as chemical factories, paper mills, refineries, food processing factories, livestock, and commercial kitchens raise the same issues as those mentioned above for aquaculture ponds.
  • the object of the present invention has been made in view of the above-mentioned problems, and uses a shear force of water and a collapse impact force of a cavity to destructively decompose gas such as air. Efficiently disintegrating gas into water with high efficiency, e.g. efficiently increasing the amount of dissolved oxygen in the water near the bottom soil where organic matter accumulates in the water of aquaculture ponds, or efficiently treating wastewater
  • Another object of the present invention is to provide a high-efficiency gas dissolving apparatus having good performance. Disclosure of the invention
  • the high-efficiency gas dissolving apparatus according to the present invention is configured as follows to achieve the above object.
  • the high-efficiency gas dissolving apparatus includes a water supply section that discharges high-pressure water from a water injection port from a water discharge port, and a gas supply port that is provided with a gas introduction port to mix gas into high-pressure water by an ejector action.
  • a nozzle body having a hole, a large-diameter nozzle portion having an internal space expanded toward the front side, and having a large-diameter nozzle portion that positively generates cavitation due to the flow of high-pressure water discharged from the water discharge port of the water guide portion; And a collision member that is disposed further to the front of the nozzle body with a gap therebetween, and that disperses water containing microbubbles discharged from the enlarged-diameter nozzle portion to the periphery.
  • the cavitation generated in the negative pressure area in the internal space of the enlarged diameter nozzle section collapses in the positive pressure area, a local impact pressure is applied and the bubbles are destructively miniaturized.
  • the cavity is always standing in the internal space of the enlarged nozzle, and the generation and collapse of bubbles are repeated.
  • fine gas bubbles such as air can be diffused around the high-efficiency gas dissolving apparatus.
  • the “gas (gas)” includes a gas containing oxygen and ozone in addition to air, and the present invention can be applied to any other gas.
  • the description mainly focuses on a configuration in which a gas such as air, oxygen, or ozone is dissolved in water, but is not limited thereto.
  • the high-efficiency gas dissolving apparatus according to the present invention can also be used for dissolving a gas in a liquid or fluid other than water.
  • the nozzle is further miniaturized by having a nozzle body and a collision member that is disposed with a gap further on the front side of the nozzle body and that disperses water containing microbubbles discharged from the enlarged-diameter nozzle to the periphery. Gas bubbles can be uniformly diffused around the high-efficiency gas dissolving device.
  • the enlarged internal space (nozzle hole) in the enlarged diameter nozzle portion is shaped like a truncated cone, and the opening angle is set in the range of 40 to 90 degrees. Formed. As a result, the cavity can be kept inside the enlarged nozzle without going out of the internal space of the enlarged nozzle.
  • the collision member has a disk shape, and a surface facing the enlarged-diameter nozzle portion preferably has a downward slope in a radial direction from the center to the peripheral portion. Or, preferably, it is formed to be flat.
  • the collision member is fixed using a plurality of support rods. As described above, since the collision member is inclined downward in the radial direction from the center toward the peripheral portion, the fine gas bubbles existing in the space between the enlarged nozzle portion and the collision member are formed. Can be stirred mechanically In addition, it can diffuse uniformly around the high-efficiency gas dissolving device.
  • the collision member to the nozzle body with a plurality of support ports, the flow rate of the high-pressure water sent to the water inlet and the scale of the high-efficiency gas dissolving device, and the distance between the nozzle body and the collision member Can be adjusted. Thereby, under each condition, it is possible to create an optimum state in which water containing fine bubbles can be diffused around the high-efficiency gas dissolving apparatus.
  • the enlarged inner surface of the front end of the enlarged diameter nozzle portion may be smoothly rounded.
  • the radius of curvature in this case is preferably, for example, 10 to 5 Omm.
  • the water guide section is provided with a throttle section on the downstream side, and the throttle section is provided with a gas inlet.
  • FIG. 1 is a longitudinal sectional view of a high-efficiency gas dissolving apparatus according to one embodiment of the present invention.
  • FIG. 2 shows a collision plate of the high-efficiency gas dissolving apparatus according to the present embodiment, where (A) is a plan view of the collision plate, and (B) is obtained by cutting along a line BB passing through the center of the collision plate. It is a longitudinal cross-sectional view.
  • FIG. 3 shows an operation state of the high-efficiency gas dissolving apparatus according to the present embodiment
  • (A) is a diagram illustrating an operation state in submerged soil
  • (B) is a diagram illustrating an operation state in a gas dissolving device.
  • a high-efficiency gas melting apparatus 10 As shown in FIGS. 1 to 3, a high-efficiency gas melting apparatus 10 according to an embodiment of the present invention has a nozzle main body 11 and a nozzle main body 11 arranged with a gap at the front end thereof. And a collision plate 18.
  • the nozzle body 11 is composed of a water introduction section 14 and an enlarged diameter nozzle section 17.
  • the external shape of the nozzle body 11 has a cylindrical shape as a whole.
  • Each of the water guide section 14 and the enlarged diameter nozzle section 17 is a member having a cylindrical shape in appearance.
  • the collision plate 18 is an example of a collision member.
  • the collision plate 18 has a substantially disk shape.
  • the water guide section 14 of the nozzle body 11 has an inlet hole 14a formed with a water inlet 12 on the upper side and a water outlet 13 on the lower side.
  • the water guide hole 14a is formed as a through hole along the central axis of the water guide portion 14 having a cylindrical shape.
  • the high-pressure water accelerated to 20 to 5 OmZsec, which is sent via a pump 19 (see (A) in Fig. 3), which is an example of water transport means, is supplied to the water inlet 14 of the water inlet 14 And is discharged from the spout 13.
  • a gas supply hole 16 is provided through a gas introduction port 15 to a narrowed portion 22 provided downstream of the introduction portion 14.
  • Air which is an example of gas
  • Air is mixed into the high-pressure water that passes through the water introduction section 14. That is, as the high-pressure water rapidly rises in the squeezing part 22, a negative pressure phenomenon occurs, and the air naturally sucked (ejector action) from the gas supply hole 16 in the discharge direction of the high-pressure water is Mixed with high pressure water.
  • the inner outlet of the gas supply hole 16 is connected to the narrowed portion 22 of the inlet 14 as the gas inlet 15.
  • a gas pipe (not shown) for supplying gas from the outside is connected to the outside inlet of the gas supply hole 16.
  • An enlarged-diameter nozzle portion 17 is physically connected to the end face of the water introduction portion 14 on the side of the water discharge port 13.
  • the enlarged diameter nozzle portion 17 has a substantially cylindrical shape whose external length is relatively short in the axial direction, and has a diameter substantially equal to that of the water guide portion 14.
  • the water introduction part 14 and the enlarged diameter nozzle part 17 can be integrally formed by a technique such as resin molding.
  • the enlarged-diameter nozzle portion 17 has a nozzle hole as an internal space at the central axis. The diameter of the nozzle hole is enlarged so that the diameter of the base portion is small and the diameter of the front portion is gradually increased.
  • the shape of the space formed by the hole is a truncated cone as shown in FIG. That is, the nozzle hole formed in the enlarged-diameter nozzle portion 17 (or the inner wall surface or the inner surface forming the nozzle hole in the enlarged-diameter nozzle portion 17) is a tape whose diameter is increased from the base side to the front side. It is formed as a hole or divergent hole.
  • the opening angle of the nozzle hole of the enlarged diameter nozzle portion 17 is preferably 40 to 90 degrees.
  • the high-pressure water mixed with air discharged from the water discharge port 13 of the nozzle body 11 actively generates a cavity in the internal space (nozzle hole) of the enlarged-diameter nozzle section 17.
  • the static pressure of the water decreases, and the pressure of the water falls below the saturated vapor pressure (negative pressure region), causing cavitation.
  • the inner space of the enlarged diameter nozzle portion 17 has a divergent shape, in addition to the conventional shearing action of the jet, a stronger shearing force (gas tearing off) is generated. Also, the cavitation generated in the negative pressure region is (A region where the water pressure recovers to a positive pressure due to the stagnation flow on the wall surface side of the enlarged diameter nozzle portion 17) When collapsing, the local impact pressure is applied, and the bubbles are made finer.
  • the cavitation is always present in the internal space of the enlarged-diameter nozzle portion 17, and the generation and collapse of the cavitation are repeated, and a strong shear force acts efficiently and locally. This destructively miniaturizes the air, increases the surface area of the air in contact with the water, and allows more air (oxygen) to be dissolved in the water.
  • the surface of the disk-shaped collision plate 18 preferably has a downward slope from the center to the peripheral edge in the radial direction. Made in. Also, the surface of the collision plate 18 can be made to have a preferably flat surface shape.
  • the collision plate 18 is fixed to the enlarged nozzle 17 (nozzle body 11) by, for example, four support rods 21.
  • the inclined surface of the impingement plate 18 faces a large-diameter outlet (the lower opening in FIG. 1) in the internal space of the enlarged-diameter nozzle 17.
  • the number of the support rods 21 may be any number as long as the collision plate 18 can be stably attached to the enlarged-diameter nozzle portion 17 (nozzle body 11).
  • the distance between the enlarged nozzle portion 17 (nozzle body 11) and the collision plate 18 can be adjusted. Therefore, under each condition, it is possible to create an optimal state around the high-efficiency gas dissolving device 10 where water containing fine bubbles can be discharged. Wear.
  • the mounting method of the support rod 21 may be any as long as it can be mounted and fixed. For example, it is possible to provide a hole 18a in the collision plate 18 and attach it with a port or a screw or the like, and it is also possible to attach it by welding or the like. Further, since the collision plate 18 can change the radius of the collision plate 18 according to the scale of the high-efficiency gas dissolution apparatus 10, fine bubbles are mixed around the high-efficiency gas dissolution apparatus 10 under each condition. It is possible to create an optimal condition for dissipating water.
  • the hose may be any hose that can withstand a water speed of 20 to 50 / sec. It may be a metal or vinyl hose or tube.
  • Reference numeral 20 denotes a nipple bonded when the hose 19a is connected to the nozzle body 11 of the high-efficiency gas dissolving apparatus 10 so that the supplied water does not leak.
  • another sealing member that can prevent water leakage may be used.
  • the opening angle of the internal space of the enlarged diameter nozzle section 17 was set in the range of 40 to 90 degrees. The reason is as follows. When the opening angle is less than 40 degrees, in the high-pressure water flow discharged from the water discharge port 13 of the nozzle body 11, the central portion where the flow velocity is the fastest in the internal space of the enlarged diameter nozzle portion 17, and the slowest portion This is because there is no significant velocity distribution at the wall and no significant shearing force of the fluid is generated, so that air bubbles cannot be miniaturized. On the other hand, when the opening angle exceeds 90 degrees, water is drawn into the internal space of the enlarged nozzle 17 from around the high-efficiency gas dissolving device 10, and the internal space of the enlarged nozzle 17 is generated.
  • the opening angle of the internal space of the enlarged diameter nozzle section 17 is further 50 to 70 degrees. Is more preferable, and most preferably 60 degrees.
  • the enlarged inner surface of the front end forming the inner space of the enlarged nozzle 17 is smoothly rounded by setting its radius of curvature to 10 to 50 mm. As a result, fine air bubbles existing in the internal space of the enlarged nozzle 17 are uniformly distributed around the high-efficiency gas dissolving device 10 along the inner and lower surfaces of the enlarged nozzle 17. In addition, it can be diffused smoothly and smoothly.
  • the enlarged inner surface of the front end of the enlarged diameter nozzle portion 17 may be formed in a curved shape or an angular shape.
  • the high-efficiency gas dissolving apparatus 10 sets the discharge direction of the high-pressure water at the bottom of the water
  • the discharge direction may be any direction.
  • the material of the nozzle body 11 of the high-efficiency gas dissolving device 10 is a material that does not spread in water and a material that can withstand high-pressure water.
  • it may be made of metal such as stainless steel, hard resin, or plastic.
  • air is dissolved in water
  • the present invention is also applicable to a gas containing oxygen and ozone.
  • the diffuser system when high-pressure air passes through a porous material charged in water, the air is fined.
  • the bubble diameter is as large as 5 mm or more and the residence time in water is short, so the oxygen supply effect is low.
  • the power consumption of this oxygen supply device is 11 kW, and the oxygen dissolution efficiency is 4.8%.
  • the jet water jet method is a method in which a water jet is sprayed into water from a nozzle together with air to supply oxygen.
  • a water jet is sprayed into water from a nozzle together with air to supply oxygen.
  • the power consumption of this oxygen supply device is 11 kW and the oxygen dissolution efficiency is 0.8%.
  • the water turbine method is the most popular product in the aquaculture industry because of its low price. However, the only effect is to create a water stream, and the oxygen concentration increases only near the water surface. The power consumption of this oxygen supply device is 0.75 kW, and the oxygen dissolution efficiency is 0.5%.
  • the high-efficiency gas dissolving apparatus makes the gas fine and dissolves it in water or the like with extremely high efficiency, and efficiently increases the amount of dissolved oxygen in the water near the bottom soil where the organic matter is deposited in the water of the aquaculture pond. Efficient wastewater treatment in industrial or industrial wastewater treatment facilities, domestic wastewater treatment facilities, etc., and good economic efficiency.

