JP6691716B2 - Method and device for generating fine bubbles - Google Patents
Method and device for generating fine bubbles Download PDFInfo
- Publication number
- JP6691716B2 JP6691716B2 JP2018032606A JP2018032606A JP6691716B2 JP 6691716 B2 JP6691716 B2 JP 6691716B2 JP 2018032606 A JP2018032606 A JP 2018032606A JP 2018032606 A JP2018032606 A JP 2018032606A JP 6691716 B2 JP6691716 B2 JP 6691716B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- tube
- diameter
- gas
- outer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Accessories For Mixers (AREA)
Description
本発明は微細気泡発生方法及び装置に関し,とくにエジェクタを利用して微細気泡を発生させる方法及び装置に関する。 The present invention relates to a method and apparatus for generating fine bubbles, and more particularly to a method and apparatus for generating fine bubbles using an ejector.
魚介類の養殖池や湖沼・河川・湖水等の閉鎖水域,排水処理場,汚水処理場等において,水質の改善・改良等を目的として,水中(液体中)に微細気泡を供給することがある(特許文献1及び2参照)。微細気泡は,ファインバブル,マイクロバブル又はナノバブルとも呼ばれる粒径が100μm以下(例えば数10μm〜数μm)の微細な気泡であり,通常の気泡(例えば粒径1mm以上の気泡)には見られない特徴,例えば浮力が小さく水中に長時間浮遊して様々な部位に到達する,水中で浮遊しながら縮小して消滅(完全溶解)する等の特徴を有している。 For the purpose of improving / improving the water quality, fine bubbles may be supplied to water in aquaculture ponds of seafood, closed water areas of lakes / marshes / rivers / lakes, wastewater treatment plants, sewage treatment plants, etc. (See Patent Documents 1 and 2). The fine bubbles are fine bubbles having a particle size of 100 μm or less (for example, several tens of μm to several μm), which are also called fine bubbles, microbubbles, or nanobubbles, and are not found in ordinary bubbles (for example, bubbles having a particle size of 1 mm or more). For example, it has a small buoyancy and floats in water for a long time to reach various parts, and also has a feature that it floats in water and shrinks and disappears (completely dissolves).
微細気泡は,例えば水中に供給して完全溶解させることにより,水中の様々な部位の溶存酸素濃度を効率的に向上させて水質を改善・改良することが期待できる。また,微細気泡を含む水は微生物,植物,動物に対する活性効果があることも報告されており,例えばナスやトマト等の収穫量を高めるために利用できる(非特許文献1参照)。更に,医薬品や食品等の分野においても様々なガス(酸素,オゾン,窒素等)を閉じ込めた微細気泡が利用されており,例えばオゾンガスを閉じ込めた微細気泡は強力な殺菌効果を有することが認められている。 By supplying the fine bubbles to water and completely dissolving them, for example, it is expected that the dissolved oxygen concentration in various parts of the water can be efficiently increased and the water quality can be improved and improved. It has also been reported that water containing fine bubbles has an active effect on microorganisms, plants, and animals, and can be used, for example, to increase the yield of eggplants, tomatoes, and the like (see Non-Patent Document 1). Further, in the fields of pharmaceuticals and foods, fine gas bubbles containing various gases (oxygen, ozone, nitrogen, etc.) are used. For example, it is recognized that fine gas bubbles containing ozone gas have a strong bactericidal effect. ing.
水中(液体中)に微細気泡を供給する従来方法の一例は,エジェクタの小径管路に液体を高速で通過させ,その液流によって生じる負圧を利用して気相Paから液相Pb中に気体を吸引(自吸)し,その下流の管路拡大で生じるキャビテーションによって吸引した気体を微細に破砕して微細気泡を発生させるものである(非特許文献2参照)。例えば図6(A)に示すように,エジェクタ62を利用した微細気泡発生装置60(以下,エジェクタ式微細気泡発生装置ということがある)は,液体貯留槽61内の液相Pb中にポンプ63及びエジェクタ62を配置し,ポンプ63で吸引した加圧液Qを液体流路64及び流量調整バルブ65を介してエジェクタ62に循環させる。また,エジェクタ62に気体供給路66の一端を接続し,気体供給路66の他端の開閉コック67を気相Paに連通させて配置する(特許文献1参照)。 An example of a conventional method for supplying fine bubbles to water (in liquid) is to pass the liquid through a small-diameter pipe of an ejector at high speed, and use the negative pressure generated by the liquid flow from the gas phase Pa to the liquid phase Pb. The gas is sucked (self-sucking), and the sucked gas is finely crushed by the cavitation generated by the expansion of the downstream pipeline to generate fine bubbles (see Non-Patent Document 2). For example, as shown in FIG. 6A, a fine bubble generator 60 using an ejector 62 (hereinafter sometimes referred to as an ejector type fine bubble generator) has a pump 63 in a liquid phase Pb in a liquid storage tank 61. The ejector 62 is arranged, and the pressurized liquid Q sucked by the pump 63 is circulated to the ejector 62 via the liquid flow path 64 and the flow rate adjusting valve 65. Further, one end of the gas supply passage 66 is connected to the ejector 62, and the opening / closing cock 67 at the other end of the gas supply passage 66 is arranged in communication with the gas phase Pa (see Patent Document 1).
図6(B)は,エジェクタ62の一例の断面図を示す。図示例のエジェクタ62は,液体流路64から加圧液Qを取り入れる中空部62aを有し,その上流側に拡径された入口(管路 入口)62bを設けることにより断面を略T字形状とし,入口に比して縮径された管路中間部分(小径管路)に微細吸気孔62eを設けて気体供給路66の一端を接続する。管路入口62bから流入した加圧液Qは小径管路を通過する際に負圧を生じ,気体供給路66から微細吸気孔62eを介して気体Gが吸引されて液体に混合される。混合された気体Gは加圧液Qと共に管路出口62cへ送られ,出口の管路拡大で生じるキャビテーションによって微細に破砕され,微細気泡Sとなって放出される。 FIG. 6B shows a cross-sectional view of an example of the ejector 62. The ejector 62 of the illustrated example has a hollow portion 62a that takes in the pressurized liquid Q from the liquid flow path 64, and an enlarged diameter inlet (pipe line inlet) 62b is provided on the upstream side of the hollow portion 62a so that the cross section is substantially T-shaped. In addition, a fine intake hole 62e is provided in the middle portion (small-diameter conduit) of the conduit whose diameter is smaller than that of the inlet to connect one end of the gas supply passage 66. The pressurized liquid Q flowing in from the pipe inlet 62b produces a negative pressure when passing through the small-diameter pipe, and the gas G is sucked from the gas supply passage 66 through the fine suction holes 62e and mixed with the liquid. The mixed gas G is sent to the conduit outlet 62c together with the pressurized liquid Q, finely crushed by the cavitation generated by the expansion of the outlet conduit, and released as fine bubbles S.
図6(C)は,中空管路62aの中間部分に縮径部(小径管路)62dを設けたエジェクタ(ベンチュリー)62の他の一例の断面図を示す。図示例のエジェクタ62は,縮径部62dに気体供給路66の一端を接続する微細吸気孔62eを設けており,管路入口62bから流入した加圧液Qは縮径部62dを通過する際に負圧を生じ,気体供給路66から微細吸気孔62eを介して気体Gが吸引されて液体に混合される。加圧液Qに混合した気体Gは,その下流側の管路拡大で生じるキャビテーションによって破砕され,微細気泡Sとなって管路出口62cから放出される。 FIG. 6C shows a cross-sectional view of another example of the ejector (venturi) 62 in which a reduced diameter portion (small diameter conduit) 62d is provided in the middle portion of the hollow conduit 62a. The ejector 62 of the illustrated example is provided with a fine suction hole 62e for connecting one end of the gas supply passage 66 to the reduced diameter portion 62d, and when the pressurized liquid Q flowing from the conduit inlet 62b passes through the reduced diameter portion 62d. A negative pressure is generated in the gas, and the gas G is sucked from the gas supply path 66 through the fine intake holes 62e and mixed with the liquid. The gas G mixed with the pressurized liquid Q is crushed by the cavitation generated by the expansion of the pipeline on the downstream side, and becomes fine bubbles S and is discharged from the pipeline outlet 62c.
しかし,図6に示す従来のエジェクタ式微細気泡発生装置60は,例えば加圧液Qに含まれる浮遊物等によってエジェクタ62の微細吸気孔62eに閉塞が生じうる問題点がある。微細吸気孔62eの閉塞は,加圧液Q中の浮遊物だけでなく金属腐食(例えばステンレス鋼の局部腐食)等によっても発生しうる。例えば養魚場や閉鎖水域等では微細気泡の供給を長期間継続しなければならないことも多いが,微細吸気孔62が閉塞すると気体Gの吸引が止まって微細気泡Sの発生が停止するので,無人の養魚場や海洋等でエジェクタ式微細気泡発生装置60を利用する場合は,微細気泡Sの発生停止を防止する対策が別途必要となる。無人の海洋上や養魚場等における微細気泡Sの利用を図るため,気体Gの吸引が止まりにくく長期間継続的に使用しても微細気泡Sを安定的に供給できるエジェクタ式微細気泡発生装置の開発が望まれている。 However, the conventional ejector-type micro-bubble generator 60 shown in FIG. 6 has a problem that the micro-intake holes 62e of the ejector 62 may be blocked by, for example, suspended matter contained in the pressurized liquid Q. The blockage of the fine intake holes 62e can occur not only by the suspended matter in the pressurized liquid Q but also by metal corrosion (for example, local corrosion of stainless steel) or the like. For example, in a fish farm or a closed water area, it is often necessary to continue the supply of fine bubbles for a long period of time, but when the fine intake holes 62 are closed, the suction of the gas G stops and the generation of the fine bubbles S stops, so unmanned When the ejector type fine bubble generator 60 is used in the fish farm, the ocean, etc., another measure is required to prevent the generation of the fine bubbles S. In order to utilize the fine bubbles S in an unmanned ocean or fish farm, it is difficult to stop the suction of the gas G, and an ejector-type fine bubble generator capable of stably supplying the fine bubbles S even when continuously used for a long period of time. Development is desired.
そこで本発明の目的は,長期間継続的に微細気泡を供給できるエジェクタ式の微細気泡発生方法及び装置を提供することにある。 Therefore, an object of the present invention is to provide an ejector type fine bubble generating method and device capable of continuously supplying fine bubbles for a long period of time.
図1及び図2の実施例を参照するに,本発明による微細気泡発生方法は,入口12及び出口13が所定内径R1で所定深さ部位L1の内周面15aに縮径部14が形成された中空外管10の出口側周壁15にその出口側周壁15の内周面15aの接線方向に中心軸線Iを揃えた通気孔16を穿つと共にその出口側周壁15の内周面15aを凹凸のない曲面とし(図2(B)参照),中空外管10の所定内径R1より小さい外径R3及び縮径部14と同じ内径R2で所定深さ部位L2の外周面25bに所定内径R1より大きい外径R0のフランジ24が形成された中空内管20の一端22を中空外管10の出口13に芯合わせして差し込むと共に差し込み端の外周面25bを凹凸のない曲面とし(図1(A)の矢印B及び図2(B)参照),中空外管10の出口13の周囲に中空内管20のフランジ24を固定すると共に中空内管20の差し込み端22を中空外管10の縮径部14と微小間隙E(=L1−L2)で対向させ(図1(B)及び図2(A)参照),中空外管10の通気孔16を気相Pa(図6参照)に連通させつつ入口12から加圧液Qを導入し,通気孔16及び微小間隙Eを介して気相Paから中空外管10と中空内管20との間に形成された環状で内面に凹凸のない気体チャンバー28及び微小間隙Eを介して中空内管20に気体Gを吸引し且つ吸引した気体Gを中空内管20の他端23から破砕しながら放出してなるものである。 Referring to the embodiment of FIGS . 1 and 2, in the method for generating fine bubbles according to the present invention, the inlet 12 and the outlet 13 have a predetermined inner diameter R1 and a reduced diameter portion 14 is formed on an inner peripheral surface 15a of a predetermined depth portion L1. uneven inner peripheral surface 15a of the hollow outer tube exit side wall 15 on the exit side wall 15 inner circumferential surface 15a vent hole 16 that the outlet-side wall 15 with one puncture a stocked a central axis I in a tangential direction of the 10 2B, the outer diameter R3 is smaller than the predetermined inner diameter R1 of the hollow outer tube 10 and the inner diameter R2 is the same as the reduced diameter portion 14, and the outer peripheral surface 25b of the predetermined depth portion L2 is smaller than the predetermined inner diameter R1. and larger one end 22 of hollow tube 20 flange 24 is formed with an outer diameter of R0 to fit the core to the outlet 13 of the hollow outer tube 10 plugged write Mutotomoni insertion end curved no unevenness of the outer peripheral surface 25b (FIG. 1 (A) arrow B and FIG. 2 (B) ), middle The flange 24 of the hollow inner pipe 20 is fixed around the outlet 13 of the outer pipe 10, and the insertion end 22 of the hollow inner pipe 20 is formed with the reduced diameter portion 14 of the hollow outer pipe 10 (= L1-L2). The pressurizing liquid Q is introduced from the inlet 12 while being opposed to each other (see FIGS. 1B and 2A ) and communicating the vent hole 16 of the hollow outer tube 10 with the gas phase Pa (see FIG. 6). The hollow inner tube 20 is formed between the hollow outer tube 10 and the hollow inner tube 20 from the gas phase Pa through the pores 16 and the minute gap E, and the annular inner surface having no unevenness and the minute gap E. The gas G is sucked in and the sucked gas G is discharged from the other end 23 of the hollow inner tube 20 while being crushed.
また図1及び図2の実施例を参照するに,本発明による微細気泡発生装置は,入口12及び出口13が所定内径R1で所定深さ部位L1の内周面15aに縮径部14が形成され且つ出口側周壁15にその出口側周壁15の内周面15aの接線方向に中心軸線Iを揃えた通気孔16を穿つと共にその出口側周壁15の内周面15aを凹凸のない曲面(図2(B)参照)とした中空外管10,中空外管10の所定内径R1より小さい外径R3及び縮径部14と同じ内径R2で所定深さ部位L2の外周面25bに所定内径R1より大きい外径R0のフランジ24が形成され且つ中空外管10の出口13に一端22を芯合わせして差し込むと共に差し込み端の外周面25bを凹凸のない曲面(図2(B)参照)とした中空内管20,並びに中空外管10の出口13の周囲に中空内管20のフランジ24を固定する固定部材30を備え,中空内管20のフランジ24の形成部位L2をその中空内管20の差し込み端22が中空外管10の縮径部14と微小間隙E(=L1−L2)で対向するように設定すると共に,中空外管10と中空内管20との間に環状で内面に凹凸のない気体チャンバー28を形成してなるものである(図1(B)及び図2(A)参照)。 Further, referring to the embodiments of FIGS . 1 and 2, in the fine bubble generator according to the present invention, the inlet 12 and the outlet 13 have a predetermined inner diameter R1 and a reduced diameter portion 14 is formed on the inner peripheral surface 15a of the predetermined depth portion L1. It is and the outlet-side peripheral wall 15 an outlet side wall 15 inner circumferential surface 15a tangentially without irregularities to the inner peripheral surface 15a of the exit-side wall 15 of the vent holes 16 which align a central axis I with one puncture the curved surface of the to ( 2B), the outer diameter R3 smaller than the predetermined inner diameter R1 of the hollow outer tube 10 and the same inner diameter R2 as the reduced diameter portion 14 and the predetermined inner diameter R1 on the outer peripheral surface 25b of the predetermined depth portion L2. A flange 24 having a larger outer diameter R0 is formed, and one end 22 is inserted into the outlet 13 of the hollow outer tube 10 with its center aligned, and the outer peripheral surface 25b of the insertion end is a curved surface without unevenness (see FIG. 2B). Hollow inner tube 20 and hollow outer tube 1 A fixing member 30 for fixing the flange 24 of the hollow inner pipe 20 is provided around the outlet 13 of the hollow inner pipe 20, and the forming end L2 of the flange 24 of the hollow inner pipe 20 is inserted into the hollow outer pipe 10. The gas chamber 28 is set so as to face the diameter portion 14 with a minute gap E (= L1-L2), and an annular gas chamber 28 having no unevenness on the inner surface is formed between the hollow outer tube 10 and the hollow inner tube 20. ( See FIG. 1B and FIG. 2A ).
望ましい実施例では,図2(C)に示すように,中空内管20の内径R2を一端22側から他端23側へ向けて徐々に拡大させ,中空内管20に吸引した気体Gを内径R2の拡大により粉砕する。更に望ましい実施例では,図4(E)に示すように,中空内管20の差し込み端22に内周方向に沿った凹凸22cを設け,微小間隙Eの外周縁に凹凸を形成する。 In the preferred embodiment, as shown in FIG. 2 (C), the inner diameter R2 of the hollow inner tube 20 is gradually increased from the one end 22 side to the other end 23 side, and the gas G sucked into the hollow inner tube 20 has an inner diameter R2. Grind by expanding R2. In a further preferred embodiment, as shown in FIG. 4 (E), the insertion end 22 of the hollow inner tube 20 is provided with an unevenness 22c along the inner circumferential direction, and an unevenness is formed on the outer peripheral edge of the minute gap E.
本発明による微細気泡発生方法及び装置は,所定深さ部位L1の内周面15aに縮径部14が形成された中空外管10の所定内径R1の出口側周壁15にその出口側周壁15の内周面15aの接線方向に中心軸線Iを揃えた通気孔16を穿つと共にその出口側周壁15の内周面15aを凹凸のない曲面とし,その所定内径R1より小さい外径R3及び縮径部14と同じ内径R2で所定深さ部位L2の外周面25bに所定内径R1より大きい外径R0のフランジ24が形成された中空内管20の一端22を中空外管10の出口13に芯合わせして差し込むと共に差し込み端の外周面25bを凹凸のない曲面とし,中空外管10の出口13の周囲に中空内管20のフランジ24を固定すると共に中空内管20の差し込み端22を中空外管10の縮径部14と微小間隙E(=L1−L2)で対向させ,中空外管10の通気孔16を気相Paに連通させつつ入口12から加圧液Qを導入し,通気孔16及び微小間隙Eを介して気相Paから中空外管10と中空内管20との間に形成された環状で内面に凹凸のない気体チャンバー28及び微小間隙Eを介して中空内管20に気体Gを吸引し且つ吸引した気体Gを中空内管20の他端23から破砕しながら放出するので,次の有利な効果を奏する。 The method and apparatus for producing fine bubbles according to the present invention is such that the outlet side peripheral wall 15 having the predetermined inner diameter R1 of the hollow outer tube 10 having the reduced diameter portion 14 formed on the inner peripheral surface 15a of the predetermined depth portion L1 has the outlet side peripheral wall 15 thereof. the vent hole 16 aligned a central axis I in a tangential direction to the inner peripheral surface 15a without irregularities a curved surface of the outlet-side wall 15 with one puncture of the inner peripheral surface 15a, is smaller than the outer diameter R3 and contracted the predetermined inner diameter R1 The end 22 of the hollow inner tube 20 having the same inner diameter R2 as the portion 14 and the flange 24 having the outer diameter R0 larger than the predetermined inner diameter R1 formed on the outer peripheral surface 25b of the predetermined depth portion L2 is aligned with the outlet 13 of the hollow outer tube 10. hollow the insertion end 22 of the hollow inner tube 20 together to a pointing write Mutotomoni insertion end outer peripheral surface 25b curved without irregularities to the to fix the flange 24 of the hollow tube 20 around the outlet 13 of the hollow outer tube 10 Reduction of outer tube 10 The pressurized liquid Q is introduced from the inlet 12 while facing the portion 14 with the minute gap E (= L1-L2) and communicating the vent hole 16 of the hollow outer tube 10 with the gas phase Pa. The gas G is sucked from the gas phase Pa into the hollow inner tube 20 through the annular gas chamber 28 formed between the hollow outer tube 10 and the hollow inner tube 20 and having no unevenness on the inner surface and the minute gap E. Moreover, since the sucked gas G is discharged from the other end 23 of the hollow inner tube 20 while being crushed, the following advantageous effects are obtained.
(イ)内周面15aに縮径部14が形成された中空外管10の内径R1の出口13に,内径R1より小さい外径R3の中空内管20aを差し込み,中空外管10の出口側周壁15に通気孔16を穿つことにより,加圧液Qを導入する中空内管20の周囲に中空内管20の外周面25bと中空外管10の内周面15aとで囲まれた筒状に延びる環状の気体チャンバー28を形成することができる。
(ロ)また,中空内管20の差し込み端22を中空外管10の縮径部14と微小間隙Eで対向させることにより,加圧液Qを導入する中空内管20の断面全周(360度)にわたり気体チャンバー28と接する環状スリットを形成することができる。
(A) Insert the hollow inner pipe 20a having the outer diameter R3 smaller than the inner diameter R1 into the outlet 13 having the inner diameter R1 of the hollow outer pipe 10 having the reduced diameter portion 14 formed on the inner peripheral surface 15a. By forming the ventilation hole 16 in the peripheral wall 15, a cylindrical shape surrounded by the outer peripheral surface 25b of the hollow inner tube 20 and the inner peripheral surface 15a of the hollow outer tube 10 around the hollow inner tube 20 for introducing the pressurized liquid Q. An annular gas chamber 28 can be formed that extends to.
(B) Further, by making the insertion end 22 of the hollow inner pipe 20 face the reduced diameter portion 14 of the hollow outer pipe 10 with the minute gap E, the entire circumference of the cross section of the hollow inner pipe 20 (360 It is possible to form an annular slit that contacts the gas chamber 28 over a degree.
(ハ)全周にわたる微小間隙Eの環状スリットを介して気体チャンバー28の気体Gを加圧液Qに吸引することにより,従来のポイント的な微細吸気孔62e(図6参照)に比して,目詰まり等による気体Gの吸引停止が起こりにくく,長期間継続的に使用しても微細気泡Sを安定的に発生させることができる。
(ニ)環状の気体チャンバー内の気体Gを中空外管10の内周壁に沿って旋回させることにより,気体チャンバー28内の気体Gのバラツキを避け,全周にわたる環状スリットから加圧液Qに吸引される気体(気泡)Gの混合を均一化することができる。
(C) By sucking the gas G in the gas chamber 28 into the pressurized liquid Q through the annular slit having the minute gap E over the entire circumference, compared with the conventional point-like minute intake hole 62e (see FIG. 6). The suction of the gas G is not likely to be stopped due to clogging, etc., and the fine bubbles S can be stably generated even after continuous use for a long period of time.
(D) By swirling the gas G in the annular gas chamber along the inner peripheral wall of the hollow outer tube 10, the variation of the gas G in the gas chamber 28 is avoided, and the pressurized liquid Q is supplied from the annular slit over the entire circumference. Mixing of the sucked gas (bubbles) G can be made uniform.
(ホ)また,通気孔16に連なる中空外管10の内周面15aを凹凸のない曲面とし,内周面15aに沿った気体流路の摩擦損失を抑えることにより,加圧液Qに吸引される気体Gの混合の更なる均一化を図り,ひいては発生させる微細気泡Sの均一化を図ることが期待できる。
(ヘ)更に,中空内管20の差し込み端22に内周方向に沿った凹凸22cを設け,環状スリットの外周縁に凹凸を形成することにより,環状スリットから気体Gを粉砕しながら加圧液Qに吸引することができ,ひいては発生させる微細気泡Sの小径化を図ることが期待できる。
(E) Further, the inner peripheral surface 15a of the hollow outer tube 10 connected to the ventilation hole 16 is formed into a curved surface without unevenness, and the friction loss of the gas flow path along the inner peripheral surface 15a is suppressed so that the pressurized liquid Q is sucked. It can be expected to further homogenize the mixing of the gas G to be generated and eventually to homogenize the generated fine bubbles S.
(F) Furthermore, by forming the unevenness 22c along the inner circumferential direction on the insertion end 22 of the hollow inner tube 20 and forming the unevenness on the outer peripheral edge of the annular slit, the pressurized liquid is crushed while the gas G is crushed from the annular slit. It can be sucked to Q, and it can be expected that the diameter of the generated fine bubbles S can be reduced.
以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
図1は,例えば養魚場や閉鎖水域等の対象水域に微細気泡Sを供給する本発明の微細気泡発生装置1の実施例を示す。図1(A)に示す発生装置1は,所定内径R1の中空部11の周壁15に通気孔16が穿たれた中空外管10aと,その中空外管10aの出口13に一端22を芯合わせして差し込む中空内管20aと,中空外管10aの入口12に芯合わせして押し当てる接続導管40aとを有している。図1(B)に示すように,中空外管10aと中空内管20aと接続導管40aとを組み合わせ,固定手段30によって一体化することによりエジェクタを構成する。各管10a,20a,40aの材質は任意に選択できるが,例えばステンレス鋼製又は合成樹脂製とすることができる。ただし,接続導管40aは後述するように本発明に必須のものではなく,省略可能である。 FIG. 1 shows an embodiment of a fine bubble generator 1 of the present invention for supplying fine bubbles S to a target water area such as a fish farm or a closed water area. The generator 1 shown in FIG. 1 (A) has a hollow outer tube 10a in which a vent hole 16 is formed in a peripheral wall 15 of a hollow portion 11 having a predetermined inner diameter R1, and an end 22 of the hollow outer tube 10a is aligned with an outlet 13 of the hollow outer tube 10a. It has a hollow inner tube 20a to be inserted therein and a connecting conduit 40a which is aligned with the inlet 12 of the hollow outer tube 10a and pressed against it. As shown in FIG. 1B, the hollow outer pipe 10a, the hollow inner pipe 20a, and the connecting conduit 40a are combined and integrated by the fixing means 30 to form an ejector. The material of each of the tubes 10a, 20a, 40a can be arbitrarily selected, but can be made of, for example, stainless steel or synthetic resin. However, the connecting conduit 40a is not essential to the present invention as will be described later, and can be omitted.
図1(B)において,中空外管10aの通気孔16は,例えば気体供給路66(図6参照)と接続することにより気相Paと連通させる。そのうえで,例えば液体流路64(図6参照)を接続導管40aに接続し,接続導管40aを介して中空外管10aの入口12に加圧液Qを導入し,通気孔16から加圧液Q中に気体Gを吸引(自吸)して混合する。気体Gの混合した加圧液Qは,中空外管10aの出口13から中空内管20aの一端22に導入され,中空内管20aの他端23から放出されるが,その放出時の急激な管路拡大で生じるキャビテーションによって混合した気体(気泡)Gが破砕されて微細気泡Sを生成する。 In FIG. 1B, the vent hole 16 of the hollow outer tube 10a is connected to the gas phase Pa by connecting to the gas supply passage 66 (see FIG. 6), for example. Then, for example, the liquid channel 64 (see FIG. 6) is connected to the connecting conduit 40a, the pressurized liquid Q is introduced into the inlet 12 of the hollow outer tube 10a through the connecting conduit 40a, and the pressurized liquid Q is introduced from the vent hole 16. The gas G is sucked in (self-priming) and mixed. The pressurized liquid Q mixed with the gas G is introduced from the outlet 13 of the hollow outer pipe 10a to one end 22 of the hollow inner pipe 20a and is discharged from the other end 23 of the hollow inner pipe 20a. The mixed gas (bubbles) G is crushed by the cavitation generated by the expansion of the pipeline, and the fine bubbles S are generated.
図示例の中空外管10aは,入口12及び出口13が所定内径R1の中空部11を有し,中空部11の出口13から所定深さ部位L1の内周面15aに縮径部14が形成され,その縮径部14よりも出口側の周壁15に通気孔16を穿ったものである。所定内径R1の入口12と出口13との間に小さい内径R2の縮径部(小径管路)14を設けることにより,入口12から導入された加圧液Qが縮径部14を通過する際に負圧を生じ,通気孔16から気体Gを吸引することができる。 In the illustrated hollow outer tube 10a, an inlet 12 and an outlet 13 have a hollow portion 11 having a predetermined inner diameter R1, and a reduced diameter portion 14 is formed from the outlet 13 of the hollow portion 11 to an inner peripheral surface 15a of a predetermined depth portion L1. The vent hole 16 is formed in the peripheral wall 15 on the outlet side of the reduced diameter portion 14. When the pressurized liquid Q introduced from the inlet 12 passes through the reduced diameter portion 14 by providing the reduced diameter portion (small diameter pipe line) 14 with the small inner diameter R2 between the inlet 12 and the outlet 13 of the predetermined inner diameter R1. A negative pressure is generated in the air, and the gas G can be sucked from the ventilation hole 16.
図示例では中空外管10aの入口12と出口13とを同じ内径R1としているが,所定深さ部位L1に縮径部14を形成することができれば,入口12及び出口13の内径は異なる大きさとしてもよい。通気孔16からの吸気量は,例えば通気孔16に接続する気体供給路66にバルブを設けて調節することができる。従って,通気孔16の口径は任意に設定可能であり,目詰まり等を防ぐために通気孔16を比較的大径とすることも有効である(図3(A)参照)。 In the illustrated example, the inlet 12 and the outlet 13 of the hollow outer tube 10a have the same inner diameter R1, but if the reduced diameter portion 14 can be formed at the predetermined depth portion L1, the inner diameters of the inlet 12 and the outlet 13 have different sizes. May be The amount of intake air from the ventilation hole 16 can be adjusted by providing a valve in the gas supply passage 66 connected to the ventilation hole 16, for example. Therefore, the diameter of the ventilation hole 16 can be set arbitrarily, and it is also effective to make the ventilation hole 16 a relatively large diameter in order to prevent clogging (see FIG. 3A).
図3(A)は中空外管10aの他の実施例を示し,その入口側の側面図を図3(B)に示す。中空外管10aの入口12の周囲端面には後述する接続導管40aのフランジ44を押し当てて固定するが,図3(B)に示すように,入口周囲面12aに接続導管40aを固定するための固定手段30(ボルト穴等)を設けることができる。また,中空外管10aの入口12には,接続導管40aのフランジ44の押し当て面に設けた嵌め込み突起43b(図5(A)参照)を嵌め合わせる嵌合部(拡径部)12bを設けることができる。 FIG. 3 (A) shows another embodiment of the hollow outer tube 10a, and a side view of the inlet side thereof is shown in FIG. 3 (B). The flange 44 of the connecting conduit 40a, which will be described later, is pressed against the peripheral end surface of the inlet 12 of the hollow outer tube 10a and fixed, but as shown in FIG. 3B, for fixing the connecting conduit 40a to the inlet peripheral surface 12a. The fixing means 30 (bolt hole or the like) can be provided. Further, the inlet 12 of the hollow outer tube 10a is provided with a fitting portion (diameter expansion portion) 12b to which a fitting projection 43b (see FIG. 5A) provided on the pressing surface of the flange 44 of the connecting conduit 40a is fitted. be able to.
また,図3(A)の中空外管10aの出口側の側面図を図3(D)に示す。中空外管10aの出口13の周囲端面には後述する中空内管20aのフランジ24を押し当てて固定するが,図3(D)に示すように,出口周囲面13aに中空内管20aを固定するための固定手段30(ボルト穴等)を設けることができる。また,中空外管10aの出口13には,中空内管20aのフランジ24の押し当て面に設けた嵌め込み突起22b(図4(A)参照)を嵌め合わせる嵌合部(拡径部)13bを設けることができる。 3D is a side view of the hollow outer tube 10a shown in FIG. 3A on the outlet side. A flange 24 of a hollow inner tube 20a, which will be described later, is pressed against the peripheral end surface of the outlet 13 of the hollow outer tube 10a and fixed, but as shown in FIG. 3D, the hollow inner tube 20a is fixed to the outlet peripheral surface 13a. A fixing means 30 (bolt hole or the like) for fixing can be provided. Further, at the outlet 13 of the hollow outer tube 10a, there is provided a fitting portion (expanded portion) 13b for fitting a fitting projection 22b (see FIG. 4 (A)) provided on the pressing surface of the flange 24 of the hollow inner tube 20a. Can be provided.
図1の実施例に戻り,図示例の中空内管20aは,中空外管10aの出口13の所定内径R1より小さい外径R3の中空部21を有し,その中空部21を縮径部14と同じ内径R2とし,その中空部21の一端(差し込み端)22から所定深さ部位L2の外周面25bに所定内径R1より大きい外径R0のフランジ24を形成したものである。図示例では中空内管20aのフランジ24を中空外管10aの出口と同じ外径R0としているが,フランジ24は中空外管10aの出口内径R1より大きいものであれば足り,必ずしも出口外径R0と同じ大きさでなくてもよい。また,図示例ではフランジ24を中空内管20aの他端23から深さL3の部位としているが,フランジ24と他端23との距離は図示例に限定されず,例えばフランジ24と他端23との距離L3をゼロとし,中空内管20aの他端23の外周面にフランジ24を形成してもよい。 Returning to the embodiment of FIG. 1, the hollow inner tube 20a of the illustrated example has a hollow portion 21 having an outer diameter R3 smaller than a predetermined inner diameter R1 of the outlet 13 of the hollow outer tube 10a. The inner diameter R2 is the same as the above, and a flange 24 having an outer diameter R0 larger than the predetermined inner diameter R1 is formed on the outer peripheral surface 25b of the predetermined depth portion L2 from one end (insertion end) 22 of the hollow portion 21. In the illustrated example, the flange 24 of the hollow inner pipe 20a has the same outer diameter R0 as the outlet of the hollow outer pipe 10a, but the flange 24 need only be larger than the outlet inner diameter R1 of the hollow outer pipe 10a, and not necessarily the outlet outer diameter R0. Need not be the same size as. Further, in the illustrated example, the flange 24 is located at a depth L3 from the other end 23 of the hollow inner pipe 20a, but the distance between the flange 24 and the other end 23 is not limited to the illustrated example, and for example, the flange 24 and the other end 23 may be used. The flange 24 may be formed on the outer peripheral surface of the other end 23 of the hollow inner tube 20a by setting the distance L3 to zero.
図1(A)の矢印Bで示すように,中空内管20aの一端22を中空外管10aの出口13に芯合わせしながら差し込み,中空内管20aのフランジ24を中空内管20aの出口周囲面13aに押し当て,中空内管20aの差し込み端22を中空外管10aの縮径部14と対向させる。中空内管20aのフランジ24を形成する部位(一端22からの所定深さ部位)L2は,図1(B)に示すように,中空内管20aの差し込み端22が中空外管10aの縮径部14と微小間隙E(=L1−L2)で対向するように,すなわち中空外管10aの縮径部14の所定深さL1より若干小さくなるように設定する。例えば,中空内管20aの差し込み端22と中空外管10aの縮径部14とが0.1mm〜10mm程度,好ましくは0.5mm〜6mm程度の微小間隙Eを介して対向するように設定する。 As shown by the arrow B in FIG. 1 (A), one end 22 of the hollow inner pipe 20a is inserted into the outlet 13 of the hollow outer pipe 10a while being aligned, and the flange 24 of the hollow inner pipe 20a is surrounded by the outlet of the hollow inner pipe 20a. The insertion end 22 of the hollow inner tube 20a is pressed against the surface 13a to face the reduced diameter portion 14 of the hollow outer tube 10a. As shown in FIG. 1B, a portion (a portion having a predetermined depth from one end 22) L2 forming the flange 24 of the hollow inner tube 20a is such that the insertion end 22 of the hollow inner tube 20a has a reduced diameter of the hollow outer tube 10a. It is set so as to face the portion 14 with a minute gap E (= L1-L2), that is, to be slightly smaller than the predetermined depth L1 of the reduced diameter portion 14 of the hollow outer tube 10a. For example, the insertion end 22 of the hollow inner tube 20a and the reduced diameter portion 14 of the hollow outer tube 10a are set to face each other with a minute gap E of about 0.1 mm to 10 mm, preferably about 0.5 mm to 6 mm. ..
中空内管20aを中空外管10aの出口13に差し込んだのち,中空内管20aのフランジ24を中空外管10aの出口周囲面13aに固定する。例えば接着剤・溶接等の固定手段30を用いて強固に固定することも可能であるが,望ましくはボルト等の固定手段30を用いて中空内管20aと中空外管10aとを分離可能に固定する。ボルト等の固定手段30を用いることにより,必要に応じて中空内管20aと中空外管10aとを分離して保守・修理等を行うことができる。また,必要に応じてボルト等の締め付け強度を調節し又はガスケット等を挟み込むことにより,中空内管20aの差し込み端22と中空外管10aの縮径部14との微小間隙Eを調整することも可能である。 After inserting the hollow inner tube 20a into the outlet 13 of the hollow outer tube 10a, the flange 24 of the hollow inner tube 20a is fixed to the outlet peripheral surface 13a of the hollow outer tube 10a. For example, the fixing means 30 such as an adhesive or welding may be used to firmly fix, but preferably the fixing means 30 such as a bolt is used to fix the hollow inner tube 20a and the hollow outer tube 10a in a separable manner. To do. By using the fixing means 30 such as a bolt, the hollow inner tube 20a and the hollow outer tube 10a can be separated from each other for maintenance and repair, if necessary. Further, if necessary, the tightening strength of bolts or the like may be adjusted or a gasket or the like may be sandwiched to adjust the minute gap E between the insertion end 22 of the hollow inner tube 20a and the reduced diameter portion 14 of the hollow outer tube 10a. It is possible.
図1(B)に示すように,中空内管20aの外径R3を中空外管10aの出口内径R1より小さくしているので,中空外管10aに嵌合した中空内管20aの外周面25bと中空外管10aの内周面15aとの間に筒状に延びる環状の気体チャンバー28を形成することができる(図1(D)も参照)。また,中空外管10aの出口側周壁15には通気孔16が穿たれているので,通気孔16を気相Paに連通させることにより,環状の気体チャンバー28に気相Paから気体Gを取り入れることができる。 As shown in FIG. 1 (B), since the outer diameter R3 of the hollow inner tube 20a is smaller than the outlet inner diameter R1 of the hollow outer tube 10a, the outer peripheral surface 25b of the hollow inner tube 20a fitted to the hollow outer tube 10a. An annular gas chamber 28 extending in a cylindrical shape can be formed between and the inner peripheral surface 15a of the hollow outer tube 10a (see also FIG. 1D). Further, the outlet side peripheral wall 15 of the hollow outer tube 10a is provided with the vent hole 16, so that the gas G is taken into the annular gas chamber 28 from the gas phase Pa by communicating the vent hole 16 with the gas phase Pa. be able to.
更に,中空内管20aの中空部21を中空外管10aの縮径部14と同じ内径R2にすると共に,中空内管20aの差し込み端22を中空外管10aの縮径部14と微小間隙Eで対向させることにより,縮径部14と中空内管20aの中空部21とが連なる小径管路に,360度の全周にわたって気体チャンバー28と接する微小間隙Eの環状スリットを形成することができる(図1(C)も参照)。すなわち,後述するように中空外管10aの縮径部14と中空内管20aの中空部21とが連なる小径管路に加圧液Qを導入した際に,その小径管路の全周から微小間隙Eの環状スリットを介して気体チャンバー28の気体Gを吸引(自吸)することができる。 Further, the hollow portion 21 of the hollow inner pipe 20a has the same inner diameter R2 as the reduced diameter portion 14 of the hollow outer pipe 10a, and the insertion end 22 of the hollow inner pipe 20a and the reduced diameter portion 14 of the hollow outer pipe 10a and the minute gap E. By facing each other, it is possible to form an annular slit having a minute gap E in contact with the gas chamber 28 over the entire circumference of 360 degrees in the small-diameter conduit connecting the reduced diameter portion 14 and the hollow portion 21 of the hollow inner tube 20a. (See also Figure 1C). That is, as will be described later, when the pressurized liquid Q is introduced into the small-diameter conduit that connects the reduced-diameter portion 14 of the hollow outer pipe 10a and the hollow portion 21 of the hollow inner pipe 20a, a small amount is generated from the entire circumference of the small-diameter pipe passage. The gas G in the gas chamber 28 can be sucked (self-sucking) through the annular slit of the gap E.
図4(A)は中空内管20aの他の実施例を示し,その差し込み端側の側面図を図4(B)に示す。同図に示すように,中空内管20aのフランジ24には,中空外管10aの出口周囲面13aに固定するための固定手段30(ボルト穴等)を設けることができる。また,中空内管20aのフランジ24の押し当て面には,中空外管10aの出口13の嵌合部(拡径部)13bに嵌め合わせる嵌め込み突起22bを設けることができる。 FIG. 4 (A) shows another embodiment of the hollow inner tube 20a, and a side view of the insertion end side is shown in FIG. 4 (B). As shown in the figure, the flange 24 of the hollow inner tube 20a can be provided with a fixing means 30 (bolt hole or the like) for fixing to the outlet peripheral surface 13a of the hollow outer tube 10a. Further, the pressing surface of the flange 24 of the hollow inner tube 20a can be provided with a fitting projection 22b which is fitted to the fitting portion (diameter expansion portion) 13b of the outlet 13 of the hollow outer tube 10a.
再び図1の実施例に戻り,図示例の接続導管40aは,中空外管10aの入口12と同じ所定内径R1の中空部41を有し,その一端43の外周面に所定内径R1より大きい外径R0のフランジ44を形成したものである。図示例では接続導管40aのフランジ44を中空外管10aの出口と同じ外径R0としているが,フランジ44は中空外管10aの入口内径R1より大きいものであれば足りる。 Returning to the embodiment of FIG. 1 again, the connecting conduit 40a of the illustrated example has a hollow portion 41 having the same predetermined inner diameter R1 as the inlet 12 of the hollow outer tube 10a, and an outer peripheral surface of one end 43 of which is larger than the predetermined inner diameter R1. A flange 44 having a diameter R0 is formed. In the illustrated example, the flange 44 of the connecting conduit 40a has the same outer diameter R0 as the outlet of the hollow outer tube 10a, but the flange 44 may be larger than the inner diameter R1 of the inlet of the hollow outer tube 10a.
図1(A)の矢印Bで示すように,接続導管40aの一端43のフランジ44を中空外管10aの入口12に芯合わせしながら押し当て,入口周囲面12aに固定する。例えば接着剤・溶接等の固定手段30を用いて強固に固定することも可能であるが,中空内管20aの場合と同様に,接続導管40aもボルト等の固定手段30を用いて分離可能に中空外管10aと固定することが望ましい。ボルト等の固定手段30を用いることにより,必要に応じて接続導管40aと中空外管10aとを分離して保守・修理等を行うことができる。 As shown by the arrow B in FIG. 1 (A), the flange 44 at the one end 43 of the connecting conduit 40a is pressed against the inlet 12 of the hollow outer tube 10a while being aligned, and fixed to the inlet peripheral surface 12a. For example, the fixing means 30 such as an adhesive or welding can be used to firmly fix it, but like the hollow inner tube 20a, the connecting conduit 40a can also be separated using the fixing means 30 such as a bolt. It is desirable to fix it to the hollow outer tube 10a. By using the fixing means 30 such as a bolt, the connecting conduit 40a and the hollow outer tube 10a can be separated from each other as required to perform maintenance and repair.
図5(A)は接続導管40aの他の実施例を示し,その押し当て端側の側面図を図5(B)に示す。同図に示すように,接続導管40aのフランジ44には,中空外管10aの入口周囲面12aに固定するための固定手段30(ボルト穴等)を設けることができる。また,接続導管40aのフランジ44の押し当て面には,中空外管10aの入口12の嵌合部(拡径部)12bに嵌め合わせる嵌め込み突起43bを設けることができる。 FIG. 5A shows another embodiment of the connection conduit 40a, and a side view of the pressing end side is shown in FIG. 5B. As shown in the figure, the flange 44 of the connecting conduit 40a can be provided with fixing means 30 (bolt holes or the like) for fixing to the inlet peripheral surface 12a of the hollow outer tube 10a. Further, the pressing surface of the flange 44 of the connecting conduit 40a may be provided with a fitting projection 43b which is fitted to the fitting portion (diameter expansion portion) 12b of the inlet 12 of the hollow outer tube 10a.
本発明において接続導管40aは,中空外管10aの入口12に液体流路64(図6参照)を接続する機能を果たす。すなわち,接続導管40aの一端43を中空外管10aの入口12に固定し,他端42に液体流路64を接続する。図5(C)の接続導管40bに示すように,必要に応じて接続導管40aの外周面に液体流路64の取付け部(例えば螺合部)45を設けることができる。接続導管40aを介して液体流路64から中空外管10aの入口12に導入された加圧液Qは,中空外管10aの縮径部14と中空内管20aの中空部21とが連なる小径管路を通過する際に負圧を生じ,図1(C)に示すように,その小径管路の全周にわたって形成された微小間隙Eの環状スリットから気体チャンバー28の気体Gが吸引(自吸)されて混合される。 In the present invention, the connection conduit 40a has a function of connecting the liquid flow path 64 (see FIG. 6) to the inlet 12 of the hollow outer tube 10a. That is, one end 43 of the connection conduit 40a is fixed to the inlet 12 of the hollow outer tube 10a, and the other end 42 is connected to the liquid flow path 64. As shown in the connecting conduit 40b of FIG. 5C, a mounting portion (for example, a screwing portion) 45 of the liquid flow path 64 can be provided on the outer peripheral surface of the connecting conduit 40a as required. The pressurized liquid Q introduced from the liquid flow path 64 to the inlet 12 of the hollow outer pipe 10a via the connection conduit 40a has a small diameter in which the reduced diameter portion 14 of the hollow outer pipe 10a and the hollow portion 21 of the hollow inner pipe 20a are continuous. A negative pressure is generated when the gas G passes through the pipeline, and as shown in FIG. 1C, the gas G in the gas chamber 28 is sucked (automatically) from the annular slit of the minute gap E formed over the entire circumference of the small diameter pipeline. It is sucked) and mixed.
ただし,接続導管40aは本発明に必須のものではなく,中空外管10aの入口12に液体流路64を直接接続できる場合は,接続導管40aを省略することができる。すなわち,中空外管10a及び中空内管20aのみによりエジェクタを構成し,その中空外管10aの入口12に液体流路64(図6参照)を直接接続する。中空外管10aの入口12の外周面に液体流路64の取付け部(例えば螺合部)を設けることも有効である。この場合も,中空外管10aの縮径部14と中空内管20の中空部21とが連なる小径管路を通過する際に,微小間隙Eの環状スリットから気体チャンバー28の気体Gを吸引(自吸)されて加圧液Qに混合される。 However, the connection conduit 40a is not essential to the present invention, and the connection conduit 40a can be omitted if the liquid flow path 64 can be directly connected to the inlet 12 of the hollow outer tube 10a. That is, an ejector is composed only of the hollow outer pipe 10a and the hollow inner pipe 20a, and the liquid flow path 64 (see FIG. 6) is directly connected to the inlet 12 of the hollow outer pipe 10a. It is also effective to provide a mounting portion (for example, a screwing portion) of the liquid flow path 64 on the outer peripheral surface of the inlet 12 of the hollow outer tube 10a. Also in this case, the gas G in the gas chamber 28 is sucked from the annular slit of the minute gap E when passing through the small-diameter conduit connecting the reduced diameter portion 14 of the hollow outer pipe 10a and the hollow portion 21 of the hollow inner pipe 20 ( It is self-primed and mixed with the pressurized liquid Q.
本発明の微細気泡発生装置1は,加圧液Qの小径管路に全周にわたる微小間隙Eの環状スリットを形成し,その環状スリットを介して加圧液Qに気体Gを吸引するので,図6を参照して上述した従来のポイント的な微細吸気孔62eによる気体Gの吸引に比して,目詰まり等による気体Gの吸引停止のおそれをなくすことができる。金属腐食等によってスリットの一部分が閉塞した場合でも,全周にわたる環状スリットとすることにより,スリット全体の閉塞を避け,気体Gの吸引を継続することができる。また,全周にわたる環状スリットから気体Gを吸引することにより,従来のポイント的な吸引に比して気体Gの吸引力を高め,加圧液Qに混合する気体Gの量,ひいては中空外管10aの出口13から中空内管20aを介して放出される微細気泡Sの量を増やすことができる。 Since the fine bubble generator 1 of the present invention forms the annular slit of the minute gap E over the entire circumference in the small diameter conduit of the pressurized liquid Q, and sucks the gas G into the pressurized liquid Q through the annular slit, Compared to the conventional point-by-point suction of the gas G by the fine intake holes 62e described with reference to FIG. 6, it is possible to eliminate the possibility of stopping the suction of the gas G due to clogging or the like. Even if a part of the slit is closed due to metal corrosion or the like, the annular slit is formed over the entire circumference, so that the entire slit can be prevented from being closed and the suction of the gas G can be continued. Further, by sucking the gas G from the annular slit over the entire circumference, the suction force of the gas G is increased as compared with the conventional point-wise suction, and the amount of the gas G mixed with the pressurized liquid Q, and thus the hollow outer tube. It is possible to increase the amount of the fine bubbles S discharged from the outlet 13 of 10a through the hollow inner tube 20a.
また,本発明の微細気泡発生装置1は,環状スリットの微小間隙Eの大きさを調整することにより,放出される微細気泡Sの粒径を調整することもできる。すなわち,微小間隙Eを小さく又は大きくすることにより,微小間隙Eから加圧液Qに吸引されて混合される気体(気泡)Gの粒径を小さく又は大きくすることができる。本発明において加圧液Qに混合された気体Gは,加圧液Qの放出時に破砕されて微細気泡Sとなるが,加圧水Qに混合する段階において気体Gの粒径を小さく又は大きくすることにより,放出される微細気泡Sの粒径を調整できる。 Further, the fine bubble generator 1 of the present invention can also adjust the particle size of the fine bubbles S to be discharged by adjusting the size of the minute gap E of the annular slit. That is, by making the minute gap E small or large, it is possible to make the particle size of the gas (bubble) G sucked and mixed by the pressurized liquid Q from the minute gap E small or large. In the present invention, the gas G mixed with the pressurized liquid Q is crushed into fine bubbles S when the pressurized liquid Q is discharged, but the particle size of the gas G should be made small or large at the stage of mixing with the pressurized water Q. Thereby, the particle size of the discharged fine bubbles S can be adjusted.
こうして本発明の目的である「長期間継続的に微細気泡を供給できるエジェクタ式の微細気泡発生方法及び装置」の提供を達成することができる。 Thus, it is possible to achieve the object of the present invention to provide an "ejector-type fine bubble generating method and device capable of continuously supplying fine bubbles for a long period of time".
なお,全周にわたる微小間隙Eの環状スリットは,小径管路の周囲全体を気体Gと接触させるので,気体Gと接する部分ごとに加圧液Qと気体Gとの混合が不均一になることも考えられる。部分ごとの混合の不均一は,発生させる微細気泡Sの粒径の不均一につながる原因となり得る。本発明の微細気泡発生装置1は,小径管路の周囲に筒状に延びる環状の気体チャンバー28を形成し,環状スリットを介して気体チャンバー28と加圧液Qとを接触させているので,気体チャンバー28内の気体Gのバラツキを避けることにより,加圧液Gと気体Gとの混合が部分ごとの不均一になることを抑制できる。 Since the annular slit having the minute gap E over the entire circumference makes the entire periphery of the small-diameter pipe contact the gas G, the mixing of the pressurized liquid Q and the gas G becomes non-uniform in each portion in contact with the gas G. Can also be considered. The non-uniformity of the mixing in each part may cause the non-uniformity of the particle size of the generated fine bubbles S. In the fine bubble generator 1 of the present invention, the annular gas chamber 28 extending in a cylindrical shape is formed around the small diameter conduit, and the gas chamber 28 and the pressurized liquid Q are brought into contact with each other through the annular slit. By avoiding the variation of the gas G in the gas chamber 28, it is possible to prevent the mixture of the pressurized liquid G and the gas G from becoming non-uniform in each part.
具体的には,図1(D)に示すように,環状の気体チャンバー28内の気体Gを中空外管10aの内周壁に沿って旋回させることが望ましい。同図は,図1(B)に示すエジェクタの線D−Dにおける断面図を示し,中空外管10aの通気孔16の中心軸線Iを中心からずらして中空外管10aの内周面15aの接線方向に沿って揃えることを示している。このような通気孔16の配置により,内周面15aの接線方向に沿って気相Paから気体Gを吸引し,吸引した気体Gを中空外管10aの内周壁に沿って旋回させることができる。気体チャンバー28内の気体Gを旋回させることにより,全周にわたる加圧液Gと気体Gとの混合のバラツキをなくし,ひいては発生させる微細気泡Sの粒径を均一化することが期待できる。 Specifically, as shown in FIG. 1D, it is desirable to swirl the gas G in the annular gas chamber 28 along the inner peripheral wall of the hollow outer tube 10a. This figure shows a cross-sectional view of the ejector shown in FIG. 1 (B) taken along the line DD, showing the inner peripheral surface 15a of the hollow outer tube 10a with the central axis I of the vent hole 16 of the hollow outer tube 10a offset from the center. It indicates that they are aligned along the tangential direction. With such arrangement of the vent holes 16, the gas G can be sucked from the gas phase Pa along the tangential direction of the inner peripheral surface 15a, and the sucked gas G can be swirled along the inner peripheral wall of the hollow outer tube 10a. .. By swirling the gas G in the gas chamber 28, it can be expected that variations in the mixing of the pressurized liquid G and the gas G over the entire circumference will be eliminated, and that the particle size of the generated fine bubbles S will be uniform.
図2(A)は,中空外管10aの通気孔16に連なる出口側周壁15の内周面15aを凹凸のない曲面とした本発明の微細気泡発生装置1の他の実施例を示す。上述したように,本発明の微細気泡発生装置1は,小径管路の周囲に筒状に延びる環状の気体チャンバー28を形成し,全周にわたる微小間隙Eの環状スリットを介して気体チャンバー2の気体Gと加圧液Qとを接触させるので,部分ごとに加圧液Qと気体Gとの混合が不均一になりうる。気体チャンバー28内の気体Gを旋回させることにより混合のバラツキを一定程度抑制できるが,均一な粒径の微細気泡Sを発生させるためには,混合のバラツキをできる限り小さくすることが望ましい。 FIG. 2 (A) shows another embodiment of the micro-bubble generating device 1 of the present invention in which the inner peripheral surface 15a of the outlet side peripheral wall 15 connected to the ventilation hole 16 of the hollow outer tube 10a has a curved surface without irregularities. As described above, the micro-bubble generating device 1 of the present invention forms the annular gas chamber 28 that extends in a cylindrical shape around the small-diameter conduit, and forms the gas chamber 2 through the annular slit of the minute gap E over the entire circumference. Since the gas G and the pressurized liquid Q are brought into contact with each other, the mixture of the pressurized liquid Q and the gas G may be non-uniform for each part. Whilst the gas G in the gas chamber 28 is swirled, the variation in mixing can be suppressed to a certain extent, but in order to generate the fine bubbles S having a uniform particle size, it is desirable to make the variation in mixing as small as possible.
図2(A)に示す微細気泡発生装置1は,出口側周壁15の内周面15aを凹凸のない曲面とした中空外管10bを用い,内周面15aに沿った気体流路の摩擦損失を小さく抑えたものである。内周面15aを凹凸のない曲面とした中空外管10bの他の一例を図3(C)に示す。図示例の中空外管10bは,図3(B)及び(D)に示す入口側及び出口側の側面図は上述した中空外管10aと同様であるが,気体チャンバー28内の気体Gが流れる中空外管10aの内周面15aを凹凸のない曲面とすることにより,気体チャンバー28内の乱流の発生を防止してスムーズな流れを確保したものである。 The fine bubble generator 1 shown in FIG. 2 (A) uses a hollow outer tube 10b in which the inner peripheral surface 15a of the outlet side peripheral wall 15 is a curved surface without unevenness, and friction loss of the gas flow path along the inner peripheral surface 15a. Is small. Another example of the hollow outer tube 10b in which the inner peripheral surface 15a is a curved surface without unevenness is shown in FIG. 3 (C). The hollow outer tube 10b of the illustrated example has the same side view as the hollow outer tube 10a described above in the inlet side and the outlet side shown in FIGS. 3B and 3D, but the gas G in the gas chamber 28 flows. By forming the inner peripheral surface 15a of the hollow outer tube 10a into a curved surface without irregularities, turbulent flow in the gas chamber 28 is prevented from occurring and a smooth flow is secured.
好ましくは,図2(A)に示すように,差し込み端22側の外周面25bを凹凸のない曲面とした中空内管20bと組み合わせる。外周面25bを凹凸のない曲面とした中空外管10bの他の一例を図4(C)に示す。すなわち,中空外管10bの内周面15aを凹凸のない曲面にすると共に,その中空外管10aの出口13に芯合わせして差し込む中空内管20aの外周面25bを凹凸のない曲面とし,小径管路の周囲の気体チャンバー28の内面全体を凹凸のない曲面として気体Gの乱流の発生を防止する。図2(B)に示すように,気体チャンバー28の内面全体を曲面構造とすることにより,微小間隙Eの環状スリットを介して気体チャンバー2の気体Gを滑らかに流動させることができ,加圧液Qと気体Gとの混合のバラツキを小さく抑えることが期待できる。 Preferably, as shown in FIG. 2 (A), the outer peripheral surface 25b on the insertion end 22 side is combined with the hollow inner tube 20b having a curved surface without unevenness. Another example of the hollow outer tube 10b in which the outer peripheral surface 25b has a curved surface without unevenness is shown in FIG. 4 (C). That is, the inner peripheral surface 15a of the hollow outer tube 10b is formed into a curved surface without unevenness, and the outer peripheral surface 25b of the hollow inner tube 20a which is inserted into the outlet 13 of the hollow outer tube 10a by centering is formed into a curved surface with no unevenness. The entire inner surface of the gas chamber 28 around the pipe is made into a curved surface without unevenness to prevent the turbulent flow of the gas G from occurring. As shown in FIG. 2 (B), by making the entire inner surface of the gas chamber 28 into a curved structure, the gas G in the gas chamber 2 can be smoothly flowed through the annular slit of the minute gap E, and the pressure is increased. It can be expected that the variation in the mixing of the liquid Q and the gas G can be suppressed to be small.
図2(C)は,中空内管20の内径R2を一端22側から他端23側へ向けて徐々に拡大させた本発明の微細気泡発生装置1の他の実施例を示す。上述したように,本発明の微細気泡発生装置1は,加圧液Qの放出時の管路拡大で生じるキャビテーションによって気体(気泡)Gを破砕して微細気泡Sを発生させるが,放出前の中空内管20の内径R2を徐々に拡大させることにより,図6(C)を参照して上述したエジェクタ(ベンチュリー)62と同様に中空内管20を機能させ,中空内管20の内側において圧力変化により気体(気泡)Gを崩壊させることができ,放出する微細気泡Sの小径化を図ることができる。 FIG. 2C shows another embodiment of the fine bubble generator 1 of the present invention in which the inner diameter R2 of the hollow inner tube 20 is gradually increased from the one end 22 side to the other end 23 side. As described above, in the fine bubble generator 1 of the present invention, the gas (bubbles) G is crushed by the cavitation caused by the expansion of the conduit at the time of discharging the pressurized liquid Q to generate the fine bubbles S, but before the discharge. By gradually increasing the inner diameter R2 of the hollow inner tube 20, the hollow inner tube 20 functions similarly to the ejector (venturi) 62 described above with reference to FIG. The gas (bubbles) G can be collapsed by the change, and the diameter of the discharged fine bubbles S can be reduced.
図2(C)に示す微細気泡発生装置1は,フランジ24と他端23との距離を長くすると共に内径R2を他端23側へ向けて徐々に拡大させた中空内管20cを用いている。内径R2を徐々に拡大させた中空内管20cの他の一例を図4(D)に示す。図示例の中空内管20cは,図4(B)に示す差し込み端側の側面図は上述した中空内管20a,20cと同様であるが,一端22側から他端23側へ向けて内径R2が徐々に拡大するようにフランジ24と他端23との距離L4を長くしたものである。 The fine bubble generator 1 shown in FIG. 2 (C) uses a hollow inner tube 20c in which the distance between the flange 24 and the other end 23 is lengthened and the inner diameter R2 is gradually enlarged toward the other end 23 side. .. Another example of the hollow inner tube 20c in which the inner diameter R2 is gradually enlarged is shown in FIG. The hollow inner pipe 20c of the illustrated example has the same side view as the hollow inner pipes 20a, 20c described above in the insertion end side shown in FIG. 4B, but has an inner diameter R2 from the one end 22 side to the other end 23 side. The distance L4 between the flange 24 and the other end 23 is lengthened so that the distance gradually increases.
好ましくは,図4(E)に示すように,中空内管20の差し込み端22に内周方向に沿った凹凸22cを設け,加圧液Qと気体Gとを混合させる微小間隙Eの環状スリットの外周縁に凹凸を形成する。環状スリットを介して加圧液Qに吸引される気体Gは,環状スリットの外周に形成される渦巻状せん断流によって分解された気泡となって混合されるが,環状スリットの外周縁を長く且つ複雑な形状とすることにより,混合させる気泡を分解させ,粒径を小さくすることが期待できる。図4(D)のように中空内管20bの内径R2を他端23側へ向けて徐々に拡大することで放出前の加圧水Q中の微細気泡Sを細かくできるが,加圧水Qに混合する段階で気体(気泡)Gの粒径を小さくすることにより,放出する微細気泡Sの更なる小径化を図ることが期待できる。 Preferably, as shown in FIG. 4 (E), an annular slit having a minute gap E is provided at the insertion end 22 of the hollow inner tube 20 so as to form an unevenness 22c along the inner circumferential direction and to mix the pressurized liquid Q and the gas G. Unevenness is formed on the outer peripheral edge of the. The gas G sucked into the pressurized liquid Q through the annular slit is mixed as a bubble decomposed by the spiral shear flow formed on the outer periphery of the annular slit, but the outer peripheral edge of the annular slit is long and By using a complicated shape, it is expected that the bubbles to be mixed will be decomposed and the particle size will be reduced. As shown in FIG. 4D, by gradually enlarging the inner diameter R2 of the hollow inner tube 20b toward the other end 23 side, the fine bubbles S in the pressurized water Q before being discharged can be finely divided, but it is mixed with the pressurized water Q. By reducing the particle size of the gas (bubbles) G, it is expected that the diameter of the discharged fine bubbles S can be further reduced.
1…微細気泡発生装置
10(10a,10b)…中空外管
11…中空部 12…中空部入口
12a…入口周囲面(外管端面) 12b…嵌合部
13…中空部出口 13a…出口周囲面(外管端面)
13b…嵌合部 14…縮径部
15…周壁 15a…内周面
15b…外周面 16…通気孔
20(20a,20b,20c)…中空内管
21…中空部 22…差し込み端(一端)
22a…一端開口 22b…嵌め込み突起
22c…凹凸 23…他端
23a…他端開口 24…フランジ
25…周壁 25a…内周面
25b…外周面 28…気体チャンバー
30…固定部材
40(40a,40b)…接続導管
41…中空部 42…押し当て端(一端)
42a…一端開口 43…他端
43a…他端開口 43b…嵌め込み突起
44…フランジ 45…取付け部
60…エジェクタ式微細気泡発生装置
61…液体貯留槽 62…エジェクタ
62a…中空部 62b…管路入口
62c…管路出口 62d…縮径部
62e…微細吸気孔 63…ポンプ
64…液体流路 65…流量調整バルブ
66…気体供給路 67…開閉コック
E…(中空外管と中空外管との間の)微小間隙
G…気体
I…(通気孔の)中心軸線
L1…(中空外管の)所定深さ部位
L2…(中空内管の)所定深さ部位
Pa…気相
Pb…液相
Q…液体
R0…中空外管の出口(入口)外径(中空内管のフランジ外径)
R1…中空外管の出口(入口)内径
R2…中空外管の縮径部内径
R3…中空内管の(差し込み側)外径
R4…中空内管の(放出側)外径
R5…中空内管の(放出側)内径
R7…接続導管の(導入側)外径
S…微細気泡
DESCRIPTION OF SYMBOLS 1 ... Micro bubble generator 10 (10a, 10b) ... Hollow outer tube 11 ... Hollow part 12 ... Hollow part inlet 12a ... Inlet peripheral surface (outer tube end surface) 12b ... Fitting part 13 ... Hollow part outlet 13a ... Outlet peripheral surface (Outer tube end face)
13b ... Fitting part 14 ... Reduced diameter part 15 ... Peripheral wall 15a ... Inner peripheral surface 15b ... Outer peripheral surface 16 ... Vent hole 20 (20a, 20b, 20c) ... Hollow inner tube 21 ... Hollow part 22 ... Inserting end (one end)
22a ... One end opening 22b ... Fitting protrusion 22c ... Unevenness 23 ... Other end 23a ... Other end opening 24 ... Flange 25 ... Peripheral wall 25a ... Inner peripheral surface 25b ... Outer peripheral surface 28 ... Gas chamber 30 ... Fixing member 40 (40a, 40b) ... Connection conduit 41 ... Hollow part 42 ... Pushing end (one end)
42a ... One end opening 43 ... Other end 43a ... Other end opening 43b ... Fitting protrusion 44 ... Flange 45 ... Attachment part 60 ... Ejector type micro bubble generator
61 ... Liquid storage tank 62 ... Ejector 62a ... Hollow part 62b ... Pipe line inlet 62c ... Pipe line outlet 62d ... Reduced diameter part 62e ... Fine suction hole 63 ... Pump 64 ... Liquid flow passage 65 ... Flow control valve 66 ... Gas supply passage 67 ... Opening / closing cock E ... Small gap (between hollow outer tubes) G ... Gas I ... Central axis L1 (of vent holes) ... Predetermined depth portion L2 (of hollow outer tube) ... (in hollow) Predetermined depth of the pipe Pa ... Gas phase Pb ... Liquid phase Q ... Liquid R0 ... Outer diameter (inlet) outer diameter of hollow outer tube (flange outer diameter of hollow inner tube)
R1 ... Hollow outer tube outlet (inlet) inner diameter R2 ... Hollow outer tube reduced diameter inner diameter R3 ... Hollow inner tube (insertion side) outer diameter R4 ... Hollow inner tube (discharge side) outer diameter R5 ... Hollow inner tube (Discharge side) inner diameter R7 ... Connection conduit (introduction side) outer diameter S ... Fine bubbles
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018032606A JP6691716B2 (en) | 2018-02-26 | 2018-02-26 | Method and device for generating fine bubbles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018032606A JP6691716B2 (en) | 2018-02-26 | 2018-02-26 | Method and device for generating fine bubbles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019147086A JP2019147086A (en) | 2019-09-05 |
JP6691716B2 true JP6691716B2 (en) | 2020-05-13 |
Family
ID=67848881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018032606A Active JP6691716B2 (en) | 2018-02-26 | 2018-02-26 | Method and device for generating fine bubbles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6691716B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113248033B (en) * | 2020-02-07 | 2023-01-31 | 阮证隆 | Microbubble generation module |
CN113856542A (en) * | 2021-09-24 | 2021-12-31 | 利晟(杭州)科技有限公司 | Emergency printing and dyeing sewage purification device and use method thereof |
JP7513676B2 (en) | 2022-10-11 | 2024-07-09 | 八千代エンジニヤリング株式会社 | Air Bubble Generation System |
WO2024150354A1 (en) * | 2023-01-12 | 2024-07-18 | 有限会社岡本製作所 | Fine bubble generating device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2619023B1 (en) * | 1987-08-07 | 1991-04-12 | Lamort E & M | PRESSURE MIXER INJECTOR |
JP2008062151A (en) * | 2006-09-06 | 2008-03-21 | Nishida Marine Boiler Co Ltd | Apparatus for generating bubble |
JP2008086868A (en) * | 2006-09-29 | 2008-04-17 | Kawamoto Pump Mfg Co Ltd | Microbubble generator |
JP2014033999A (en) * | 2012-08-08 | 2014-02-24 | Ok Engineering:Kk | Bubble generating nozzle, and loop flow type bubble generating nozzle |
JP5692259B2 (en) * | 2013-03-05 | 2015-04-01 | 三菱電機株式会社 | Gas-liquid mixing device and bath water heater |
JP6842249B2 (en) * | 2016-06-24 | 2021-03-17 | 日東精工株式会社 | Fine bubble generation nozzle |
-
2018
- 2018-02-26 JP JP2018032606A patent/JP6691716B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019147086A (en) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6691716B2 (en) | Method and device for generating fine bubbles | |
EP2060318B1 (en) | Apparatus and method for generating and distributing bubbles in a gas-liquid mixture | |
JP6129390B1 (en) | Nanobubble generating nozzle and nanobubble generating apparatus | |
JP2010075838A (en) | Bubble generation nozzle | |
JP6960281B2 (en) | Fine bubble liquid generator | |
US6422735B1 (en) | Hydraulic jet flash mixer with open injection port in the flow deflector | |
KR102061846B1 (en) | Fine bubble mixing device for aeration process | |
WO2001097958A9 (en) | Fine air bubble generator and fine air bubble generating device with the generator | |
JP2008086868A (en) | Microbubble generator | |
JP2007278003A (en) | Method and device for purifying sewage force-feed pipeline system | |
JP2009028579A (en) | Bubble generating apparatus | |
JP2008062151A (en) | Apparatus for generating bubble | |
JP6047210B1 (en) | Aeration stirrer | |
JP2010264337A (en) | Aeration agitator | |
JP2012120997A (en) | Method for producing microbubble and device therefor | |
JP2013000626A (en) | Fine air bubble generator | |
JP2009166026A (en) | Air bubble generating device through mixing gas/liquid | |
JP2007268390A (en) | Bubble generating device | |
JP2002059186A (en) | Water-jet type fine bubble generator | |
US11130101B2 (en) | Bubble generating device for sewage purification | |
KR20190006827A (en) | Aerator using eddy flow | |
JP6968405B2 (en) | Gas-liquid mixing nozzle | |
US20180162757A1 (en) | Venturi apparatus and method of use | |
JP2011083772A (en) | Apparatus for producing microbubble | |
JP2008100225A (en) | Air/liquid mixer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190808 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6691716 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |