WO2000074043A1 - Base pour support d'enregistrement magnetique, support d'enregistrement magnetique, procede de production de cette base et enregistreur magnetique - Google Patents

Base pour support d'enregistrement magnetique, support d'enregistrement magnetique, procede de production de cette base et enregistreur magnetique Download PDF

Info

Publication number
WO2000074043A1
WO2000074043A1 PCT/JP2000/003501 JP0003501W WO0074043A1 WO 2000074043 A1 WO2000074043 A1 WO 2000074043A1 JP 0003501 W JP0003501 W JP 0003501W WO 0074043 A1 WO0074043 A1 WO 0074043A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
magnetic
recording medium
substrate
magnetic recording
Prior art date
Application number
PCT/JP2000/003501
Other languages
English (en)
French (fr)
Inventor
Migaku Takahashi
Original Assignee
Migaku Takahashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Migaku Takahashi filed Critical Migaku Takahashi
Priority to EP00935500A priority Critical patent/EP1111595A1/en
Publication of WO2000074043A1 publication Critical patent/WO2000074043A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7377Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73913Composites or coated substrates

Definitions

  • the present invention relates to a magnetic recording medium substrate, a magnetic recording medium, a method of manufacturing the same, and a magnetic recording apparatus.
  • the present invention relates to a magnetic recording medium substrate having a structure in which a non-magnetic substrate is covered with a non-magnetic film, a magnetic recording medium including the same, a method for manufacturing the same, and a magnetic recording apparatus.
  • a substrate for a magnetic recording medium and a magnetic recording medium capable of improving the characteristics of a magnetic film formed on a substrate by utilizing a technology for specializing a coating film to be provided and a technology for adsorbing oxygen on the substrate surface.
  • the present invention relates to a medium, a method for manufacturing the medium, and a magnetic recording device, and the magnetic recording medium according to the present invention is suitably used for a hard disk or the like. Background art
  • the ferromagnetic crystal grain size can be reduced to some extent by reducing the thickness of the magnetic film.However, the size of the ferromagnetic crystal grains in consideration of microstructure formation and thermal disturbance is considered. From the viewpoint of the above, there is a problem that there is a limit in reducing the magnetic film thickness. Therefore, it seems necessary to reduce the ferromagnetic crystal grain size without changing the thickness of the magnetic film.
  • a coating film 53 such as Ni-P is formed on the surface of a nonmagnetic substrate 52 made of A1 alloy or glass.
  • a base film 54 made of a metal such as ⁇ , Cr alloy is formed on the coating film 53, and a magnetic film such as CoCrTa or CoCrTaPt is formed thereon.
  • Magnetic recording media 50 on which a protective film 56 of amorphous carbon is formed are well known.
  • the thickness of the metal base film 54 is set to, for example, 10 to 50 nm
  • the thickness of the magnetic film 55 is set to, for example, 10 to 3 O nm
  • the thickness of the protective film 56 is set.
  • the underlayer 54 is provided for the purpose of improving the magnetic properties by adjusting the crystal orientation of the magnetic film 55 and for controlling the particle size of the magnetic film 55.
  • the ideal isotropic coercive force (H e) is about 30000 e
  • the magnetic film of the CoNiTa alloy is ideal. Then, it seems that the ideal isotropic coercive force should show a value of about 250 Oe.
  • these magnetic films which are manufactured by the conventional general sputtering method, use various methods such as controlling the substrate temperature during film formation and applying a negative bias to the substrate to improve the process. Even if it is performed, it is difficult to improve the segregation of Cr at the grain boundaries of the ferromagnetic crystal grains of the magnetic film. There is a problem that a coercive force of about 180 e and a coercive force of about 1800 e can be exerted in a magnetic film of CoNiTa alloy.
  • one ideal structure for a magnetic film is that the ferromagnetic crystal grains responsible for magnetism are sufficiently miniaturized, and a nonmagnetic grain boundary layer is present at the grain boundaries of the ferromagnetic crystal grains. It is considered that the structure is separated from each other and the magnetic exchange interaction between ferromagnetic crystal grains is reduced. Therefore, in the magnetic film having the above composition, it is considered important that Cr is efficiently precipitated and segregated at the grain boundaries of ferromagnetic crystal grains. In addition, since the segregation of Cr at the grain boundaries cannot be improved, the grain size of the ferromagnetic crystal grains of this type of magnetic film obtained by the conventional manufacturing method has large variations.
  • the Ultra Clean Process means that the ultimate vacuum in the deposition chamber is increased by 3 x 10 to 7 x 10 Torr (133 xl CT 7 Pa) from a conventional general-purpose sputtering system.
  • - 9 Torr stand enhances the (399 x 10- 9 P a table), than the level of the high purity a r gas impurity concentration of the normal, such as water of a high purity a r gas to be introduced into the film forming chamber 2
  • This is a process whose main purpose is to reduce it to the order of 1 pb, which is one order of magnitude smaller, and is a process that can produce magnetic films with much better magnetic properties than before.
  • the present invention relates to a magnetic recording medium substrate on which a magnetic film is to be formed. Another object of the present invention is to provide a magnetic recording medium substrate that can reduce the crystal grain size of a magnetic film and narrow the range of the particle size distribution while reducing noise.
  • the present invention provides a magnetic recording medium in which the crystal grains of the magnetic film can be refined, the range of the particle size distribution can be narrowed, the noise can be reduced, and the coercive force can be increased. It is one of the objectives.
  • An object of the present invention is to provide a method for manufacturing a magnetic recording medium that can make the crystal grains of a magnetic film finer, narrow the range of the particle size distribution, reduce noise, and have a high coercive force. And one of them.
  • the present invention provides a magnetic recording apparatus provided with a magnetic recording medium having a high coercive force, capable of reducing crystal grains of a magnetic film, narrowing the range of the particle size distribution, and reducing noise. It is one of the objectives. Disclosure of the invention
  • the magnetic recording medium substrate of the present invention has been made in view of the above circumstances, and includes a nonmagnetic substrate and a metal provided to cover the substrate and capable of co-depositing with Ni and having a high affinity for oxygen. And a non-magnetic coating film.
  • the metal is selected from P, Co, W, Fe, V, Cr, Mn, Cu, Zn, Mo, Pd, Sn, Re, Al, Zr, B, Ti, and Ta. It may be composed of one or more selected elements.
  • the coating film is a Ni-P-C0-based amorphous film, a Ni-Ta-Co-based amorphous film, or a Ni-Ti-Co-based amorphous film. It may be one of the films.
  • the coating film is represented by a composition formula of NiCoPM, wherein M is Ti, Zr, Hf, V, Nb, Mo, Ta, W, Al, or B. Of these, one or two or more elements may be characterized.
  • the coating film may contain 0.003 to 0.1 Owt.% Of Co.
  • Co-deposited with Ni, such as C0, on the coating film on the substrate and has a high affinity for oxygen. If a metal is added, the crystal grain size of the underlayer formed on the coating film can be controlled, and the crystal grain size of the magnetic film formed on the underlayer can also be controlled.
  • the magnetic recording medium of the present invention has been made in view of the above circumstances, and is characterized in that oxygen is intermittently adsorbed on a surface portion of the coating film.
  • Oxygen adsorbed on the surface of the coating film acts as a pinning point and a point for suppressing the coarsening of the crystal grains of the base film formed thereon, and makes the crystal grains of the base film fine.
  • the magnetic film is formed while epitaxially growing on fine crystal grains of the underlayer, so that the crystal grains of the magnetic film are also miniaturized. As a result, a magnetic film having fine crystal grains, a narrow particle size distribution, and low noise can be obtained.
  • Oxygen adsorbed on the surface of the coating film on the substrate acts as a suppression point and pinning point for the coarsening of the crystal grains of the underlying film formed thereon, and the crystal grains of the underlying film formed on the coating film Is refined. Since the magnetic film formed on the underlayer is generated while epitaxially growing on the fine crystal grains of the underlayer, the crystal grains of the magnetic film are also miniaturized. As a result, a magnetic recording medium having a magnetic film with fine crystal grains, a narrow particle size distribution, and a low noise can be obtained.
  • the substrate provided with the coating film is covered with a base film, a magnetic film and a protective film, and the magnetic head floats and travels on the protective film in an opposed state. It may be a feature that there is.
  • a base film, a magnetic film, and a protective film are provided on a base composed of a nonmagnetic substrate and a nonmagnetic coating film formed on the substrate. It may be characterized by containing a metal which can be codeposited with Ni and has a high affinity for oxygen.
  • the metal is P, Co, W, Fe, V, Cr, Mn, Cu, Zn, Mo, Pd, Sn, Re, Al, Zr, It may be characterized by being composed of one or more elements selected from B, Ti and Ta.
  • the coating film is a Ni-P-Co-based amorphous film, a Ni-Ta-Co-based amorphous film. Either an amorphous film or a Ni-Ti-Co-based amorphous film may be used.
  • the coating film is represented by a composition formula of NiCoPM, and M is Ti, Zr, Hf, V, Nb, Mo, Ta, W, Al. , B may be one or more elements. In the present invention, the coating film may contain 0.003 to 0.10 wt.% Of Co.
  • oxygen adsorbed on the surface of the coating film may serve as a bin stop point for suppressing coarsening of ferromagnetic crystal grains constituting the magnetic film.
  • oxygen is intermittently adsorbed on the surface of the coating film, and the portion where the oxygen is adsorbed is located at a grain boundary of a crystal grain constituting the base film, and based on the base film.
  • the magnetic film may be formed by epitaxial growth.
  • the present invention provides a substrate comprising a non-magnetic substrate, a non-magnetic coating film formed on the substrate, a base film, a magnetic film, and a protective film, wherein the magnetic film However, it is characterized in that it does not have coarse ferromagnetic crystal grains having a grain size exceeding twice the average crystal grain size of the ferromagnetic crystal grains constituting the main part of the magnetic film.
  • the present invention relates to a method for manufacturing a magnetic recording medium comprising a base film, a magnetic film, and a protective film sequentially laminated on a base made up of a non-magnetic substrate and a non-magnetic coating film formed on the non-magnetic substrate.
  • An evacuation step of reducing the film forming space in which the substrate is formed to a degree of vacuum of 10 Torr or less (a level of 19 Pa) or less, and introducing an inert gas into the film forming space.
  • a cleaning step of dry-etching the surface of the coating film constituting the substrate, and a gas containing at least oxygen in the film-forming space so as to have a pressure higher than the degree of vacuum in the evacuation step.
  • the present invention may be characterized in that a thin film containing a metal capable of co-depositing with Ni and having high affinity for oxygen is used as the coating film.
  • the present invention may be a method characterized by using a thin film containing Cr as a main constituent element as the base film.
  • the coating film may be a Ni-P-C0-based amorphous film, a Ni-Ta-Co-based amorphous film, or a Ni-Ti-Co-based amorphous film. It may be one characterized by using.
  • the present invention provides a magnetic recording medium according to any one of the preceding, a driving unit for driving the magnetic recording medium, a magnetic head, and a relative movement of the magnetic head with respect to the magnetic recording medium.
  • crystal grains of the base film can be made finer. Since the crystal grains of the underlying film can be made finer, the ferromagnetic crystal grains of the magnetic film formed thereon can also be made finer. It is also adsorbed on the coating film If the function of suppressing crystal grain coarsening using the site of oxygen is used, the particle size distribution of ferromagnetic crystal grains constituting the magnetic film can be narrowed, and the number of coarsened crystal grains can be reduced. Therefore, it is possible to obtain a low-noise magnetic film.
  • FIG. 1A is a sectional view of a magnetic recording medium according to a first embodiment of the present invention
  • FIG. 1B is a configuration diagram showing a model of a crystal structure of a base film and a magnetic film of the magnetic recording medium.
  • FIG. 2 is a side sectional view showing an example of the magnetic recording device according to the present invention.
  • FIG. 3 is a plan sectional view of the magnetic recording device shown in FIG.
  • FIG. 4 shows the dependence of the crystal grain size of the magnetic film on the amount of exposure to oxygen in the first embodiment of the magnetic recording medium according to the present invention
  • FIG. 4 (a) shows the metallographic structure when the amount of exposure was 0 L
  • Fig. 4 (b) is a photograph of the metallographic structure at an exposure of 1.5 L
  • Fig. 4 (c) is a photograph of the metallographic structure at an exposure of 3.5 L.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of a magnetic film on a base film.
  • Figure 6 shows the results of Cr / CoNi! Produced using UC-Process. 2.
  • 5 is a diagram showing the magnetic film thickness dependence of the coercive force at P t becomes laminated structure that put care recording medium structure having a base film and the magnetic film of the composition 300 K, 5 ⁇ .
  • FIG. 4 is a diagram showing a particle size distribution of ferromagnetic crystal particles of a magnetic film.
  • FIG. 10 shows the results immediately after reverse sputtering of the substrate and immediately after the formation of the Cr underlayer. Before, were exposed substrate surface with oxygen, the magnetic recording having a C r / C o N i 12 . 5 C r 15 T a 3. 5 P 5 becomes laminated structure as a base film and the magnetic film of the composition of Example
  • FIG. 4 is a diagram showing the dependence of coercivity on the amount of adsorbed oxygen in a medium.
  • Fig. 11 shows data showing the dependence of the coercive force on the amount of adsorbed oxygen shown in Fig. 10 between the exposure amount of 0 L and 5 L, and the coercivity of the magnetic recording medium when the magnetic film thickness is 15 nm.
  • FIG. 12 is a diagram showing the dependence of the coercive force at 5 K, 300 ° on the amount of adsorbed oxygen on the magnetic recording media of the examples having a magnetic film thickness of 15 nm and 30 nm.
  • FIG. 15 shows the dependence of the crystal grain size of the magnetic film on the Co content when the oxygen exposure amount was 1.5 L in the second embodiment of the magnetic recording medium according to the present invention.
  • Fig. 15 (b) is a photograph of the metal structure when the Co content is 0, and
  • Fig. 15 (b) is a photograph of the metal structure when the Co content is 30 ppm.
  • FIG. 16 shows the dependence of the crystal grain size of the magnetic film on the C0 content when the oxygen exposure amount was 1.5 L in the second embodiment of the magnetic recording medium according to the present invention. ) Is a metallographic photograph when the Co content is ⁇ ⁇ ⁇ m, and FIG. 16 (b) is a metallographic photograph when the Co content is 300 ppm.
  • FIG. 17 shows an X-ray diffraction pattern when the oxygen exposure amount on the substrate surface of the second embodiment was 1.5 L and the Co content contained in the coating film on the substrate surface was changed.
  • FIG. 9 is a diagram showing a number distribution of ferromagnetic crystal grain sizes of a magnetic film in a laminated structure of t5.
  • Figure 20 UC oxygen exposure 1.5 L with -Process, Co content in the coating film, 0, 30, 100, of the second embodiment was fabricated in 300 ppm Cr / CoN ii 2.
  • 5 C r 15 T the as. in 5 P 1 5 comprising a laminated structure is a graph showing the particle size distribution of the ferromagnetic crystal grain size of the magnetic film.
  • FIG. 21 shows the Co addition weights (0, 30, 100) immediately after reverse sputtering of the substrate surface having the NiPCo film of the second embodiment and immediately before forming the underlying Cr film.
  • FIG. 22 shows that the substrate surface of each Co-added weight (0, 30, 100, 300 ppm) was exposed to oxygen immediately after the reverse sputtering was performed and immediately before the underlayer Cr film was formed in the second embodiment. in 1.5 L, 3.5 L was exposed, C r / C o N i 12. 5 C r 15 T a 3. in the magnetic recording medium having a base film and a magnetic film of 5 P 1 5 having a composition a laminated structure, 300 K
  • FIG. 4 is a diagram showing the dependence of the coercive force of the substrate on the addition of C 0 to the substrate.
  • FIG. 23 shows the results obtained in the second embodiment immediately after the reverse sputtering of the substrate surface and immediately before the formation of the underlayer Cr film, with the amounts of Co added (0, 30, 100, and 300 ppm).
  • 5 ⁇ t 5 becomes base film and the magnetic film of the composition as a laminated structure
  • FIG. 5 is a graph showing the dependence of coercive force at 300 ° C., 5 K on the weight of Co added to a substrate.
  • FIG. 24 shows the signal-to-noise ratio (S / N TM) of the magnetic recording medium of the second embodiment with respect to the type of substrate (co-added amount: 30, 100, 300 ppm).
  • Figure 25 is, C r / C o N i of the second embodiment. 5 C r 15 T a 3 .5 standardized medium of a magnetic recording medium having a base film and the magnetic film of the P t 5 having a composition a laminated structure it is a diagram illustrating a C o content dependent noisyzu (N m / V).
  • FIG. 26 is a perspective view showing an example of a conventional general magnetic recording medium.
  • FIG. 27 is a sectional view taken along the line AA in FIG.
  • FIG. 4 is a diagram showing an oxygen concentration distribution, a Co concentration distribution, a Cr concentration distribution, and a Ni concentration distribution in a depth direction of a magnetic recording medium having a magnetic layer formed thereon.
  • FIG. 29 is a diagram illustrating the relationship between the oxygen exposure amount and the S / N ratio in the magnetic recording media of the example and the comparative example.
  • FIG. 30 is a diagram showing the relationship between the amount of oxygen exposure, the coercive force Hc, and the thermal fluctuation coefficient V ⁇ KuzokT in the magnetic recording media of the example and the comparative example.
  • FIG. 31 is a diagram showing the CO concentration dependence of the SN ratio in the magnetic recording medium of the example when the oxygen exposure amount was 1.5 L.
  • Figure 32 shows the coercive force Hc and magnetic grain-grain interaction index GDGD dependence of the Co concentration on the magnetic recording medium of the example when an oxygen exposure of 1.5 L was applied, and also evaluated. trial; product of residual magnetization B r and film thickness t of, the value of B rt shows that approximately 5 5 G ⁇ m.
  • FIG. 33 is a diagram showing the dependence of the coercive force on the amount of oxygen exposure in the magnetic recording medium of the example and the magnetic recording medium of the comparative example.
  • FIG. 34 is a diagram showing the oxygen exposure amount dependency of the resolution of the magnetic recording medium of the example and the magnetic recording medium of the comparative example.
  • FIG. 35 is a diagram showing the oxygen exposure amount dependency of the SN ratio in the magnetic recording medium of the example and the magnetic recording medium of the comparative example.
  • FIG. 36 is a diagram illustrating the relationship between the SN ratio and the resolution in the magnetic recording medium of the example and the magnetic recording medium of the comparative example.
  • FIG. 37 is a diagram showing the relationship between the SN ratio and the resolution in the magnetic recording medium of the example and the magnetic recording medium of the comparative example.
  • FIG. 1 shows a cross-sectional structure of an embodiment in which a magnetic recording medium according to the present invention is applied to an HDD (hard disk) of a computer (information processing apparatus).
  • the magnetic recording medium 60 of this embodiment has a disc-like shape.
  • a substrate 61 is formed by forming a non-magnetic coating film 63 on a substrate 62 made of a non-magnetic material, and the magnetic material of the ferromagnetic metal is formed on the substrate 61 via a metal base film 64.
  • Film (magnetic recording layer) 65 and protective film 66 Have been.
  • the magnetic recording medium 60 according to the present embodiment is a magnetic recording medium in which a ferromagnetic metal magnetic film 65 is formed on a coating film 63 of a base 61 via a metal base film 64. It is obtained by adding a small amount of additional element in a preferable range. As the additional element, an element which can be co-prayed with Ni and has a high affinity for oxygen is preferable.
  • Examples of the substrate 61 according to the present invention include, for example, a substrate 62 made of an alloy or oxide of aluminum and titanium, an alloy or oxide of titanium, or silicon, glass, carbon, ceramic, plastic, resin, and a composite thereof.
  • a non-magnetic coating film 63 of a different material on the surface is subjected to a surface coating treatment by a film forming method such as a sputtering method, an evaporation method, and a plating method.
  • the non-magnetic coating film 63 provided on the surface of the base body 61 is preferably made of a material which does not magnetize at high temperatures, has conductivity, and has a moderate surface hardness while being machine-processed. .
  • an Ni-P amorphous thin film, a Ni-Ta film, or a Ni-Ti film formed by a plating method is particularly preferable.
  • the content of the above-mentioned additive element is 0.10 wt.% Or less, more preferably 0.003 to 0.03 wt. W 0/7
  • Ni-P amorphous thin films are not easily magnetized at high temperatures, have electrical conductivity, are difficult to machine, and are widely used as materials having an appropriate surface hardness. It is preferable to use an amorphous thin film of Ni-P or an amorphous thin film obtained by adding a predetermined amount of an additional element such as Co to the amorphous thin film.
  • a donut disk shape is used, including a disk use case.
  • a substrate provided with a magnetic film or the like described later, that is, a magnetic recording medium, is used by rotating at a speed of, for example, 360 to 1500 rpm around the center of the disk during magnetic recording and reproduction. .
  • the magnetic head floats above the surface or the back surface of the magnetic recording medium with a height of about 0.1 m or a height of several 10 nm.
  • a magnetic head that levitates and runs at a height of about 10 nm has been developed.
  • the substrate 62 has appropriately controlled flatness on the front surface or the back surface, parallelism on the front and back surfaces, undulation in the circumferential direction of the substrate, and roughness on the front and back surfaces.
  • the surfaces of the magnetic recording medium and the magnetic head come into contact and slide (Contact Start Stop, referred to as CSS).
  • CSS Contact Start Stop
  • small concentric scratches may be formed on the surface of the base body 61 by polishing with diamond slurry or tape to prevent the magnetic head from adsorbing at the time of contact.
  • texture as shown in the conventional structure shown in Fig.
  • a texture may be formed on the surface of the coating film 63 made of Ni-P or the like.
  • a texture may be formed on the surface of the coating film 63 made of Ni-P or the like.
  • a loading / unloading type in which a magnetic head is made to stand by outside a magnetic recording medium has appeared, so that when such a method is employed, the structure of the texture is omitted. You can also.
  • the metal base film 64 used in the present embodiment for example, Cr and its alloy are used.
  • an alloy for example, a combination with Mo, W, Ti, V, Nb, Ta, or the like is used. More specifically, a CrMo alloy, a CrW alloy, a CrT An i-alloy, a CrV alloy or the like is applied, and its thickness is preferably in the range of 2.5 to 50 nm.
  • Cr is preferable because it causes a segregation effect on a ferromagnetic metal magnetic film 65 described later.
  • they are widely used in mass production, and a sputtering method, an evaporation method, or the like is used as a film forming method.
  • the role of the metal underlayer 64 is such that when a ferromagnetic metal magnetic film 65 made of a Co-based alloy is provided thereon, the axis of easy magnetization of the magnetic film 65 takes the in-plane direction of the substrate. That is, the crystal growth of the magnetic film 65 is promoted so as to increase the coercive force in the in-plane direction of the substrate.
  • a structure in which one or more seed layers such as a Ni-A1 seed layer are provided further below the metal base film may be employed.
  • the film formation factors that control the crystallinity include the surface shape, surface state, or surface temperature of the substrate, and the gas pressure during film formation.
  • the bias applied to the substrate, the film thickness to be formed, and the like can be increased.
  • the coercive force of the ferromagnetic metal magnetic film 65 described later tends to increase in proportion to the Cr film thickness, and the surface roughness of the medium tends to increase accordingly.
  • a metal base film 64 made of a material that can obtain a high coercive force even if the metal base film 64 is thin is preferable.
  • a large number of oxygens are intermittently adsorbed on the upper surface of the amorphous coating film 63 where Co atoms are present, and these many adsorption points 63
  • One ideal model model form is that a (see FIG.
  • the position of the grain boundary 64b of the crystal grain 64a constituting the base film 64 is preferably a structure which coincides with the previous adsorption point 63a, and the structure is one model form.
  • a large amount of oxygen intermittently adsorbed on Co located on the upper surface of the coating film 63 functions as a pinning point for suppressing the coarsening of the crystal grains 64 a of the base film 64. Therefore, ideally, as shown in FIG.
  • the grain boundary 64b of the crystal grain 64a of the base film 64 and the oxygen adsorption point 63a are aligned, but all the crystal grains 64a are at the oxygen adsorption point.
  • the position does not match 63a, and there may be some or many crystal grains 64a coarsening beyond the oxygen adsorption point 63a, so the ideal as shown in Fig. 1 (b)
  • the structure shown in Fig. 1 (b) is one form of an ideal model, though not all of them are suitable organizations.
  • the oxygen adsorption point 63a suppresses the coarsening of the crystal grain 64a
  • the crystal growth is suppressed only after the crystal growth exceeds the oxygen adsorption point 63a, leading to the refinement of the crystal grain.
  • a model structure in which the grain boundary of the crystal grain 64 is located at an intermediate point of the oxygen adsorption point 63a is also considered as another model form.
  • the width of the grain boundary 64b around the crystal grain 64a is drawn narrower for easy understanding.However, in the actual structure, the crystal grain around the crystal grain 64a is drawn. There are grain boundaries with a width that is about a fraction of 64a or wider than them, and various substances such as precipitates and compounds of other elements exist at these grain boundaries. It can be thought that.
  • the ferromagnetic metal magnetic film 65 used in the present embodiment is a CoCrTa-based, CoCrTaPt-based, or CoCrTaPt-based magnetic film widely known as a magnetic film for this type of magnetic recording medium.
  • a ferromagnetic metal material such as CoCrNi or CoNiCrTaPt is used, and its thickness is preferably in the range of 10 to 30 ⁇ .
  • This ternary ferromagnetic alloy magnetic film is a material proposed by the present inventor in Japanese Patent Application No. 11-35035 (filed on May 14, 1999) and has excellent magnetic properties not found in conventional materials. It has.
  • the composition ratio x, y, z, 78 ⁇ x ⁇ 87, 2.5 ⁇ y ⁇ 25, 2.0 ⁇ z ⁇ 15 may be used. It has been found that a composition in this range is acceptable.
  • the magnetic recording medium 60 in the present invention is preferably a magnetic recording medium (in-plane magnetic recording medium) that forms recording magnetization in parallel to the film surface of the ferromagnetic metal magnetic film 65 described above. In such a magnetic recording medium, it is necessary to further reduce the size of the recording magnetization in order to increase the recording density.
  • This miniaturization of the recording magnetization reduces the readout signal output from the magnetic head in order to reduce the leakage flux of each recording magnetization. Therefore, it is desirable to further reduce the noise of the medium, which is considered to be affected by the adjacent recording magnetization.
  • a plating solution (trade name: Meltex Ni-422 etc.) is added to a plating solution containing cobalt sulfate.
  • a coating of NiP containing a specified amount of Co on the substrate, and heat it to about 250 ° C to release gas from the film. A heat treatment is performed to obtain a substrate with a coating film.
  • the amount of Co contained in the Ni-P can be easily adjusted to the range of 0.003 to 0.1 Owt.%.
  • adding 10 ppm Co to a Co plating bath yields a 0.00 lwt.% Film
  • adding 30 ppm Co to a plating bath yields a 0.003 wt.% Film.
  • a 0.04 wt.% Film was obtained by adding lO Oppm Co to the plating bath
  • a 0.08 wt.% Film was obtained by adding 2 OO ppm Co to the plating bath, and 300 ppm was added to the plating bath.
  • 0.13wt.% Film can be obtained by adding Co
  • 0.40wt.% Film can be obtained by adding lppm ppm Co to the plating bath.
  • an excellent magnetic recording medium can also be obtained by performing the treatment described below on a coating film containing no Co. Will be explained.
  • the substrate surface was cleaned by degreasing, etching and zinc treatment, but other known general cleaning methods for the substrate surface were used. Of course, it may be cleaned.
  • the above plating bath was used when forming the NiCoP plating. However, when a plating having another composition is applied, it is a matter of course that a plating bath having a necessary composition is used.
  • the substrate with the coating film is put into a film forming chamber of a film forming apparatus such as a sputtering apparatus, and the inside thereof is evacuated to preferably achieve an ultimate vacuum of 3 ⁇ 10- fl Torr (399 ⁇ 10_fl Pa) after adjusting the degree of high vacuum (10 nine high vacuum), introducing a highly clean a r gas adjusting the impurity concentration such as water below 1 PPb, a few more MmTorr, e.g.
  • a highly clean A r gas for example 2 mTorr adjusted impurity concentration of below 1 ppb
  • the surface of the coating film is cleaned by applying a sputtering process to the surface of the coating film so as to obtain a clean etching surface which does not deteriorate the characteristics of a magnetic film to be formed later.
  • the film forming chamber for example 1 X 1 0- e l X 1 CT 7 Torr pressure to become as oxygen gas introduced by coating the surface of the oxygen exposure.
  • the oxygen exposure here is in the range of 0 L 30 L (Langmuirs).
  • X 1 0- 6 Torr and 1 L means exposing 1 0 seconds 1 X 1 0- 7 Torr, 3 . 1 and 5 L X 1 CT e 3 in Torr. 5 seconds exposure to Luke, means exposing 3 5 seconds 1 X 1 0- 7 Torr, 3 0 or L the exposure 3 0 seconds IX 1 0- 6 Torr, 1 X 1 0 7 means exposure for 300 seconds.
  • a large amount of oxygen can be physically adsorbed on the surface of the coating film. This is because if the amount of exposure to oxygen is too large, oxygen may adhere to the entire surface of the coating film and form an oxide or an oxide film.
  • Oxygen can be intermittently attached to the surface of the coating film in a physically adsorbed state by oxygen exposure performed by introducing oxygen at a specified pressure in a reduced pressure atmosphere of high vacuum after etching.
  • Co is contained in the coating film
  • Co and oxygen have a high binding property and oxygen is easily adsorbed to the portion where C0 atoms are present, so that the coating film contains Co.
  • an element having a high affinity for oxygen can be used as an additive element in place of Co in the same manner as Co.
  • Ni-P of the Ni-based alloy used as the coating film is formed by the plating method, it is preferable that the element be an element that can co-eutect with Ni.
  • the surface of the coating film is completely cleaned by sputtering etching under the conditions described above, and the above-mentioned exposure amount of oxygen is introduced into the cleaned coating film surface. It is possible to obtain a coating film surface in a state where a large amount of oxygen is physically adsorbed intermittently, not in the state of an oxide or an oxide layer. Then, the oxygen in such a physically adsorbed state can be used as a suppression point of crystal grain coarsening described later.
  • Examples of the sputtering method which is an example of a method of manufacturing a base film and a ferromagnetic metal magnetic film according to the present invention, include a transport sputtering method in which a thin film is formed while a substrate moves in front of a target;
  • An example is a static sputtering method in which a thin film is formed by fixing a substrate before a gate.
  • the former transport-type sputtering method is advantageous in the production of low-cost magnetic recording media because of its high mass productivity, and the latter is a static-type sputtering method because the angle of incidence of the sputtering particles on the substrate is stable. It is possible to manufacture a magnetic recording medium having excellent recording and reproduction characteristics.
  • the magnetic recording medium 60 according to the present invention is manufactured, it is not limited to a transport type or a stationary type.
  • the ultimate degree of vacuum of a film formation chamber for forming a metal base film and / or a ferromagnetic metal magnetic film is one of the film forming factors that influence the value of the coercive force depending on the material of the ferromagnetic metal magnetic film. It is positioned as one.
  • the magnetic material C o group when the above arrival we vacuum is low (e.g., 1 0 6 -1 0 7 For Torr base) Has been considered to have a significant impact. Accordingly the present invention by the ultrasonic cleaning process for Oite deposited in a high vacuum of about ultimate vacuum 3 X 1 0- 9 Torr to form the base film and the magnetic film.
  • the C o C r G e alloy ternary composition described above to form a ferromagnetic metal magnetic film at ultimate vacuum 1 0- s ⁇ l 0- 7 Torr base film forming chamber Even if a magnetic film is formed, it is possible to manufacture a magnetic recording medium having a ferromagnetic metal magnetic film having high normalized coercive force and thermally stable magnetic properties at the same time. It may be coated. Needless to say, the above-mentioned ternary CoCrGe alloy magnetic film may be formed by the ultraclean process provided by the present inventors.
  • the “surface temperature of the substrate when forming the metal underlayer and / or ferromagnetic metal magnetic film” in the present invention is defined as ferromagnetic This is one of the film formation factors that determine the value of magnetic force regardless of the material of the metal magnetic film.
  • substrate damage refers to external changes such as warpage, swelling, and cracking, as well as internal changes such as the occurrence of magnetization and an increase in gas generation.
  • heat treatment in order to achieve a high substrate surface temperature, it is generally necessary to perform some kind of heat treatment in the film formation chamber or its front chamber. This heat treatment has the disadvantage that gas and dust are generated in the space near the substrate and are taken in by the thin film being formed, and various film characteristics become unstable. High substrate surface temperatures also have the following problems.
  • Non-magnetic Ni-P film on Ni-P / A1 substrate generates magnetization. 2 Strain occurs in the base.
  • Examples of the surface roughness of the substrate in the present invention include an average center line roughness Ra when the surface of the substrate having a disk shape is measured in the radial direction.
  • TALYSTEP manufactured by MNKTAYL0RH0BS0N can be used.
  • the substrate starts rotating from a stopped state or vice versa
  • the surfaces of the magnetic recording medium and the magnetic head contact and slide (CSS operation).
  • the surface roughness Ra is large in order to suppress the magnetic head from being attracted and the friction coefficient from increasing.
  • Examples of the texture treatment applied to the substrate in the present invention include a method using mechanical polishing, a method using chemical etching, and a method using a physical uneven film.
  • a method by mechanical polishing is adopted.
  • a tape having abrasive grains adhered to the surface is pressed against the rotating substrate surface, so that the tape is concentrically lightened.
  • the grinding particles may be separated from the tape and used.
  • the above-mentioned texture processing is not performed, or a production method that can obtain various target film characteristics even with a lighter texture shape is appropriately adopted.
  • the Cr film constituting the base film 64 is (200) -oriented, and the magnetic film 65 is epitaxially grown thereon to (110) -oriented.
  • the crystal orientation of the underlying film 64 can improve the crystal orientation of the magnetic film 65.
  • the coarsening of the crystal grains of the base film 64 is suppressed by the oxygen adsorbed on the surface of the coating film 63, the coarsening of the crystal grains of the magnetic film 65 formed thereon is also suppressed. be able to. As a result, a magnetic film 65 having fine crystal grains can be obtained.
  • FIG. 2 and FIG. 3 show an example of a HDD (hard disk drive) device (magnetic recording device) of a computer constructed by incorporating the magnetic recording medium 60 described above.
  • a plurality of (five in the example shown in FIG. 2) magnetic recording media 60 are alternately arranged with the spinners 72 inside the container-shaped casing 71. 3 is provided.
  • a bearing for the spindle 73 is provided on the casing 71, and a motor (drive unit) 74 for rotating the spindle is provided outside the casing 71. Is rotatable around the circumference of the spindle 73.
  • a rotating shaft 76 supported in parallel with the spindle 73 by a bearing 75 is provided inside the casing 71 and on the side of the magnetic recording medium 60.
  • a plurality of swing arms 7 7 are attached to the magnetic recording medium 60 so as to extend to the side of the magnetic recording medium 60, and a long and narrow triangular plate-shaped mouth-to-door is provided at the tip side of the swing arm 7-7.
  • a magnetic head 79 is attached.
  • the magnetic head 79 is a thin-film type magnetic head, a MIG type magnetic head, or a dual type magnetic head element in which a MIG type magnetic head element and a read-only magnetoresistive effect type magnetic element are integrated.
  • a slider, and the slider is elastically supported by a gimbal member provided on the distal end side of the open arm 78.
  • the magnetic head 79 is configured to be moved to an arbitrary position on the magnetic recording medium 60 with the movement of the swing arm 77.
  • the magnetic recording medium 60 is rotated, and the swing arm 77 is moved to move the magnetic head 79 to an arbitrary position on the magnetic recording medium 60. Then, a magnetic field generated by a magnetic head 79 is applied to a ferromagnetic metal magnetic film (magnetic recording layer) 65 provided on the magnetic recording medium 60 to thereby obtain a desired magnetic recording medium 60. Magnetic information can be written. Further, the swing arm 77 is moved to move the magnetic head 79 to an arbitrary position on the magnetic recording medium 60, and the ferromagnetic metal magnetic film (magnetic recording layer) 65 of the magnetic recording medium 60 is moved. Magnetic information can be read by detecting the leakage magnetic field from the magnetic head 79.
  • the ferromagnetic metal magnetic film (magnetic recording layer) 65 is made up of fine crystal grains as described above and has excellent magnetic properties. If so, the thermal disturbance of the ferromagnetic metal magnetic film 65 can be suppressed, so that the inside of the magnetic recording device 70 receives the heat of the motor 74 and is heated to a high temperature exceeding 100 ° C, for example. Even when the ferromagnetic metal magnetic film 65 is used while being used, the magnetic properties of the ferromagnetic metal magnetic film 65 do not deteriorate. In addition, even when the ferromagnetic metal magnetic film 65 is used for a long time and heated for a long time, the magnetic recording device 70 having excellent recording / reproducing characteristics without deterioration of the magnetic recording / reproducing characteristics can be provided.
  • the magnetic recording device 70 described above with reference to FIGS. 2 and 3 is an example of a magnetic recording device
  • the number of magnetic recording media provided in the magnetic recording device may be any number equal to or more than one. Any number of magnetic heads 79 may be provided as long as the number is one or more.
  • the shape and the driving method of the swing arm 77 are not limited to those shown in the drawings, but may be other methods such as a linear driving method.
  • a 3.5-inch aluminum substrate was degreased, etched, and zincated, and then added to a commercially available plating solution (trade name: Meltex N1-4-22 (9A)) with cobalt sulfate.
  • a solution a 12 nm thick NiCoP plating was applied to the substrate to form a coating film.
  • concentration of Co in the plating solution in the range of 30 to L000 ppm, the concentration of Co in the coating film is reduced to 0.003 wt.% To 0.10. It was adjusted to the range of wt.%.
  • using a plating solution to which C An NiP plating was performed on a Ni-substrate to obtain a NiP-coated substrate.
  • the substrate with the coating film is heated at 250 ° C. to release the gas in the film, and then the surface is polished to a surface roughness Ra: 5 A to be used for a magnetic recording medium.
  • An ultra-smooth Ni-P-Co / A1 substrate and an ultra-smooth Ni-P / A1 substrate were obtained.
  • the magnetic recording medium used in the test sputtering evening device subjected to composite electrolytic polishing processing on the inner wall of the deposition chamber (NICHIDEN Aneruba manufactured ILC 30 13: The following ultimate vacuum 3 X 10- 9 To rr) using Produced.
  • the process gas during the deposition ultrapure Ar gas were used (Eta 2 0 concentration 1 ppb or less of ultra clean Ar gas).
  • the substrate used in the following experiments was a normal substrate annealed at 150 ° C x l hr after plating the Ni-P film, and 30 ppm using the previous method to remove Co, which has a strong affinity for oxygen. , 100 ppm, 300 ppm added Ni-P-Co, then 250 ° C x 1 annealed substrate, a special substrate for oxygen exposure. was used.
  • the film formation chamber containing the substrate having the Ni-P film or the NiPCo film is evacuated to an ultimate vacuum of 3 ⁇ 10— q Torr, and then the ultra-clean Ar gas is introduced.
  • the ultra-clean Ar gas is introduced.
  • dry-etching the surface and 0 to exposure for 250 seconds to the substrate surface with oxygen at a reduced pressure atmosphere of 1 X 10 _ 7 Torr, further C r base film (thickness 5 nm), CoN ii 2. 5 C r T a 3. 5 P t 5 the magnetic film (thickness 1 5 nm, 20 nm, 30 nm), were sequentially formed by applying by ⁇ scan 0V .
  • the magnetic characteristics of the manufactured magnetic recording medium were evaluated by VSM (vibrating sample magnetometer) and SQU1 D magnetometer, and the fine structure was evaluated by X-ray diffractometer (XRD) and transmission electron microscope (TEM). Inductive MR (magnetic resistance effect) Type) Evaluated by composite type head. "Dependence on oxygen adsorption amount and fine structure"
  • ultra-clean process (UC - Process: After cleaning the coating film surface subjected to dry etching by introducing ultraclean A r gas after evacuation at 3 x 10- 9 following attainment vacuum degree Film formation process), a magnetic recording medium manufactured using a substrate without Co added to the coating film and having a structure where the substrate surface is not exposed to oxygen, and dry etching just before the formation of the underlayer film
  • the TEM images of the magnetic films obtained with the oxygen exposure amounts of 1.5 L and 3.5 L (Langmuir) after the oxygen exposure and the average ferromagnetic crystal grain size (GD) calculated from the TEM images are shown.
  • L Langmuir
  • 0 L oxygen violence without Russia
  • 1 L is exposure of 10 seconds in 1 X 10- 7 Torr
  • 3.5 L is 1 X 10- 7 Torr in 35 seconds exposure
  • 10 L is 1 X 10- 7 Torr at 100 seconds exposure
  • 25 L corresponds to exposure 250 seconds 1 ⁇ 10 7 Torr.
  • 1 X 10- 6 becomes a 1 exposure equivalent conditions 10 seconds X 10- 7 Torr in violence dew 1 sec Torr, too short is violence exposure time upon exposure of a second consideration that the oxygen adsorption may not be made completely, in the present real ⁇ was exposed conditions for 10 to 250 seconds at 1x 10- 7 Torr and 1 L ⁇ 25 L.
  • FIG. 4 indicate that the average ferromagnetic crystal grain size GD decreased from 10.8 nm to 9.9 nm and 9.3 nm as the amount of oxygen exposure to the substrate surface increased.
  • the decrease in ferromagnetic crystal grain size due to the increase in oxygen adsorption is thought to be due to the increase in the amount of oxygen adsorbed on the substrate surface, which promotes the effect of suppressing the growth of the C r "crystal grains (pinning effect) in the underlayer.
  • Figure 5 shows the magnetic properties when the coating film surface was exposed to oxygen after dry etching of the coating film immediately before film formation and the amount of adsorption was changed from 0 L to 25 L.
  • the X-ray diffraction pattern of the film is as follows: Here, the thickness of the underlayer Cr was set to 5 nm, and the magnetic film thickness of CoNiCrTaPt was set to 30 nm. From the results shown in Fig. 5, regardless of the oxygen exposure amount (oxygen adsorption amount), a strong diffraction peak from the (110) plane showing in-plane orientation was obtained for the magnetic films of any magnetic recording media. No other diffraction peaks were observed. From this, it was found that exposure of the substrate surface to oxygen did not particularly affect the crystal orientation of the magnetic film.
  • the coercive force at the magnetic film thickness of 15 nm and 20 nm is almost the same, but at the coercive force at 300 K, the coercive force of the magnetic recording medium of 15 ⁇ m Since the coercive force is smaller than that of a 20 nm medium, the decrease in coercive force in a magnetic recording medium having a magnetic film with a thickness of 15 nm or less is considered to be due to thermal disturbance. Conceivable. Therefore, when adsorbing oxygen to the substrate surface, the magnetic film thickness is considered to be 3 Onm—which is unlikely to cause a decrease in coercive force due to thermal disturbance.
  • the coercive force is expected to decrease due to thermal disturbance, and used for the evaluation of magnetic properties using a sample with a fixed magnetic film thickness of 2 Onm and a sample with a fixed magnetic film thickness of 15 nm. It was to be.
  • C r / C o N i 12. 5C r .s T a3 of Figure 7 with UC -Process was produced in an oxygen exposure 0 L.
  • Fig. 8 shows the number distribution of the ferromagnetic crystal grain size of the magnetic film of the sample having the same laminated structure under the same conditions at an oxygen exposure amount of 3.5 L.
  • Figure 9 shows the distribution of crystal grains in the samples exposed to oxygen at 0, 1.5 L, and 3.5 L. It is clear that the number of coarsened grains drastically decreases with increasing oxygen exposure.
  • Figure 10 shows that the substrate surface was exposed to oxygen immediately after performing reverse sputtering (sputter etching) on the coating film on the substrate and immediately before forming the Cr underlayer.
  • the coercive force of the magnetic recording medium that has not been subjected to dry etching (reverse sputtering) is also shown in FIG.
  • the oxygen exposure amount was in the range of 0 L to 25 L
  • the Cr underlayer thickness was 5 nm
  • the magnetic film thickness was 20 nm and 30 nm.
  • the coercive force tends to decrease as the amount of oxygen adsorbed on the substrate surface increases.
  • the sample subjected to dry etching showed higher coercive force than the sample not subjected to dry etching, regardless of the amount of oxygen exposure. Therefore, only the coercive force surface It can be seen that dry etching can provide a magnetic film with a better coercive force than a sample without dry etching, regardless of the oxygen exposure amount from 0 L to 25 L. did.
  • good characteristics can be obtained even at an exposure amount of 30 L, so that the oxygen exposure amount may be 30 L or less.
  • FIG. 11 shows the dependence of the coercive force on the amount of adsorbed oxygen shown in Fig. 10 in an enlarged scale between the exposure amounts of 0 L and 5 L, and the magnetic film thicknesses of 15 nm, 20 nm and 30 nm are shown. It shows the coercive force of each magnetic recording medium in nm.
  • the coercive force tends to slightly decrease from around 3.5 L of oxygen exposure.
  • the samples with an oxygen exposure of 1.0 L have improved coercive force, but the oxygen exposure has increased from around 1.5 L. The tendency was that the coercive force gradually began to decrease as the value increased.
  • the decrease in coercive force shown here is due to the grain size of the ferromagnetic particles.
  • Figure 12 shows the dependence of the coercive force at 5 K and 30 O K on the amount of oxygen exposure (oxygen adsorption) for magnetic recording media with a magnetic film thickness of 15 nm and 30 nm.
  • the coercivity at 5 K and a coercivity at a magnetic film thickness of 30 nm which can be considered to be free from thermal disturbance, are equivalent to the exposure of 2.5 L. Since the coercive force value tends to decrease compared to the following magnetic recording media, in magnetic recording media with an oxygen exposure of 3.5 L or more, the interaction between ferromagnetic crystal grains due to penetration of oxygen into the film etc. The effect may be increased.
  • the substrate was a normal substrate
  • the base Cr film thickness was 5 nm
  • the magnetic film thickness was 15 nm.
  • Figure 13 also shows the read / write characteristics of a magnetic recording medium with a magnetic film thickness of 12 nm without oxygen exposure.
  • the recording / reproducing characteristics are improved by exposing the substrate surface to oxygen, and the maximum value is obtained when the oxygen exposure amount is around 4 L. This is due to the fact that the interaction between ferromagnetic crystal grains tends to increase near the oxygen exposure of 4 L, but the signal-to-noise ratio is improved by further reducing the ferromagnetic crystal grain size. It seems to be.
  • Fig. 14 shows the dependence of the normalized medium noise Nm / V on the acidity exposure at a linear recording density of 160 kFCI for a thin-film magnetic recording medium.
  • Figures 15 and 16 show that after performing dry etching immediately before film formation, the amount of oxygen exposure to the substrate surface was fixed at 1.5 L, and the substrate type was annealed at 150 ° C x 1 hr after NiP plating. 0.003wt ⁇ substrate with strong affinity for oxygen %, 0.04 wt 0.13 wt.% NiP added, annealed at 250 ° C x 1 hr after plating, special substrates for oxygen exposure were prepared, a total of 4 types, and TEM images when they were changed And the average magnetic crystal grain size (GD) calculated from the TEM image.
  • the underlayer thickness of Cr is 5 nm
  • the CoN i CrTaPt magnetic film thickness is constant at 15 nm. From FIGS.
  • Fig. 20 shows the distribution of ferromagnetic crystal grains in each sample with the oxygen exposure amount set to 1.5 L and the sample added (0: 0, 0.003 wt.%, 0.04 wt.%, 0.13 wt.%). As shown, it is clear that the ferromagnetic crystal grain size becomes finer and the number of coarsened ferromagnetic crystal grains decreases with an increase in the amount of Co added.
  • Fig. 21 shows that each Co addition weight (0, 0.003 wt.%, 0, 0.003 wt.%) was obtained immediately after sputtering etching of the substrate surface with the NiPCo coating film and immediately before forming the Cr underlayer film. 0.04 wt.%, 0.13 wt coating film surface.%) was exposed in an oxygen, C r / CoN i 12. 5 C r 15 T a 3. 5 magnetic recording medium which also P 1 having a composition and a laminated structure 5 shows the dependence of the coercivity on the amount of adsorbed oxygen in FIG. Oxygen exposure ranged from 0 L to 3.5 L. 1: The base film thickness of >> was 511111, and the magnetic film thickness was 15 nm.
  • Figure 22 shows the substrate table of each Co added weight (0, 0.003 wt.%, 0.04 wt.%, 0.13 wt.%) Immediately after the reverse sputtering and immediately before forming the underlying Cr film. 1.5 L faces with oxygen, 3.5 and L exposure coercive force at C r / C o N i 12 . 5 C r 15 T a 3. 5 in the magnetic recording medium of the P 1 5 having a composition a laminated structure, 300 K Shows the dependence of the addition of CO on the substrate.
  • the coercive force of the substrate with a Co added weight of 0.003 wt.% Is almost the same as that of the substrate with a Co added weight of Owt.%.
  • the coercive force tends to decrease as the amount of addition increases.
  • the samples with any amount of Co showed higher coercive force than the samples without dry etching.
  • the coercive force value of the 5 K sample which can be considered to be unaffected by thermal disturbance, decreases with an increase in the amount of Co added. Therefore, the decrease in coercivity at 300 K may be due not only to the effects of thermal disturbance but also to the increased interaction between ferromagnetic grains. This is due to the fact that a substrate with Co content of 0.04 wt.% And 0.13 wt.% Has a much larger amount than a coating film without Co and a coating film with Co content of 0.003 wt.%.
  • the crystal orientation was measured when a substrate with a coating film with a Co addition weight of preferably 0.13 wt.% Or less was used and the oxygen exposure amount on the coating film surface was about 3.5 L or less. It was found that the ferromagnetic crystal grain size could be reduced without adversely affecting the grain size and without increasing the intergranular interaction.
  • the ferromagnetic crystal grain size can be greatly reduced even with slight oxygen exposure on the substrate surface, but the intergranular interaction is reduced. It was found to have a tendency to increase.
  • FIG. 24 Cr / CoN i 12 5 Cr 15 Ta 3. 5 signal to noise ratio of the magnetic recording medium that have a P t 5 having a composition and a laminated structure of (S / N m), the coating film on the substrate Shown for the type (Co addition amount: 0.003 wt.%, 0.04 wt 0.13 wt.).
  • the film formation process was performed by exposing the substrate surface to 1.5 L of oxygen, and the base film thickness of (: was 511111, the magnetic film thickness was 15 nm.
  • FIG. The recording / reproducing characteristics of a magnetic recording medium using a substrate not containing C0 and having an oxygen exposure of 3.5 L and 7.5 are also shown from the results shown in Fig. 24.
  • the recording / reproducing characteristics are improved, and the maximum signal-to-noise ratio (improvement of ldB or more) is obtained when the Co content is around 0.04 wt.%, Due to the large intergranular interaction near 0.04 wt.%. However, it is thought that the signal-to-noise ratio is improved by further reducing the ferromagnetic crystal grain size. By adding, a magnetic recording medium having a good SN ratio can be obtained.
  • the final conclusion is that after etching the coating film on the substrate surface by sputtering, it is exposed to oxygen for about 1.5 L to 3.5 L to increase the ferromagnetic crystal grains without increasing the crystal orientation and intergranular interaction.
  • the diameter can be reduced from 10.8 nm to 9.9 nm, and by adding Co to the Ni-P amorphous film in a quantity of 0.003 wt.% Or less, it can be reduced from 9.8 nm to 9.6 nm. It became clear that it could be reduced. Also, in the magnetic recording / reproducing characteristics, under the condition that the thickness of the Cr underlayer and the magnetic film thickness are constant, using a substrate in which C 0 is added to the Ni-P film at about 0.04 wt.
  • the signal-to-noise ratio could be improved by about 1.5 to 2.0 dB by setting the elemental exposure to about 3.5 L.
  • a good value can be obtained in the range of 0.08 wt.% Or less, so that a magnetic recording medium with an excellent signal-to-noise ratio is obtained by taking into account a slight decrease in coercive force.
  • the Co content in the coating film is 0.08 wt.% Or less, preferably in the range of 0.003 to 0.08 wt.%, It is considered good to set the oxygen exposure to 3.5 L or less, preferably in the range of 0.1 L to 3.5 L.
  • the coating film may have a multilayer structure instead of a single-layer structure.
  • the Ni-P film is used as the lower coating film, and a material containing an element that easily bonds to oxygen is formed thereon by means such as sputtering. It is possible to obtain a structure (distributed state of adsorbed oxygen gas) suitable for miniaturization and uniformity by exposing the surface of the upper coating film to oxygen by exposing it to oxygen.
  • the invention is intended to include such embodiments.
  • a NiP coating film was formed on the aluminum disk-shaped substrate described above, and exposed to oxygen under the conditions of 3.5 L, and a 100 A-thick Cr underlayer film was further placed thereon.
  • a thickness of 280 Rei_0 (: 17 T a and the magnetic film 5 having a composition
  • a carbon protective film having a thickness of 100 a
  • dry the surface of the coating film of the N i P Prepare a sample that has been etched and a sample that has not been dry etched.
  • Figure 28 shows the results of depth analysis of the sample by SIMS (secondary ion mass spectrometry).
  • the oxygen concentration of the dry-etched sample is significantly lower than that of the dry-etched sample.
  • This is an object of the present invention in the case where the surface is not cleaned by dry etching, a large amount of uncontrollable oxygen atoms are present on the surface of the NiP due to the attachment of oxides and the like to the surface of the NiP. This suggests that oxygen traps that function as good pinning sites cannot be formed with good control.
  • the dry-etched sample had a coercive force of 10.8 nm.
  • the crystal grain size of the sample not subjected to dry etching was 7.4 nm, and the coercive force was 0.82 kOe.
  • the same substrate as in the previous example was subjected to dry etching on the surface of the NiCoP coating film, and was further exposed to oxygen under a 3.5 L condition. fee prepared (oxygen exposure 0 L), which it thickness 5 nm of C r of the base film thickness of 1 5 nm of C 0 C ⁇ 7 T a 5 having a composition of the magnetic film, a thickness of 1 0 nm A protective film of carbon was formed to obtain a magnetic recording medium sample.
  • the Co crystal grain size of the sample with an oxygen exposure of 0 L was 10.8 nm, but the Co crystal grain size of the sample with an oxygen exposure of 3.5 L was 9.3 nm. However, it was possible to reduce the crystal grain size.
  • magnetic recording medium samples were prepared by changing the oxygen exposure amount to 1.5 L, 3.5 L, and 7.5 L, and the S / N ratio of each sample was measured.
  • the coercive force of each sample Fig. 30 shows the measurement results and the measurement results of Vact KU "n / KT (an index indicating the thermal disturbance of the magnetic recording medium) of each sample.
  • the S / N ratio could be increased from 18.5 to a maximum of 19.1 dB (exposure 4L) by increasing the oxygen exposure. This is equivalent to reducing the media noise from 4.8 to 4.56 V rms to 4.80 / V rms when viewed as media noise. From the results shown in Fig. 30, the coercive force decreases from 2.26 to 2.00 kOe.
  • V act Ku Sfain / kT (index indicating the thermal disturbance of the magnetic recording medium) drops from 156 to 104.
  • V act is the activated magnetic volume, which corresponds to the volume in which the magnetic clusters act simultaneously.
  • Ku ⁇ ain is the crystal magnetic anisotropy energy constant, indicating the potential of the magnetic material.
  • K is the Boltzmann constant, and T is the absolute temperature.
  • the main cause of the decrease in V act Ku s ' ain / kT is the dry etching of the substrate. After exposure to oxygen, the crystal grain size was significantly reduced, and V act was also significantly reduced.
  • V act Ku s ' ain ZkT 104 is a value that does not pose a major problem. In order to further improve the characteristics, if a magnetic material having a larger Ku siai is selected, it can be easily realized.
  • a magnetic recording medium sample was prepared after forming a NiCoP coating film on the surface of the aluminum substrate, and a test was performed to measure the magnetic properties of the magnetic recording medium.
  • Fig. 31 shows the measurement results of the SN ratio of the samples in which the Co addition amount was set to 0, 120, and 1200 ppm, respectively, in addition to the same samples.
  • Figure 32 shows the measurement results for / GD.
  • the S / N ratio can be increased by adjusting the Co concentration even when the oxygen exposure is constant (18.5 dB for the sample without C 0 to 19.5 dB for the sample with Co 400 ppm). It was found that the coercive force could be reduced and the increase in magnetic intergranular interaction could be suppressed, and the S / N ratio of the medium could be improved.
  • the CoNiP layer on the surface of the aluminum substrate was mirror-finished without forming any texture, and a dry-etched sample and a non-etched sample were prepared. align the sample is not performed variously, using the base film of two-layer structure of the C r Mo film of Cr film and the thickness 5 nm thickness 5 nm, of 20 nm thick thereon C o C r 24 P t to form a magnetic layer of 2 B 4 having a composition, to obtain a magnetic recording medium sample to form a further thickness 7 nm force one carbon protective layer.
  • FIG. 33 shows the measurement result of the relationship between the oxygen exposure amount and the coercive force in this sample. From the results shown in FIG. 33, the coercive force of the sample subjected to dry etching with 400 ppm of Co added was sufficiently high, and the sample without Co added showed a lower coercive force. The sample not subjected to dry etching showed a lower coercive force. The coercive force was found to hardly decrease even when the oxygen exposure amount was set to 30 L, so it was clear that the oxygen exposure amount could be appropriately selected in consideration of other magnetic characteristics within the range of 30 L or less. became.
  • Figure 35 summarizes these results and plots the relationship between oxygen exposure and SN ratio. From the results shown in this figure, it can be seen that with regard to the amount of oxygen exposure, the higher the amount of exposure, the better the SN ratio.
  • Figure 36 plots the relationship between the S / N ratio and the resolution from these results.From the results shown in this figure, the same as the S / N ratio of the sample without dry etching by increasing the oxygen exposure It was clarified that the S / N ratio could be improved to a satisfactory level in the dry-etched sample because it can be reached by the dry-etched sample.
  • Figure 37 shows the relationship between the resolution and the SN ratio. It is clear from this relationship that increasing the oxygen exposure can improve the SN ratio without lowering the resolution.
  • a magnetic recording medium substrate of the present invention a magnetic recording medium having on its surface a nonmagnetic coating film containing an element which can be codeposited with Ni and has a high affinity for oxygen.
  • a magnetic recording medium is formed by forming a base film and a magnetic film on the coating film, the crystal grain size of the base film is reduced by the effect of the additional elements contained in the coating film. And the crystal grain size of the magnetic film can be reduced. Therefore, when the magnetic recording medium substrate of the present invention is used, there is an effect that a magnetic recording medium including a magnetic film having a small crystal grain size and low noise can be obtained.
  • the coating film is selected from Co, W, Fe, V, Cr, Mn, Cu, Zn, Mo, Pd, Sn, Re, Al, Zr, B, and Ti. It is possible to use one or two or more kinds of added Ni-P-Co-based, Ni-Ta-Co-based, or Ni-Ti-Co-based, Further, a composition formula of NiCoP M (where the element M is composed of one or more of Ti, Zr, Hf, V, Nb, Mo, Ta, W, Al, and B) ) Can be used.
  • the crystal grains of the underlying film are refined when the underlying film is formed on the intermittently adsorbed oxygen. Further, the crystal grains of the magnetic film formed on the base film can be made finer. Further, if the magnetic recording medium according to the present invention has a nonmagnetic coating film containing an element which can be co-deposited with Ni and has a high affinity for oxygen, a base film is formed on the coating film. When a magnetic film is formed, the crystal grain size of the base film can be reduced by the effect of the additional element contained in the coating film, and the crystal grain of the magnetic film can be reduced. Can be.
  • the magnetic recording medium of the present invention has an effect that a magnetic recording medium having a low-noise magnetic film having a small crystal grain size can be obtained.
  • the intermittently adsorbed oxygen acts as a point for suppressing crystal grain coarsening, and the underlying film formed thereon has The crystal grains are refined, and the crystal grains of the magnetic film formed on the underlayer are also refined.
  • the recording medium is a magnetic recording medium containing a prescribed amount of Co and having a coating film on the surface of which oxygen is adsorbed, or a substrate surface with an appropriate amount of oxygen exposure after reverse sputtering of the coating film surface
  • a magnetic recording medium with particularly low noise can be obtained.
  • a base film, a magnetic film, and a protective film are sequentially laminated on a base composed of a non-magnetic substrate and a non-magnetic cover film formed on the substrate.
  • oxygen suitable amounts after their can be adsorbed. The oxygen thus adsorbed functions to suppress the coarsening of the crystal grains of the base film, so that the base film having fine crystal grains can be obtained, and at the same time, the magnetic film having the fine crystal grains can be obtained.
  • the underlayer contains Cr. If a magnetic film is formed on the underlayer containing Cr, an excellent magnetic film having fine crystal grains can be obtained. If a suitable Co content is selected for the coating film and a suitable range is selected as the oxygen exposure amount, the coercive force is high, the crystal grain size is small, and the distribution range of the crystal grain size is small. It is possible to obtain a magnetic recording medium having a magnetic film that is narrow, has few coarse grains, and has low noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)

Description

明細書
磁気記録媒体用基板と磁気記録媒体およびその製造方法と磁気記録装置 技術分野
本発明は、 非磁性基板を非磁性の膜で被覆した構造の磁気記録媒体用基板とそ れを備えた磁気記録媒体およびその製造方法と磁気記録装置に係り、 より詳細に は、 基板表面に設ける被覆膜を特別なものとする技術と、 基板表面に酸素を吸着 させる技術を利用することで、 基板に形成される磁性膜の特性向上を図ることが できる磁気記録媒体用基板と磁気記録媒体およびその製造方法と磁気記録装置に 関するもので、 本発明に係る磁気記録媒体は、 ハードディスク等に好適に用いら れる。 背景技術
磁性膜を有する磁気記録媒体の高記録密度化を実現するためには、 低ノイズ化 の観点から、 磁性膜厚を低減すること、 並びに、 強磁性結晶粒の微細化が必要と されている。
磁性膜の膜厚を低減することで、 ある程度強磁性結晶粒径の減少をなし得るこ とが知られているが、 微細組織形成や熱擾乱を考慮する上での強磁性結晶粒の体 積などの観点から、 磁性膜厚の低減には限界を有する問題がある。 従って、 磁性 膜の膜厚を変化させることなく強磁性結晶粒径を低減する必要性があると思われ る。 また、 従来から、 図 2 6と図 2 7に示すように、 A 1合金あるいはガラスから なる非磁性の基板 5 2の表面に、 N i - Pなどの被覆膜 5 3を形成し、 この被覆膜 5 3上に〇 、 C r合金などの金属からなる下地膜 5 4を形成し、 その上に、 C o C r T a系あるいは C o C r T a P t系などの磁性膜 5 5と、 アモルファス力 一ボンの保護膜 5 6を形成した磁気記録媒体 5 0が広く知られている。 ここで、 金属の下地膜 5 4の厚さは、 例えば 1 0〜5 0 n mにされるとともに、 磁性膜 5 5の厚さは例えば 1 0〜3 O n mとされ、 保護膜 5 6の厚さは例えば 1 0〜3 0 n mとされている。 更に、 下地膜 5 4は磁性膜 5 5の結晶配向性を整えて磁気特 性を向上させるための目的と、 磁性膜 5 5の粒径を制御するためなどの目的に設 けられている。 ところで、 応用物理第 6 5巻第 1 2号 ( 1 9 9 6年、 1 2月刊行) において、 発表題目、 ウルトラクリーンプロセスと薄膜磁気記録媒体として記載されている 本発明者の研究報告によれば、 C o N i C r合金の磁性膜であれば、 本来ならば 理想的な等方的保磁力 (H e ) で 3 0 0 0 0 e程度、 C o N i T a合金の磁性膜 であれば、 本来ならば理想的な等方的保磁力で 2 5 0 0 O e程度の値を示すはず であると思われる。
ところが、 従来の一般的なスパッ夕法で製造されるこれらの磁性膜は、 成膜時 の基板温度の管理や基板に負のバイアスを印加するなどの種々の手法を採用して プロセスの改善を行なつたとしても、 磁性膜の強磁性結晶粒の粒界の C rの偏析 を良好にすることができないなどの理由から、 C o N i C r合金の磁性膜におい て 1 2 0 0 O e程度の保磁力、 C o N i T a合金の磁性膜において 1 8 0 0 0 e程度の保磁力しか発揮できないという問題があった。
ここで、 磁性膜として理想的な 1つの構造は、 磁性を担う強磁性結晶粒が十分 に微細化され、 強磁性結晶粒の粒界に非磁性の粒界層を存在させて強磁性結晶粒 どうしが分離独立され、 強磁性結晶粒どうしの間での磁気的交換相互作用の低減 がなされた構造であると考えられる。 従って前述の組成系の磁性膜にあっては、 強磁性結晶粒の粒界に C rが効率よく析出されて偏析されることが重要と思われ る。 また、 結晶粒界の C rの偏析を良好にすることができないという理由から、 従 来の製造方法で得られたこの種の磁性膜の強磁性結晶粒の粒径は、 ばらつきが大 きいとともに、 S /N比の低下や熱擾乱による記録の消失といった問題を有して いた。 更に、 磁性膜中の強磁性結晶粒の粒径のばらつきが大きいということは、 多数の強磁性結晶粒の中に、 粒径の大きな結晶粒が相当数含まれていることを意 味するが、 粒径の大きな強磁性結晶粒が存在していると、 磁気記録媒体として見 た場合に媒体ノイズが大きいことを意味し、 S /N比の低下につながる問題があ る。 以上のような背景に鑑み、 本発明者は、 応用物理、 第 68巻、 第 2号 ( 199 9年、 2月) において、 高密度薄膜磁気記録媒体の物理と題して、 結晶粒界の C r偏析を阻害するのは、 スパッ夕時の不純物酸素であるとの研究報告を行なって いる。
以上のこれらの研究報告と研究成果の過程の中で本発明者らは、 特公平 280 6443号、 特開平 9一 138934号などにおいて、 磁性膜の酸素濃度を 10 0 wt p pm以下に制限することができるウルトラクリーンプロセスの提案を行 なっている。
ウルトラクリーンプロセス (Ultra Clean Process) とは、 成膜室の到達真空度 を従来の一般的なスパッ夕装置の 1 X 10— 7Torr ( 133 x l CT7Pa) 台 (レ ベル) から 3 X 10— 9Torr台 ( 399 x 10— 9 P a台) に高めるとともに、 成膜 室に導入する高純度 A rガス中の水等の不純物濃度を通常の高純度 A rガスのレ ベルよりも 2桁少ない 1 p bレベルに低減することを主体とするプロセスであ つて、 従来よりも格段に優れた磁気特性を有する磁性膜を製造することができる プロセスである。 このウルトラクリーンプロセスの採用により、 CoN i Cr合 金の磁性膜において等方的な保磁力で 2000 Oeの値、 Co CrTa合金の磁 性膜において等方的な保磁力で 2300 0 eの値を引き出すことができるように なってきている。 上述のウルトラクリーンプロセスの採用によって、 磁性膜の磁性結晶粒界の C rなどの偏析を良好にすることができるようになり、 磁性膜の本来有する保磁力 を引き出すことができるようになつてきてはいるが、 磁気記録媒体に更なる高密 度化のニーズが高まった場合、 現状の磁性膜の強磁性結晶粒の粒径の均一化は必 ずしも十分ではない問題がある。 本発明は、 磁性膜が形成されるべき磁気記録媒体用基板において、 形成するべ き磁性膜の結晶粒を微細化できると同時に、 粒径分布の範囲を狭くすることがで き、 低ノイズ化することが可能な磁気記録媒体用基板を提供することを目的の 1 つとする。
本発明は、 磁性膜の結晶粒を微細化できると同時に、 粒径分布の範囲を狭くす ることができ、 低ノイズ化することが可能で保磁力も高レ、磁気記録媒体を提供す ることを目的の 1つとする。
本発明は、 磁性膜の結晶粒を微細化できるとともに、 粒径分布の範囲を狭くし て低ノイズ化をすることが可能で保磁力も高い磁気記録媒体を製造する方法を提 供することを目的の 1つとする。
本発明は、 磁性膜の結晶粒を微細化できるとともに、 粒径分布の範囲を狭くし て低ノイズ化をすることが可能で保磁力も高い磁気記録媒体を備えた磁気記録装 置を提供することを目的の 1つとする。 発明の開示
本発明の磁気記録媒体用基板は前記事情に鑑みてなされたもので、 非磁性の基 板と、 該基板を被覆するように設けられて N iと共析可能で酸素と親和力の高い 金属を含む非磁性の被覆膜とを具備してなることを特徴とする。
本発明において、 前記金属が、 P、 C o、 W、 Fe、 V、 C r、 Mn、 Cu、 Zn、 Mo、 Pd、 Sn、 Re、 Al、 Z r、 B、 T i、 Taの中から選択され る 1種または 2種以上の元素からなるものとすることもできる。
更に本発明において、 前記被覆膜が、 N i- P- C 0系非晶質膜、 N i- Ta - C o系非晶質膜、 または、 N i- T i- Co系非晶質膜のいずれかであることを特徴 とするものでも良い。
本発明において、 前記被覆膜が、 N i C o PMなる組成式で示され、 前記 Mが、 T i、 Z r、 Hf、 V、 Nb、 Mo、 T a、 W、 A l、 Bのうち、 1種または 2 種以上の元素であることを特徴とするものでも良い。
本発明において、 前記被覆膜に C oが 0.003〜0.1 Owt.%含有されてな ることを特徴とするものでも良い。
基板上の被覆膜に C 0などのように N iと共析可能であって酸素と親和力の高 い金属を添加していると、 被覆膜上に形成される下地膜の結晶粒径の制御が可能 となり、 下地膜上に形成される磁性膜の結晶粒径の制御も可能となる。
本発明の磁気記録媒体は前記事情に鑑みてなされたもので、 前記被覆膜の表面 部分に酸素が間欠的に吸着されてなることを特徴とする。
被覆膜表面に吸着された酸素はその上に形成される下地膜の結晶粒の粗大化の 抑制点、 ピンニングポイントとして作用し、 下地膜の結晶粒を微細化する。 この 下地膜上に磁性膜を形成すると、 下地膜の微細な結晶粒に対してェビタキシャル 成長しながら磁性膜が生成するので、 磁性膜の結晶粒も微細化される。 その結果 として結晶粒の微細化された、 粒径分布の狭い、 低ノイズ化された磁性膜を得る ことができる。
基板上の被覆膜表面に吸着された酸素はその上に形成された下地膜の結晶粒の 粗大化の抑制点、 ピンニングポイントとして作用し、 被覆膜上に形成された下地 膜の結晶粒を微細化する。 この下地膜上に形成された磁性膜は、 下地膜の微細な 結晶粒に対してェピ夕キシャル成長しながら生成されるので、 磁性膜の結晶粒も 微細化される。 その結果として結晶粒の微細化された、 粒径分布の狭い、 低ノィ ズ化された磁性膜を備えた磁気記録媒体が得られる。 本発明において、 前記被覆膜を設けた基板が、 下地膜、 磁性膜及び保護膜で被 覆されるものであり、 前記保護膜上を磁気へッ ドが対向状態で浮上走行されるも のであることを特徴とするものでも良い。
本発明において、 非磁性の基板と該基板上に形成された非磁性の被覆膜から構 成された基体上に、 下地膜と磁性膜と保護膜とが具備されてなり、 前記被覆膜に N iと共析可能で酸素と親和力の高い金属が含有されてなることを特徴とするも のでも良い。
本発明において、 前記金属が、 P、 C o、 W、 F e、 V、 C r、 M n、 C u、 Z n、 M o、 P d、 S n、 R e、 A l、 Z r、 B、 T i、 T aの中から選択され る 1種または 2種以上の元素からなることを特徴とするものでも良い。 本発明において、 前記被覆膜が、 N i - P - C o系非晶質膜、 N i - T a - C o系 非晶質膜、 または、 N i - T i - C o系非晶質膜のいずれかであっても良い。
本発明において、 前記被覆膜が、 N i C o P Mなる組成式で示され、 前記 Mが、 T i、 Z r、 H f、 V、 N b、 M o、 T a、 W、 A l、 Bのうち、 1種または 2 種以上の元素であることを特徴とするものでも良い。 本発明において、 前記被覆膜に C oが 0 . 0 0 3〜0 . 1 0 w t . %含有されてな ることを特徴とするものでも良い。
本発明において、 前記被覆膜の表面に吸着された酸素が、 前記磁性膜を構成す る強磁性結晶粒の粗大化を抑制するビン止め点とされてなることを特徴とするも のでも良い。
本発明において、 前記被覆膜の表面に酸素が間欠的に吸着され、 前記酸素の吸 着された部分が前記下地膜を構成する結晶粒の粒界に位置され、 前記下地膜を基 にして前記磁性膜がェピタキシャル成長されてなることを特徴とするものでも良 い。 本発明は、 非磁性の基板と、 該基板上に形成された非磁性の被覆膜から構成さ れた基体上に、 下地膜と磁性膜と保護膜とが具備されてなり、 前記磁性膜が、 そ の磁性膜の主要部を構成する強磁性結晶粒の平均結晶粒径値の 2倍を超える粒径 の粗大強磁性結晶粒を有しない構造とされたことを特徴とする。 本発明は、 非磁性の基板と該基板上に形成された非磁性の被覆膜から構成され た基体上に、 下地膜と磁性膜と保護膜を順に積層してなる磁気記録媒体の製造方 法において、 前記基体が形成された成膜空間を 1 0 Torr台 ( 1 9 P a台) 以 下の真空度に減圧する排気工程と、 前記成膜空間に不活性ガスを導入し、 プラズ マを生起させて、 前記基体を構成する被覆膜表面部分をドライエッチング処理す るクリーニング工程、 及び、 前記排気工程の真空度より高い圧力となるように、 前記成膜空間に少なくとも酸素を含むガスを導入し、 前記被覆膜の表面を該酸素 を含むガス雰囲気に曝す暴露工程と、 前記暴露工程を終えた基体上に、 前記下地 膜をドライプロセスにより堆積させる成膜工程とを少なくとも含むことを特徴と する製造方法でも良い。 本発明は、 前記被覆膜として、 N iと共析可能で酸素と親和力の高い金属を含 有する薄膜を用いることを特徴とするものでも良い。
本発明は、 前記下地膜として C rを主たる構成元素とする薄膜を用いることを 特徴とする方法でも良い。
本発明は、 前記被覆膜として、 N i- P- C 0系非晶質膜、 N i- Ta- Co系非 晶質膜、 または、 N i- T i- C o系非晶質膜を用いることを特徴とするものでも 良い。
本発明において、 前記暴露工程は、 前記被覆膜表面の暴露量が 30ラングミュ ァ以下 (ただし、 1 二'ングミュア = 1 X 10— eTorr · sec = 1 33 X 10— e P a · sec) 、 となるように該被覆膜の表面を所定圧力の酸素雰囲気に所定の時間暴露す ることを特徴とする。 本発明において、 前記被覆膜に含有される C 0を 0.003〜0.10wt .%の 範囲とすることを特徴とするものでも良い。 本発明は、 先のいずれか 1項に記載の磁気記録媒体と、 前記磁気記録媒体を駆 動する駆動部と、 磁気ヘッ ドと、 前記磁気ヘッ ドを前記磁気記録媒体に対して相 対移動させる移動手段とを具備してなることを特徴とする。 成膜空間を 1 X 1 0— sTorr台 ( 1 X 1 0— 9P a台) 以下の真空度に減圧した後 にドライエッチングを施し、 成膜空間に酸素を導入し、 その被覆膜上に酸素を吸 着すると、 ドライエッチングにより被覆膜表面を完全に清浄化できるとともに、 その清浄化された被覆膜表面に酸素が物理的に吸着されて酸素が存在するサイ ト が生成されると考えられる。
このサイ トを有する被覆膜上に下地膜を形成すると、 下地膜の結晶粒を微細化 することができる。 下地膜の結晶粒を微細化できることから、 その上に形成され る磁性膜の強磁性結晶粒も微細化することができる。 また、 被覆膜上に吸着され た酸素のサイ トを利用した結晶粒粗大化抑制機能であるならば、 磁性膜を構成す る強磁性結晶粒の粒径分布を狭い範囲とすることができ、 粗大化された結晶粒の 数を少なくできるので、 低ノィズ化した磁性膜を得ることができる。 図面の簡単な説明
図 1 (a) は本発明の第 1実施形態の磁気記録媒体の断面図、 図 1 (b) は 同磁気記録媒体の下地膜と磁性膜の結晶構造のモデルを示す構成図である。
図 2は、 本発明に係る磁気記録装置の一例を示す側断面図である。
図 3は、 図 2に示す磁気記録装置の平断面図である。
図 4は、 本発明に係る磁気記録媒体の第 1の実施例における磁性膜の結晶粒 径の酸素暴露量依存性を示すもので、 図 4 (a) は暴露量 0 Lの場合の金属組織 写真、 図 4 (b) は暴露量 1.5 Lの場合の金属組織写真、 図 4 (c) は暴露量 3 .5 Lの場合の金属組織写真である。
図 5は、 UC -Processを用いるとともに、 下地膜の成膜直前にドライエッチ ングを行った後、 基板表面を酸素で暴露し、 その吸着量を 0 Lから 25 Lまで変 化させたときの下地膜上の磁性膜の X線回折パターンを示す図である。
図 6は、 UC -Processを用いて作製した、 C r / C o N i! 2.5 C r! 5 T a 3 .5P t なる積層構造と組成の下地膜と磁性膜を有する構造の 気記録媒体におけ る 300 K、 5 Κでの保磁力の磁性膜厚依存性を示す図である。
図 7は、 UC - Processを用いて酸素暴露量 0 Lにて作製した実施例の C r/ CoNi . . sCri Taa. sP t 5なる積層構造における磁性膜の強磁性結晶粒径 の個数分布を示す図である。
図 8は、 U C - Processを用いて酸素暴露量 3.5 Lにて作製した実施例の C r / C o N i 2.5 C r i 5 T a 3.5 P t 5なる積層構造における磁性膜の強磁性結晶 粒径の個数分布を示す図である。
図 9は、 UC -Processを用いて酸素暴露量 0 L、 1.5 L、 3.5 Lにて作製 した実施例の C r/C oN i 5C r i5T a3.5P t 5なる積層構造における磁性 膜の強磁性結晶粒径の粒度分布を示す図である。
図 10は、 基板の逆スパッタを行った直後、 かつ C rの下地膜を成膜する直 前に、 基板表面を酸素で暴露した、 実施例の C r/C o N i 12.5C r 15T a3.5P 5なる積層構造と組成の下地膜と磁性膜を備えた磁気記録媒体における、 保磁力 の酸素吸着量依存性を示す図である。
図 1 1は、 図 10で示した保磁力の酸素吸着量依存性を暴露量 0 Lから 5 L の間で拡大表示したデータと、 磁性膜厚が 15 nmの場合の磁気記録媒体の保磁 力を併せて示す図。
図 12は、 磁性膜厚が 15 nm、 30 nmの実施例の磁気記録媒体において、 5 K、 300 Κでの保磁力の酸素吸着量依存性を示す図である。
図 13は、 実施例の C r/C 0 N i 12. 5C r i5T a3.5P t 5なる組成と積層 構造の下地膜と磁性膜を有する磁気記録媒体の信号対雑音比 ( S/Nm二信号/磁 気記録媒体のノィズ) を基板表面への酸素吸着量に対して示す図である。
図 14は、 実施例の C rZC o N i . 2. 5C r 15T a3.5P t 5なる組成と積層 構造の下地膜と磁性膜を有する磁気記録媒体の規格化媒体ノイズ (Nm/V) の酸 素暴露量依存性を示す図である。
図 15は、 本発明に係る磁気記録媒体の第 2の実施例における磁性膜の結晶 粒径の酸素暴露量 1.5 Lの場合の C o含有量依存性を示すもので、 図 15 (a) は C o含有量 0の場合の金属組織写真、 図 15 (b) は C o含有量 30 ppmの 場合の金属組織写真である。
図 16は、 本発明に係る磁気記録媒体の第 2の実施例における磁性膜の結晶 粒径の酸素暴露量 1 · 5 Lの場合の C o含有量依存性を示すもので、 図 16 (a) は Co含有量 Ι Ο Ο ρρ mの場合の金属組織写真、 図 16 ( b ) は C o含有量 3 00 p pmの場合の金属組織写真である。
図 17は、 第 2の実施例の基板表面への酸素暴露量を 1.5 Lとし、 基板表面 の被覆膜に含有される C o含有量を変化させたときの X線回折パターンを示す。
図 18は、 UC - Processを用いて酸素暴露量 1.5 L、 被覆膜中の Co含有 量 0にて作製した第 2の実施例の C r/C oN i .5C r 15T a3.3P 5なる積 層構造における磁性膜の強磁性結晶粒径の個数分布を示す図である。
図 19は、 UC - Processを用いて酸素暴露量 1.5 L、 被覆膜中の Co含有 量 100 upmにて作製した第 2の実施例の C r/C oN i 12.5 C r .5 T a 3. s P t 5なる積層構造における磁性膜の強磁性結晶粒径の個数分布を示す図である。 図 20は、 UC -Processを用いて酸素暴露量 1.5 L、 被覆膜中の Co含有 量、 0、 30、 100、 300 ppmにて作製した第 2の実施例の Cr/CoN i i 2. 5C r 15Τ as.5P 15なる積層構造における磁性膜の強磁性結晶粒径の粒度 分布を示す図である。
図 2 1は、 第 2の実施例の N i-P-C o膜を有する基板表面の逆スパッタを 行った直後、 かつ下地 C r膜を成膜する直前に、 各 Co添加重 (0、 30、 10 0、 300 ppm) の基板表面を酸素で暴露した、 CrZCoN i 12.5Cr15T a :i .5 P t 5なる組成と積層構造の下地膜と磁性膜を有する磁気記録媒体における、 保磁力の酸素吸着量依存性を示す。
図 22は、 第 2の実施例において逆スパッ夕を行った直後、 かつ下地 Cr膜 を成膜する直前に、 各 Co添加重 (0、 30、 100、 300 ppm) の基板表 面を酸素で 1.5 L, 3.5 L暴露した、 C r/C o N i 12.5C r 15T a3.5P 15 なる組成と積層構造の下地膜と磁性膜を有する磁気記録媒体における、 300 K での保磁力の基板への C 0添加重依存性を示す図である。
図 23は、 第 2の実施例において基板表面の逆スパッ夕を行った直後、 かつ 下地 C r膜を成膜する直前に、 各 C o添加量 ( 0、 30、 100、 300 ppm ) の基板表面を酸素で 1.5 L、 3.5 L暴露した、 C r/C oN i 12.5C r 15T a.3. 5Ρ t 5なる組成と積層構造の下地膜と磁性膜を有する磁気記録媒体における、 5 K、 300 Κでの保磁力の基板への C ο添加重依存性を示す図である。
図 24は、 第 2の実施例の磁気記録媒体の磁気記録媒体における信号対雑音 比 (S/N™) を、 基板の種類 (C ο添加量: 30、 100、 300 ppm) に対 して示す図である。
図 25は、 第 2の実施例の C r/C o N i .5 C r 15T a3.5 P t 5なる組成 と積層構造の下地膜と磁性膜を有する磁気記録媒体の規格化媒体ノィズ (Nm/V ) の C o含有量依存性を示す図である。
図 26は、 従来の一般的な磁気記録媒体の一例を示す斜視図。
図 27は、 図 26の AA線に沿う断面図である。
図 28は、 ^^丄?被覆膜上に〇 の下地膜を形成し、 その上に Co CrTa W 0/7 T
11
磁性層を形成した磁気記録媒体の深さ方向の酸素濃度分布、 C o濃度分布、 C r 濃度分布、 N i濃度分布を示す図である。
図 2 9は、 実施例と比較例の磁気記録媒体における酸素暴露量と S /N比の 関係を示す図である。
図 3 0は、 実施例と比較例の磁気記録媒体における酸素暴露量と保磁力 H c および熱ゆらぎ係数 V^ K u ゾ k Tの関係を示す図である。
図 3 1は、 酸素暴露量 1 . 5 Lの場合の実施例の磁気記録媒体における S N比 の C 0濃度依存性を示す図である。
図 3 2は、 酸素暴露量 1 . 5 Lを施した場合の実施例の磁気記録媒体における 保磁力 H cおよび磁気的粒間相互作用指数 G D G Dの C o濃度依存性を示すと ともに、 評価した試、 ; の残留磁化 B rと膜厚 tとの積、 B rtの値が約 5 5 G〃m であることを示す図である。
図 3 3は、 実施例の磁気記録媒体と比較例の磁気記録媒体における保磁力の 酸素暴露量依存性を示す図である。
図 3 4は、 実施例の磁気記録媒体と比較例の磁気記録媒体における分解能の 酸素暴露量依存性を示す図である。
図 3 5は、 実施例の磁気記録媒体と比較例の磁気記録媒体における S N比の 酸素暴露量依存性を示す図である。
図 3 6は、 実施例の磁気記録媒体と比較例の磁気記録媒体における S N比と 分解能の関係を示す図である。
図 3 7は、 実施例の磁気記録媒体と比較例の磁気記録媒体における S N比と 分解能の関係を示す図である。 発明を実施するための最良の形態
図 1は本発明に係る磁気記録媒体をコンピュータ (情報処理装置) の H D D ( ハードディスク) に適用した一実施形態の断面構造を示すもので、 この実施形態 の磁気記録媒体 6 0は、 円盤状の非磁性体からなる基板 6 2上に非磁性の被覆膜 6 3を形成してなる基体 6 1を有し、 この基体 6 1上に金属の下地膜 6 4を介し て強磁性金属の磁性膜 (磁気記録層) 6 5と保護膜 6 6とを積層してなる構造と されている。
なお、 図 1に示す本実施形態の磁気記録媒体 60の積層構造は、 最も一般的な HDDの積層構造であるので、 基板 62と保護膜 66との間に他の中間層を必要 に応じて設けた構造としても良く、 保護膜 66の上にフッ素系樹脂などの潤滑層 を設けた構造としても良いのは勿論である。 本実施形態の磁気記録媒体 60は、 基体 6 1の被覆膜 63上に金属の下地膜 6 4を介して強磁性金属の磁性膜 65が形成されてなる磁気記録媒体において、 被 覆膜 63に好適な範囲の微量の添加元素が添加されてなるものである。 この添加 元素としては N iと共祈させることが可能で酸素との親和力が高い元素が好まし く、 具体的には、 P、 Co、 W、 Fe、 V、 C r、 Mn、 Cu、 Zn、 Mo、 P d、 Sn、 Re、 A l、 Z r、 B、 T i、 T aの中から選択される 1種または 2 種以上を示す。 ただし、 これらの元素の中でも N iとの共祈が容易で酸素との親 和力が高い C oが最も好ましい。 以下、 本発明の実施形態の磁気記録媒体 60を更に詳細に説明する。
(基体)
本発明に係る基体 61としては、 例えば、 アルミニウムと £の合金あるいは酸 化物、 チタンとその合金あるいは酸化物、 またはシリコン、 ガラス、 カーボン、 セラミック、 プラスチック、 樹脂およびそれらの複合体からなる基板 62の表面 に、 異種材質の非磁性の被覆膜 63をスパッ夕法、 蒸着法、 めっき法等の成膜法 により表面コーティング処理を行ったものを例示することができる。 基体 6 1の表面に設けた非磁性の被覆膜 63は、 高温で磁化せず、 導電性を有 し、 機械加工などがしゃすい反面、 適度な表面硬度をもっている材料からなるこ とが好ましい。 このような条件を満たす非磁性膜としては、 特にメツキ法により 作製された N i— Pの非晶質薄膜、 N i- Ta膜、 あるいは N i- T i膜が好まし い。 本発明においては、 これらの組成系の膜に対して、 先の添加元素を 0.10w t.%以下の割合で、 より好ましくは 0.003〜0.03 w t .%の範囲、 最も好 W 0/7
13
ましくは 0 · 0 0 3〜0 . 0 2 w t . %の範囲で添加することが好ましい。
これらの中でも N i - Pの非晶質薄膜は、 高温で磁化しにく く、 導電性を有し、 機械加工などがしゃすい反面、 適度な表面硬度をもっている材料として広く用い られているので、 N i -Pの非晶質薄膜あるいはその非晶質薄膜に所定量の C oな どの添加元素を添加してなる非晶質薄膜を用いることが好ましい。 基体 6 1の形状としては、 ディスク用途の場含、 ドーナツ円盤状のものが使わ れる。 後述する磁性膜等を設けた基体、 即ち磁気記録媒体は、 磁気記録および再 生時、 円盤の中心を軸として、 例えば 3 6 0 0〜 1 5 0 0 0 r p mの速度で回転 させて使用する。 この時、 磁気記録媒体の表面または裏面の上空を磁気ヘッドが 0 . 1〃m程度の高さ、 あるいは数 1 0 n mの高さをもって浮上走行する。 また、 更に低浮上の場合、 1 0 n m程度の高さをもって浮上走行する磁気へッ ドの開発 もなされている。
従って、 基板 6 2としては、 表面または裏面の平坦性、 表裏両面の平行性、 基 体円周方向のうねり、 および表裏面の粗さが適切に制御されたものが望ましい。 また、 基体 6 1が回転/停止する場合には、 磁気記録媒体と磁気へッ ドの表面 どうしが接触および摺動する (Contact Start Stop, CSSと称する) ようになつ ている。 この対策として、 基体 6 1の表面には、 同心円状の軽微なキズ (テクス チヤ) をダイヤモンドスラリーやテープによる研磨により形成して磁気へヅドの 接触時の吸着を防止する場合もある。 テクスチャーについては図 2 7に示す従来構造に示す如く N i - Pの非磁性膜 5 3の上面に研磨紙を当ててキズを付けることで V字溝型に形成することが一般的 になされているので、 本実施形態の構造においても N i - Pなどからなる被覆膜 6 3の表面にテクスチャ一を形成しても良い。 また、 ダイヤモンドスラリーゃテー プによる研磨によるテクスチャーに代わるものとして、 レーザ加工によるテクス チヤ一、 スパッタリングによる離散的な凹凸膜テクスチャ一、 保護膜のエツチン グによる凹凸型のテクスチャ一などを形成した構造も知られているのでこれらの 構造を適宜採用し、 被覆膜 6 3の上面に所望の形状の凹凸などを形成しても良い のは勿論である。 更にまた、 最近ではロード、 アンロード方式で磁気ヘッドを磁 気記録媒体の外側に待機させる方式のものも登場しているので、 このような方式 を採用する場合はテクスチャ一を省略する構成とすることもできる。
(金属下地膜)
本実施形態で用いられる金属の下地膜 6 4としては、 例えば C rおよびその合 金が拳げられる。 合金とする場合は、 例えば、 M o、 W、 T i、 V、 N b、 T a 等との組み合わせが用いられ、 より具体的には C r M o合金、 C r W合金、 C r T i合金、 C r V合金等が適用され、 その厚さは 2 . 5〜5 0 n mの範囲とされる ことが好ましい。
特に、 C rは、 後述する強磁性金属の磁性膜 6 5に対して偏析作用を起こすこ とから好ましい。 また、 量産的にも多用されており、 成膜方法としてスパッ夕法、 蒸着法等が用いられる。 この金属下地膜 6 4の役割は、 その上に C o基合金から なる強磁性金属の磁性膜 6 5を設けたとき、 磁性膜 6 5の磁化容易軸が基板面内 方向を取るように、 即ち、 基板面内方向の保磁力が高くなるように、 磁性膜 6 5 の結晶成長を促すことである。
なお、 基板としてガラス基板を用いる場合に、 N i - A 1シード層などのシード 層を 1層あるいは 2層以上金属下地膜の更に下に設けた構造を採用しても良い。
C rなどからなる金属の下地膜 6 4をスパッ夕法で作製する場合、 その結晶性 を制御する成膜因子としては、 基体の表面形状、 表面状態、 若しくは表面温度、 成膜時のガス圧、 基体に印加するバイアス、 および、 形成する膜厚等が拳げられ る。
後述する強磁性金属の磁性膜 6 5の保磁力は C rの膜厚に比例して高くなる傾 向にあるが、 それに伴い媒体の表面粗さも増大する傾向になる。 しかしながら、 記録密度を向上するためには、 磁気へッドの磁気記録媒体表面からの浮上量を出 来る限り小さくすることが求められる。 従って、 金属の下地膜 6 4の膜厚が薄く ても高い保磁力が得られる材料からなる金属の下地膜 6 4が好適である。 また、 本発明の磁気記録媒体 60においては、 非晶質の被覆膜 63の上面にお いて C o原子が存在する部分に多数の酸素が間欠的に吸着され、 これら多数の吸 着点 63 a (図 1 (b) 参照) がその上に形成される下地膜 64の結晶粒界に位 置される組織であることが 1つの理想的な組織のモデル形態となる。 即ち、 図 1 (b) に示すように下地膜 64を構成する結晶粒 64 aの粒界 64 bの位置が好 ましくは先の吸着点 63 aに一致されている組織が 1つのモデル形態となる。 ここで被覆膜 63の上面に位置する C oに吸着されて間欠的に存在する多数の 酸素は、 下地膜 64の結晶粒 64 aの粗大化を抑制するピンニングポィントして 機能する。 従って 1 ( b ) に示すように理想的には下地膜 64の結晶粒 64 a の粒界 64 bと酸素の吸着点 63 aは位置が合うが、 全部の結晶粒 64 aが酸素 の吸着点 63 aに位置が合うわけではなく、 酸素の吸着点 63 aを超えて粗大化 する結晶粒 64 aも一部あるいは多数存在する可能性があるので、 図 1 (b) に 示すような理想的な組織が全てではないが、 図 1 (b) に示す構造が理想的なモ デルの一形態となる。
また、 酸素の吸着点 63 aが結晶粒 64 aの粗大化を抑制することから、 酸素 の吸着点 63 aを超えて結晶成長してから初めて結晶成長が抑制されて結晶粒の 微細化に至る過程も存在するので、 酸素の吸着点 63 aの中間点において結晶粒 64の粒界が位置するモデル組織も他の 1つのモデル形態として考えられる。 なお、 図 1 (b) においては、 理解を容易とするために、 結晶粒 64 aの周囲 の粒界 64 bの幅を狭く描いたが、 実際の組織では結晶粒 64 aの周囲に結晶粒 64 aの数分の 1程度の幅あるいはそれよりも広い幅をもった粒界が存在し、 こ れらの粒界部分に他の元素の析出物や化合物等の種々の物質が存在するものと考 えることができる。
(強磁性金属磁性膜)
本実施形態で用いられる前記強磁性金属の磁性膜 65は、 この種の磁気記録媒 体用の磁性膜として広く知られている、 Co C r Ta系、 Co Cr TaP t系、 Co CrNi系、 CoN i Cr T a P t系などの強磁性金属材料からなるものが 用いられ、 その厚さは好ましくは 10〜30 ηπιの範囲とされる。
また、 この磁性膜 65として、 3元系強磁性合金磁性膜の 1種である、 一般式 C Ox C rvGezで示され、 組成比を示す x、 y、 zが、 78≤χ^87、 2.5 ≤y≤ 14.5, 3.5≤ z≤ 15, x + y + z = 100 (ただし、 x、 y、 zは 原子%による組成比を示す) なる関係を満足する組成の磁性膜を適用することも できる。 この 3元系強磁性合金磁性膜は本発明者が特願平 1 1一 135038号 特許 ( 1999年 5月 14日出願) において提案した材料であり、 従来材料には 見られない優れた磁気特性を有するものである。 なお、 その後の研究により、 前 記 3元系の磁性膜の場合、 組成比を示す x、 y、 zせ、 78≤x≤87、 2.5≤ y≤ 25, 2.0≤ z≤ 15の範囲でも良いことが判明しているので、 この範囲の 組成としても差し支えない。
(磁気記録媒体における高記録密度化)
本発明における磁気記録媒体 60は、 上述した強磁性金属磁性膜 65の膜面に 対し、 平行に記録磁化を形成する磁気記録媒体 (面内磁気記録媒体) とすること が好ましい。 このような磁気記録媒体では、 記録密度を向上するために、 記録磁 化の更なる小型化を図る必要がある。
この記録磁化の小型化は、 各記録磁化の漏れ磁束を減少させるため、 磁気へッ ドにおける再生信号出力を小さくする。 従って、 隣接する記録磁化の影響と考え られている媒体ノィズを更に低減することが望まれる。 以下に以上のような構成の磁気記録媒体を製造する場合について説明する。 非磁性のアルミニウムなどの基板を用意したならばその基板を脱脂、 エツチン グ、 ジンケ一ト処理した後、 メヅキ液 (商品名メルテックス N i— 422等) に 硫酸コバルトを添加したメツキ液を用いて基板上に N i C 0 Pメツキを施して基 板上に C oを規定量含有する N i-Pの被覆膜を形成し、 これを 250°C程度に加 熱して膜中のガス抜きを行なう熱処理を施して被覆膜付きの基板を得る。
ここで用いるメツキ液中の C o濃度を 30~ 1000 p pmの範囲に調節する ことで N i- Pの内部に含有させる Co量を 0.003〜0.1 Owt.%の範囲に 容易に調整することができる。 例えば、 Coのメツキ浴に 10 ppmの Coを添 加することで 0.00 lwt .%の膜が得られ、 メツキ浴に 30 ppmの Coを添 加することで 0.003 w t .%の膜が得られ、 メツキ浴に l O Oppmの Coを 添加することで 0.04wt .%の膜が得られ、 メツキ浴に 2 O O ppmの Coを 添加することで 0.08 wt .%の膜が得られ、 メツキ浴に 300ppmの Coを 添加することで 0.13wt .%の膜が得られ、 メツキ浴に l O O O ppmの Co を添加することで 0.40 w t .%の膜が得られる。
なお、 本発明において、 Coを含有していない被覆膜に対して後述の処理を施 すことによつても優れた磁気記録媒体を得ることができるので、 その製造方法に ついても同時に並行して説明する。 なお、 先の被覆膜を備えた基板を形成する場合、 基板表面を脱脂、 エッチング、 ジンケ一ト処理して清浄化したが、 その他に知られている基板表面の一般的な清 浄化法で清浄化しても良いのは勿論である。 更に、 N i C o Pメツキを形成する 場合に先のメツキ浴を用いたが、 他の組成のメツキを施す場合は、 必要な組成の メツキ浴を使用するのは勿論である。 また、 被覆膜を形成する場合にメツキ法以 外にスパッ夕法、 真空蒸着法、 CVD法などの各種成膜法を用いても良いのは勿 論である。 次に、 被覆膜付きの基板をスパッタ装置などの成膜装置の成膜室に投入し、 内 部を真空引きして好ましくは到達真空度 3 X 10-flTorr ( 399 X 10_flPa) 程度の高真空 ( 10— 9台の高真空) に調整した後、 水等の不純物濃度を 1 PPb 以下に調整した高清浄 A rガスを導入し、 更に数 mmTorr、 例えば 2mTorr (0 .266 P a) になるように成膜室に高清浄化 A rガスを導入し、 スパッタエツチ ング (ドライエッチング) を施して被覆膜の表面の清浄化を行なう。 このスパッ 夕エッチングの時間は数秒〜数 10秒程度、 出力数百 W、 例えば 200Wの出力 で行なうことができる。 ここで行なうスパッ夕エッチングは、 到達真空度 1 X 1 0— 6 7 ΤΟΓΓ ( 1 3 3 X 1 0 _ 7 P a ) 程度の成膜室を備え、 清浄化されていない A rガスを導入する従 来の一般的なスパッ夕装置で行なうスパッタエッチングとは意味合いが異なる。 到達真空度 1 X 1 0 _ 7Torr程度であって通常の成膜用 A rガス (水等の不純物 濃度 I p p m程度のもの) を導入する従来のスパッ夕装置では、 スパッ夕エッチ ングして膜の表面を清浄化しても、 スパッ夕エッチング雰囲気中に存在する A r ガス中の不純物等でエツチング表面が直ちに汚染されてしまう。 このような汚染が生じることでエッチング膜の上に形成する磁性膜の特性が劣 化することは、 本発明者が先に応用物理第 6 5巻第 1 2号第 1 2 1 8頁〜第 1 2 2 8頁 ( 1 9 9 6年 1 2月刊行) において報告している。 これに対し、 先に説明 の条件で、 到達真空度 3 X 1 0— 9Torr程度以下の高真空に調整した後、 不純物濃 度を 1 p p b以下に調整した高清浄 A rガスを例えば 2 mTorrになるように成膜 室に導入し、 スパッ夕エツチングを施して被覆膜表面の清浄化を行なうことで後 で形成する磁性膜の特性を劣化させない程度の清浄なェツチング面を得ることが できる。 次に、 成膜室を例えば 1 X 1 0— e l X 1 CT7Torrの圧力となるように酸素ガ スを導入して被覆膜表面を酸素暴露する。 ここで酸素暴露するのは 0 L 3 0 L (ラングミュア: Langmuirs) の範囲程度とする。
ここで例えば 1 Lとは 1 X 1 0— 6Torrで 1秒間暴露するか、 1 X 1 0— 7Torrで 1 0秒間暴露することを意味し、 3 . 5 Lとは 1 X 1 CTeTorrで 3 . 5秒間暴露す るか、 1 X 1 0— 7Torrで 3 5秒間暴露することを意味し、 3 0 Lとは I X 1 0—6 Torrで 3 0秒間暴露するか、 1 X 1 0 7Τοι で 3 0 0秒間暴露することを意味す る。 先に説明した酸素暴露を行なうことで被覆膜の表面に多数の酸素を物理的に吸 着することができる。 これは、 酸素の暴露量が多すぎると、 被覆膜の表面全部に 酸素が付着して酸化物や酸化物膜が生成されてしまうおそれがあるが、 先に説明 したエッチング後の高真空の減圧雰囲気で規定圧力の酸素を導入して行なう酸素 暴露であるならば、 酸素を被覆膜の表面に物理的な吸着状態で間欠的に付着させ ることができる。 ここで被覆膜に C oを含有させていると、 C oと酸素は結合性 が高く C 0原子が存在する部分に酸素が吸着され易いので、 被覆膜には C oを含 有させていることが好ましい。 なお、 C oに代えて C oと同様に酸素と親和力の 高い元素を添加元素として用いることもできる。 更にこの添加元素として、 被覆 膜として用いられる N i系合金の N i - Pをメツキ法で形成する場合に、 N iと共 析可能な元素であることが好ましい。 これらの条件を見たし得る元素として、 前 記 C oの外に、 F e、 W、 V、 C r、 M n、 C u、 Z n、 M o、 P d、 S n、 R e、 A l、 Z r、 B、 T iの中から選択される 1種または 2種以上を選択するこ とができる。
先に説明した条件でスパッ夕エッチングして被覆膜の表面を完全に清浄化して おき、 この清浄化された被覆膜表面に前述の暴露量の酸素を導入することで、 被 覆膜表面に酸化物や酸化物層層状態ではなく、 間欠的に多数の酸素を物理的に吸 着させた状態の被覆膜表面を得ることができる。 そして、 このような物理的吸着 状態の酸素を後述する結晶粒粗大化の抑制点として利用することができる。
(下地膜と磁性膜のスパッ夕法)
本発明に係る下地膜と強磁性金属の磁性膜を製造する方法の一例であるスパッ 夕法として、 例えば、 基板がターゲッ トの前を移動しながら薄膜が形成される搬 送型スパッタ法と、 基板を夕ーゲッ 卜の前に固定して薄膜が形成される静止型ス パッ夕法を例示することができる。
前者の搬送型スパッタ法は、 量産性が高いため低コス卜な磁気記録媒体の製造 に有利であり、 後者の静止型スパッ夕法は、 基板に対するスパッ夕粒子の入射角 度が安定なために記録再生特性に優れる磁気記録媒体の製造が可能とされる。 本発明に係る磁気記録媒体 6 0を製造する際には、 搬送型あるいは静止型のい づれかに限定されるものではない。
(金属下地と強磁性金属の磁性膜を形成する成膜室の到達真空度) 従来、 「金属下地膜および/または強磁性金属磁性膜を形成する成膜室の到達 真空度」 は、 強磁性金属磁性膜の材料によっては、 保磁力の値を左右する成膜因 子の 1つとして位置づけられている。
特に、 強磁性金属磁性膜の中に T aを含む、 C o基の磁性材料では、 上記の到 達真空度が低い場合 (例えば、 1 0—6〜 1 0— 7Torr台の場合) には影響が大きい と考えられてきた。 よって本発明では到達真空度 3 X 1 0— 9Torr程度の高真空に おいて成膜する超清浄プロセスにより下地膜と磁性膜を形成する。
なお、 上述した組成の 3元系の C o C r G e合金から強磁性金属磁性膜を形成 した場合は、 到達真空度が 1 0— s〜 l 0— 7Torr台の成膜室にて磁性膜を形成して も、 高い規格化保磁力と熱的に安定な磁気特性を同時に有する強磁性金属磁性膜 を備えた磁気記録媒体を製造することができるので、 通常の到達真空度で成膜し ても良い。 なお、 当然のことながら、 本発明者らが提供している超清浄プロセス により上述した 3元系の C o C r G e合金の磁性膜を形成しても良いのは勿論で ある。
(金属下地膜および/または強磁性金属膜を形成する際の基体の表面温度) 本発明における 「金属下地膜および/または強磁性金属磁性膜を形成する際の 基体の表面温度」 は、 強磁性金属磁性膜の材料に依存せず、 磁力の値を左右す る成膜因子の 1つである。
基体が損傷しない範囲であれば、 高い表面温度で成膜をした方がより高い保磁 力を実現できる。 基体の損傷とは、 そり、 膨れ、 割れ等の外的変化や、 磁化の発 生、 発ガス量の増加等の内的変化を意味する。 しかし、 高い基体の表面温度を実 現するためには、 一般的に何らかの加熱処理を、 成膜室又はその前室で行う必要 がある。 この加熱処理では、 基体近傍の空間中にガスやダストが発生し、 成膜中 の薄膜に取り込まれ、 各種の膜特性が不安定になるという不都合な面をもってい る。 また、 高い基体の表面温度は、 以下の間題点も有している。
① N i - P /A 1基体における非磁性 N i - P膜が磁化発生する。 ②基体において歪が発生する。
③ガラスなどの熱伝導率が低い基体では、 基体温度を上げたり、 保持すること が難しい。 したがって、 上記加熱処理を行わないか、 若しくは、 より低温加熱処 理でも、 目標とする各種の膜特性を得られる作製方法が望まれる。
(基体の表面粗さ、 Ra)
本発明における基板の表面粗さとしては、 例えば、 ディスク形状からなる基板 表面を、 半径方向に測定した場合の、 平均中心線粗さ R aがあげられる。
表面粗さ R aの測定器としては、 MNKTAYL0RH0BS0N 社製 TALYSTEP (タリステ ップ) を用いることができる。
基板が停止状態から回転を開始した場合、 あるいはその逆に回転状態から停止 状態になった場合は、 磁気記録媒体と磁気へッ ドの表面同士が接触および摺動す る (CS S動作) 。 この時、 磁気ヘッドの吸着や摩擦係数の上昇を抑えるため、 表面粗さ R aは大きい方が好ましい。 一方、 基体が最大回転数に達した場合には、 磁気記録媒体と磁気ヘッドとの間隔、 即ち、 磁気ヘッドの浮上量をできるだけ小 さい値に確保する必要があるので、 R aは小さい方が望ましい。 従って、 基体の 表面粗さ Raの最大値と最小値は、 上述した理由と、 磁気記録媒体に対する要求 スペックから適宜決定される。 例えば、 磁気ヘッドの浮上量が、 24〃inchの場合は、 Ra=6 nm〜8nm である。 しかし、 更に高記録密度化を図るためには、 磁気ヘッ ドの浮上量 (記録 再生動作をする際、 磁気ヘッ ドが磁気記録媒体の表面上から離れている距離) を より小さくする必要がある。 この要望に答えるためには、 磁気記録媒体の表面を より平坦化することが大切となる。 このような理由から基体の表面粗さ Raは、 より小さなものが望ましい。 従って、 基体の表面粗さ R aがより小さな場合であ つても、 目標とする各種の膜特性を得られる作製方法を適宜採用すれば良い。 一 例として A 1基板上に N i-P膜を設けた構造の場合にテクスチャーを設けた上で Raを 1.5 nm以下にまで低減することがなされており、 特別な研磨処理を施し た N i- PZA 1基板での R aを 0.5〜0.7 nmとすることもできる。 (テクスチャ処理)
本発明における基体に施すテクスチャ処理としては、 例えば、 機械的な研磨に よる方法、 化学的なエッチングによる方法、 物理的な凹凸膜の付与による方法な どがあげられる。 特に、 磁気記録媒体の基体として、 最も広く使われているアル ミニゥム合金基体の場合は、 機械的な研磨による方法が採用されている。
例えば、 アルミニウム合金基体の表面に設けた (N i— P ) 膜に対して、 研削 用の砥粒が表面に接着してあるテープを、 回転する基体表面に押しつけることに より、 同心円状に軽微なキズを付与する方法がある。 この方法では、 研削用の塗 粒を、 テープから遊離させて用いる場合もある。
しかし、 上記 「基体の表面粗さ」 の項で述べた理由から、 上記テクスチャ処理 を行わないか、 若しくは、 より軽微なテクスチャ形状でも、 目標とする各種の膜 特性を得られる作製方法を適宜採用すれば良い。 以上の方法で得られた磁気記録媒体は、 下地膜 6 4を構成する C r膜が (2 0 0 ) 配向し、 その上に磁性膜 6 5がェピタキシャル成長して ( 1 1 0 ) 配向しな がら生成するので、 下地膜 6 4の結晶配向性でもって磁性膜 6 5の結晶配向性を 良好にすることができる。 更に、 下地膜 6 4の結晶粒の粗大化を被覆膜 6 3の表 面に吸着した酸素で抑制するので、 その上に形成される磁性膜 6 5の結晶粒の粗 大化も抑制することができる。 この結果として微細な結晶粒の磁性膜 6 5を得る ことができる。
また、 酸素暴露する場合に 1 X 1 0 以下の減圧雰囲気において酸素を導入す るようにして適切な酸素を被覆膜表面に供給し、 酸素を被覆膜表面に間欠的に多 数、 物理吸着状態とするならば、 この物理吸着した酸素を結晶粒粗大化抑制の抑 制点、 即ちピンニングポイントとすることができ、 下地膜の結晶粒粗大化を抑制 でき、 微細化した結晶組織を有する低ノィズ化した磁気記録媒体を提供できる。 図 2と図 3は先に説明した磁気記録媒体 6 0を組み込んで構成されたコンビュ 一夕の H D D (ハードディスクドライブ) 装置 (磁気記録装置) の一例を示すも のである。 この例の磁気記録装置 7 0において、 容器型のケーシング 7 1の内部に複数枚 (図 2に示す例では 5枚) の磁気記録媒体 6 0がスぺ一サ 7 2と交互にスピンド ル 7 3に挿通されて設けられている。 また、 ケーシング 7 1には前記スピンドル 7 3の軸受けが設けられるとともに、 ケ一シング 7 1の外部には前記スピンドル 回転用のモー夕 (駆動部) 7 4が設けられ、 各磁気記録媒体 6 0がスピンドル 7 3の周回りに回転自在とされている。 前記ケ一シング 7 1の内部であって前記磁気記録媒体 6 0の側方側には、 軸受 け 7 5によって前記スピンドル 7 3と平行に支持された回転軸 7 6が設けられ、 この回転軸 7 6に複数のスイングアーム 7 7が磁気記録媒体 6 0側に延出するよ うに取り付けられ、 :: -スイングアーム 7 7の先端側に細長い三角板状の口一ドア —ム 7 8を介して磁気へッド 7 9が取り付けられている。 磁気ヘッド 7 9は、 薄膜型磁気ヘッド、 あるいは M I G型の磁気ヘッ ド、 また は M I G型の磁気へッド素子と読み取り専用の磁気抵抗効果型磁気素子とを一体 化したデュアル型の磁気ヘッド素子と、 スライダとから構成されており、 このス ライダが口一ドアーム 7 8の先端部側に設けられたジンバル部材によって弾性支 持されている。 磁気へッド 7 9はスィングアーム 7 7の移動とともに磁気記録媒 体 6 0上の任意の位置に移動されるように構成されている。 上記構成の磁気記録装置 7 0において、 磁気記録媒体 6 0を回転させるととも に、 スイングアーム 7 7を移動させて磁気へッ ド 7 9を磁気記録媒体 6 0上の任 意の位置に移動させて磁気記録媒体 6 0に設けられている強磁性金属磁性膜 (磁 気記録層) 6 5に磁気へッド 7 9の発生させた磁界を作用させることで磁気記録 媒体 6 0に所望の磁気情報を書き込むことができる。 また、 スイングアーム 7 7 を移動させて磁気へッド 7 9を磁気記録媒体 6 0上の任意の位置に移動させて磁 気記録媒体 6 0の強磁性金属磁性膜 (磁気記録層) 6 5からの漏れ磁界を磁気へ ッド 7 9で検出することで磁気情報の読出を行なうことができる。 このように磁気情報の読出と書込を行なう場合において、 強磁性金属磁性膜 ( 磁気記録層) 6 5が先に説明した如く微細な結晶粒から構成されて優れた磁気特 性を有しているならば、 強磁性金属磁性膜 6 5の熱擾乱を抑制できるので、 磁気 記録装置 7 0の内部がモータ 7 4の熱を受けて、 例えば、 1 0 0 °Cを超える高い 温度に加熱されつつ使用された場合であっても、 強磁性金属磁性膜 6 5の磁気特 性が劣化することがない。 また、 長期間使用し、 長時間加熱されることがあって も、 強磁性金属磁性膜 6 5の磁気記録再生特性に劣化の生じない記録再生特性の 優れた磁気記録装置 7 0を提供できる。
また、 強磁性金属磁性膜 6 5として高保磁力のものを用いていると、 磁気へッ ドの浮上走行時に磁気へッドの読出素子が受ける漏れ磁界を強くすることができ るので、 強い信号を受けることができることとなり、 S N比の良好な記録再生特 性を得ることができる。 なお、 図 2と図 3を基に先に説明した磁気記録装置 7 0は磁気記録装置の一例 を示すものであるので、 磁気記録装置に設ける磁気記録媒体の枚数は 1枚以上の 任意の数で良く、 設ける磁気へッ ド 7 9の数も 1個以上であれば任意の数、 設け ても良い。 また、 スイングアーム 7 7の形状や駆動方式も図面に示すものに限ら ず、 リニア駆動方式等、 その他の方式のものでも良いのは勿¾である。 実施例
以下に実施例をあげて本発明をより詳細に説明するが、 本発明はこれらの実施 例に限定されるものではない。
「試験方法」
3 . 5インチ径のアルミニウム製の基板を脱脂、 エッチング、 ジンケート処理し た後に、 市販のメツキ液 (商品名 :メルテックス製 N 1 - 4 2 2 ( 9 A ) ) に硫酸 コバルトを添加したメツキ液を用いて基板上に厚さ 1 2 n mの N i C o Pメツキ を施して被覆膜を形成した。 この際、 メツキ液中の C o濃度を 3 0〜: L 0 0 0 p p mの範囲で調節することで、 被覆膜中の C o濃度を 0 . 0 0 3 w t . %〜0 . 1 0 w t . %の範囲に調節した。 更に、 C 0を添加していないメツキ液を用いてアルミ ニゥム製の基板上に N i-Pメツキを施し N i-Pの被覆膜付きの基板を得た。 次に、 これらの被覆膜付きの基板を 250°Cで加熱して膜中のガスを放出させ た後表面を研磨して表面粗さ R a : 5 Aに加工して磁気記録媒体用の超平滑 N i - P- C o/A 1基板と超平滑 N i- P/A 1基板を得た。 更に、 試験に使用した磁気記録媒体は、 成膜室の内壁面に複合電解研磨処理を 施したスパッ夕装置 (日電ァネルバ製 I L C 30 13 :到達真空度 3 X 10— 9To rr以下) を用いて製作した。 成膜時のプロセスガスには超高純度 Arガス (Η20 濃度: 1 ppb以下のウルトラクリーン Arガス) を用いた。 以下の実験において用いた基板は、 N i- P膜をメツキ後、 1 50°Cx l hrの 焼き鈍しを行った通常の基板と、 酸素との親和力が強い C oを先の方法で 30 p pm、 1 00 ppm、 300 p p m添加した N i -P- C oをメツキ後、 250°C x 1 の焼き鈍しを行った基板であって、 酸素暴露用の特別な基板の計 4種類 の複数の基板を用いた。
成膜直前に、 N i- P膜あるいは N i-P-C o膜を有する基板を収納した成膜室 を到達真空度: 3 X 10— qTorrまで減圧し、 その後、 ウルトラクリーン Arガス を導入して膜表面のドライエッチング (2mTorr/200W/ 5秒の条件でスパ ッ夕エッチング) を行った後、 1 X 10 _7Torrの減圧雰囲気中において基板表面 を酸素で 0〜 250秒間暴露し、 更に C r下地膜 (厚さ 5 nm) 、 CoN i i2.5 C r T a3.5P t 5磁性膜 (厚さ 1 5 nm、 20 nm、 30 nm) を、 印加バイ ァス 0Vで順次形成した。
更に磁性膜の上にカーボン保護膜 (厚さ 10 nm) を形成した。 ここで用いた 磁性膜は、 下地膜厚/磁性膜厚 = 20/20 nm、 印加バイアス =— 100 Vの 条件下において、 保磁力 = 3.3 kO eを発揮する組成の磁性膜である。 製作した磁気記録媒体は、 磁気特性を VSM (振動試料型磁力計) 、 SQU1 D磁束計により評価し、 微細構造を X線回折装置 (XRD) 、 透過電子頭微鏡 ( TEM) により評価し、 磁気記録再生特性をインダクティブ MR (磁気抵抗効果 型) 複合型へッ ドにより評価した。 「酸素吸着量依存性と微細構造」
図 4に、 ウルトラクリーンプロセス (UC - Process : 3 x 10— 9以下の到達真 空度で真空引きした後にウルトラクリーン A rガスを導入してドライエッチング を施し被覆膜表面を清浄化した後に成膜するプロセス) と、 Coを被覆膜に添加 していない基板を用いて作製した、 基板表面に酸素を暴露していない構造を持つ 磁気記録媒体と、 下地膜の成膜直前にドライエッチングを行った後、 酸素暴露量 を 1.5 L, 3.5 L (ラングミュア) として得られた磁性膜の TEM像と、 それ により算出した平均強磁性結晶粒径 (G. D. ) を示す。
なおここで、 「L :ラングミュア」 は酸素暴露量の指標であり、 0 Lは酸素暴 露なし、 1 Lは 1 X 10— 7Torrで 10秒の暴露、 3.5 Lは 1 X 10— 7Torrで 35 秒の暴露、 10 Lは 1 X 10— 7Torrで 100秒の暴露、 25 Lは 1 χ 10 7Torr で 250秒の暴露に相当する。 なお、 1 Lについて、 1 X 10— 6Torrで 1秒の暴 露でも 1 X 10— 7Torrで 10秒の暴露と等価な条件となるが、 1秒の暴露では暴 露時間が短すぎて酸素吸着が完全になされないおそれがあることを加味し、 本実 施例では 1x 10— 7Torrで 10〜 250秒間行なう暴露条件を 1 L〜 25 Lとし た。 図 4に示す結果から、 基板表面への酸素暴露量が増大するに従い、 平均の強磁 性結晶粒径 G.D.が 10.8 nmから 9. 9 nm、 9.3 nmへと低減しているこ とがわかる。 この酸素吸着量増大による強磁性結晶粒径の減少は、 基板表面への 吸着酸素量の増大により、 下地膜の C r "結晶粒の成長の抑制効果 (ピン止め効果 ) の促進によるものと考えられる。 図 5に、 成膜直前に被覆膜のドライエッチングを行った後、 基板の被覆膜表面 を酸素で暴露し、 その吸着量を 0 Lから 25 Lまで変化させたときの各磁性膜の X線回折パターンを示す。 ここで、 下地 Cr膜厚は、 5nm、 CoN i Cr Ta P tの磁性膜厚は 30n m—定とした。 図 5に示す結果から、 酸素暴露量 (酸素吸着量) に拘わらず、 いずれの磁気記 録媒体の磁性膜においても、 面内配向を示す ( 1 10) 面からの強い回折ピーク が得られ、 かつ、 それ以外の回折ピークは観測されなかった。 このことから、 基 板表面への酸素暴露は、 磁性膜の結晶配向性には特に影響を及ぼさないことがわ かった。 以上のことから、 成膜直前に先の減圧条件で被覆膜のドライエッチングを行つ た後、 被覆膜表面を酸素で暴露することによって、 磁性膜の結晶配向性を変化さ せることなく、 磁性膜の強磁性結晶粒径を低減できることがわかった。 なお、 磁 性膜の結晶粒径を 10.8 nm (酸素暴露なし) から、 9.3 nm (酸素暴露量 3 .5 L ) に減少できたということは、 約 14 %の結晶粒微細化に成功したことであ るので、 極めて大きな成果である。
「酸素吸着量依存性と磁気特性の測定」
図 6に、 UC -Processを用いて作製した、 下地膜と磁性膜の積層構造 ( C r/ C oN i 12. 5C r 1ST as. 5P t 5なる積層構造) の磁気記録媒体における 300 K、 5 Κでの保磁力の磁性膜厚依存性を示す。 ここで、 C rの下地膜厚は 5 nm とした。
図 6に示す 5 Kでの保磁力において、 磁性膜厚が 15nm、 20nmにおける 保磁力がほとんど同じであるのに対し、 300 Kでの保磁力においては、 15η mの磁気記録媒体の保磁力が 20 nmの媒体の保磁力より小さいことから、 膜厚 が 15nmの磁性膜、 あるいはそれ以下の膜厚の磁性膜を備えた磁気記録媒体に おける保磁力の減少は、 熱擾乱によるものであると考えられる。 そこで、 基板表面に酸素を吸着させるにあたり、 熱擾乱による保磁力の低下が 起こりにくいと思われる磁性膜厚 3 Onm—定にした試料、 更には、 微細構造の 変化 (強磁性結晶粒の微細化) により熱擾乱の影響を受け、 保磁力が減少すると 予想されるところの、 磁性膜厚 2 Onm—定の試料、 磁性膜厚 15 nm—定の試 料をそれぞれ用いて磁気特性の評価に用いることにした。 図 7に UC -Processを用いて酸素暴露量 0 Lにて作製した C r/C o N i 12. 5C r .s T a3. 5 P t 5なる積層構造における磁性膜の強磁性結晶粒径の個数分布を 示し、 図 8に酸素暴露量 3.5 Lにて同等の条件で同等の積層構造とした試料の磁 性膜の強磁性結晶粒径の個数分布を示す。
図 7と図 8を比較して明らかなように、 被覆膜の酸素暴露を行なった試料にあ つては、 平均結晶粒径が小さくなつていると同時に、 16〜 17 nmを超える粒 径の結晶粒 (換言すると平均結晶粒径の 2倍を超える粗大強磁性結晶粒) がほと んど無くなつている。 これに対して酸素暴露を行なっていない試料にあっては、 16 nmを超える粒径の結晶粒と 18 nmを超える粒径の結晶粒が 10数個存在 し、 20、 22、 24 nmを超える粒径の結晶粒 (換言すると平均結晶粒径の 2 倍を超える粗大強磁性結晶粒) も数個存在する。
このように酸素暴露により、 粗大化した結晶粒を少なくできるということは、 磁性膜として低ノイズ化ができたことになる。
また、 図 9に酸素暴露量 0 と 1.5 Lと 3.5 Lの試料における結晶粒の分布 状態を示すが、 酸素暴露量の増大とともに粗大化した結晶粒の数が激減すること が明らかである。 図 10に、 基板上の被覆膜に対して逆スパッ夕 (スパッ夕エッチング) を行つ た直後、 かつ C rの下地膜を成膜する直前に、 基板表面を酸素で暴露した、 Cr /CoNi .2. C r 15Ta3.5 P t 5なる積層構造の磁気記録媒体における、 保磁 力の酸素吸着量依存性を示す。
ドライエッチング (逆スパッ夕) を施していない磁気記録媒体の保磁力も図 1 0に併記する。 ここで、 酸素暴露量を 0 Lから 25 Lの範囲、 Crの下地膜厚を 5 nm、 磁性膜厚を 20 nm、 30nmとした。
図 10に示すいずれの膜厚の磁気記録媒体においても、 基板表面への酸素吸着 量が増大すると、 保磁力が減少する傾向にある。 ただし、 ドライエッチングを施 した試料にあっては、 いずれの酸素暴露量であっても、 ドライエッチングを施し ていない試料に比べて高い保磁力を示すことが判明した。 従って保磁力の面のみ から見ると、 ドライエッチングを施すならば、 0 L〜2 5 Lのいずれの酸素暴露 量であっても、 ドライエッチングを施してしない試料よりも優れた保磁力の磁性 膜を得られることが判明した。 しかし、 後述する他の組成の磁性膜を用いた試験 によれば、 暴露量 3 0 Lにおいても良好な特性を得られるので、 酸素暴露量は 3 0 L以下であれば良い。 図 1 1に、 図 1 0で示した保磁力の酸素吸着量依存性を、 暴露量 0 Lから 5 L の間で拡大表示し、 かつ磁性膜厚が 1 5 n m、 2 0 n m、 3 0 nmの各磁気記録 媒体の保磁力を示す。
図 1 1に示す磁性膜厚が 3 0 n mの磁気記録媒体試料において、 酸素暴露量 3 . 5 L付近から保磁力が若干低下し始める傾向がある。 また、 磁性膜厚が 2 0 n m、 1 5 n mの磁気記録媒体においては、 酸素暴露量 1 . 0 Lの試料は保磁力が向上し たものの、 酸素暴露量 1 . 5 L付近から酸素暴露量が増加するにつれて徐々に保磁 力が低下し始めるという傾向を示した。 これらの磁気記録媒体において、 図 5で 示したように、 磁性膜の結晶配向性には問題がないと考えることが出来ることか ら、 ここで示した保磁力の減少は、 強磁性粒子の粒間相互作用の増大、 もしくは 強磁性結晶粒径の微細化による熱擾乱の影響が考えられる。 図 1 2に、 磁性膜厚が 1 5 n m、 3 0 n mの磁気記録媒体の、 5 K、 3 0 O K での保磁力の酸素暴露量 (酸素吸着量) 依存性を示す。 酸素暴露量 3 . 5 Lの媒体 において、 熱擾乱を受けていないと考えることが出来る 5 Kでの保磁力値、 そし て磁性膜厚 3 0 n mの保磁力値が、 暴露量 2 . 5 L以下の磁気記録媒体の保磁力値 と比較して減少する傾向にあることから、 酸素暴露量 3 . 5 L以上の磁気記録媒体 においては、 酸素の膜内進入などによる強磁性結晶粒間の相互作用の増大が考え られる。
これらの結果から、 磁性膜厚が 1 5 n mの磁気記録媒体における、 酸素暴露量 1 . 5 L付近から暴露量 3 . 5 L付近までの保磁力の減少は、 強磁性結晶粒径の微 細化による熱擾乱の影響であると考えることができる。
以上のことから、 基板表面の酸素暴露において、 1 . 5 L〜3 . 5 L程度までの 酸素暴露により、 強磁性結晶粒間相互作用を増大させることなく、 強磁性結晶粒 径を微細化できることがわかった。
「酸素吸着量依存性と磁気記録再生特性の測定」
図 13に、 CrZCoNi 12.5Cr15Ta3.5Pt 5なる組成と積層構造の下地 膜と磁性膜を有する磁気記録媒体の 160 k F C Iの線記録密度における信号対 雑音比 (S/Nm =信号/磁気記録媒体のノイズ) を基板表面への酸素吸着量に対 して示す。
ここで、 基板を通常の基板、 下地 Cr膜厚を 5nm、 磁性膜厚を 15 nmとし た。 酸素暴露無しで、 磁性膜厚を 12 nmとした磁気記録媒体の記録再生特性も 図 13に示す。
図 13に示す結果から、 基板表面を酸素で暴露することにより、 記録再生特性 が向上し、 酸素暴露量が 4 L付近で最大値をとる。 この要因として、 酸素暴露量 4 L付近では強磁性結晶粒の粒間相互作用が大きくなる傾向にあるものの、 それ 以上に強磁性結晶粒径が大きく低減することにより、 信号対雑音比が改善される ものと思われる。
以上のことから、 酸素暴露量の調整と磁性膜厚の調整により、 保磁力を低下さ せることなく、 信号対雑音比を低減できる磁性膜を備えた磁気記録媒体を得られ ることが分かる。 図 14は薄膜磁気記録媒体の 1 60 k F C Iの線記録密度における規格化媒体 ノィズ Nm/Vの酸度暴露量依存性を示す。
規格化媒体ノイズにおいては酸素暴露しない試料に対して酸素暴露量 8 Lまで 悪化しないことがわかる。
「酸素吸着量依存性と微細構造」
図 15と図 16に、 成膜直前にドライエッチングを行った後、 基板表面への酸 素暴露量を 1.5 L—定とし、 基板の種類を、 N i-Pメツキ後 150°Cx 1 hr の焼き鈍しを行った基板、 そして、 酸素との親和力が強い Coを 0.003wt · %、 0.04 w t 0.13 wt .%添加した N i-Pをメツキ後 250°Cx 1 h rの焼き鈍しを行った、 酸素暴露用の特別な基板、 計 4種類を用意し、 それらを 変化させたときの TEM像と、 TEM像により算出した平均磁性結晶粒径 (G. D. ) をそれそれ示す。 ここで、 C rの下地膜厚は 5 nm、 CoN i CrTaP t磁性膜厚は 15 nm—定である。 図 15と図 1 6から、 C 0添加量が増加するにつれて強磁性結晶粒径が 9.8 n mから、 9.6 nm、 8.8 nm, 8.6 nmへと低減していることがわかる。 この C o添加量増大による強磁性結晶粒径の減少は、 基板表面への吸着ガス量の増大 による、 C rの下地膜結晶粒の成長の抑制効果 (ピン止め効果) の促進によるも のと考えられる。 図 17に、 基板表面への酸素暴露量を 1.5 Lとし、 基板の種類を変化させたと きの X線回折パターンを示す。 ここで、 。 の下地膜厚は5 11111、 CoNi Cr T aP t磁性膜厚は 15 nm—定である。
基板の種類 (N i- P膜中への C o添加量の大小) に関わらず、 いずれの磁気記 録媒体においても、 面内配向である ( 1 10) 面からの回折ピークが見られ、 か つ、 それ以外の回折ビークは観測されていない。 このことから、 今回使用した基 板においては、 基板の種類によらず、 結晶配向性は変化がないことがわかる。 以上のことから、 成膜直前に被覆膜のドライエッチングを行った後、 各種基板 の表面を酸素で暴露するにあたり、 基板被覆膜への C o添加量増大に伴い、 結晶 配向性を変化させることなく、 強磁性結晶粒径を低減することができ、 信号対雑 音比の優れた磁気記録媒体を得られることがわかった。 図 18に UC -Processを用いて酸素暴露量 1.5 L、 C o含有量 0の条件にて 作製した C r/C o N i 12.5C r i5T a3.5P t 5なる積層構造における磁性膜の 強磁性結晶粒径の個数分布を示し、 図 19に酸素暴露量 3.5 L、 ( 0含有量0. 04wt .%の条件、 他は同等の条件で同等の積層構造とした試料の磁性膜の強磁 O 4
32
性結晶粒径の個数分布を示す。
図 18と図 19を比較して明らかなように、 被覆膜に C oを添加した試料にあ つては、 平均結晶粒径が小さくなっていると同時に平均結晶粒径を超える大きな 強磁性結晶粒径の結晶粒数が少なくなつている。 特に、 平均結晶粒径の 2倍を超 える粗大強磁性結晶粒 (平均結晶粒径 8.8の 2倍の 17.6 nm、 換言すると、 図 19において 18 nm以上の粒径の結晶粒) は存在しない。
このように C o添加により、 粗大化した強磁性結晶粒を少なくできるというこ とは、 磁性膜として低ノイズ化ができたことになる。
また、 図 20に酸素暴露量を 1.5 L—定として、 (: 0添加量を0、 0.003 wt.%、 0.04wt.%、 0.13 wt.%とした各試料における強磁性結晶粒の 分布状態を示すが、 C o添加量の増大とともに強磁性結晶粒径が微細化し、 更に 粗大化した強磁性結晶粒の数が減少することが明らかである。
「基板表面状態依存性と磁気特性」
図 21に、 N i-P-C oの被覆膜を有する基板表面のスパッ夕エッチングを行 つた直後、 かつ、 C rの下地膜を成膜する直前に、 各 Co添加重 (0、 0.003 wt.%, 0.04wt.%、 0.13 wt .%) の被覆膜表面を酸素で暴露した、 C r/CoN i 12.5C r 15T a3.5P 1 なる組成と積層構造をもする磁気記録媒体 における、 保磁力の酸素吸着量依存性を示す。 酸素暴露量を 0 Lから 3.5 Lの範 囲、 。 1:>の下地膜厚を511111、 磁性膜厚を 15 nmとした。 図 21に示すいずれの試料においても基板表面への酸素吸着量が増大すると、 保磁力が減少する傾向にあるが、 。 0添加重が0、 0.003 wt .%の基板間に はほとんど変化が見られなく、 それ以上の C 0の添加量の基板 (0.04wt.%、 0.13 wt .%) においては、 C oの添加量が増大する程、 保磁力の減少量が大 きく、 その減少傾向が暴露量の増大に伴い、 スパッ夕エッチングを行っていない 磁気記録媒体の保磁力値 (図 1 1においてドライエッチングなしと矢印記載した 値) に漸近する傾向にあることが判明した。
ただし、 いずれの C o添加量であっても、 ドライエッチングなしの試料よりは 高い保磁力を示した。 図 22は、 逆スパッ夕を行った直後、 かつ下地 C r膜を成膜する直前に、 各 C o添加重 (0、 0.003wt.%、 0.04wt.%、 0.13 w t .%) の基板表 面を酸素で 1.5 L, 3.5 L暴露した、 C r/C o N i 12.5C r 15T a3.5P 15 なる組成と積層構造の磁気記録媒体における、 300 Kでの保磁力の基板への C 0添加重依存性を示す。
図 22に示す結果から、 C o添加重が 0.003 w t .%の基板においては、 C o添加重が Owt .%の基板に対して、 保磁力がほとんど変化しないが、 それ以上 の C 0添加量を持つ基板においては、 添加量の増大に伴い、 保磁力が減少する傾 向にある。 ただし、 いずれの C o添加量の試料であっても、 ドライエッチングを 施していない試料よりは高い保磁力を示した。
ここで、 図 17の X線プロファイルで示したように、 各種類の基板によって結 晶配向性が変化しないことから、 C o添加量の増大に伴う保磁力の減少は、 強磁 性結晶粒径の微細化による熱擾乱の影響、 粒間相互作用の増大によるものである と考えられる。 図 23は、 基板表面の逆スパッ夕を行った直後、 かつ、 Crの下地膜を成膜す る直前に、 各 C 0添加量 ( 0、 0.003wt.%、 0.04wt .%、 0.13 wt .%) の被覆膜表面を酸素で 1.5 L、 3.5 L暴露した、 Cr/CoN i 12.5Cr 15T a3.5P t なる積層構造の磁気記録媒体における、 5K、 30 OKでの保磁 力の基板への C o添加重依存性を示す。
図 23に示す結果から、 熱擾乱の影響を受けていないと考えることが出来る 5 Kの試料においても、 C oの添加量の増大に伴い、 保磁力値が減少している。 ゆ えに、 この 300 Kでの保磁力の減少は、 熱擾乱による影響だけではなく、 強磁 性結晶粒間の相互作用の増大によるものも考えられる。 この要因として、 Co添 加量が0.04wt.%、 0.13 wt .%の基板においては、 Co無添加の被覆膜、 Co添加量が 0.003 wt .%の被覆膜よりも、 はるかに多くの酸素が被覆膜表 面の C o粒子に吸着されていると考えられ、 基板表面がスパッ夕エッチングを施 していない場合とほぼ同様の表面状態になっているものと考えられ、 その多くの 吸着ガスが C rの偏析を阻害したり、 膜内に多く残留していることが考えられる。 以上のことから、 C oの添加重が好ましくは 0.13 wt .%以下の被覆膜を備 えた基板を用い、 かつ、 被覆膜表面の酸素暴露量が 3.5 L程度以下において、 結 晶配向性に悪影響を及ぼすことなく、 粒間相互作用を大きくすることなく、 強磁 性結晶粒径を低減できることがわかった。 また、 C oの添加重が 0.04 wt .% 以上の被覆膜を備えた基板を用いると、 基板表面のわずかな酸素暴露においても 強磁性結晶粒径は大きく低減できるものの、 粒間相互作用を増大させる傾向を有 することがわかった。
「基板表面状態と磁気記録再生特性 j
図 24に、 Cr/CoN i 12 5Cr15Ta3.5P t 5なる組成と積層構造を有す る磁気記録媒体における信号対雑音比 (S/Nm) を、 基板の被覆膜の種類 (Co 添加量: 0.003 wt .%、 0.04wt 0.13 wt . ) に対して示す。 ここで、 成膜プロセスを基板表面に 1.5 Lの酸素暴露を行った成膜プロセスと し、 (: の下地膜厚を511111、 磁性膜厚を 15 nmとした。 更に、 図 24に、 N i-P膜に C 0を含有させていない基板を用い、 酸素暴露量を 3.5 L、 7.5 と した磁気記録媒体の記録再生特性も示す。 図 24に示す結果から、 C o添加量を増大させることにより、 記録再生特性が 向上し、 Co添加量が 0.04 wt .%付近で最大値の信号対雑音比 ( l dB以上 の向上) をとる。 この要因として、 0.04wt .%付近では粒間相互作用が大き くなる傾向にあるものの、 それ以上に強磁性結晶粒径が大きく低減することによ り信号対雑音比が改善されるものと思われる。 よって、 基板表面の N i- P膜に C oを添加することにより、 SN比の良好な磁気記録媒体を得ることができる。
「酸素吸着依存性の総括」
C 0を含まない N i-P膜を設けた基板を用いた基板表面の酸素暴露において、 1.5 L〜 3.5 L程度までの酸素暴露において、 結晶配向性の劣化や強磁性結晶 粒間相互作用の増大を引き起こすことなく強磁性結晶粒径を微細化することがで きることが明らかになった。 また、 3.5 L以上の酸素暴露においては、 さらに磁 性結晶粒径が微細化するものの、 粒間相互作用の増大により、 保磁力が減少する 傾向にある。 磁気記録再生特性においては、 酸素暴露により、 l dB弱程度の改 善が可能であることが判明した。
「基板表面状態の依存性」
N i- P膜に対する Co添加重が 0.003 wt .%以下の基板を用いることによ り、 基板表面の酸素暴露量が 3.5 L以下において、 結晶配向生に悪影響を及ぼす ことなく、 粒間相? /:用を大きくすることなく、 強磁性結晶粒径を低減できるこ とが明らかになった。 また、 N i- P膜に対する C 0添加重が 0.04w t .%以上 の基板を用いると、 基板表面のわずかな酸素暴露においても、 強磁性結晶粒径を 大きく低減できるが、 粒間相互作用が増大することが判明した。 また、 磁気記録 再生特性においては、 基板表面に C oを添加することにより、 l dB以上程度の 改善が可能であることが判明した。 最終結論として、 まず、 基板表面の被覆膜をスパッ夕エッチングした後、 酸素 で 1.5 L〜3.5 L程度暴露することにより、 結晶配向性や粒問相互作用を増大 させることなく、 強磁性結晶粒径を 10. 8 nmから 9.9 nmへと低減すること ができ、 さらに、 N i- Pアモルファス膜に C oを 0 · 003 wt .%以下添加する ことにより、 9.8 nmから 9 · 6 nmへと低減できることが明らかになった。 ま た、 磁気記録再生特性において、 Cr下地膜厚、 磁性膜厚が一定の条件下におい て、 C 0を 0.04 wt .%程度 N i- P膜に添加した基板を用い、 基板表面への酸 素暴露量を 3.5 L程度とすることにより、 信号対雑音比で 1.5〜 2.0 d B程度 の改善ができることが明らかとなった。 また、 信号対雑音比で見ると、 0.08w t .%以下の範囲で良好な値を得ることができるので、 多少の保磁力の低下を加味 して信号対雑音比の優れた磁気記録媒体を得るためには、 被覆膜に対する Co含 有量として 0.08wt.%以下、 好ましくは 0.003〜0.08wt.%の範囲、 酸素暴露量として 3 · 5 L以下、 好ましくは 0.1 L〜3.5 Lの範囲とすることが 良いと思われる。 また、 被覆膜は単層構造ではなく、 複層構造としても良く、 N i- P膜を下部被 覆膜として、 その上に酸素と結合しやすい元素を含む材料をスパッタなどの手段 で成膜して上部被覆膜とし、 その上部被覆膜表面を酸素暴露することにより、 微 細化と均一化に適した構造 (吸着酸素ガスの分布状態) とすることも可能であつ て、 本発明はそのような態様も含むものとする。 最後に、 本試験に用いた磁気記録媒体用基板の表面に形成されている被覆膜に ついて、 ストリップ応力測定器を用いて測定した応力測定結果を示す。
C 0含有量 0.001 w t .% -9.28k g/mm2
Co含有量 0.003 wt .% -8.45k g/mm2
Co含有量 0.0 1 wt .% - 7.27k g/mm2
Co含有量 0.04 wt . -2.64 kg/mm2
Co含有量 0.13 w t .% + 2.27 k g/mm2
この関係から、 N i-P膜に添加する C oの添加量が増加するにつれて、 N i P膜の応力が引張応力側に変化していることが判明した。 以下の各実施例では、 特に説明しない限り、 3 X 10— 9Torrの高真空において Η2〇を 1 p p b以下としたウルトラクリーンプロセスにて試験を行った。 基板温 度は 250° ドライエッチングの条件は、 2mTorr、 200 W、 5秒とした。
「基板深さ方向の分析結果」
次に、 前述のアルミニウム製の円盤状の基体に N i Pの被覆膜を形成し、 3, 5 Lの条件で酸素暴露を行い、 その上に、 厚さ 100 Aの C rの下地膜と、 厚さ 280 の〇0 (: 17T a 5なる組成の磁性膜と、 厚さ 100 Aのカーボンの保護 膜を形成した磁気記録媒体に対し、 N i Pの被覆膜の表面にドライエッチング処 理を施した試料とドライエッチングを施していない試料を用意し、 これらの各試 料の S I M S ( 2次イオン質量分析法) による深さ分析を行った結果を図 2 8に 示す。
図 2 8に示す結果から明らかなように、 ドライエッチングを施していない試料 に対し、 ドライエッチングを施した試料の酸素濃度は大幅に低下していることが わかる。 これは、 ドライエッチングを施して表面のクリーニングを行っていない 場合、 N i Pの表面に酸化物等の付着から表面に制御不能の酸素原子が大量に存 在し、 本発明の目的である、 良好なピン止めサイ トとしての機能を奏する酸素ト ラップを制御良く形成できないことを示唆している。
次に、 各試料の C o C r T aの磁性膜の C o結晶の粒径と保磁力を測定したと ころ、 ドライエッチングした試料にあっては、 1 0 . 8 n mであり、 保磁力は 2 . 2 6 k O eであったが、 ドライエッチングを施していない試料の結晶粒径は 7 . 4 n m、 保磁力は 0 . 8 2 k O eになった。
このことから、 ドライエッチングを施すと、 C o結晶の粒径は大きくなるもの の、 保磁力を大幅に向上できることが明らかである。 よってドライエッチングを 施した試料に対し、 更に結晶粒径の微細化を図るならば、 より良好な磁気記録媒 体を得られることが判明した。 先に記載の本発明に係る実施例はこのようなドラ ィエッチングの知見に基づいてなされている。
「酸素暴露量と磁気特性の測定」
先の例と同等の基板に対して N i C o Pの被覆膜表面にドライエッチング処理 を施し、 更に 3 . 5 Lの条件にて酸素暴露を行った試料と、 酸素暴露を行わない試 料 (酸素暴露量 0 L ) を用意し、 それそれに厚さ 5 n mの C rの下地膜、 厚さ 1 5 n mの C 0 C Γ 7 T a 5なる組成の磁性膜、 厚さ 1 0 n mのカーボンの保護膜を 形成して磁気記録媒体試料を得た。
これらの試料において、 酸素暴露量 0 Lの試料の C o結晶粒径が 1 0 . 8 n mで あつたが、 酸素暴露量 3 . 5 Lの試料の C o結晶粒径が 9 . 3 n mとなり、 結晶粒 径の微細化を実現できた。
また、 酸素暴露量を 1 . 5 L、 3 . 5 L、 7 . 5 Lと変更して各々磁気記録媒体試 料を作成し、 各試料の S N比を測定した結果を図 2 9に示し、 各試料の保磁力を 測定した結果と、 各試料の V a c t K U " n/K T (磁気記録媒体の熱擾乱を示す 指数) を測定した結果を図 30に示す。
図 29に示すように酸素暴露量の増加により SN比を 18.5から最大 19.1 dB (暴露量 4L) まで上昇させることができた。 これは、 メディアノイズとし て見た場合、 メディアノイズを 4.8から 4.56 V rmsを 4.80 / V rmsまで低 減できることと同等である。 また、 図 30に示す結果から、 保磁力においては 2 .26から 2.00 kO eに低下する。
これは、 VactKuSfain/kT (磁気記録媒体の熱擾乱を示す指数) が 156 から 104に低下するためである。 (ここで、 Vactとは活性化磁気体積であり、 磁気クラスターが一斉に振る舞う体積に相当するものである。 Ku^ainは結晶磁 気異方性エネルギー定数であり、 磁性材料のポテンシャルを示す指数である。 k はボルツマン定数であり、 Tは絶対温度である。 ) 今回提案の磁気記録媒体にお いて、 VactKus'ain/kTが低下した主な要因は、 基板をドライエッチングし た後に酸素を暴露することで、 結晶粒径が大幅に低減され、 Vactも大幅に低減さ れたためである。 VactKus'ainZkTの値が小さくなれば、 例えば、 100を 下回る程度に小さくなれば、 熱擾乱の影響が比較的強くなり、 保磁力の低下や記 録の消失といった問題が懸念される。 しかし、 現状の磁気記録媒体に対してなら ば、 VactKusiain/kT= 104は、 大きな問題とはならない数値である。 更 なる特性向上をするためには、 より大きな Kusiaiを有する磁性材料を選択すれ ば、 容易に実現できると考えられる。
これらの試験結果を踏まえ、 アルミニウム基板の表面に N i C o Pの被覆膜を 形成してから磁気記録媒体試料を作製し、 この磁気記録媒体の磁気特性を測定す る試験を行った。
「酸素暴露量と磁気特性の測定」
先の例の基体の被覆膜に Coを 400 pp m添加した C o共析基体と C oを添 加していない基体を用い、 これらに先の例と同等の条件でドライエッチングを施 し、 1.5 Lの条件で酸素暴露を行い、 次いで厚さ 1 5 nmの C o C r T aN i P tの磁性膜を成膜し、 カーボンの保護層を形成して磁気記録媒体を作製し、 これ らの磁気記録媒体試料の各磁性膜における C o結晶粒径を測定した。 その結果、 C oを添加していない試料の結晶粒径が 9.8 nmであったが、 Co を添加した試料の結晶粒径は 8.8 nmになった。
また、 同試料の外に Co添加量を 0、 120、 1200 p pmにそれぞれ設定 した試料の SN比の測定結果を図 31に、 保磁力の測定結果、 および磁気的粒間 相互作用指数 GD, /GDの測定結果を図 32にそれそれ示す。
これらの結果から、 酸素暴露量を一定としても C o濃度を調節することで SN 比を増加させる (C 0なしの試料で 18.5 dB~>C o 400 p pmの試料で 19 .5 dB) ことができ、 保磁力の低下、 および磁気的粒間相互作用の増加を低く抑 えることができるとともに、 媒体の S N比を向上できることが判明した。
「酸素暴露量と磁気特性測定」
次に、 アルミニウム製の基板表面の C o-N i P層をテクスチユアを形成してい ない鏡面化状態とし、 その上にドライエッチングを施した試料と施さない試料を 用意し、 更に酸素暴露を行う試料と行わない試料を種々揃え、 厚さ 5nmの Cr 膜と厚さ 5 nmの C r Mo膜を積層した 2層構造の下地膜を用い、 その上に厚さ 20 nmの C o C r 24P t , 2 B 4なる組成の磁性膜を形成し、 更に厚さ 7 nmの力 一ボンの保護層を形成して磁気記録媒体試料を得た。 この試料において 2層構造 の下地膜を用いたのは、 その上に積層する C o C r24P t 12B4なる組成の磁性膜 との結晶整合性を考慮したものであり、 この 2層構造の下地膜を用いることで C 0 C r 24P t 12B 4なる組成の磁性膜の結晶配向性を良好として良好な磁気特性を 得ることができる。
この試料において酸素暴露量と保磁力の関係を測定した結果を図 33に示す。 図 33に示す結果から、 C oを 400 p pm添加してドライエッチングを施し た試料の保磁力が十分に高くなり、 C oを添加していない試料はそれよりも低い 保磁力を示し、 更にドライエッチングを施していない試料はさらに低い保磁力を 示した。 なお、 保磁力に関し、 酸素暴露量を 30 Lとしてもほとんど低下しない ことが判明したので、 酸素暴露量は 30 L以下の範囲で他の磁気特性を勘案して 適宜選択することができることも明らかになった。 これは、 先の実施例の組成で は磁性膜として C rと P t含有量の少ない組成系の磁性膜を用いていたのに対し、 今回の実施例では C o C r 2 4 P t 1 2 B 4なる組成であって、 C rを充分に添加した 組成系とすることで、 磁性膜として、 C o粒子び周囲に C rの偏析を促進して C r強磁性粒子の磁気的相互作用を調整し、 P tの添加量を充分として保磁力を高 めた結果である。 図 3 4は、 同等の積層構造の試料に対し、 分解能を測定した結果を示す。
C 0を被覆膜に添加した試料 (C o - N i P基板) および添加していない試料 ( N i P基板) について分解能の優劣はほとんど見られない。 これは、 C r強磁性 粒子の磁気的粒間相互作用を極めて低減し、 P tの添加量を充分として熱ゆらぎ の影響を低く抑えることにより保磁力を高めた結果である。
図 3 5は、 これらの結果をまとめ、 酸素暴露量と S N比の関係をプロットした ものである。 この図に示す結果から、 酸素暴露量に関し、 暴露量を多くする方が 良好な S N比を得られることがわかる。
図 3 6は、 これらの結果から、 S N比と分解能の関係をプロッ トしたもので、 この図に示す結果から、 酸素暴露量を増加することでドライエッチングを施して いない試料の S N比と同等にまでドライエッチングを施した試料で到達すること ができるので、 S N比の面においてもドライエッチングを施した試料にあって良 好なレベルまで向上できることが明らかとなった。
図 3 7は、 分解能と S N比の関係を示すもので、 この図の関係から、 酸素暴露 量を増加することで、 分解能を低下させることなく S N比を向上できることが明 らかである。
また、 先に述べた試験結果から明らかなようにドライエッチングを施した磁気 記録媒体試料は高い保磁力を有するので、 高保磁力かつ低ノイズ、 更に高分解能 の磁気記録媒体を提供できることが明らかになった。 産業上の利用の可能性
以上説明したように本発明の磁気記録媒体用基板によれば、 N iと共析可能で 酸素と親和力の高い元素を含有する非磁性の被覆膜を表面に有する磁気記録媒体 用基板であるので、 被覆膜上に下地膜と磁性膜を形成して磁気記録媒体とする際 に、 被覆膜中に含有させた添加元素の添加効果によって下地膜の結晶粒径を微細 化し、 磁性膜の結晶粒径を微細化することができる。 従って本発明の磁気記録媒 体用基板を用いるならば、 結晶粒径の小さい低ノイズ化した磁性膜を備える磁気 記録媒体を得ることができる効果がある。 前記被覆膜として具体的に、 Co、 W、 Fe、 V、 Cr、 Mn、 Cu、 Z n、 Mo、 Pd、 Sn、 Re、 Al、 Z r、 B、 T iの中から選択される 1種または 2種以上を添加したものを用いることができ、 更に、 Ni- P-Co系、 Ni- Ta -Co系、 N i- T i- C o系のいずれかを適用することができ、 更に、 Ni C oP Mなる組成式 (ただし、 元素 Mは、 T i、 Z r、 Hf、 V、 Nb、 Mo、 Ta、 W、 Al、 Bのうち、 1種または 2種以上の元素からなる) で示される組成のも のを用いることができる。
また、 被覆膜の表面に酸素が間欠的に吸着されてなるならば、 間欠的に吸着さ れた酸素の上に下地膜が成膜される場合に下地膜の結晶粒の微細化を図ることが でき、 更に下地膜上に形成される磁性膜の結晶粒の微細化を図ることができる。 また、 本発明に係る磁気記録媒体であるならば、 N iと共析可能で酸素と親和 力の高い元素を含有する非磁性の被覆膜を表面に有するので、 被覆膜上に下地膜 と磁性膜が形成される場合に、 被覆膜中に含有されている添加元素の添加効果に よって下地膜の結晶粒径を微細化することができ、 磁性膜の結晶粒を微細化する ことができる。
従って本発明の磁気記録媒体ならば、 結晶粒径の小さい低ノィズ化した磁性膜 を備える磁気記録媒体を得ることができる効果がある。 また、 被覆膜の表面に酸素が間欠的に吸着されてなるならば、 間欠的に吸着さ れた酸素が結晶粒の粗大化の抑制点として作用し、 その上に形成される下地膜の 結晶粒の微細化がなされ、 更に下地膜上に形成される磁性膜の結晶粒の微細化が なされる。 更に、 C oが規定量含有され、 表面に酸素が吸着された被覆膜を備えた磁気記 録媒体であるならば、 あるいは、 被覆膜表面を逆スパッタ後に適切な酸素暴露量 で基板表面を処理したものならば、 磁性膜の結晶粒を微細化することができ、 微 細結晶粒の平均結晶粒径の 2倍を超える粗大結晶粒を有しない優れた粒径分布の 磁性膜が得られる。 これにより、 特にノイズの低い磁気記録媒体を得ることがで ぎる。 次に、 本発明方法によれば、 非磁性の基板と該基板上に形成された非磁性の被 覆膜から構成された基体上に、 下地膜と磁性膜と保護膜を順に積層してなる磁気 記録媒体の製造方法において、 前記基体が形成された成膜空間を 1 0— flTorr台以 下の真空度に減圧する排気工程と、 前記成膜空間に不活性ガスを導入し、 ブラズ マを生起させて、 前記基体を構成する被覆膜表面部分をドライエッチング処理す るクリーニング工程、 及び、 前記排気工程の真空度より高い圧力となるように、 前記成膜空間に少なくとも酸素を含むガスを導入し、 前記被覆膜の表面を該酸素 を含むガス雰囲気に曝す暴露工程と、 前記暴露工程を終えた基体上に、 前記下地 膜をドライプロセスにより堆積させる成膜工程とを少なくとも含むことを特徴と するので、 被覆膜の表面をドライエッチングで完全に清浄化できるとともに、 そ の後に好適な量の酸素を吸着させることができる。 そしてこのように吸着させた 酸素は、 下地膜の結晶粒粗大化の抑制として機能するので、 微細な結晶粒を有す る下地膜を得ることができると同時に微細な結晶粒を有する磁性膜を得ることが できる。
下地膜として C rを含むものが好ましく、 C rを含む下地膜の上に磁性膜を形 成するならば、 結晶粒を微細化した優れた磁性膜を得ることができる。 また、 被覆膜に対して好適な C o含有量を選択し、 酸素暴露量として好適な範 囲を選択するならば、 保磁力が高く、 結晶粒径が小さく、 結晶粒径の分布範囲が 狭く、 粗大化した結晶粒の少ない、 低ノイズ化した磁性膜を有する磁気記録媒体 を得ることができる。

Claims

請求の範囲
1. 非磁性の基板と、 該基板を被覆するように設けられて N iと共析可能で酸 素と親和力の高い金属を含む非磁性の被覆膜とを具備してなることを特徴とする 磁気記録媒体用基体。
2. 前記金属が、 P、 Co、 W、 Fe、 V、 Cr、 Mn、 Cu、 Z n、 Mo、 Pd、 Sn、 Re、 Al、 Z r、 B、 T i、 T aの中から選択される 1種または 2種以上の元素からなることを特徴とする請求項 1記載の磁気記録媒体用基体。
3. 前記被覆膜が、 Ni- P- C o系非晶質膜、 Ni- Ta- Co系非晶質膜、 ま たは、 N i- T i- C 0系非晶質膜のいずれかであることを特徴とする請求項 1ま たは請求項 2に記載の磁気記録媒体用基板。
4. 前記被覆膜が、 N i C o PMなる組成式で示され、 前記 Mが、 T i、 Z r、 Hf、 V、 Nb、 Mo、 Ta、 W、 Al、 Bのうち、 1種または 2種以上の元素 であることを特徴とする請求項 1に記載の磁気記録媒体用基体。
5. 前記被覆膜に Coが 0.003〜0.10 wt .%含有されてなることを特徴 とする請求項 1、 3、 4のいずれかに記載の磁気記録媒体用基体。
6. 前記被覆膜の表面部分に酸素が間欠的に吸着されてなることを特徴とする 請求項 1〜 5のいずれか 1項に記載の磁気記録媒体用基体。
7. 前記被覆膜を設けた基板が、 下地膜、 磁性膜及び保護膜で被覆されるもの であり、 前記保護膜上を磁気へッドが対向状態で浮上走行されるものであること を特徴とする請求項 1〜 6のいずれかに記載の磁気記録媒体用基体。
8. 非磁性の基板と該基板上に形成された非磁性の被覆膜から構成された基体 上に、 下地膜と磁性膜と保護膜とが具備されてなり、 前記被覆膜に Niと共析可 能で酸素と親和力の高い金属が含有されてなることを特徴とする磁気記録媒体。
9. 前記金属が、 P、 Co、 W、 Fe、 V、 Cr、 Mn、 Cu、 Zn、 Mo、 Pd、 Sru Re、 Al、 Z r、 B、 T i、 T aの中から選択される 1種または 2種以上の元素からなることを特徴とする請求項 8記載の磁気記録媒体用基体。
10. 前記被覆膜が、 Ni- P_Co系非晶質膜、 Ni- Ta-Co系非晶質膜、 または、 N i-T i-C o系非晶質膜のいずれかであることを特徴とする請求項 1 または請求項 8に記載の磁気記録媒体用基板。
1 1. 前記被覆膜が、 N i C o PMなる組成式で示され、 前記 Mが、 T i、 Z r、 Hf、 V、 Nb、 Mo、 Ta、 W、 Al、 Bのうち、 1種または 2種以上の 元素であることを特徴とする請求項 8に記載の磁気記録媒体用基体。
12. 前記被覆膜に Coが 0.003〜0.1 Owt .%含有されてなることを特 徴とする請求項 8、 10、 1 1のいずれかに記載の磁気記録媒体用基体。
13. 前記被覆膜の表面に吸着された酸素が、 前記磁性膜を構成する強磁性結 晶粒の粗大化を抑制するピン止め点とされてなることを特徴とする請求項 8〜 1 2のいずれかに記載の磁気記録媒体。
14. 前記被覆膜の表面に酸素が間欠的に吸着され、 前記酸素の吸着された部 分が前記下地膜を構成する結晶粒の粒界に位置され、 前記下地膜を基にして前記 磁性膜がェピタキシャル成長されてなることを特徴とする請求項 8〜 13のいず れか 1項に記載の磁気記録媒体。
15. 非磁性の基板と、 該基板上に形成された非磁性の被覆膜から構成された 基体上に、 下地膜と磁性膜と保護膜とが具備されてなり、 前記磁性膜が、 その磁 性膜の主要部を構成する強磁性結晶粒の平均結晶粒径値の 2倍を超える粒径の粗 大強磁性結晶粒を有しない構造とされたことを特徴とする磁気記録媒体。
16. 非磁性の基板と該基板上に形成された非磁性の被覆膜から構成された基 体上に、 下地膜と磁性膜と保護膜を順に積層してなる磁気記録媒体の製造方法に おいて、
前記基体が形成された成膜空間を 10— 9Torr台以下の真空度に減圧する排気ェ 程と、 前記成膜空間に不活性ガスを導入し、 プラズマを生起させて、 前記基体を 構成する被覆膜表面部分をドライエッチング処理するクリーニング工程、 及び、 前記排気工程の真空度より高い圧力となるように、 前記成膜空間に少なくとも 酸素を含むガスを導入し、 前記被覆膜の表面を該酸素を含むガス雰囲気に曝す暴 露工程と、 前記暴露工程を終えた基体上に、 前記下地膜をドライプロセスにより 堆積させる成膜工程とを少なくとも含むことを特徴とする磁気記録媒体の製造方 法。
17. 前記被覆膜として、 N iと共析可能で酸素と親和力の高い金属を含有す る簿膜を用いることを特徴とする請求項 16に記載の磁気記録媒体の製造方法。
18. 前記下地膜として Crを主たる構成元素とする薄膜を用いることを特徴 とする請求項 16または 17に記載の磁気記録媒体の製造方法。
19. 前記被覆膜として、 Ni- P- Co系非晶質膜、 N i- Ta- Co系非晶質 膜、 または、 N i- T i- Co系非晶質膜を用いることを特徴とする請求項 16〜 18のいずれか 1項に記載の磁気記録媒体の製造方法。
20. 前記暴露工程は、 前記被覆膜表面の暴露量が 30ラングミュア以下 (た だし、 1ラングミュア = 1 X 10—6Torr · sec) 、 となるように該被覆膜の表面を 所定圧力の酸素雰囲気に所定の時間暴露することを特徴とする請求項 16〜19 のいずれか 1項に記載の磁気記録媒体の製造方法。
21. 前記被覆膜に含有される Coを 0.003~0.10wt.%の範囲とする ことを特徴とする請求項 16〜20のいずれか 1項に記載の磁気記録媒体の製造 方法。
22. 請求項 8ないし請求項 15のいずれか 1項に記載の磁気記録媒体と、 前 記磁気記録媒体を駆動する駆動部と、 磁気ヘッドと、 前記磁気ヘッドを前記磁気 記録媒体に対して相対移動させる移動手段とを具備してなることを特徴とする磁
PCT/JP2000/003501 1999-05-31 2000-05-31 Base pour support d'enregistrement magnetique, support d'enregistrement magnetique, procede de production de cette base et enregistreur magnetique WO2000074043A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00935500A EP1111595A1 (en) 1999-05-31 2000-05-31 Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15310599 1999-05-31
JP11/153105 1999-05-31

Publications (1)

Publication Number Publication Date
WO2000074043A1 true WO2000074043A1 (fr) 2000-12-07

Family

ID=15555090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003501 WO2000074043A1 (fr) 1999-05-31 2000-05-31 Base pour support d'enregistrement magnetique, support d'enregistrement magnetique, procede de production de cette base et enregistreur magnetique

Country Status (2)

Country Link
EP (1) EP1111595A1 (ja)
WO (1) WO2000074043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118147A (ja) * 2010-03-02 2010-05-27 Toshiba Corp 磁気記録媒体及びその製造法、並びにそれを用いた磁気記録再生装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307223A (en) * 1992-08-07 1994-04-26 International Business Machines Corporation Magnetic recording disk file for contact recording
WO1995003603A1 (fr) * 1993-07-21 1995-02-02 Migaku Takahashi Support d'enregistrement magnetique et sa fabrication
US5480733A (en) * 1993-03-15 1996-01-02 Kubota Corporation Metal thin film magnetic recording medium
US5658659A (en) * 1994-01-28 1997-08-19 Komag, Inc. Magnetic alloy and method for manufacturing same
US5700593A (en) * 1993-06-23 1997-12-23 Kubota Corporation Metal thin film magnetic recording medium and manufacturing method thereof
JPH10269548A (ja) * 1997-03-28 1998-10-09 Hitachi Ltd 磁気記録媒体およびそれを用いた磁気記憶装置
US5846648A (en) * 1994-01-28 1998-12-08 Komag, Inc. Magnetic alloy having a structured nucleation layer and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307223A (en) * 1992-08-07 1994-04-26 International Business Machines Corporation Magnetic recording disk file for contact recording
US5480733A (en) * 1993-03-15 1996-01-02 Kubota Corporation Metal thin film magnetic recording medium
US5700593A (en) * 1993-06-23 1997-12-23 Kubota Corporation Metal thin film magnetic recording medium and manufacturing method thereof
WO1995003603A1 (fr) * 1993-07-21 1995-02-02 Migaku Takahashi Support d'enregistrement magnetique et sa fabrication
US5658659A (en) * 1994-01-28 1997-08-19 Komag, Inc. Magnetic alloy and method for manufacturing same
US5846648A (en) * 1994-01-28 1998-12-08 Komag, Inc. Magnetic alloy having a structured nucleation layer and method for manufacturing same
JPH10269548A (ja) * 1997-03-28 1998-10-09 Hitachi Ltd 磁気記録媒体およびそれを用いた磁気記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118147A (ja) * 2010-03-02 2010-05-27 Toshiba Corp 磁気記録媒体及びその製造法、並びにそれを用いた磁気記録再生装置

Also Published As

Publication number Publication date
EP1111595A1 (en) 2001-06-27

Similar Documents

Publication Publication Date Title
JP4428835B2 (ja) 磁気記録媒体及びその製造方法
JP2852077B2 (ja) 磁気記録媒体
WO2010032766A1 (ja) 垂直磁気記録媒体およびその製造方法
JP2006331622A (ja) 高酸素含有量の記録層を有する垂直磁気記録ディスク
WO2007129687A1 (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
US9190095B2 (en) Interlayer comprising chromium-containing alloy
WO2008096595A1 (en) Perpendicular magnetic recording medium, method of manufacturing the medium and magnetic recording and reproducing apparatus
JP3423907B2 (ja) 磁気記録媒体及びその製造方法並びに磁気記録装置
JP3666853B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
JP2007012157A (ja) 磁気記録媒体及び磁気記録再生装置
JP4123806B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
US10793944B2 (en) Perpendicular recording media with enhanced anisotropy through energy assisted segregation
JP4391010B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
JP3359706B2 (ja) 磁気記録媒体
WO2000074043A1 (fr) Base pour support d'enregistrement magnetique, support d'enregistrement magnetique, procede de production de cette base et enregistreur magnetique
JP3945742B2 (ja) 磁性合金と磁気記録媒体およびその製造方法と磁性膜形成用ターゲットおよび磁気記録装置
JP2011192320A (ja) 垂直磁気記録媒体
JP3663289B2 (ja) 磁気記録媒体及び磁気記憶装置
JP2002324313A (ja) 磁気記録媒体の製造方法
JP2000123345A (ja) 磁気記録媒体及び磁気ディスク装置
WO2000077778A1 (fr) Support d'enregistrement magnetique, son procede de fabrication et dispositif a disque magnetique
JP2806443B2 (ja) 磁気記録媒体及びその製造方法
JPH11250438A (ja) 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録装置
WO1998044491A1 (fr) Support d'enregistrement magnetique
JP2007004858A (ja) 長手磁気記録媒体およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09744888

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000935500

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000935500

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000935500

Country of ref document: EP