Abstract

A high-efficiency gas dissolving device (10) which has a diameter-expanded nozzle with a collision member, wherein the shearing force and cavitation of water produced in the inner space of the diameter-expanded nozzle are utilized to efficiently atomize air, etc. This device (10) comprises a nozzle main body (11) having a water introducer (14), a gas feeder (16) and a diameter-expanded nozzle (17), and a collision plate (18) fixed to the nozzle main body. The water introducer (14) discharges high-pressure water, introduced through a water feeding port (12), from a discharge port (13). The gas feeder (16) is provided with a gas introducing port (15) in the water introducer (14) and mixes gas into the high-pressure water by ejector action. The diameter-expanded nozzle (17) positively generates cavitation in the inner space with a forwardly expanded diameter by the flow of high-pressure water discharged from the discharge port (13). The collision plate (18) is disposed with a gap defined in front of the diameter-expanded nozzle (17), so that the water mixed with fine air bubbles discharged from the diameter-expanded nozzle (17) is dispersed around.

Description

明 糸田 書 高効率ガス溶解装置  Akira Itoda High efficiency gas melting equipment
技術分野 Technical field
本発明は高効率ガス溶解装置に関し、 特に、 水のせん断力とキヤビ テーションを利用してガスを破壊的に微細化することにより極めて高 い効率でガスの微細化を行えるガス溶解装置に関する。 このガス溶解 装置は、 例えば養殖池のごとく残餌や排泄物等の有機物が堆積する底 土付近の水中溶存酸素量を効率よく高めること、 あるいは産業等の廃 水の処理に適している。 背景技術  The present invention relates to a high-efficiency gas dissolving apparatus, and more particularly, to a gas dissolving apparatus capable of extremely efficiently reducing the size of a gas by destructively miniaturizing the gas by using the shear force and cavitation of water. This gas dissolving apparatus is suitable for efficiently increasing the amount of dissolved oxygen in water near the bottom soil where organic matter such as bait and excrement accumulates, as in a culture pond, or for the treatment of wastewater in industry and the like. Background art
近年、 例えば養殖池では、 飼育効率を高めるため、 狭い空間に多量 の魚介類を飼育しており、 その過密度は増加傾向にある。 そのため、 溶存酸素濃度 (水中の酸素濃度) は低下すると共に発育速度も遅くな つている。 また残餌や排泄物が底土に有機物として堆積し、 堆積物中 で発生するビブリオ菌、 P A Vウィルス等の病原菌感染により大量死 が発生して、 生産効率が急激に落ち込む現象が起こっている。 特に餌 として与える魚粉等の配合飼料 (国内年間使用量 4 0万トン) は、 僅 か 2 0 %しか魚介類に消費されず、 残り 8 0 %は底土に堆積すること になる。 また病原菌対策として餌中に抗生物質等の化学薬品や成長促 進化のための成長ホルモン剤が使用されている。 しかし、 その有効性 は、 飼育する魚介類に十分な抵抗 (免疫) 力が備わっている場合のみ である。 酸素不足の状態では抵抗力は弱く、 その効果が上がっていな い。 このため、 堆積物の分解浄化するには効気性水中微生物による浄 化作用が必要となる。 それ故、 微生物の活動についても十分な酸素が 不可欠となっている。 In recent years, for example, in aquaculture ponds, a large amount of fish and shellfish have been bred in a narrow space in order to increase the breeding efficiency, and their overdensity is increasing. As a result, the dissolved oxygen concentration (oxygen concentration in water) has decreased and the growth rate has slowed. In addition, residual food and excrement are deposited as organic matter on the bottom soil, causing mass mortality due to infection with pathogenic bacteria such as Vibrio bacteria and PAV virus generated in the sediment, causing a phenomenon that production efficiency is rapidly reduced. In particular, only about 20% of fish feed and other mixed feeds (400,000 tons of domestic use) are consumed by fish and shellfish, and the remaining 80% is deposited on bottom soil. In addition, chemicals such as antibiotics and growth hormones for growth promotion and evolution are used in the diet as a measure against pathogenic bacteria. However, it is only effective if the bred fish and shellfish have sufficient resistance (immunity). In a state of lack of oxygen, the resistance is weak and the effect has not increased. For this reason, to remove and purify sediments, it is necessary to purify A chemical action is required. Therefore, sufficient oxygen is essential for microbial activity.
最近では病理学的な立場で生物農薬と呼ばれるウィルス性細菌剤の 研究開発が進められている。 しかし一方で、 養殖業界からは、 水中酸 素濃度を高める観点で堆積物処理技術の確立も急務であると要望され ている。  Recently, from a pathological standpoint, research and development of viral bacterial agents called biopesticides have been promoted. At the same time, however, the aquaculture industry is urgently required to establish sediment treatment technology from the viewpoint of increasing the oxygen concentration in water.
従来、 酸素が必要となる養殖池での酸素を供給する手法としては、 水車方式、 散気管方式 (多孔質の板や筒に高圧空気を注入する方式) 、 ジェッ ト水流方式等がある。 しかし、 どの方式でも、 酸素溶解効率が 2 0 %以上のものはない。 これらの方式では、 気泡発生よりも池全体 の水循環作用を重視した設計になっている。 これでは、 池底の溶存酸 素量を高めることはできない。 そのため堆積有機物を分解浄化する微 生物の活動は活性化されず、 病害による多量死が発生する。 その結果、 養殖池の水は大量に入れ換えざるを得なくなる。 さらに養殖池の水を 大量に入れ換えることで、 堆積物を含んだ酸素不作の水を河川や海に 放流する。 このため環境汚染の発生についても懸念されている。 以上 の理由から、 新規装置の開発の要請が多くなってきている。  Conventionally, as a method of supplying oxygen to a culture pond that requires oxygen, there are a water turbine method, an air diffuser method (a method of injecting high-pressure air into a porous plate or tube), a jet water flow method, and the like. However, none of the methods has an oxygen dissolution efficiency of more than 20%. These systems are designed to emphasize the water circulation of the entire pond rather than the generation of bubbles. This cannot increase the amount of dissolved oxygen at the bottom of the pond. As a result, the activity of microorganisms that decompose and purify sedimentary organic matter is not activated, and massive deaths due to disease occur. As a result, the water in the pond has to be replaced in large quantities. In addition, by replacing a large amount of water in the pond, sediment-laden oxygen-free water is released into rivers and oceans. For this reason, there is a concern about the occurrence of environmental pollution. For these reasons, there has been an increasing demand for the development of new equipment.
さらに他の点で重要なことは、 社会的に廃水処理の問題がクローズ アップされていることである。 化学工場、 製紙工場、 精油所、 食品加 ェ工場、 畜産、 業務用厨房などの廃水処理設備では、 前述した養殖池 での問題と同様な問題が提起されている。  Yet another important point is that the issue of wastewater treatment is being socially highlighted. Wastewater treatment facilities such as chemical factories, paper mills, refineries, food processing factories, livestock, and commercial kitchens raise the same issues as those mentioned above for aquaculture ponds.
本発明の目的は、 上記の問題に鑑みてなされたものであり、 水のせ ん断力とキヤビテ一シヨンの崩壊衝撃力を利用して空気等のガスを破 壊的に微細化し、 これにより極めて高い効率でガスを微細化して水に 溶解させ、 例えば養殖池の水について有機物が堆積する底土付近の水 中溶存酸素量を効率よく高め、 あるいは廃水を効率よく処理し、 経済 性も良好である高効率ガス溶解装置を提供することにある。 発明の開示 The object of the present invention has been made in view of the above-mentioned problems, and uses a shear force of water and a collapse impact force of a cavity to destructively decompose gas such as air. Efficiently disintegrating gas into water with high efficiency, e.g. efficiently increasing the amount of dissolved oxygen in the water near the bottom soil where organic matter accumulates in the water of aquaculture ponds, or efficiently treating wastewater Another object of the present invention is to provide a high-efficiency gas dissolving apparatus having good performance. Disclosure of the invention
本発明に係る高効率ガス溶解装置は、 上記目的を達成するために、 次のように構成される。  The high-efficiency gas dissolving apparatus according to the present invention is configured as follows to achieve the above object.
本発明の高効率ガス溶解装置は、 注水口から入った高圧水を吐水口 から吐出する導水部、 この導水部にガス導入口が設けられてェジェク ター作用によって高圧水にガスを混入するガス供給孔、 先側に向けて 拡径された内部空間を有しかつ導水部の吐水口から吐出される高圧水 流の流れによって積極的にキヤビテーションを発生させる拡径ノズル 部を有するノズル本体と、 このノズル本体の更に先側に隙間をあけて 配置され、 拡径ノズル部から放出される微泡混じりの水を周囲に放散 する衝突部材とを有する。  The high-efficiency gas dissolving apparatus according to the present invention includes a water supply section that discharges high-pressure water from a water injection port from a water discharge port, and a gas supply port that is provided with a gas introduction port to mix gas into high-pressure water by an ejector action. A nozzle body having a hole, a large-diameter nozzle portion having an internal space expanded toward the front side, and having a large-diameter nozzle portion that positively generates cavitation due to the flow of high-pressure water discharged from the water discharge port of the water guide portion; And a collision member that is disposed further to the front of the nozzle body with a gap therebetween, and that disperses water containing microbubbles discharged from the enlarged-diameter nozzle portion to the periphery.
上記の構成によれば、 拡径ノズル部の内部空間において負圧領域で 生じたキヤビテーシヨンが正圧領域で崩壊する際に局所衝撃圧が加わ つて破壊的に気泡が微細化される。 拡径ノズル部の内部空間でキヤビ テ一シヨンを常に定在させ、 気泡の生成と崩壊を繰り返す。 また衝突 部材を設けることで、 微細化された空気等のガス (気体) の気泡を高 効率ガス溶解装置の周囲に放散できる。 ここで 「ガス (気体) 」 とは、 空気の他に酸素やオゾンを含むガスがあり、 これ以外のガスであって も本発明は適用できる。  According to the above configuration, when the cavitation generated in the negative pressure area in the internal space of the enlarged diameter nozzle section collapses in the positive pressure area, a local impact pressure is applied and the bubbles are destructively miniaturized. The cavity is always standing in the internal space of the enlarged nozzle, and the generation and collapse of bubbles are repeated. In addition, by providing the collision member, fine gas bubbles such as air can be diffused around the high-efficiency gas dissolving apparatus. Here, the “gas (gas)” includes a gas containing oxygen and ozone in addition to air, and the present invention can be applied to any other gas.
また空気、 酸素、 オゾン等のガスを水に溶解させる構成で主に述べ ているが、 これには限定されない。 一般的に、 本発明による高効率ガ ス溶解装置を、 ガスを水以外の液体あるいは流体に溶解させる場合に も利用することができる。  In addition, the description mainly focuses on a configuration in which a gas such as air, oxygen, or ozone is dissolved in water, but is not limited thereto. In general, the high-efficiency gas dissolving apparatus according to the present invention can also be used for dissolving a gas in a liquid or fluid other than water.
上記の構成により、 流体のせん断力、 及びキヤビテーシヨンが壊れ る際に発生する局所衝撃圧が加わって、 気泡を微細化できる。 このた め、 水中への供給ガス量に対するガスの溶解量の割合を高めることが でき、 養殖池等、 例えばェビやうなぎ等の養殖池のように、 狭い空間 での飼育効率を高める装置として有望であり、 その効果も多大なもの になる。 With the above configuration, the shearing force of the fluid and the cavitation are broken. The local impact pressure generated when the air bubbles are applied can make the air bubbles finer. As a result, it is possible to increase the ratio of the amount of dissolved gas to the amount of gas supplied to the water, and to improve the efficiency of breeding in small spaces, such as aquaculture ponds such as shrimp and eel. It is promising, and the effect will be enormous.
使用する電力消費量も少なく、 従来品に比べ省エネルギータイプに なっている。 またノズル本体と、 ノズル本体の更に先側に隙間を有し て配置され、 拡径ノズル部から放出される微泡混じりの水を周囲に放 散する衝突部材とを有することで、 微細化されたガスの気泡を高効率 ガス溶解装置の周囲に均一に放散することができる。  It uses less power and is energy saving compared to conventional products. In addition, the nozzle is further miniaturized by having a nozzle body and a collision member that is disposed with a gap further on the front side of the nozzle body and that disperses water containing microbubbles discharged from the enlarged-diameter nozzle to the periphery. Gas bubbles can be uniformly diffused around the high-efficiency gas dissolving device.
更に産業や生活等の廃水の処理に極めて有用である。  Further, it is extremely useful for the treatment of wastewater for industry and daily life.
上記の本発明による高効率ガス溶解装置において、 拡径ノズル部に おける拡径された内部空間 (ノズル孔) は、 円錐台状であり、 その開 き角を 4 0〜9 0度の範囲にして形成される。 これにより、 キヤビテ —シヨンは、 拡径ノズル部の内部空間から外へ出ることなく、 拡径ノ ズル部の内部に定在させることができる。  In the above-described high-efficiency gas dissolving apparatus according to the present invention, the enlarged internal space (nozzle hole) in the enlarged diameter nozzle portion is shaped like a truncated cone, and the opening angle is set in the range of 40 to 90 degrees. Formed. As a result, the cavity can be kept inside the enlarged nozzle without going out of the internal space of the enlarged nozzle.
このため、 キヤビテーションが壊れる際に発生する局所衝撃圧が他 の気泡に加わって、 気泡を微細化し、 水中への供給ガス量に対するガ スの溶解量の割合を高めることができる。  For this reason, the local impact pressure generated when the cavitation is broken is applied to other bubbles, making the bubbles finer and increasing the ratio of the amount of gas dissolved to the amount of gas supplied to water.
上記の本発明による高効率ガス溶解装置において、 衝突部材は、 円 板形状を有し、 拡径ノズル部に対向する側の面が好ましくは中心から 周緣部へ半径方向に向けて下り傾斜を有する、 又は好ましくは平面と なるように形成されている。 また衝突部材は複数の支持ロッドを用い て固定される。 このように、 衝突部材は、 中心から周縁部に向かって 半径方向に沿って下り傾斜になっているので、 拡径ノズル部と衝突部 材の間の空間に存在する微細化されたガスの気泡を、 機械攪拌するこ となく、 高効率ガス溶解装置の周囲に均一に拡散できる。 In the above-described high-efficiency gas dissolving apparatus according to the present invention, the collision member has a disk shape, and a surface facing the enlarged-diameter nozzle portion preferably has a downward slope in a radial direction from the center to the peripheral portion. Or, preferably, it is formed to be flat. The collision member is fixed using a plurality of support rods. As described above, since the collision member is inclined downward in the radial direction from the center toward the peripheral portion, the fine gas bubbles existing in the space between the enlarged nozzle portion and the collision member are formed. Can be stirred mechanically In addition, it can diffuse uniformly around the high-efficiency gas dissolving device.
また衝突部材を複数の支持口ッドでノズル本体に固定することによ り、 注水口に送水された高圧水の流速、 及び高効率ガス溶解装置の規 模により、 ノズル本体と衝突部材の距離を調節できる。 これにより、 各条件において、 高効率ガス溶解装置の周囲に微泡混じりの水を放散 できる最適な状態を作り出すことができる。  In addition, by fixing the collision member to the nozzle body with a plurality of support ports, the flow rate of the high-pressure water sent to the water inlet and the scale of the high-efficiency gas dissolving device, and the distance between the nozzle body and the collision member Can be adjusted. Thereby, under each condition, it is possible to create an optimum state in which water containing fine bubbles can be diffused around the high-efficiency gas dissolving apparatus.
上記の本発明による高効率ガス溶解装置において、 拡径ノズル部に おける拡径した先側内面は円滑に丸くなっていてもよい。 この場合の 曲率半径は、 例えば 1 0〜 5 O m mとすることが好ましい。 これによ り、 拡径ノズル部の内部空間に存在する微細化されたガスの気泡が、 内側内壁面に沿つて高効率ガス溶解装置の周囲にスムーズに移動でき る。  In the high-efficiency gas dissolving apparatus according to the present invention described above, the enlarged inner surface of the front end of the enlarged diameter nozzle portion may be smoothly rounded. The radius of curvature in this case is preferably, for example, 10 to 5 Omm. Thereby, the gas bubbles of the fine gas present in the internal space of the enlarged diameter nozzle portion can smoothly move around the high-efficiency gas melting device along the inner inner wall surface.
上記の本発明による高効率ガス溶解装置において、 導水部では下流 側にしぼり部が設けられ、 しぼり部にガス導入口が設けられている。 これにより、 しぼり部を通過する高圧水の中央部と壁面側の速度分布 を一様にすることができるため、 流速が均一な高圧水を作り出すこと ができる。 また多くのガスを混入した高圧水を放出することができる。 従って水中へのガスの溶解効率を高めることが可能となる。 図面の簡単な説明  In the above-described high-efficiency gas dissolving apparatus according to the present invention, the water guide section is provided with a throttle section on the downstream side, and the throttle section is provided with a gas inlet. This makes it possible to make the velocity distribution between the central portion and the wall surface of the high-pressure water passing through the constricted portion uniform, so that high-pressure water having a uniform flow velocity can be produced. In addition, high-pressure water mixed with many gases can be discharged. Therefore, the efficiency of dissolving gas in water can be increased. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施形態に係る高効率ガス溶解装置の縦断面 図である。  FIG. 1 is a longitudinal sectional view of a high-efficiency gas dissolving apparatus according to one embodiment of the present invention.
第 2図は、 本実施形態による高効率ガス溶解装置の衝突板を示し、 (A) は衝突板の平面図、 (B ) は衝突板の中心を通る B— B線で切 つて得られた縦断面図である。  FIG. 2 shows a collision plate of the high-efficiency gas dissolving apparatus according to the present embodiment, where (A) is a plan view of the collision plate, and (B) is obtained by cutting along a line BB passing through the center of the collision plate. It is a longitudinal cross-sectional view.
第 3図は、 本実施形態による高効率ガス溶解装置の作動状態を示し、 (A) は水中の底土での作動状態を説明する図、 (B ) はガス溶解装 置内での作動状態を説明する図である。 発明を実施するための最良の形態 FIG. 3 shows an operation state of the high-efficiency gas dissolving apparatus according to the present embodiment, (A) is a diagram illustrating an operation state in submerged soil, and (B) is a diagram illustrating an operation state in a gas dissolving device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施形態を添付図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図〜第 3図に示すように、 本発明の実施形態に係わる高効率ガ ス溶解装置 1 0は、 ノズル本体 1 1 と、 ノズル本体 1 1の先側に隙間 をあけて配置された衝突板 1 8とから構成されている。  As shown in FIGS. 1 to 3, a high-efficiency gas melting apparatus 10 according to an embodiment of the present invention has a nozzle main body 11 and a nozzle main body 11 arranged with a gap at the front end thereof. And a collision plate 18.
ノズル本体 1 1は導水部 1 4と拡径ノズル部 1 7から構成されてい る。 ノズル本体 1 1の外観形状は全体として円柱体の形状を有してい る。 導水部 1 4と拡径ノズル部 1 7は、 それぞれ、 その外観形状が円 柱体形状の部材である。 衝突板 1 8は衝突部材の一例である。 衝突板 1 8はほぼ円板の形状を有している。  The nozzle body 11 is composed of a water introduction section 14 and an enlarged diameter nozzle section 17. The external shape of the nozzle body 11 has a cylindrical shape as a whole. Each of the water guide section 14 and the enlarged diameter nozzle section 17 is a member having a cylindrical shape in appearance. The collision plate 18 is an example of a collision member. The collision plate 18 has a substantially disk shape.
ノズル本体 1 1の導水部 1 4は、 図 1に示すごとく、 上側に注水口 1 2、 下側に吐水口 1 3が形成されてなる導入孔 1 4 aを有している。 導水孔 1 4 aは、 貫通孔として、 円柱体形状である導水部 1 4の中心 軸に沿って形成される。 水輸送手段の一例であるポンプ 1 9 (第 3図 の (A) 参照) を介して送水される 2 0〜5 O mZ s e cに加速され た高圧水は、 導水部 1 4の注水口 1 2から導入され、 吐水口 1 3から 吐出される。  As shown in FIG. 1, the water guide section 14 of the nozzle body 11 has an inlet hole 14a formed with a water inlet 12 on the upper side and a water outlet 13 on the lower side. The water guide hole 14a is formed as a through hole along the central axis of the water guide portion 14 having a cylindrical shape. The high-pressure water accelerated to 20 to 5 OmZsec, which is sent via a pump 19 (see (A) in Fig. 3), which is an example of water transport means, is supplied to the water inlet 14 of the water inlet 14 And is discharged from the spout 13.
更に第 1図及び第 3図 (B ) に示すように、 この導入部 1 4の下流 側に設けられたしぼり部 2 2に対して、 ガス導入口 1 5を介してガス 供給孔 1 6が設けられ、 導水部 1 4を通過する高圧水にガス (気体) の一例である空気を混入している。 すなわち、 高圧水がしぼり部 2 2 で急激に流速上昇することに伴い負圧現象が生じ、 ガス供給孔 1 6か ら高圧水の放出方向に自然に吸引 (ェジェクタ一作用) された空気は、 高圧水と混合される。 ガス供給孔 1 6の内側出口は、 上記ガス導入口 1 5として、 導入部 1 4のしぼり部 2 2に接続されている。 ガス供給 孔 1 6の外側入口には、 外部よりガスを供給するガス配管 (図示せ ず) が接続されている。 Further, as shown in FIG. 1 and FIG. 3 (B), a gas supply hole 16 is provided through a gas introduction port 15 to a narrowed portion 22 provided downstream of the introduction portion 14. Air, which is an example of gas, is mixed into the high-pressure water that passes through the water introduction section 14. That is, as the high-pressure water rapidly rises in the squeezing part 22, a negative pressure phenomenon occurs, and the air naturally sucked (ejector action) from the gas supply hole 16 in the discharge direction of the high-pressure water is Mixed with high pressure water. The inner outlet of the gas supply hole 16 is connected to the narrowed portion 22 of the inlet 14 as the gas inlet 15. A gas pipe (not shown) for supplying gas from the outside is connected to the outside inlet of the gas supply hole 16.
導水部 1 4の吐水口 1 3側の端面には、 拡径ノズル部 1 7がー体的 に連結されている。 拡径ノズル部 1 7は、 外観形状が、 軸方向の長さ が相対的に短いほぼ円柱体形状であり、 上記導水部 1 4とほぼ等しい 直径を有する。 なお導水部 1 4と拡径ノズル部 1 7は樹脂成形等の技 術によって一体的に形成することもできる。 拡径ノズル部 1 7はその 中心軸の箇所に内部空間としてノズル孔を有している。 このノズル孔 は、 基側部分の直径が小さく、 先側部分の直径が次第に大きくなるよ うに拡径されている。 拡径ノズル部 1 7に形成されたノズル孔につい て、 当該孔の形成する空間の形状が、 第 1図に示されるごとく、 円錐 台となっている。 すなわち、 拡径ノズル部 1 7に形成されたノズル孔 (又は拡径ノズル部 1 7におけるノズル孔を形成する内側壁面あるい は内面) は基側から先側に向かつて拡径されたテ一パ一孔あるいは末 広がり孔として形成されている。 拡径ノズル部 1 7のノズル孔の開き 角度は、 好ましくは、 4 0〜 9 0度である。  An enlarged-diameter nozzle portion 17 is physically connected to the end face of the water introduction portion 14 on the side of the water discharge port 13. The enlarged diameter nozzle portion 17 has a substantially cylindrical shape whose external length is relatively short in the axial direction, and has a diameter substantially equal to that of the water guide portion 14. In addition, the water introduction part 14 and the enlarged diameter nozzle part 17 can be integrally formed by a technique such as resin molding. The enlarged-diameter nozzle portion 17 has a nozzle hole as an internal space at the central axis. The diameter of the nozzle hole is enlarged so that the diameter of the base portion is small and the diameter of the front portion is gradually increased. As for the nozzle hole formed in the enlarged diameter nozzle portion 17, the shape of the space formed by the hole is a truncated cone as shown in FIG. That is, the nozzle hole formed in the enlarged-diameter nozzle portion 17 (or the inner wall surface or the inner surface forming the nozzle hole in the enlarged-diameter nozzle portion 17) is a tape whose diameter is increased from the base side to the front side. It is formed as a hole or divergent hole. The opening angle of the nozzle hole of the enlarged diameter nozzle portion 17 is preferably 40 to 90 degrees.
ノズル本体 1 1の吐水口 1 3から放出された、 空気を混入した高圧 水は、 拡径ノズル部 1 7の内部空間 (ノズル孔) で積極的にキヤビテ ーシヨンを発生させる。 すなわち、 高圧水流 (ジェット水流) の流速 が増すと、 逆に水の静圧が減り、 その水の圧力が飽和蒸気圧より下が る (負圧領域) ことで、 キヤビテーシヨンが生じるのである。  The high-pressure water mixed with air discharged from the water discharge port 13 of the nozzle body 11 actively generates a cavity in the internal space (nozzle hole) of the enlarged-diameter nozzle section 17. In other words, when the flow velocity of the high-pressure water flow (jet water flow) increases, the static pressure of the water decreases, and the pressure of the water falls below the saturated vapor pressure (negative pressure region), causing cavitation.
拡径ノズル部 1 7の内部空間は末広がり形状であるので、 従来のジ エツトのせん断作用に加え、 更に強いせん断力 (ガスを引きちぎる) が生じる。 また、 負圧領域で生じたキヤビテ一シヨンが、 正圧領域 (拡径ノズル部 1 7の壁面側の澱み流れで水の圧力が正圧に回復する 領域) で崩壊する際に局所衝撃圧が加わって気泡を更に細かくするこ とになる。 Since the inner space of the enlarged diameter nozzle portion 17 has a divergent shape, in addition to the conventional shearing action of the jet, a stronger shearing force (gas tearing off) is generated. Also, the cavitation generated in the negative pressure region is (A region where the water pressure recovers to a positive pressure due to the stagnation flow on the wall surface side of the enlarged diameter nozzle portion 17) When collapsing, the local impact pressure is applied, and the bubbles are made finer.
このように、 拡径ノズル部 1 7の内部空間には常にキヤビテ一ショ ンが定在し、 このキヤビテ一シヨンの生成と崩壊とが繰り返され、 効 率よく局所的に強いせん断力が働く。 これによつて空気を破壊的に微 細化し、 水に接する空気の表面積を拡大し、 より多くの空気 (酸素) を水に溶かすことができる。  As described above, the cavitation is always present in the internal space of the enlarged-diameter nozzle portion 17, and the generation and collapse of the cavitation are repeated, and a strong shear force acts efficiently and locally. This destructively miniaturizes the air, increases the surface area of the air in contact with the water, and allows more air (oxygen) to be dissolved in the water.
円板状の衝突板 1 8の面は、 第 1図と第 2図の (A) , ( B ) に示 すように、 好ましくは中心から周縁部へ半径方向に向けて下り傾斜を 有するように作られている。 また衝突板 1 8の面を好ましくは平坦な 面形状になるように作ることもできる。 衝突板 1 8は、 例えば 4本の 支持ロッ ド 2 1によって拡径ノズル部 1 7 (ノズル本体 1 1 ) に固定 している。 衝突板 1 8の傾斜を有した面は、 拡径ノズル部 1 7の内部 空間における径の大きい出口部 (第 1図中、 下側開口部) に対向して いる。 かかる衝突板 1 8を設けることにより、 拡径ノズル部 1 7の内 部空間で生成した微泡混じりの水を、 効果的に、 高効率ガス溶解装置 1 0の周囲に放散することが可能となり、 環状にて斜め下方向に噴出 した微泡混じりの水は底土の酸素濃度を高める。 なお支持ロッド 2 1 の本数は、 拡径ノズル部 1 7 (ノズル本体 1 1 ) に対して衝突板 1 8 を安定に取り付けることができれば何本でもよい。 支持ロッド 2 1に よって衝突板 1 8を拡径ノズル部 1 7に固定することで、 注水口 1 2 に導入された高圧水の流速、 及び高効率ガス溶解装置 1 0の規模に応 じて、 拡径ノズル部 1 7 (ノズル本体 1 1 ) と衝突板 1 8との距離を 調節できる。 それ故に、 各条件において、 高効率ガス溶解装置 1 0の 周囲に、 微泡混じりの水を放出できる最適な状態を作り出すことがで きる。 このとき、 支持ロッド 2 1の取付け方法としては、 取付けて固 定できるものであればよい。 例えば衝突板 1 8に孔 1 8 aを設けてポ ルト又はねじ等で取り付けることが可能であり、 更に溶接等により取 り付けることも可能である。 更に衝突板 1 8は、 高効率ガス溶解装置 1 0の規模に応じて、 衝突板 1 8の半径を変えることができるため、 各条件において、 高効率ガス溶解装置 1 0の周囲に微泡混じりの水を 放散できる最適な状態を作り出すことができる。 As shown in FIGS. 1 and 2 (A) and (B), the surface of the disk-shaped collision plate 18 preferably has a downward slope from the center to the peripheral edge in the radial direction. Made in. Also, the surface of the collision plate 18 can be made to have a preferably flat surface shape. The collision plate 18 is fixed to the enlarged nozzle 17 (nozzle body 11) by, for example, four support rods 21. The inclined surface of the impingement plate 18 faces a large-diameter outlet (the lower opening in FIG. 1) in the internal space of the enlarged-diameter nozzle 17. By providing such a collision plate 18, it is possible to effectively disperse the water mixed with fine bubbles generated in the inner space of the enlarged diameter nozzle portion 17 around the high-efficiency gas dissolving device 10. The water mixed with microbubbles squirted diagonally downward in an annular shape increases the oxygen concentration in the bottom soil. The number of the support rods 21 may be any number as long as the collision plate 18 can be stably attached to the enlarged-diameter nozzle portion 17 (nozzle body 11). By fixing the impingement plate 18 to the enlarged-diameter nozzle portion 17 by the support rod 21, depending on the flow rate of the high-pressure water introduced into the water inlet 12 and the scale of the high-efficiency gas dissolving device 10. The distance between the enlarged nozzle portion 17 (nozzle body 11) and the collision plate 18 can be adjusted. Therefore, under each condition, it is possible to create an optimal state around the high-efficiency gas dissolving device 10 where water containing fine bubbles can be discharged. Wear. At this time, the mounting method of the support rod 21 may be any as long as it can be mounted and fixed. For example, it is possible to provide a hole 18a in the collision plate 18 and attach it with a port or a screw or the like, and it is also possible to attach it by welding or the like. Further, since the collision plate 18 can change the radius of the collision plate 18 according to the scale of the high-efficiency gas dissolution apparatus 10, fine bubbles are mixed around the high-efficiency gas dissolution apparatus 10 under each condition. It is possible to create an optimal condition for dissipating water.
本実施形態においては、 ホース 1 9 aによってノズル本体 1 1に送 水を行っているが、 このホースは水の速度 2 0〜 5 0 / s e cに耐 えることができるものであればよく、 例えば金属製又はビニール製の ホース、 又は管であってもよい。 また符号 2 0は、 ホース 1 9 aを高 効率ガス溶解装置 1 0のノズル本体 1 1と接続する際に送水された水 が漏れないように接着したニップルである。 ニップル 2 0の代わりに 漏水を防止できる他のシール部材を使用してもよい。  In the present embodiment, water is supplied to the nozzle body 11 by the hose 19a. However, the hose may be any hose that can withstand a water speed of 20 to 50 / sec. It may be a metal or vinyl hose or tube. Reference numeral 20 denotes a nipple bonded when the hose 19a is connected to the nozzle body 11 of the high-efficiency gas dissolving apparatus 10 so that the supplied water does not leak. Instead of the nipple 20, another sealing member that can prevent water leakage may be used.
また拡径ノズル部 1 7では内部空間の開き角度を 4 0〜 9 0度の範 囲とした。 この理由は次の通りである。 開き角度が 4 0度未満である ときには、 ノズル本体 1 1の吐水口 1 3から吐出された高圧水流にお いて、 拡径ノズル部 1 7の内部空間で最も流速が速い中央部と、 最も 遅い壁部とで、 顕著な速度の分布がなくなり、 流体のせん断力が顕著 に発生しなくなるため、 空気の気泡を微細化することができないから である。 一方、 開き角度が 9 0度を超えるときには、 高効率ガス溶解 装置 1 0の周囲から、 拡径ノズル部 1 7の内部空間への水の巻き込み が発生し、 拡径ノズル部 1 7の内部空間における中央部と壁部との間 で、 良好なせん断力を発生することができず、 キヤビテーシヨンによ る気泡の微細化を行うことができなくなるからである。 以上のことに より、 拡径ノズル部 1 7の内部空間の開き角度は、 更に 5 0〜 7 0度 がより好ましく、 最も好ましくは 60度である。 The opening angle of the internal space of the enlarged diameter nozzle section 17 was set in the range of 40 to 90 degrees. The reason is as follows. When the opening angle is less than 40 degrees, in the high-pressure water flow discharged from the water discharge port 13 of the nozzle body 11, the central portion where the flow velocity is the fastest in the internal space of the enlarged diameter nozzle portion 17, and the slowest portion This is because there is no significant velocity distribution at the wall and no significant shearing force of the fluid is generated, so that air bubbles cannot be miniaturized. On the other hand, when the opening angle exceeds 90 degrees, water is drawn into the internal space of the enlarged nozzle 17 from around the high-efficiency gas dissolving device 10, and the internal space of the enlarged nozzle 17 is generated. This is because no good shearing force can be generated between the central portion and the wall portion in the above, and it is no longer possible to reduce the size of bubbles by cavitation. From the above, the opening angle of the internal space of the enlarged diameter nozzle section 17 is further 50 to 70 degrees. Is more preferable, and most preferably 60 degrees.
また拡径ノズル部 1 7の内部空間を形成する拡径した先側内面部分 は、 その曲率半径を 1 0〜 50 mmにすることによって、 円滑に丸く している。 これにより、 拡径ノズル部 1 7の内部空間に存在する微細 化された空気の気泡を、 高効率ガス溶解装置 1 0の周囲に、 拡径ノズ ル部 1 7の内面及び下面に沿って均一に、 かつ滑らかに放散すること ができる。 なお拡径ノズル部 1 7の拡径した先側内面部分は湾曲した 形状に形成してもよいし、 また角張った形状に形成してもよい。  The enlarged inner surface of the front end forming the inner space of the enlarged nozzle 17 is smoothly rounded by setting its radius of curvature to 10 to 50 mm. As a result, fine air bubbles existing in the internal space of the enlarged nozzle 17 are uniformly distributed around the high-efficiency gas dissolving device 10 along the inner and lower surfaces of the enlarged nozzle 17. In addition, it can be diffused smoothly and smoothly. Note that the enlarged inner surface of the front end of the enlarged diameter nozzle portion 17 may be formed in a curved shape or an angular shape.
高効率ガス溶解装置 1 0は、 高圧水の放出方向を水中の底部にして いるが、 任意の方向にすることも可能である。  Although the high-efficiency gas dissolving apparatus 10 sets the discharge direction of the high-pressure water at the bottom of the water, the discharge direction may be any direction.
高効率ガス溶解装置 1 0のノズル本体 1 1の材質は、 すなわち導水 部 14ゃ拡径ノズル部 1 7の材質は、 水中でも鲭びることのない材質、 及び高圧水にも耐えることができる材質であればよく、 例えばステン レス等の金属製、 硬質の樹脂製、 プラスチック製であってもよい。 本実施形態においては、 ガスの一例として空気を水に溶かす例につ いて説明したが、 ガスとしては、 酸素、 オゾンを含んだガスであって も本発明が適用される。  The material of the nozzle body 11 of the high-efficiency gas dissolving device 10 is a material that does not spread in water and a material that can withstand high-pressure water. For example, it may be made of metal such as stainless steel, hard resin, or plastic. In the present embodiment, an example in which air is dissolved in water has been described as an example of the gas. However, the present invention is also applicable to a gas containing oxygen and ozone.
次に具体的な適用例について、 実施例を説明する。  Next, an example is described about a specific application example.
高効率ガス溶解装置 1 0を使用して、 注水口 1 2より毎分 3 5. 8 リットル (L) 、 水圧 2 k g f /c m 2 (ほぼ 1 9. 6 N/c m2) の高圧 水を導入し、 空気の溶解を行った。 その結果、 微細化された空気の気 泡径は、 0. 0 1〜0. 1 mmであった。 またポンプ 1 9の動力 Using a high-efficiency gas dissolution apparatus 10, high-pressure water with a pressure of 35.8 liters (L) per minute and a water pressure of 2 kgf / cm 2 (almost 19.6 N / cm 2 ) is introduced from the water inlet 12 Then, the air was dissolved. As a result, the bubble diameter of the micronized air was 0.01 to 0.1 mm. Also power of pump 19
(電力消費量) は 0. 4 kWとなり、 従来の 1 1 kWに比べて少なく なった。 更に酸素溶解効率 (供給酸素量に対する溶解酸素量の割合で あり、 水中の酸素量を高める指標となる) は 40%以上であった。 続いて以下に、 比較例として、 既存の酸素供給装置の特徴、 電力消 費量、 酸素溶解効率について示す。 (Power consumption) was 0.4 kW, which was lower than the conventional 11 kW. Furthermore, the oxygen dissolution efficiency (the ratio of the dissolved oxygen amount to the supplied oxygen amount, which is an index for increasing the amount of oxygen in water) was 40% or more. Next, the characteristics of the existing oxygen supply device and the power consumption The cost and oxygen dissolution efficiency are shown.
散気管方式は、 高圧空気が水中に投入された多孔質材を通過する際 に空気が微細化される。 気泡径は 5 m m以上と大きく、 水中における 滞留時間が短いため、 酸素供給効果が低い。 この酸素供給装置の電力 消費量は 1 1 k W、 酸素溶解効率は 4 . 8 %である。  In the diffuser system, when high-pressure air passes through a porous material charged in water, the air is fined. The bubble diameter is as large as 5 mm or more and the residence time in water is short, so the oxygen supply effect is low. The power consumption of this oxygen supply device is 11 kW, and the oxygen dissolution efficiency is 4.8%.
ジエツト水流方式は、 ノズルから空気と共に水ジヱッ トを水中に噴 射し、 酸素を供給する方式である。 従来のノズル形状、 及び自由空間 ジェット方式では、 微細気泡と共に大きな気泡が発生するため、 大き な気泡に微細気泡が誘引急上昇して気泡の滞留時間が短い。 この酸素 供給装置の電力消費量は 1 1 k W、 酸素溶解効率は 0 . 8 %である。 水車方式は、 低価格であるため, 養殖業界に最も普及した製品であ る。 しかし効果としては、 水流を作るだけであり、 酸素濃度は水面付 近しか高くならない。 この酸素供給装置の電力消費量は 0 . 7 5 k W、 酸素溶解効率は 0 . 5 %である。 産業上の利用可能性  The jet water jet method is a method in which a water jet is sprayed into water from a nozzle together with air to supply oxygen. In the conventional nozzle shape and the free space jet method, since large bubbles are generated together with the fine bubbles, the fine bubbles are attracted to the large bubbles and rise rapidly, so that the residence time of the bubbles is short. The power consumption of this oxygen supply device is 11 kW and the oxygen dissolution efficiency is 0.8%. The water turbine method is the most popular product in the aquaculture industry because of its low price. However, the only effect is to create a water stream, and the oxygen concentration increases only near the water surface. The power consumption of this oxygen supply device is 0.75 kW, and the oxygen dissolution efficiency is 0.5%. Industrial applicability
本発明に係る高効率ガス溶解装置は、 極めて高い効率でガスを微細 化して水等に溶解させ、 養殖池の水について有機物が堆積する底土付 近の水中溶存酸素量を効率よく高め、 あるいは産業用又は工業用廃水 処理施設、 生活用廃水処理施設等における廃水処理を効率よく行い、 経済性も良好である。  The high-efficiency gas dissolving apparatus according to the present invention makes the gas fine and dissolves it in water or the like with extremely high efficiency, and efficiently increases the amount of dissolved oxygen in the water near the bottom soil where the organic matter is deposited in the water of the aquaculture pond. Efficient wastewater treatment in industrial or industrial wastewater treatment facilities, domestic wastewater treatment facilities, etc., and good economic efficiency.

Claims

請求の範囲 The scope of the claims
1 . 注入口から入った高圧水を吐出口から吐出する導水部と、 この 導水部にガス導入口が設けられてェジェクタ一作用によって前記高圧 水にガスを混入するガス供給部と、 先側に向けて拡径された内部空間 を有しかつ前記吐出口から吐出された前記高圧水を前記内部空間に流 すことによってキヤビテーシヨンを発生させる拡径ノズル部とからな るノズル本体と、 1. A water supply section for discharging high-pressure water from the inlet through the discharge port, a gas supply port provided with a gas introduction port in the water supply section to mix gas into the high-pressure water by an ejector action, A nozzle body having an internal space whose diameter is enlarged toward the nozzle and comprising a large-diameter nozzle portion for generating cavitation by flowing the high-pressure water discharged from the discharge port into the internal space;
前記ノズル本体の先側に隙間をあけて配置され、 前記拡径ノズル部 から放出される微泡混じりの前記高圧水を周囲に放散する衝突部材と、 からなることを特徴とする高効率ガス溶解装置。  A high-efficiency gas dissolving device, comprising: a collision member that is disposed with a gap on the front side of the nozzle body and that disperses the high-pressure water mixed with microbubbles discharged from the large-diameter nozzle to the periphery. apparatus.
2 . 前記拡径ノズル部における前記拡径された内部空間の開き角が 4 0〜9 0度の範囲に含まれることを特徴とする請求項 1記載の高効 率ガス溶解装置。  2. The high-efficiency gas dissolving apparatus according to claim 1, wherein an opening angle of the enlarged inner space in the enlarged nozzle portion is included in a range of 40 to 90 degrees.
3 . 前記衝突部材は、 円板形状を有し、 前記拡径ノズル部に対向す る側の面が中心から周縁部へ半径方向に向けて下り傾斜を有するよう に形成されていることを特徴とする請求項 1又は 2記載の高効率ガス 溶解装置。  3. The collision member has a disk shape, and is formed such that a surface facing the enlarged-diameter nozzle portion has a downward slope from a center to a peripheral portion in a radial direction. 3. The high-efficiency gas dissolving apparatus according to claim 1 or 2.
4 . 前記拡径ノズル部の前記拡径された内部空間を形成する先側内 面が円滑に丸くなっていることを特徴とする請求項 1〜3のいずれか 1項に記載の高効率ガス溶解装置。  4. The high-efficiency gas according to any one of claims 1 to 3, wherein a front-side inner surface of the enlarged-diameter nozzle portion forming the enlarged internal space is smoothly rounded. Melting equipment.
5 . 前記導水部に下流側にしぼり部が設けられ、 このしぼり部に前 記ガス導入口が設けられていることを特徴とする請求項 1〜4のいず れか 1項に高効率ガス溶解装置。  5. A high-efficiency gas according to any one of claims 1 to 4, wherein a throttle is provided on the downstream side of the water guide, and the gas inlet is provided in the throttle. Melting equipment.
PCT/JP2000/004013 1999-06-21 2000-06-20 High-efficiency gas dissolving device WO2000078466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11174313A JP2001000890A (en) 1999-06-21 1999-06-21 High efficiency gas dissolving device
JP11/174313 1999-06-21

Publications (1)

Publication Number Publication Date
WO2000078466A1 true WO2000078466A1 (en) 2000-12-28

Family

ID=15976478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004013 WO2000078466A1 (en) 1999-06-21 2000-06-20 High-efficiency gas dissolving device

Country Status (2)

Country Link
JP (1) JP2001000890A (en)
WO (1) WO2000078466A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059118B2 (en) 2001-06-30 2006-06-13 Robert Bosch Gmbh Mixing device for an exhaust gas purification system
US7338551B2 (en) 2003-06-13 2008-03-04 Five Star Technologies, Inc. Device and method for generating micro bubbles in a liquid using hydrodynamic cavitation
CN102641668A (en) * 2012-02-09 2012-08-22 孙乔良 Multifunctional phase-variable high-energy water instantaneous making machine set with multiple gas sources
CN103432918A (en) * 2013-08-01 2013-12-11 中盐榆林盐化有限公司 Powder and liquid dissolution mixer
WO2018146382A1 (en) * 2017-02-08 2018-08-16 Beneq Oy Apparatus and method for processing gas or aerosol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083205A (en) * 2001-09-11 2003-03-19 Mitsubishi Heavy Ind Ltd Fuel injection nozzle, internal combustion engine provided with the same and fuel injection method
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144871A (en) * 1977-05-23 1978-12-16 Kamerumachieru Edouarudo Aeration apparatus for liquid treatment
JPS54129078U (en) * 1978-02-28 1979-09-07
JPH0747264A (en) * 1993-08-05 1995-02-21 Idec Izumi Corp Method for foaming and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144871A (en) * 1977-05-23 1978-12-16 Kamerumachieru Edouarudo Aeration apparatus for liquid treatment
JPS54129078U (en) * 1978-02-28 1979-09-07
JPH0747264A (en) * 1993-08-05 1995-02-21 Idec Izumi Corp Method for foaming and apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059118B2 (en) 2001-06-30 2006-06-13 Robert Bosch Gmbh Mixing device for an exhaust gas purification system
US7338551B2 (en) 2003-06-13 2008-03-04 Five Star Technologies, Inc. Device and method for generating micro bubbles in a liquid using hydrodynamic cavitation
CN102641668A (en) * 2012-02-09 2012-08-22 孙乔良 Multifunctional phase-variable high-energy water instantaneous making machine set with multiple gas sources
CN103432918A (en) * 2013-08-01 2013-12-11 中盐榆林盐化有限公司 Powder and liquid dissolution mixer
WO2018146382A1 (en) * 2017-02-08 2018-08-16 Beneq Oy Apparatus and method for processing gas or aerosol

Also Published As

Publication number Publication date
JP2001000890A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US6422735B1 (en) Hydraulic jet flash mixer with open injection port in the flow deflector
US7628912B2 (en) Manufacturing device and application device for liquid containing micro-nano bubbles
US5403522A (en) Apparatus and methods for mixing liquids and flowable treating agents
KR101053447B1 (en) Rotary bubble jet diffuser
WO2000069550A1 (en) Swing type fine air bubble generating device
JP2003205228A (en) Turning type fine bubbles production apparatus
CN101626822B (en) Method and device for treating a liquid
CN109966939A (en) A kind of Venturi type microbubble generator and gas-liquid producer
JP2000000447A (en) Swirling type fine bubble generator
JP2010155243A (en) Swirling type fine-bubble generating system
JP2008119677A (en) Water treatment system
CN202226721U (en) Improved disc jet flow aerator
KR102038132B1 (en) Aerator using eddy flow
WO2000078466A1 (en) High-efficiency gas dissolving device
JP2012005947A (en) Pump aeration device
WO2018148305A1 (en) Improved venturi apparatus and method of use
JP2017056438A (en) Aeration agitator
JP2002059186A (en) Water-jet type fine bubble generator
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP6691716B2 (en) Method and device for generating fine bubbles
JPH11333491A (en) Microbubble jet water purifying apparatus
US11130101B2 (en) Bubble generating device for sewage purification
US20180162757A1 (en) Venturi apparatus and method of use
CN203486961U (en) Spiral vortex jet-flow aerating device
JP2008246441A (en) Treatment apparatus for waterborne fine matter or the like

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase