JP2001000890A - High efficiency gas dissolving device - Google Patents

High efficiency gas dissolving device

Info

Publication number
JP2001000890A
JP2001000890A JP11174313A JP17431399A JP2001000890A JP 2001000890 A JP2001000890 A JP 2001000890A JP 11174313 A JP11174313 A JP 11174313A JP 17431399 A JP17431399 A JP 17431399A JP 2001000890 A JP2001000890 A JP 2001000890A
Authority
JP
Japan
Prior art keywords
water
gas dissolving
gas
dissolving apparatus
efficiency gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11174313A
Other languages
Japanese (ja)
Inventor
Hiromi Yamamoto
博美 山本
Kenji Taguchi
研治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Fukuoka Prefecture
Original Assignee
Riken Corp
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Fukuoka Prefecture filed Critical Riken Corp
Priority to JP11174313A priority Critical patent/JP2001000890A/en
Priority to PCT/JP2000/004013 priority patent/WO2000078466A1/en
Publication of JP2001000890A publication Critical patent/JP2001000890A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently increase the quantity of dissolved oxygen in the water of a culturing pond, particularly in the water near under soil, on which organic materials such as excrement is deposited, by utilizing the shear force of water generated in an expanded diameter nozzle having a collision member and the collapse impact force of cavitation to efficiently micronize air. SOLUTION: A high efficiency gas dissolving device 10 has a nozzle main body 11 and a collision plate 18 arranged in the tip thereof so as to have a certain gap. The nozzle main body 11 has a water introducing part 14 for introducing high pressure water from a water ejecting port 12 and discharging from a discharge port 13. Further, a gas pipe line 16 is provided through a gas introducing port 15 in an orifice part 22 provided in the downstream side of the water introducing part 14 and air is incorporated in the high pressure water passed through the water introducing part 14. The base side of the conical expanded diameter nozzle part 17 having a diameter expanded toward the tip side (the opening angle is 40-90 deg.) is integrally connected to the water introducing part 14. The collision plate 18 is inclined downward from the center toward the radius direction and the periphery is fixed to the nozzle main body 11 with 4 pieces of supporting rods 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衝突部材のついた
拡径ノズル部内で生じる水のせん断力とキャビテーショ
ンを利用して気体を効率よく微細化し、養殖池の水、特
に残餌や排泄物等の有機物が堆積する底土付近の水中溶
存酸素量を効率よく高める装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for efficiently miniaturizing a gas by utilizing the shearing force and cavitation of water generated in a diameter-enhancing nozzle portion provided with a collision member, and to reduce water in a culture pond, particularly remaining food and excrement. The present invention relates to a device for efficiently increasing the amount of dissolved oxygen in water near the bottom soil where organic matter such as deposits accumulates.

【0002】[0002]

【従来の技術】近年、養殖池では飼育効率を高めるため
に狭い空間に多量の魚介類を飼育しており、その過密度
は増加傾向にある。そのため、溶存酸素濃度(水中の酸
素濃度)は低下すると共に発育速度も遅くなっている。
また、残餌や排泄物が底土に有機物として堆積し、堆積
物中で発生するビブリオ菌、PAVウィルス等の病原菌
感染により多量死が発生して生産効率が急激に落ち込む
現象が起こっている。特に餌として与えられる魚粉等の
配合飼料(国内で年間40万トン)は、僅か20%しか
魚介類に消費されず、残り80%は底土に堆積すること
になる。また、病原菌対策として餌中に抗生物質等の化
学農薬が使用されているが、その有効性は、飼育する魚
介類に十分な抵抗(免疫)力が備わっている場合のみで
あり、酸素不足の状況では抵抗力は弱く効果が上がって
いない。このため、堆積物を分解浄化するには好気性水
中微生物による浄化作用が必要となるため、微生物の活
動についても十分な酸素が不可欠となっている。最近、
病理学的な立場で生物農薬と呼ばれるウィルス性細菌剤
の研究開発が進められているが、一方で、養殖業界から
は水中酸素濃度を高める観点で堆積物処理技術の確立も
急務であると要望されている。
2. Description of the Related Art In recent years, in aquaculture ponds, a large amount of fish and shellfish are bred in a narrow space in order to increase the breeding efficiency, and their overdensity is increasing. For this reason, the dissolved oxygen concentration (oxygen concentration in water) decreases and the growth rate also decreases.
In addition, the residual food and excrement accumulate as organic matter on the bottom soil, and a large amount of death occurs due to infection with pathogenic bacteria such as Vibrio bacteria and PAV virus generated in the sediment. In particular, only about 20% of the mixed feed (400,000 tons per year in Japan) such as fish meal that is given as bait is consumed by fish and shellfish, and the remaining 80% is deposited on the bottom soil. In addition, chemical pesticides such as antibiotics are used in the diet as a countermeasure against pathogenic bacteria, but their effectiveness is only when the bred fish and shellfish have sufficient resistance (immunity), In the situation, the resistance is weak and the effect has not improved. For this reason, in order to decompose and purify the sediment, a purification action by the aerobic underwater microorganisms is required, so that sufficient oxygen is indispensable for the activities of the microorganisms. Recently,
Research and development of a viral bacterial agent called a biopesticide from a pathological standpoint is underway, but the aquaculture industry has demanded the establishment of sediment treatment technology from the viewpoint of increasing the oxygen concentration in water. Have been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来、
養殖池など酸素が必要となる場所で酸素を供給する手法
である、水車方式、散気管(多孔質の板や筒に高圧空気
を注入する)方式、ジェット水流方式等では、どの方式
においても、酸素溶解効率が20%以上のものはなく、
気泡の発生よりも池全体の水循環作用を重要視した設計
になっている。これでは、池底の溶存酸素量を高めるこ
とはできなく、そのため堆積有機物を分解浄化する微生
物の活動は活性化されず、病害による多量死が発生す
る。その結果、養殖池の水は、一度に入れ換えざるを得
なくなる。なお、このように養殖池の水を一度に入れ換
えることで、堆積物を含んだ酸素不足の水を河川や海へ
流出するため、環境汚染の発生についても懸念されてい
る。以上の理由から、新規装置の開発の要請が多くなっ
てきている。本発明はかかる事情に鑑みてなされたもの
で、水のせん断力とキャビテーションの崩壊衝撃力を利
用して空気を効率よく微細化し、養殖池の水、特に残餌
や排泄物等の有機物が堆積する底土付近の水中溶存酸素
量を効率よく高め、また経済性も良好な高効率ガス溶解
装置を提供することを目的とする。
However, conventionally,
Regarding the method of supplying oxygen in places where oxygen is required, such as aquaculture ponds, the water turbine method, the diffuser pipe (injecting high-pressure air into a porous plate or cylinder), the jet water flow method, etc. There is no oxygen dissolution efficiency of 20% or more,
The design is designed to emphasize the water circulation of the entire pond rather than the generation of bubbles. In this case, the amount of dissolved oxygen at the bottom of the pond cannot be increased, so that the activity of microorganisms that decompose and purify sedimentary organic matter is not activated, and a large amount of death due to disease occurs. As a result, the water in the pond has to be replaced all at once. In addition, since the water in the aquaculture pond is replaced at a time, oxygen-deficient water containing sediment flows out into rivers and the sea, and there is a concern about the occurrence of environmental pollution. For the above reasons, there is an increasing demand for the development of new devices. The present invention has been made in view of such circumstances, and uses the shearing force of water and the collapse impact force of cavitation to efficiently make air finer so that water in a culture pond, particularly organic matter such as residual food and excrement, is deposited. It is an object of the present invention to provide a highly efficient gas dissolving apparatus that efficiently increases the amount of dissolved oxygen in water in the vicinity of a bottom soil and that has good economic efficiency.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う本発明に
係る高効率ガス溶解装置は、注水口から導入された高圧
水を吐水口から放出する導水部、該導水部に気体導入口
が設けられてエジェクター作用によって前記高圧水に気
体を混入する気体配管、及び前記導水部に基側に一体的
に連結され、先側に向けて拡径し、前記吐出口から放出
される高圧水流によって積極的にキャビテーションを発
生させる拡径ノズル部を有するノズル本体と、前記ノズ
ル本体の更に先側に隙間を有して配置され、前記拡径ノ
ズル部から放出される微泡混じりの水を周囲に放散する
衝突部材とを有する。これにより、拡径ノズル部の内部
空間に、キャビテーションを常に定在させることができ
る。また、衝突部材を設けることで、微細化された空気
の気泡を高効率ガス溶解装置の周囲に均一に放散でき
る。ここで気体とは、空気の他に酸素やオゾンを含む空
気等があり、これ以外の気体であっても本発明は適用で
きる。
According to the present invention, there is provided a high-efficiency gas dissolving apparatus according to the present invention, wherein a water introduction section for discharging high-pressure water introduced from a water injection port from a water discharge port, and a gas introduction port provided in the water introduction section. A gas pipe that mixes gas into the high-pressure water by an ejector action, and is integrally connected to a base side of the water-guiding portion, expanded in diameter toward a front side, and positively acted by a high-pressure water flow discharged from the discharge port. A nozzle body having a large-diameter nozzle part for generating cavitation, and a water mixture containing microbubbles discharged from the large-diameter nozzle part is disposed with a gap further ahead of the nozzle body. And a collision member. Thereby, cavitation can always be made to stand in the internal space of the enlarged diameter nozzle portion. Further, by providing the collision member, fine air bubbles can be uniformly diffused around the high-efficiency gas dissolving device. Here, the gas includes air including oxygen and ozone in addition to air, and the present invention can be applied to other gases.

【0005】ここで、本発明に係る高効率ガス溶解装置
において、前記拡径ノズル部は、円錐台状として、その
開き角を40〜90度の範囲にしてもよい。これによ
り、キャビテーションは、拡径ノズル部の内部空間から
外へ出ることなく、拡径ノズル部の内部に常に定在させ
ることができる。また、本発明に係る高効率ガス溶解装
置において、前記衝突部材は、中心から半径方向に向け
て下り傾斜になって、しかも、周囲を複数の支持ロッド
によって前記ノズル本体に固定することも可能である。
このように、衝突部材は、中心から半径方向に向けて下
り傾斜になっているので、拡径ノズル部と、衝突部材と
の内部空間に存在する微細化された気体の気泡を、高効
率ガス溶解装置の周囲に均一に放散できる。また、衝突
部材は、周囲を複数の支持ロッドによってノズル本体に
固定するため、注入口に送水された高圧水の流速、及び
高効率ガス溶解装置の規模により、ノズル本体と衝突部
材との距離を調節できるようになっている。
[0005] In the high-efficiency gas dissolving apparatus according to the present invention, the enlarged diameter nozzle may have a truncated cone shape and an opening angle in a range of 40 to 90 degrees. Thereby, the cavitation can always be kept inside the enlarged diameter nozzle portion without going out of the internal space of the enlarged diameter nozzle portion. In the high-efficiency gas dissolving device according to the present invention, the collision member may be inclined downward in the radial direction from the center, and the periphery may be fixed to the nozzle body by a plurality of support rods. is there.
As described above, since the collision member is inclined downward in the radial direction from the center, the bubbles of the fine gas present in the inner space between the enlarged diameter nozzle portion and the collision member are removed by the high-efficiency gas. It can be uniformly distributed around the melting device. In addition, since the collision member is fixed around the nozzle body by a plurality of support rods, the distance between the nozzle body and the collision member depends on the flow rate of the high-pressure water fed to the injection port and the scale of the high-efficiency gas dissolving device. It can be adjusted.

【0006】そして、本発明に係る高効率ガス溶解装置
において、前記拡径ノズル部の拡径した先側は円滑に丸
くなっていてもよい。この場合の曲率半径は、例えば1
0〜50mmとすることができる。これにより、拡径ノ
ズル部の内部空間に存在する微細化された気体の気泡
が、高効率ガス溶解装置の周囲に、スムーズに移動でき
る。更に、本発明に係る高効率ガス溶解装置において、
前記導水部には下流側にしぼり部が設けられ、該しぼり
部に前記気体導入口を設けることも可能である。これに
より、ノズル本体の導水部を通過し、吐出口から放出さ
れる高圧水の中央部とその周囲の速度分布を一様にする
ことができ、また、水への気体の混入割合が多い高圧水
を放出することができる。
[0006] In the high-efficiency gas dissolving apparatus according to the present invention, the enlarged diameter of the enlarged nozzle may be smoothly rounded. The radius of curvature in this case is, for example, 1
It can be 0 to 50 mm. Thereby, the gas bubbles of the fine gas present in the internal space of the enlarged diameter nozzle portion can smoothly move around the high-efficiency gas dissolving device. Further, in the high-efficiency gas dissolving apparatus according to the present invention,
The water guide is provided with a throttle on the downstream side, and the gas inlet may be provided in the throttle. This makes it possible to make the velocity distribution around the central portion and the surroundings of the high-pressure water discharged from the discharge port through the water guide portion of the nozzle body uniform, and also to increase the pressure of the gas mixed into the water. Can release water.

【0007】[0007]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
高効率ガス溶解装置の側断面図、図2(A)、(B)は
それぞれ同高効率ガス溶解装置の衝突板の正面図、側断
面図、図3(A)、(B)はそれぞれ同高効率ガス溶解
装置の作動説明図、同高効率ガス溶解装置の構成図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a side sectional view of a high-efficiency gas dissolving apparatus according to an embodiment of the present invention, and FIGS. 2A and 2B are a front view and a side sectional view of an impact plate of the high-efficiency gas dissolving apparatus, respectively. FIGS. 3A and 3B are an operation explanatory view of the high-efficiency gas dissolving apparatus and a configuration diagram of the high-efficiency gas dissolving apparatus, respectively.

【0008】図1〜図3に示すように、本発明の一実施
の形態に係る高効率ガス溶解装置10は、ノズル本体1
1と、ノズル本体11の先側に隙間を有して配置され
た、衝突部材の一例である衝突板18とを有している。
以下、これらについて詳細に説明する。ノズル本体11
は、水輸送手段の一例であるポンプ19(図3(A)参
照)を介して送水される20〜50m/secに加速さ
れた高圧水を、注水口12から導入して吐水口13から
放出する導水部14を有している。更に、図1及び図3
(B)に示すように、この導水部14の下流側に設けら
れたしぼり部22には、気体導入口15を介して気体配
管16が設けられ、導水部14を通過する高圧水に気体
の一例である空気を混入している。すなわち、高圧水が
しぼり部22で急激に流速上昇することに伴い負圧現象
が生じ、気体配管16から高圧水の放出方向に自然に吸
引(エジェクター作用)された空気は、高圧水と混合さ
れる。
As shown in FIGS. 1 to 3, a high-efficiency gas dissolving apparatus 10 according to an embodiment of the present invention
1 and a collision plate 18, which is an example of a collision member, disposed with a gap on the front side of the nozzle body 11.
Hereinafter, these will be described in detail. Nozzle body 11
Introduces high-pressure water accelerated to 20 to 50 m / sec, which is sent through a pump 19 (see FIG. 3A), which is an example of a water transport means, from a water inlet 12 and discharges it from a water outlet 13. It has the water guide part 14 which does. 1 and 3
As shown in (B), a gas pipe 16 is provided at a narrowing portion 22 provided on the downstream side of the water guide portion 14 through a gas inlet 15, and high-pressure water passing through the water guide portion 14 is supplied with gas. The air which is an example is mixed. That is, a negative pressure phenomenon occurs as the high-pressure water rapidly rises in the squeezing portion 22, and the air naturally sucked (ejected) from the gas pipe 16 in the discharge direction of the high-pressure water is mixed with the high-pressure water. You.

【0009】導水部14には、先側に向けて拡径(開き
角度が40〜90度)している円錐台状の拡径ノズル部
17の基側が一体的に連結されている。ノズル本体11
の吐水口13から放出された空気を混入した高圧水流
は、この拡径ノズル部17の内部空間で積極的にキャビ
テーションを発生する。すなわち、高圧水流(ジェッ
ト)の流速が増すと逆に水の静圧が減り、その水が飽和
蒸気圧より下がる(負圧領域)ことで、キャビテーショ
ンが生じるのである。拡径ノズル部17の内部空間は末
広がり形状であるので、従来のジェットのせん断作用に
加え、更に強いせん断力(気体を引きちぎる力)が生じ
る。また、負圧領域で生じたキャビテーションが、正圧
領域(拡径ノズル部17の壁面側の澱み流れで水の圧力
が正圧に回復する領域)で崩壊する際に局所衝撃圧が加
わって気泡を更に細かくすることになる。このように、
拡径ノズル部17の内部空間には常にキャビテーション
が定在し、このキャビテーションの生成と崩壊とが繰り
返えされ、効率よく局所的に強いせん断力と衝撃力が働
く。これによって空気を微細化し、水に接する空気の表
面積を拡大し、より大量の空気(酸素)を、水に溶かす
ことができる。
The base of a frustoconical large-diameter nozzle portion 17 whose diameter is increased toward the front side (opening angle is 40 to 90 degrees) is integrally connected to the water guide portion 14. Nozzle body 11
The high-pressure water flow mixed with the air discharged from the water discharge port 13 generates cavitation actively in the internal space of the enlarged diameter nozzle portion 17. That is, when the flow velocity of the high-pressure water flow (jet) increases, the static pressure of the water decreases, and the water falls below the saturated vapor pressure (negative pressure region), so that cavitation occurs. Since the internal space of the enlarged diameter nozzle portion 17 has a divergent shape, an even stronger shearing force (force for tearing off gas) is generated in addition to the conventional jet shearing action. Further, when cavitation generated in the negative pressure region collapses in the positive pressure region (a region in which water pressure recovers to a positive pressure due to the stagnation flow on the wall surface side of the enlarged diameter nozzle portion 17), local impact pressure is applied and bubbles are generated. Will be further refined. in this way,
Cavitation is always present in the internal space of the enlarged diameter nozzle portion 17, and the generation and collapse of the cavitation are repeated, and a strong shearing force and an impact force work efficiently and locally. This makes the air finer, increases the surface area of the air in contact with the water, and allows a larger amount of air (oxygen) to be dissolved in the water.

【0010】図2(A)、(B)に示すように、衝突板
18は、中心から半径方向に向けて下り傾斜になって、
しかもその周囲を、例えば4本の支持ロッド21によっ
てノズル本体11に固定している。この傾斜により、拡
径ノズル部17の内部空間で生成した微泡混じりの水
を、効果的に高効率ガス溶解装置10の周囲に放散する
ことが可能となり、環状斜め下方向に噴出した微泡混じ
りの水は底土の酸素濃度を高める。なお、支持ロッド2
1の本数は、ノズル本体11に衝突板18を安定に取付
けることができれば何本でもよい。この支持ロッド21
によって、衝突板18に拡径ノズル部17を固定するこ
とで、注入口12に導入された高圧水の流速、及び高効
率ガス溶解装置10の規模に応じて、ノズル本体11と
衝突板18との距離を調節できるため、各条件におい
て、高効率ガス溶解装置10の周囲に、微泡混じりの水
を放散できる最適な状態を作り出すことができる。この
とき、支持ロッド21の取付け方法としては、取付けて
固定できるものであればよく、例えば衝突板18に孔1
8aを設けて、ボルト、又はねじ等で取付けることが可
能であり、また、溶接等により接着することも可能であ
る。更に、衝突板18は、高効率ガス溶解装置10の規
模に応じて、衝突板18の半径を変えることができるた
め、各条件において、高効率ガス溶解装置10の周囲
に、微泡混じりの水を放散できる最適な状態を作り出す
ことができる。
As shown in FIGS. 2A and 2B, the collision plate 18 is inclined downward from the center in the radial direction.
Moreover, the periphery thereof is fixed to the nozzle body 11 by, for example, four support rods 21. This inclination makes it possible to effectively disperse the water mixed with the fine bubbles generated in the internal space of the enlarged diameter nozzle section 17 around the high-efficiency gas dissolving apparatus 10, and the fine bubbles ejected obliquely downward in the annular shape. Mixed water increases the oxygen concentration in the bottom soil. The support rod 2
The number of 1 may be any number as long as the collision plate 18 can be stably attached to the nozzle body 11. This support rod 21
By fixing the large-diameter nozzle portion 17 to the impingement plate 18, the nozzle body 11 and the impingement plate 18 can be moved in accordance with the flow rate of the high-pressure water introduced into the inlet 12 and the scale of the high-efficiency gas dissolving device 10. Can be adjusted, so that an optimum state in which water containing fine bubbles can be diffused around the high-efficiency gas dissolution apparatus 10 can be created under each condition. At this time, the mounting method of the support rod 21 may be any as long as it can be mounted and fixed.
8a can be provided and attached with bolts or screws, or can be bonded by welding or the like. Furthermore, since the collision plate 18 can change the radius of the collision plate 18 in accordance with the scale of the high-efficiency gas dissolving device 10, the water containing the fine bubbles is mixed around the high-efficiency gas dissolving device 10 under each condition. It is possible to create an optimal state in which can be dissipated.

【0011】本実施の形態においては、ホース19aに
よってノズル本体11に送水を行っているが、水の速度
20〜50m/secに耐えることができるものであれ
ばよく、例えば、金属製、又はビニール製のホース、又
は管であってもよい。また、符号20は、ホース19を
ノズル本体11と接続する際に、送水された水が漏れな
いように装着したニップルであり、漏水が防止できる他
のシール部材を使用してもよい。また、拡径ノズル部1
7は、その開き角度を40〜90度の範囲としたが、こ
れは、開き角度が40度未満では、ノズル本体11の吐
水口13から放出された高圧水流に、拡径ノズル部17
内の最も流速が速い中央部と、最も遅い壁部とで、顕著
な速度の分布がなくなり、流体のせん断力が顕著に発生
しなくなるため、空気の気泡を微細化することができな
いからである。一方、開き角度が90度を超えると、高
効率ガス溶解装置10の周囲から、拡径ノズル部17の
内部への水の巻きこみが発生し、拡径ノズル部17内の
中央部と壁部との間で、良好なせん断力を発生すること
ができず、キャビテーションを微細化することができな
くなるためである。以上のことより、拡径ノズル部17
の開き角度は、更には50〜70度、より好ましくは6
0度にするとよい。
In the present embodiment, the water is supplied to the nozzle body 11 by the hose 19a. However, any material capable of withstanding the water speed of 20 to 50 m / sec may be used. It may be a hose or a tube made of stainless steel. Reference numeral 20 denotes a nipple that is attached so that the supplied water does not leak when the hose 19 is connected to the nozzle body 11, and another sealing member that can prevent water leakage may be used. In addition, the enlarged diameter nozzle section 1
7 has an opening angle in the range of 40 to 90 degrees, which means that if the opening angle is less than 40 degrees, the high-pressure water discharged from the water discharge port 13 of the nozzle main body 11 has a large diameter nozzle 17.
This is because the remarkable velocity distribution disappears between the central part where the flow velocity is the fastest and the wall part where the flow velocity is the slowest, and the shear force of the fluid does not remarkably occur, so that air bubbles cannot be miniaturized. . On the other hand, when the opening angle exceeds 90 degrees, water is entrained from the periphery of the high-efficiency gas dissolving apparatus 10 into the inside of the enlarged nozzle 17, and the central part and the wall in the enlarged nozzle 17 are formed. This is because no good shearing force can be generated between the two, and cavitation cannot be miniaturized. From the above, the enlarged diameter nozzle section 17
Is more preferably 50 to 70 degrees, more preferably 6 to 70 degrees.
It is good to be 0 degrees.

【0012】また、拡径ノズル部17の拡径した先側
は、その曲率半径を10〜50mmにすることで円滑に
丸くしている。これにより、拡径ノズル部17の内部空
間に存在する微細化された空気の気泡を、高効率ガス溶
解装置10の周囲に、拡径ノズル部17に沿って均一
に、かつスムーズに放散できる。なお、この拡径ノズル
部の拡径した先側はRをとってもよい。また、拡径ノズ
ル部の拡径した先側を角張った形状としてもよい。
The enlarged front end of the enlarged diameter nozzle portion 17 is smoothly rounded by setting its radius of curvature to 10 to 50 mm. Thereby, fine air bubbles existing in the internal space of the enlarged diameter nozzle 17 can be uniformly and smoothly diffused around the high-efficiency gas dissolving device 10 along the enlarged diameter nozzle 17. In addition, the diameter-increased front side of the diameter-increasing nozzle portion may be rounded. Further, the diameter-enlarged tip side of the diameter-enlargement nozzle portion may have an angular shape.

【0013】高効率ガス溶解装置は、高圧水の放出方向
を水中の底部にしているが、任意の方向にすることも可
能である。また、この高効率ガス溶解装置の材質は、水
中でも錆びることのない材質、及び高圧水にも耐えるこ
とができる材質であればよく、例えば、ステンレス等の
金属製や、プラスチック製であってもよい。本実施の形
態においては、気体の一例として空気を水に溶かす例に
ついて説明したが、気体としては、酸素、オゾン等を含
んだ空気等であっても本発明に適用される。
In the high-efficiency gas dissolving apparatus, the discharge direction of the high-pressure water is at the bottom of the water, but it can be in any direction. The material of the high-efficiency gas dissolving device may be any material that does not rust in water and a material that can withstand high-pressure water, such as a metal such as stainless steel or a plastic. Good. In the present embodiment, an example in which air is dissolved in water has been described as an example of a gas. However, the present invention is applicable to any gas such as air containing oxygen, ozone, or the like.

【0014】[0014]

【実施例】本発明の一実施の形態に係る高効率ガス溶解
装置10を使用して、注水口12より毎分35.8L、
水圧2kg/cm2 の高圧水を導入し、空気の溶解を行
った結果、微細化された空気の気泡径は、0.01〜
0.1mmであり、ポンプ19の動力(電力消費量)
は、0.4kWと従来の11kWに比べて少なく、か
つ、酸素溶解効率(供給酸素量に対する溶解酸素量の割
合であり水中の酸素量を高める指標となる)は、40%
以上であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Using a high-efficiency gas dissolving apparatus 10 according to an embodiment of the present invention, 35.8 L / min.
As a result of introducing high-pressure water at a water pressure of 2 kg / cm 2 and dissolving the air, the bubble diameter of the micronized air is from 0.01 to
0.1 mm, power of pump 19 (power consumption)
Is 0.4 kW, which is smaller than the conventional 11 kW, and the oxygen dissolution efficiency (the ratio of the dissolved oxygen amount to the supplied oxygen amount, which is an index for increasing the oxygen amount in water) is 40%.
That was all.

【0015】続いて、比較例として既存の酸素供給装置
の特徴、電力消費量、酸素溶解効率について以下に示
す。散気管方式は、高圧空気が水中に投入された多孔質
材を通過する際に空気が微細化される。気泡径は、5m
m以上と大きく、水中における滞留時間短いため酸素供
給効果が低い。この酸素供給装置の電力消費量は11k
W、酸素溶解効率は4.8%である。ジェット水流方式
は、ノズルから空気と共に水ジェットを水中で噴射し、
酸素を供給する方式であるが、従来のノズル形状、及び
自由空間ジェット方式では、微細気泡と共に大きな気泡
が発生するため、大きな気泡に微細気泡が誘引急上昇し
て気泡の滞留時間が短い。この酸素供給装置の電力消費
量は11kW、酸素溶解効率は0.8%である。水車方
式は、低価格であるため養殖業界に最も普及した製品で
あるが、効果は水流を作るだけで酸素濃度は水面付近し
か高くならない。この酸素供給装置の電力消費量は0.
75kW、酸素溶解効率は0.5%である。
Next, the characteristics, power consumption, and oxygen dissolution efficiency of an existing oxygen supply device will be described below as comparative examples. In the air diffusion tube method, when high-pressure air passes through a porous material charged in water, the air is miniaturized. The bubble diameter is 5m
m or more and the residence time in water is short, so the oxygen supply effect is low. The power consumption of this oxygen supply device is 11k
W, oxygen dissolving efficiency is 4.8%. The jet water jet method jets a water jet underwater with air from a nozzle,
In the method of supplying oxygen, in the conventional nozzle shape and the free space jet method, since large bubbles are generated together with the fine bubbles, the fine bubbles are induced to rapidly rise in the large bubbles, and the residence time of the bubbles is short. The power consumption of this oxygen supply device is 11 kW, and the oxygen dissolution efficiency is 0.8%. Although the water wheel system is the most popular product in the aquaculture industry due to its low price, the effect is only to create a water flow and the oxygen concentration is increased only near the water surface. The power consumption of this oxygen supply device is 0.
75 kW, oxygen dissolution efficiency is 0.5%.

【0016】[0016]

【発明の効果】請求項1〜5記載の高効率ガス溶解装置
は、導水部に基側が一体的に連結され、先側に向けて拡
径し、吐出口から放出される高圧水流によって積極的に
キャビテーションを発生させる拡径ノズル部を有してい
るため、拡径ノズル部の内部空間で、キャビテーション
を常に定在させ、気泡の生成と崩壊を繰返すことができ
る。これにより、流体のせん断力、及びキャビテーショ
ンが壊れる際に発生する局所衝撃圧が加わって、気泡を
微細化できるため、水中への供給気体量に対する気体の
溶解量の割合を高めることができ、養殖池等、例えばエ
ビやうなぎ等の養殖池のように、狭い空間での飼育効率
を高める装置として有望であり、その効果も多大なもの
になる。使用する電力消費量も少なく、従来品に比べ省
エネルギータイプになっている。また、ノズル本体と、
ノズル本体の更に先側に隙間を有して配置され、拡径ノ
ズル部から放出される微泡混じりの水を周囲に放散する
衝突部材とを有することで、微細化された気体の気泡を
高効率ガス溶解装置の周囲に均一に放散することができ
る。
The high-efficiency gas dissolving apparatus according to any one of claims 1 to 5, wherein the base side is integrally connected to the water guide portion, the diameter increases toward the front side, and the high-pressure water flow discharged from the discharge port is positive. Since the cavitation has a diameter-enhancing nozzle portion, cavitation can always be maintained in the internal space of the diameter-enhancing nozzle portion, and generation and collapse of bubbles can be repeated. As a result, the shear force of the fluid and the local impact pressure generated when the cavitation is broken are applied, and the bubbles can be made finer, so that the ratio of the amount of gas dissolved to the amount of gas supplied to the water can be increased, and aquaculture can be achieved. It is promising as a device for improving breeding efficiency in a small space, such as a pond or aquaculture ponds such as shrimp or eel, and the effect is enormous. It uses less power and is energy saving compared to conventional products. Also, the nozzle body,
A collision member that is disposed with a gap further on the front side of the nozzle body and that disperses water mixed with fine bubbles discharged from the enlarged diameter nozzle portion to the surroundings, so that fine gas bubbles are reduced. Efficient gas can be uniformly dispersed around the gas dissolving device.

【0017】特に、請求項2記載の高効率ガス溶解装置
において、拡径ノズル部は、円錐台状となって、その開
き角を40〜90度の範囲にすることで、キャビテーシ
ョンは、拡径ノズル部の内部空間から外へ出ることな
く、拡径ノズル部の内部に常に定在させることができる
ため、キャビテーションが壊れる際に発生する局所衝撃
圧が他の気泡に加わって、気泡を微細化し、水中への供
給気体量に対する気体の溶解量の割合を高めることがで
きる。請求項3記載の高効率ガス溶解装置において、衝
突部材は、中心から半径方向に向けて下り傾斜になっ
て、しかも、周囲を複数の支持ロッドによってノズル本
体に固定することで、拡径ノズル部の内部空間に存在す
る微細化された気体の気泡を、機械撹拌することなく高
効率ガス溶解装置の周囲に均一に放散できる。また、衝
突部材は、周囲を複数の支持ロッドによってノズル本体
に固定するので、注入口に導入された高圧水の流速、及
び高効率ガス溶解装置の規模により、ノズル本体と衝突
部材との距離を調節でき、各条件において、高効率ガス
溶解装置の周囲に、微泡混じりの水を放散できる最適な
状態を作り出すことができる。
In particular, in the high-efficiency gas dissolving apparatus according to the second aspect, the diameter-enlargement nozzle portion has a truncated cone shape, and its divergence angle is set in a range of 40 to 90 degrees, so that the cavitation is increased in diameter. Because it can be always standing inside the enlarged diameter nozzle part without going out of the internal space of the nozzle part, the local impact pressure generated when cavitation is broken is applied to other bubbles, making the bubbles finer The ratio of the amount of gas dissolved to the amount of gas supplied to water can be increased. 4. The high-efficiency gas dissolving apparatus according to claim 3, wherein the collision member is inclined downward in the radial direction from the center, and the periphery is fixed to the nozzle body by a plurality of support rods. Fine gas bubbles existing in the internal space can be uniformly diffused around the high-efficiency gas dissolving device without mechanical stirring. In addition, since the collision member is fixed around the nozzle body by a plurality of support rods, the distance between the nozzle body and the collision member depends on the flow rate of the high-pressure water introduced into the injection port and the scale of the high-efficiency gas dissolving device. It can be adjusted, and under each condition, it is possible to create an optimum state in which water containing fine bubbles can be diffused around the high-efficiency gas dissolving device.

【0018】請求項4記載の高効率ガス溶解装置におい
ては、ノズル部の拡径した先側は円滑に丸くなってい
る。これにより、拡径ノズル部の内部空間に存在する微
細化された気体の気泡を、拡径ノズル部の壁部に沿って
スムーズに高効率ガス溶解装置の周囲へ放散できる。そ
して、請求項5記載の高効率ガス溶解装置において、導
水部には下流側にしぼり部が設けられ、しぼり部に気体
導入口が設けられている。これにより、しぼり部を通過
する高圧水の中央部と壁面側の速度分布を一様にするこ
とができるため、流速が均一な高圧水を作り出すことが
できる。また、しぼり部に気体導入口が設けられている
ので、多くの気体を混入した、高圧水を放出することが
できる。これにより、水中への気体の溶解効率を高める
ことが可能となる。
In the high-efficiency gas dissolving apparatus according to the fourth aspect, the enlarged front end of the nozzle portion is smoothly rounded. Thereby, the fine gas bubbles existing in the internal space of the enlarged diameter nozzle can be smoothly diffused to the periphery of the high-efficiency gas dissolving device along the wall of the enlarged diameter nozzle. In the high-efficiency gas dissolving apparatus according to the fifth aspect, the water guide section is provided with a throttle on the downstream side, and the throttle section is provided with a gas inlet. Thereby, the velocity distribution at the central portion and the wall surface side of the high-pressure water passing through the narrowing portion can be made uniform, so that high-pressure water having a uniform flow velocity can be produced. Further, since the gas inlet is provided in the restricting portion, high-pressure water mixed with a large amount of gas can be discharged. This makes it possible to increase the efficiency of dissolving the gas in water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る高効率ガス溶解装
置の側断面図である。
FIG. 1 is a side sectional view of a high-efficiency gas dissolving apparatus according to one embodiment of the present invention.

【図2】(A)、(B)はそれぞれ同高効率ガス溶解装
置の衝突板の正面図、側断面図である。
FIGS. 2A and 2B are a front view and a side sectional view, respectively, of a collision plate of the high-efficiency gas dissolving apparatus.

【図3】(A)、(B)は、それぞれ同高効率ガス溶解
装置の作動説明図、同高効率ガス溶解装置の構成図であ
る。
FIGS. 3A and 3B are an explanatory diagram of the operation of the high-efficiency gas dissolving apparatus and a configuration diagram of the high-efficiency gas dissolving apparatus, respectively.

【符号の説明】[Explanation of symbols]

10:高効率ガス溶解装置、11:ノズル本体、12:
注水口、13:吐水口、14:導水口、15:気体導入
口、16:気体配管、17:拡径ノズル部、18:衝突
板、18a:孔、19:ポンプ、19a:ホース、2
0:ニップル、21:支持ロッド、22:しぼり部
10: high-efficiency gas dissolving device, 11: nozzle body, 12:
Water inlet, 13: water outlet, 14: water inlet, 15: gas inlet, 16: gas pipe, 17: expanded nozzle, 18: collision plate, 18a: hole, 19: pump, 19a: hose, 2
0: Nipple, 21: Support rod, 22: Expressed part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 研治 福岡県北九州市八幡東区神山町2番10号 株式会社理研内 Fターム(参考) 4F033 QA10 QB02Y QB03X QB12Y QB15X QC05 QC07 QD04 QD07 QD11 QD16 QE09 QF23 QJ03 QJ12  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kenji Taguchi 2-10 Kamiyamacho, Yawatahigashi-ku, Kitakyushu-shi, Fukuoka F-term (reference) 4F033 QA10 QB02Y QB03X QB12Y QB15X QC05 QC07 QD04 QD07 QD11 QD16 QE09 QF23 QJ03 QJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 注水口から導入された高圧水を吐水口か
ら放出する導水部、該導水部に気体導入口が設けられて
エジェクター作用によって前記高圧水に気体を混入する
気体配管、及び前記導水部に基側が一体的に連結され、
先側に向けて拡径し、前記吐出口から放出される高圧水
流によって積極的にキャビテーションを発生させる拡径
ノズル部を有するノズル本体と、前記ノズル本体の更に
先側に隙間を有して配置され、前記拡径ノズル部から放
出される微泡混じりの水を周囲に放散する衝突部材とを
有することを特徴とする高効率ガス溶解装置。
A water pipe for discharging high-pressure water introduced from a water inlet from a water discharge port, a gas pipe provided with a gas inlet in the water pipe, and mixing gas into the high-pressure water by an ejector action; The base is integrally connected to the part,
A nozzle body having a diameter-enlarged nozzle portion that expands in diameter toward the front side and positively generates cavitation by the high-pressure water flow discharged from the discharge port, and is disposed with a gap further on the front side of the nozzle body. A high-efficiency gas dissolving apparatus, comprising: a collision member for dispersing water containing fine bubbles discharged from the enlarged diameter nozzle portion to the surroundings.
【請求項2】 請求項1記載の高効率ガス溶解装置にお
いて、前記拡径ノズル部は、円錐台状となって、その開
き角が40〜90度の範囲にある高効率ガス溶解装置。
2. The high-efficiency gas dissolving apparatus according to claim 1, wherein said enlarged-diameter nozzle portion has a truncated cone shape and an opening angle in a range of 40 to 90 degrees.
【請求項3】 請求項1又は2記載の高効率ガス溶解装
置において、前記衝突部材は、中心から半径方向に向け
て下り傾斜になって、しかも、周囲が複数の支持ロッド
によって前記ノズル本体に固定されていることを特徴と
する高効率ガス溶解装置。
3. The high-efficiency gas dissolving apparatus according to claim 1, wherein the collision member is inclined downward in a radial direction from a center, and a periphery of the collision member is attached to the nozzle body by a plurality of support rods. A high-efficiency gas dissolving apparatus characterized by being fixed.
【請求項4】 請求項1〜3のいずれか1項に記載の高
効率ガス溶解装置において、前記拡径ノズル部の拡径し
た先側は円滑に丸くなっていることを特徴とする高効率
ガス溶解装置。
4. The high-efficiency gas dissolving apparatus according to claim 1, wherein an enlarged front end of said enlarged-diameter nozzle portion is smoothly rounded. Gas melting equipment.
【請求項5】 請求項1〜4のいずれか1項に記載の高
効率ガス溶解装置において、前記導水部には下流側にし
ぼり部が設けられ、該しぼり部に前記気体導入口が設け
られていることを特徴とする高効率ガス溶解装置。
5. The high-efficiency gas dissolving apparatus according to claim 1, wherein the water guide is provided with a throttle on the downstream side, and the gas inlet is provided on the throttle. A high-efficiency gas dissolving apparatus.
JP11174313A 1999-06-21 1999-06-21 High efficiency gas dissolving device Pending JP2001000890A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11174313A JP2001000890A (en) 1999-06-21 1999-06-21 High efficiency gas dissolving device
PCT/JP2000/004013 WO2000078466A1 (en) 1999-06-21 2000-06-20 High-efficiency gas dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11174313A JP2001000890A (en) 1999-06-21 1999-06-21 High efficiency gas dissolving device

Publications (1)

Publication Number Publication Date
JP2001000890A true JP2001000890A (en) 2001-01-09

Family

ID=15976478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11174313A Pending JP2001000890A (en) 1999-06-21 1999-06-21 High efficiency gas dissolving device

Country Status (2)

Country Link
JP (1) JP2001000890A (en)
WO (1) WO2000078466A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083205A (en) * 2001-09-11 2003-03-19 Mitsubishi Heavy Ind Ltd Fuel injection nozzle, internal combustion engine provided with the same and fuel injection method
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131803A1 (en) 2001-06-30 2003-05-28 Bosch Gmbh Robert Mixing device for an exhaust gas cleaning system
US20040251566A1 (en) 2003-06-13 2004-12-16 Kozyuk Oleg V. Device and method for generating microbubbles in a liquid using hydrodynamic cavitation
CN102641668B (en) * 2012-02-09 2017-02-15 孙乔良 Multifunctional phase-variable high-energy water instantaneous making machine set with multiple gas sources
CN103432918B (en) * 2013-08-01 2015-06-17 中盐榆林盐化有限公司 Powder and liquid dissolution mixer
WO2018146382A1 (en) * 2017-02-08 2018-08-16 Beneq Oy Apparatus and method for processing gas or aerosol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144871A (en) * 1977-05-23 1978-12-16 Kamerumachieru Edouarudo Aeration apparatus for liquid treatment
JPS54129078U (en) * 1978-02-28 1979-09-07
JP2722373B2 (en) * 1993-08-05 1998-03-04 和泉電気株式会社 Method and apparatus for producing fine foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083205A (en) * 2001-09-11 2003-03-19 Mitsubishi Heavy Ind Ltd Fuel injection nozzle, internal combustion engine provided with the same and fuel injection method
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method

Also Published As

Publication number Publication date
WO2000078466A1 (en) 2000-12-28

Similar Documents

Publication Publication Date Title
WO1999033553A1 (en) Swirling fine-bubble generator
JP2000000447A (en) Swirling type fine bubble generator
US4117048A (en) Apparatus for introducing gas into a liquid
JP2003205228A (en) Turning type fine bubbles production apparatus
US4863643A (en) Apparatus for dissolution of gas in liquid
WO2000069550A1 (en) Swing type fine air bubble generating device
JPWO2005115596A1 (en) Fine bubble-containing liquid production method and apparatus, and fine bubble generator incorporated therein
CN108854823A (en) A kind of high efficient gas and liquid mixing arrangement
JP3443728B2 (en) Wastewater purification equipment
JP2003225546A (en) Fine foam generation apparatus
US4193950A (en) Apparatus for introducing gas into a liquid
JP2010155243A (en) Swirling type fine-bubble generating system
CN201981065U (en) Micro-nano jet aerator
JP2001000890A (en) High efficiency gas dissolving device
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
JP2002059186A (en) Water-jet type fine bubble generator
JPH11333491A (en) Microbubble jet water purifying apparatus
KR200202246Y1 (en) Jet loop reactor
JP2011183328A (en) Aerator
WO2007125996A1 (en) Water quality improving unit and water quality improving device
JP2002200415A (en) Equipment for dissolving air into water
CN202880986U (en) Radial flow aerator
JP4264089B2 (en) Ultra miniaturization equipment
JP2000167545A (en) Device and method for water area purification
JPH06121997A (en) Aeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616