WO2000073738A1 - Dispositif de mesure de forme - Google Patents

Dispositif de mesure de forme Download PDF

Info

Publication number
WO2000073738A1
WO2000073738A1 PCT/JP2000/003332 JP0003332W WO0073738A1 WO 2000073738 A1 WO2000073738 A1 WO 2000073738A1 JP 0003332 W JP0003332 W JP 0003332W WO 0073738 A1 WO0073738 A1 WO 0073738A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
shape
coordinate system
head
mirror
Prior art date
Application number
PCT/JP2000/003332
Other languages
English (en)
French (fr)
Inventor
Hideto Fujita
Hiroaki Yoshida
Hiroshi Kano
Shimpei Fukumoto
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP00929852A priority Critical patent/EP1197729A4/en
Priority to US09/926,601 priority patent/US6909513B1/en
Publication of WO2000073738A1 publication Critical patent/WO2000073738A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding

Definitions

  • the present invention relates to a shape measuring device for measuring a three-dimensional shape, and more particularly to a shape measuring device suitable for measuring the shape of a foot.
  • the size of a shoe is usually expressed by the length from the heel to the fingertip, but the shape of a person's foot varies depending on the individual, such as not only the length but also the height of the upper and the width of the foot.
  • it is necessary to measure the three-dimensional shape of the foot but at present, using a measure, the foot length, foot width, and foot position (around the foot) Only the size of a limited area such as is measured.
  • an active stereo-type shape measuring device that irradiates spot light or slit light to an object to be measured and restores a three-dimensional shape from a position of an optical image observed on the surface of the object to be measured.
  • This shape measuring device scans a spot light or a slit light with a rotating mirror in order to measure the surface shape of an object to be measured.
  • Measurement and control (1999 Vol. 38 No. 4 P285-P288) describes a system that measures the shape of a foot using such a shape measuring device.
  • one shape measuring device can measure only the shape of the part observed from the device, and cannot measure the shape of the hidden part such as the opposite side.
  • a shape measuring device is placed around the foot, and the results of these 12 shape measuring devices are combined on a computer to measure the shape of the entire foot.
  • the applicant of the present application has already developed a shape measuring device that performs measurement by holding a compact measuring head in a hand and moving a measuring head around an object to be measured. 2 00 0-393010).
  • this shape measuring device the position and orientation of the measurement head are measured by taking images of a plurality of forces attached to the measurement head from above using two cameras.
  • An object of the present invention is to provide a shape measuring device that has a compact device configuration and allows a user to measure the shape of an object to be measured without being conscious of the field of view of a camera, thereby improving usability. I do.
  • Another object of the present invention is to provide a shape measuring device capable of measuring an appropriate three-dimensional shape with a small number of measuring procedures.
  • a first shape measuring device detects a position of a measurement head on a guide rail based on a measurement head moved along a guide rail and a predetermined position on the guide rail.
  • the first position detecting means, the second position detecting means for detecting the position of the measurement head on the guide rail in the cold coordinate system, and the measurement on the guide rail based on a predetermined position on the guide rail.
  • Means for storing each position of the head in the storage device in association with the position in the corresponding world coordinate system, and at each measurement position on the guide rail, the position of the measurement head is determined by the first position detection means.
  • Detect and Measurement means for determining the coordinates of the measurement point on the DUT in the coordinate system of the center of the measurement head using the measurement head, and the center of the measurement head determined at each measurement position on the guide rail. Converts the coordinates of a measurement point on an object to be measured in the coordinate system into coordinates in the world coordinate system based on the position in the world coordinate system corresponding to each measurement position on the guide rail stored in the storage device Means is provided. When the movement of the measurement head is limited to the trajectory on the guide rail in this manner, each position of the measurement head on the guide rail with respect to a predetermined position on the guide rail and the world of the measurement head are measured. The position in the coordinate system is uniquely associated.
  • the shape can be obtained.
  • the position of the measurement head in the world coordinate system corresponding to the position of the measurement head on the guide rail with respect to the predetermined position on the guide rail is read from the storage device, and the measurement is started.
  • the coordinates in the coordinate system of the measurement head center of the measurement point obtained using the head can be transformed into the coordinates in the world coordinate system.
  • the shape of the object to be measured can be measured by making the measuring head make one round along the guide rail.
  • the measuring head includes, for example, light irradiating means for irradiating a light beam to the object to be measured, and an imaging means for imaging a measurement point on the object to be irradiated with the light beam from the light irradiating means. Is used.
  • the measuring head is provided with drive means for moving along the guide rail.
  • the second position detecting means for example, a measuring head imaging means for imaging the measuring head from a predetermined position, and a position of the measuring head in the world coordinate system is detected based on an image taken by the measuring head imaging means. What has the means to perform is used.
  • the shape of the guide rail is not limited to a simple shape such as a straight line or a circle, but can be any shape. Becomes possible.
  • the measuring head imaging means is configured to be detachable from the shape measuring device main body. Is preferred. By doing so, the measuring head imaging means can be detached from the shape measuring device main body when measuring the shape of the object to be measured.
  • the measuring head includes a driving means for moving along the guide rail.
  • the measuring head can be automatically moved along the guide rail, so that the shape of the object to be measured can be automatically measured.
  • a guide rail having a shape in which the distance from the object to be measured is substantially constant can be used.
  • the measurement head moves while keeping the distance to the DUT substantially constant, so that the measurement error depending on the distance between the DUT and the measurement head is uniform. Can be changed.
  • a guide rail having an oval shape having a major axis in a direction from the heel of the foot to the toe can be used.
  • the measurement head moves while keeping the distance between the foot and the foot substantially constant, so that the measurement error depending on the distance between the foot as the object to be measured and the measurement head is measured. Can be made uniform.
  • a guide rail having a shape that tapers from the toe of the foot toward the heel may be used.
  • the measurement head moves along the shape of the foot that tapers from the toe to the heel, so that the measurement error dependent on the object to be measured and the measurement head is uniform. Can be changed.
  • a second shape measuring apparatus includes a measuring head for measuring a shape of an object to be measured placed on a measuring table, position detecting means for detecting a position of the measuring head, and a measuring head and position detecting means.
  • a shape measuring apparatus provided with a calculating means for obtaining a three-dimensional shape of an object to be measured based on an output from the means, wherein a mirror for reflecting the object to be measured is arranged on a measuring table. .
  • the position detecting means for example, a means for detecting the position of the measuring head by a stereo method using two cameras is used.
  • a light irradiating unit for irradiating a light beam to an object
  • imaging means for imaging a real image of the measured object and a virtual image of the measured object reflected on a mirror by imaging a measurement point on the measured object irradiated with the light beam from the light irradiating means. Things are used.
  • the mirror a mirror having a light reflecting surface formed on the surface is used.
  • the calculating means for example, the center of the measurement head is determined based on the coordinates of the measurement point on the imaging screen of the imaging means and the equation representing the plane representing the light flux emitted from the light irradiating means.
  • the first means for obtaining the coordinates of the measurement points in the coordinate system of, the coordinates of each measurement point obtained by the first means are converted into the coordinates of the world coordinate system based on the detection result by the position detection means, Second means for obtaining the three-dimensional shape of the real image of the DUT and the three-dimensional shape of the virtual image of the DUT reflected on the mirror, and third means for obtaining the equations in the world coordinate system representing the light reflecting surface of the mirror A fourth means for obtaining a three-dimensional shape symmetric with respect to the three-dimensional light reflecting surface for the virtual image based on the equation representing the light reflecting surface of the mirror; and Symmetric 3D shape , Which has a fifth means for determining the 3D shape of the object by combining the three-dimensional shape for the real image of the object to be measured is used.
  • Means for obtaining the equation representing the light reflecting surface of the mirror include, for example, means for measuring the coordinates of three or more points on the light reflecting surface by the stereo method using two cameras, and the obtained light.
  • Means for obtaining an equation representing the light reflecting surface based on the coordinates of three or more points on the reflecting surface is used.
  • Means for obtaining an equation representing the light reflecting surface of a mirror include, for example, a method in which an opaque thin plate is placed on the light reflecting surface and an image of the thin plate is taken using a measuring head to specify the flat surface of the thin plate.
  • a means for extracting the coordinates of three or more points in the coordinate system of the center of the measurement head, and the obtained coordinates of three or more points in the coordinate system of the center of the measurement head are obtained by the position detection means.
  • means for converting to coordinates in the world coordinate system, and based on the obtained coordinates of three or more points in the world coordinate system find the equation representing the plane of the thin plate in the world coordinate system The one provided with the means is used.
  • the light beam emitted from the light irradiating means of the measurement head is perpendicular to the light reflecting surface of the mirror. It is preferable to provide guide means for regulating the attitude of the measuring head so that the light is emitted. Preferably, the guide means regulates the moving path of the measuring head. It is preferable to provide drive means for moving the measurement head along the guide means.
  • a housing that covers the entire movement path of the measurement head may be provided.
  • the housing may include an opening for inserting and removing the device under test.
  • a lid made of an elastic member may be provided in the opening of the housing, and a cutout for inserting and removing the object to be measured may be formed in the lid.
  • the mirror a mirror composed of a light reflecting plate having a light reflecting surface formed on the surface and a transparent plate formed on the light reflecting plate may be used.
  • the calculation means calculates the coordinates of the measurement point on the imaging screen of the imaging means and the light beam emitted from the light irradiation means.
  • the first means for obtaining the coordinates of the measurement point in the coordinate system of the center of the measurement head based on the equation representing the plane to be represented, and the imaging means for the measurement point on the virtual image of the DUT reflected on the mirror The coordinate values of the measurement points on the imaging screen after correction taking into account the amount of refraction of the transparent plate of the mirror and the equation of the plane representing the luminous flux emitted from the light irradiating means are calculated as follows.
  • the third means for obtaining the three-dimensional shape of the real image of the device under test and the three-dimensional shape of the virtual image of the device under test reflected on the mirror the equation in the world coordinate system representing the light reflecting surface of the mirror is Fourth means for obtaining, a fifth means for obtaining a three-dimensional shape symmetrical with respect to the three-dimensional light reflecting surface for the virtual image based on the equation representing the light reflecting surface of the mirror, and three-dimensional light reflection for the virtual image
  • the one provided with the sixth means for obtaining the three-dimensional shape of the measured object by synthesizing the three-dimensional shape symmetrical with respect to the plane and the three-dimensional shape of the real image of the measured object is used.
  • the equation representing the light reflecting surface of the mirror for example, use two cameras to measure the coordinates of three or more points on the measuring table on which the mirror is mounted using the stereo method And a means for obtaining an equation representing the light reflecting surface based on the coordinates of three or more points on the measurement table obtained.
  • FIG. 1 is a perspective view illustrating an appearance of a shape measuring device according to the first embodiment.
  • FIG. 2 is a perspective view showing the measurement head.
  • FIG. 3 is a front view showing the measuring head.
  • FIG. 4 is a plan view showing the measuring head.
  • FIG. 5 is an explanatory diagram illustrating the measurement principle.
  • FIG. 6 is a flowchart illustrating the processing procedure in the first step.
  • FIG. 7 is an explanatory diagram illustrating a method of measuring the position of a measurement point using a measurement head.
  • FIG. 8 is a plan view showing another shape of the guide rail.
  • FIG. 9 is a perspective view illustrating an appearance of a shape measuring device according to the second embodiment.
  • FIG. 10 is an explanatory diagram showing the foot image obtained in the fourth step.
  • FIG. 11 is an explanatory diagram showing an image of the foot obtained in the fifth step.
  • FIG. 12 is a schematic configuration diagram illustrating another configuration of the shape measuring apparatus.
  • FIG. 13 is a schematic configuration diagram illustrating still another configuration of the shape measuring apparatus.
  • FIG. 14 is a schematic configuration diagram illustrating still another configuration of the shape measuring apparatus.
  • Figure 15 shows how light is refracted by a transparent glass plate when a mirror consisting of a light reflection plate with a light reflection surface formed on the surface and a transparent glass plate formed on the light reflection plate is used.
  • FIG. 16 illustrates the correction method when the slit light source and the image plane of the CCD camera are located on the front side of the transparent glass plate, and the DUT is located on the other side of the transparent glass plate.
  • FIG. 17 is a schematic diagram for explaining a method of correcting an equation representing a light beam when the object is irradiated.
  • FIG. 18 is a schematic diagram for explaining a method of calculating the distance R between the plane of the light beam output from the transparent glass plate and the plane of the original light beam incident on the transparent glass plate.
  • FIG. 19 is a schematic diagram for explaining a first method for correcting the coordinates of the measurement point on the image plane S.
  • FIG. 20 is a schematic diagram showing a plane Q including the optical axis ( Z axis) and perpendicular to the transparent glass plate.
  • FIG. 21 is a schematic diagram showing an intersecting line between a plane Q including the optical axis and perpendicular to the transparent glass plate and the image plane.
  • FIG. 22 is a schematic diagram showing an example of a case where an image observed on the image plane is corrected.
  • FIG. 23 is a diagram illustrating a second method for correcting the coordinates of a measurement point on the image plane S.
  • FIG. 24 is a schematic diagram showing a plane Q that includes the straight line L of FIG. 23 and is perpendicular to the transparent glass plate 400.
  • FIG. 25 is a schematic diagram showing an intersection of a plane Q including the straight line L of FIG. 23 and perpendicular to the transparent glass plate and the image plane.
  • FIG. 1 shows a schematic configuration of a shape measuring apparatus.
  • An oblong guide rail 204 is fixed to the measuring table 201, and a foot 100 as an object to be measured is placed in an area surrounded by the guide rail 204.
  • the support 201 is provided with a column 202 which can be attached to and detached from the base 201, and a horizontal bar 203 is mounted on the upper part thereof.
  • the shape measuring device consists of a measuring head 10 that can be moved on a guide rail 204 by a measurer, stereo cameras 21 and 22 attached to both ends of a horizontal bar 203, their control, and various calculations. And a control device 30 composed of a personal computer for performing such operations.
  • Each of the imaging lenses of the stereo cameras 21 and 22 is provided with a band-pass filter 23 for selectively transmitting the frequency band of light emitted by the marker 14 shown in FIG.
  • FIG. 2, FIG. 3, and FIG. 4 show a schematic configuration of the measuring head 10.
  • FIG. 2, FIG. 3, and FIG. 4 show a schematic configuration of the measuring head 10.
  • the measuring head 10 is a rectangular parallelepiped casing 11 with a front opening, one CCD camera 12 and a slit light source 13 housed in a casing 11, and the top of the casing 11. And a marker 14 composed of six LED light sources 14a to l4f provided in the LED.
  • a semiconductor laser is used as the slit light source 13 as the slit light source 13.
  • the six LED light sources 14a to 14f that compose the energy source 14 are not point-symmetrically arranged to specify the direction of the measurement head 10, but are lined with respect to the center line of the measurement head 10. It has a symmetrical arrangement. Here, five points of LED light sources 1 1b, 1 1c, lid, lie, and 1 1 ⁇ are arranged in a rectangular shape on the upper surface of casing 11 and LED light source 1 1a is located at the center of gravity of those five points. Be placed.
  • At least three LED light sources are sufficient as markers, but four or more LED light sources are used. This improves the measurement accuracy of the position and direction of the measurement head 10 in a least square manner.
  • the measurement head 10 is attached movably along the guide rail 204 by a support mechanism (not shown). Further, the measurement head 10 includes an encoder 16 for detecting the position of the measurement head 10 with reference to a predetermined position on the guide rail 204. The output of the encoder 16 is input to the control device 30. [A-3] Explanation of measurement principle of shape measurement device
  • Fig. 5 shows the measurement principle of the shape measuring device.
  • the coordinates of a measurement point A are measured using a measurement head 10 which can be moved on a guide rail 204 by a measurer.
  • Measured coordinates are coordinate system of center of measurement head
  • This coordinate system moves with the movement of the measurement head 10.
  • the shape of the device under test 100 is represented by a fixed coordinate system, and this coordinate system is referred to as a flat coordinate.
  • the shape measurement by this shape measuring device is executed by the following processing procedure. First, pre-processing is performed before actual shape measurement.
  • First step (pre-processing): The information on each measurement position of the measurement head 10 in the world coordinate system is associated with the output value of the encoder 16 at each measurement position of the measurement head 10. The data is stored in a memory (not shown) mounted on the control device 30.
  • the shape measurement processing consisting of the following steps 2 and 3 is performed.
  • the shape measurement process can be performed by removing the support 202 that supports the stereo force cameras 21 and 22 from the measurement table 201.
  • Second step After removing the supporting column 202 supporting the stereo cameras 21 and 22 from the measuring table 201, use the measuring head 10 to obtain the coordinates of the measuring point on the DUT 100 in the camera coordinate system. .
  • FIG. 6 is a flowchart illustrating the processing procedure of the first step.
  • the measurement head 10 is arranged at the reference position of the guide tray 204 (step S01), and the output value of the encoder 16 at that position is stored in the memory of the control device 30 (step S02).
  • the coordinates of the marker 14 provided on the measurement head 10 in the world coordinate system are measured by the stereo cameras 21 and 22. Since this position measurement method is well known as the stereo method, its description is omitted (step SO3).
  • the coordinates of the LED light sources 14a to 14f constituting the marker 14 in the camera coordinate system are described. Are respectively (Xi, yi, zi), and the coordinates in the world coordinate system of each of the LED light sources 14a to 14f measured by the stereo cameras 21 and 22 are respectively (Xi, Y i, Z i).
  • i is 1, 2 ' ⁇ 6.
  • Each LED light source 14a ⁇ Each coordinate (Xi, yi, zi) in the camera coordinate system of I4 ⁇ is known.
  • a rotation matrix R and a translation vector t representing the movement of the measurement head 10 are obtained as a matrix R and a vector t satisfying the following equation (2) (step SO4). Then, the obtained matrix R and vector t are stored in the memory in association with the output value of the encoder 16 previously stored in the memory (step SO5).
  • step S06S07 table data in which the output value of the encoder 16 is associated with the rotation matrix R and the translation vector t at that position is generated and stored in the memory of the control device 30.
  • FIG. 7 shows a method of measuring the position of the measurement point using the measurement head 10.
  • the camera coordinate system has the origin at the optical center of the CCD camera 12, the optical axis direction is the z axis, the horizontal direction of the CCD camera 12 is the X axis, and the vertical direction of the CCD camera 12 is Is a coordinate system with the y axis.
  • the image plane S of the CCD camera 12 is located at a focal distance f from the origin. That is, the image plane S is parallel to the X-y plane and z
  • the position measurement method itself using the measurement head 10 is a known measurement method called a light section method.
  • a predetermined point on a line on the surface of the device under test 100 on which the slit light source 13 irradiates the slit light is defined as a measurement point A.
  • the coordinates of this measurement point A in the camera coordinate system are (xy, z), the coordinates of the observation point A 'corresponding to the measurement point A on the image plane S are (xsysf), and a plane representing the slit light
  • F in the coordinates (xsysf) of the observation point A ′ is known as the focal length of the CCD camera 12, and (xsys) is obtained from the pixel position of the slit light observed on the image plane.
  • the equation of the plane representing the slit light is obtained by calibration of the measurement head 10. Therefore, (x, y, z) can be obtained by solving a simultaneous equation expressed by the following equation (3) where X, y, ⁇ , and ⁇ are unknown.
  • This processing is performed by the control device 30 based on the output of the CCD camera 12.
  • the third step first, based on the output of the encoder 16, the corresponding rotation matrix R and translation vector t are read from the memory of the control device 30.
  • the coordinates of the measurement point on the foot 100 in the camera coordinate system obtained in the third step are converted into the coordinates of the world coordinate system. I do.
  • the shape of the foot 100 is obtained as a set of coordinates (X, Y, Z) in the world coordinate system of the measurement points obtained each time.
  • the position of the measurement head 10 based on the predetermined position on the guide rail 204 and the rotation matrix R and the translation vector t corresponding to the position are described. Since the coordinates in the coordinate system of the center of the measurement head of the measurement point obtained by using the measurement head 10 are converted into the coordinates in the world coordinate system using the table data in which the Stereo cameras 21 and 22 are unnecessary for measurement. For this reason, it has a compact structure, and the user can avoid the camera's field of view and the entanglement of the cord. The shape of the object to be measured can be measured without being conscious.
  • the position of the measurement head 10 on the guide rail 204 is measured by the stereo cameras 21 and 22 in the pre-processing, so that the guide line 204 is used.
  • the shape of the object is not limited to a simple shape such as a straight line or a circle, but can be formed into an arbitrary curve shape such as an oval shape according to the shape of the object to be measured.
  • the guide rail 204 is formed in an elliptical shape, when a human foot is used as the object to be measured 100, the distance between the foot and the foot is substantially equal.
  • the measuring head 10 moves while maintaining the constant. As a result, the measurement error depending on the distance between the foot and the measuring head is made uniform, and a certain level of accuracy can be maintained for the entire shape data of the foot obtained by the measurement.
  • the measurement data of the toe and the heel are more detailed than the side of the foot. Can be obtained. Deformation due to hallux valgus appears on the toes and octopus deformation appears on the heels. The shape of this part is particularly important when measuring the shape of the foot. If the shape data of the toe part and the heel part can be obtained in detail, highly accurate foot shape measurement can be performed.
  • the stereo cameras 21 and 22 are configured to be detachable from the measuring table 201, if the trajectory of the guide rail 204 changes due to the installation or movement of the device, By installing or updating the table data with the stereo cameras 21 and 22 attached, the accuracy can be maintained and higher reliability can be provided.
  • the measuring head 10 is manually moved.
  • the measuring head 10 may be automatically moved by using a motor. This makes it possible to automatically measure the device under test.
  • the outputs of the stereo cameras 21 and 22 are used.
  • Information on the position of the measurement head in the world coordinate system, that is, the rotation matrix R and the translation vector t are obtained, but the trajectory of the guide rail 204 with respect to the measurement platform 201 is specified. Then, the rotation matrix R and the translation vector t can be obtained without using the stereo cameras 21 and 22.
  • the measurement head 10 may be different from the above-described embodiment as long as it measures the position of the measurement point on the DUT by an active stereo measurement method.
  • a spot light source may be used instead of the slit light source 13.
  • the marker 14 is not limited to the LED light sources 14a to 14f and may be any marker that can be extracted by a stereo camera.
  • a seal having high reflectance may be used instead of the LED light sources 14a to 14f.
  • the number of masquerades 14 may be three or more.
  • the track of the guide rail 204 was formed into an elliptical shape in order to measure the shape of the foot.
  • the present invention is not limited to this. Any shape may be used as long as it has a longitudinal direction in the direction toward it. For example, it may be a shape that divides a circle into four and connects the corners with a curve, or a shape with a constriction like a gourd.
  • the trajectory of the guide rail 204 is changed from the toe to the heel as shown in Fig. 8.
  • An elliptical shape that tapers toward the end may be used. In this case, since the measurement error depending on the object to be measured and the measurement head is further uniformed, a certain degree of accuracy or more can be maintained for the entire shape data of the foot obtained by the measurement.
  • FIG. 9 shows a schematic configuration of the shape measuring apparatus.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • a flat mirror 205 is arranged in a region surrounded by the guide rail 204.
  • a stainless steel mirror 205 having a light reflecting surface on its surface is used.
  • a foot 100 as an object to be measured is placed on the stainless steel mirror 205.
  • the measuring head 10 is attached to the guide rail 204 by a support mechanism (not shown), so that the light beam emitted from the slit light source 13 is perpendicular to the stainless mirror 205.
  • the attitude of the measurement head 10 is regulated so that it is emitted along the surface.
  • the shape measurement by this shape measuring device is executed by the following processing procedure.
  • First step (Pre-processing 1): The information on each measurement position of the measurement head 10 in the world coordinate system is associated with the output value of the encoder 16 at each measurement position of the measurement head 10. Then, it is stored in a memory (not shown) mounted on the control device 30.
  • this first step is the same as the first step of the first embodiment, (Refer to FIG. 6.) A detailed description thereof will be omitted.
  • the stainless steel mirror 205 provided on the measuring table 201 is covered with an opaque thin plate, and the coordinates on the thin plate in the world coordinate system are measured by the stereo method.
  • the equation of the plane there are at least three points on the flat plate.
  • the stainless steel mirror 205 instead of covering the stainless steel mirror 205 with an opaque thin plate and measuring it, at least three markers are provided on the stainless steel mirror 205 and the positions of the mirrors are measured, and the stainless steel mirror 205 is measured.
  • the equation of the plane of 05 may be calculated.
  • the stereo cameras 21 and 22 are not used. The measurement is carried out by removing from the measuring table 201 force.
  • step 5 Since the fourth step is the same as the third step of the first embodiment, a detailed description thereof will be omitted.
  • a real image I generated from a measurement point where the light beam from the slit light source 13 is directly applied to the foot 100, (FIG. 0 is shown by a broken line) and a virtual image l (shown by a solid line in FIG. 10) generated from a measurement point where the light beam from the slit light source 13 is irradiated on the foot 100 via the stainless steel mirror 205.
  • An image of foot 100 consisting of c is generated [B-2-5] Explanation of step 5
  • a real image I, of the foot 100 shown by a broken line in FIG. 10 and a solid line shown in FIG. and the virtual image I 2 feet 1 00 reflected in a stainless mirror one 20 5 indicated by is identified.
  • the image obtained in this way is based on the image I 2 ′ generated based on the virtual image I 2 reflected on the stainless steel mirror 205 by the arch of the foot 100.
  • the shape of the foot 100 has been reproduced more faithfully.
  • the stainless steel mirror 205 is disposed on the upper surface of the measuring table 201, and based on the virtual image reflected on the stainless steel mirror 205 on the real image of the foot 100 as an object to be measured. Because the image generated by It is possible to supplement the image of the concave part such as the arch of the foot, and to generate an appropriate three-dimensional shape of the foot 100.
  • the posture of the measurement head 10 is regulated such that the light beam emitted from the slit light source 13 is emitted along a plane perpendicular to the stainless steel mirror 205. Therefore, at the time of measurement, the luminous flux emitted directly from the slit light source 13 to the foot 100 and the luminous flux once reflected by the stainless steel mirror 205 and then applied to the foot 100 are Will overlap. Accordingly, the light beam reflected by the stainless steel mirror 205 does not generate an erroneous image, and the measurement can be performed with high accuracy.
  • the stereo cameras 21 and 22 are removed from the measuring table 201 to measure the object to be measured. Therefore, the size of the measurement device can be reduced. Even if the trajectory of the guide rail 204 changes due to the movement of the measuring device, the accuracy can be maintained by installing the stereo cameras 21 and 22 and updating the table data.
  • the upper surface of the measuring table 201 is made to be a mirror surface
  • the stainless mirror 205 having an exposed light reflecting surface is used, so that the light reflected on the reflecting surface is used.
  • the measurement can be performed with high accuracy without causing refraction.
  • the measuring head 10 is manually moved by the measurer in the above embodiment, the measuring head 10 is automatically moved along the guide hole 204 using a motor. May be moved. With this configuration, the measurement object can be automatically measured without the measurer touching the measurement head 10. Furthermore, when the measurement head 10 is moved by a motor, the operator does not need to touch the measurement head 10 while placing the DUT and performing the measurement. I'll show you Thus, the entire measurement device can be covered with the housing 206. In this way, disturbance light such as illumination light can be blocked, so that accurate measurement can be performed.
  • an opening 207 may be provided at the upper part of the housing 206.
  • the opening 207 is closed by an elastic plate 208 made of an elastic member such as rubber, and a structure such that a measured object such as a foot can be inserted through a slit 209 provided in the elastic plate 208.
  • disturbance light such as illumination light does not enter from the gap between the opening 207 and the object to be measured, and accurate measurement can be performed.
  • the measuring head 10 is moved along the guide rail 204 .
  • the measuring head 10 can be freely moved. It may be configured.
  • the processing in steps S 03 and S 04 in the first step is performed for each measurement position of the force measurement head 10.
  • the stainless steel mirror 205 is not limited to a position parallel to the upper surface of the measuring table 201, but may be an arbitrary one such as a position perpendicular to the upper surface of the measuring table 201 as shown by a broken line in FIG. May be arranged at the position. In this case, if the second step is performed every time the position of the stainless steel mirror 205 is changed, appropriate measurement can be performed regardless of the position of the stainless steel mirror 205. This makes it possible to arbitrarily change the position of the stainless steel mirror 205 in accordance with the size and shape of the object to be measured 100. An appropriate three-dimensional shape can be measured with a small number of measurement procedures.
  • the mirror 205 is not limited to a stainless steel mirror, and various members having a high light reflectance may be used.
  • information on the position of the measurement head 10 in the world coordinate system that is, the rotation matrix R and the translation vector t are obtained using the outputs of the stereo cameras 21 and 22.
  • the rotation matrix R and the translation vector t can be obtained without using the teleo camera 2 1 2 2.
  • the head 1 0 to the measurement may D for example may be different from the embodiment described above, Sri Tsu preparative source 1 3 Instead, a spot light source may be used.
  • FIG. A mirror 300 composed of a light reflecting plate 301 having a light reflecting surface formed on the surface thereof and a transparent glass plate 302 formed on the light reflecting plate 301, as shown in FIG. Can be used instead of 5.
  • the light beam emitted from the slit light source 13 in the measurement head 10 enters from the upper surface of the mirror 300 as shown by the arrow L1, passes through the transparent glass plate 302, and passes through the transparent glass plate 302.
  • the light is reflected by the light reflecting plate 301.
  • the reflected light passes through the transparent glass plate 302 again from the upper surface of the mirror 300 as shown by the arrow L2, and irradiates the object 100 to be measured. Since the luminous flux bends when passing through the transparent glass plate 302, the equation representing the luminous flux when irradiating the device under test 100 is a X + b i.y + cz + d,. It is necessary to correct 0 in consideration of the bending of light.
  • the light beam reflected from the device under test 100 enters from the upper surface of the mirror 300, passes through the transparent glass plate 302, and passes through the transparent glass plate 302. Is reflected by This reflected light passes through the transparent glass plate 302 again, is emitted from the upper surface of the mirror 300, and enters the CCD camera 12. Therefore, the image plane S of the CCD camera 1 2
  • the coordinates (xs, ys, f) of the coordinates of the measurement point (coordinates at the observation point) (xs, ys, f) above need to be corrected in consideration of the bending of light.
  • the thickness of the light reflector 301 in the mirror 300 is extremely thin, and the equation in the world coordinate system representing the upper surface of the light reflector 301 in the mirror 300 is a M X + b M Y + CM
  • ⁇ + d M 0
  • an equation in the world coordinate system representing the surface of the measuring table 201 on which the mirror 300 is placed is obtained.
  • the equation of the surface of the measuring table 201 can be obtained as follows.
  • the measuring table 201 is covered with an opaque thin plate, and the coordinates on the flat plate in the world coordinate system are measured by the stereo method. Then, based on the coordinates of the obtained point on the thin plate in the world coordinate system, an equation representing the surface of the measuring table 201 is calculated. In calculating the equation of the plane, it is sufficient that there are at least three points on the thin plate.
  • the measuring table 201 instead of covering the measuring table 201 with an opaque thin plate and making measurements, at least three markers are provided on the measuring table 201, and the position of the force is measured, so that the equation of the surface of the measuring table 201 can be calculated. You may make it calculate.
  • the luminous flux emitted from the slit light source 13 irradiates the DUT 100 after passing through the transparent glass plate 302 twice. . Therefore, when the light beam emitted from the slit light source 13 is reflected by the mirror 300 and irradiates the device under test 100, the bending characteristic of the light is determined by the thickness of the mirror 300 (more precisely, the thickness of the transparent glass plate 302).
  • V be V, as shown by arrows L l and L 3 in Figure 15.
  • the bending characteristic is equivalent to the bending characteristic when light is applied to the DUT 100 'on the opposite side of the virtual transparent glass plate through the virtual transparent glass plate having a thickness of 2 v.
  • the bending characteristic of the light is determined by the thickness of the mirror 300 (more precisely, the thickness of the transparent glass plate 302).
  • V is equivalent to the bending characteristic when light is applied to the CCD camera on the other side of this virtual transparent glass plate through a virtual transparent glass plate with a thickness of 2 V.
  • the slit light source 13 and the image plane S of the CCD camera are located in front of the transparent glass plate 400 having a thickness of w, and A correction method in the case where 100 is located on the other side of the transparent glass plate 400 will be described. Then, a description will be added of the difference from the correction method when the mirror 300 is mounted on the measurement table 201 as shown in FIG.
  • the distance U between the plane of the light beam output from the transparent glass plate 400 and the plane of the original light beam incident on the transparent glass plate 400 is expressed by the following equation (5) from Fig. 17 .
  • a method of correcting (xs, ys) in coordinates (coordinates at an observation point) (Xs, ys, f) of the measurement point on the image plane S of the CCD camera 12 will be described. There are two ways to do this.
  • the first method is to measure the light on the image plane S, assuming that the light reflected from the DUT 100 (hereinafter referred to as reflected light) is all incident on the image plane S of the CCD camera 12 vertically. This is a method of correcting (xs, ys) at the point coordinates (xs, ys, f).
  • the second method is based on the assumption that the light reflected from the DUT 100 (hereinafter referred to as reflected light) is incident on the CCD camera 12 toward the focal position (camera coordinate origin) of the CCD camera 12, In this method, (xs, ys) at the coordinates (xs, ys, f) of the measurement point on the image plane S is corrected.
  • reflected light light reflected from the device under test 100
  • the linear equation of the optical axis (z-axis) of the CCD camera 12 in the camera coordinate system is calculated using the rotation R and the translation t of the camera coordinates obtained in the first step.
  • Convert to (2) the world coordinate system of the optical axis and the straight line equation of (z-axis), the equation of the transparent glass plate 400 in the world coordinate system (a M 'X + b M ' Y + CM 'Z + d M' 0) and the Based on this, the angle (incident angle) ⁇ 1 between the transparent glass plate 400 and the optical axis (z-axis) of the CCD camera 12 is determined, and ⁇ 2 in FIG. 19 is determined from Snell's law.
  • a plane Q including the optical axis (z-axis) in the vertical coordinate system and perpendicular to the transparent glass plate 400 is represented. Is transformed into an equation in the camera coordinate system.
  • an equation representing a plane Q including the optical axis in the camera coordinate system and perpendicular to the transparent glass plate 400, and an equation representing the image plane S in the camera coordinate system are as follows.
  • the equation of the line of intersection between the plane Q including the optical axis and perpendicular to the transparent glass plate 400 and the image plane S is obtained based on the following equation.
  • the coordinates ( xs , ys , f) of the observation point corresponding to the measurement point on the image plane S used in the third step are calculated using the correction values (xl, y1). to correct.
  • the coordinates (xs ', ys', f) of the observation point corresponding to the measurement point on the image plane S (xs, ys, f) after correction are (xs ', ys', f)
  • xs 'and ys' are expressed by the following equations.
  • FIG. 22 shows an example in which an image observed at S on the image plane is corrected.
  • the dashed line shows the image observed on the image plane S
  • the solid line shows the image after correction.
  • xs' xs + xl,
  • reflected light light reflected from the device under test 100

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

明 細 書 形状測定装置 く技術分野〉
本発明は、 3次元的形状を測定する形状測定装置に関し、 特に、 足の形を測定 するのに適した形状測定装置に関する。
<背景技術 >
一般に、 靴のサイズは通常かかとから指先までの長さで表現されるが、 人の足 形状は、 長さだけでなく、 甲の高さ、 足の幅など、 個人により様々である。 一人 一人の足の形状に応じた靴を作ろうとする場合、 足の 3 次元形状を測定するこ とが必要となるが、 現状では、 メジャーを使って足長、 足幅、 足位 (足周り) 等 の限られた部位の大きさを測定するにとどまっている。
一方、 スポッ ト光またはスリ ッ ト光を被測定物に照射し、 被測定物の表面に観 察される光像の位置から 3次元形状を復元する能動ステレオ型の形状測定装置が 知られている。 この形状測定装置は、 被測定物の表面形状を測定するために、 ス ボット光またはスリット光を回転ミラーによって走査させるものであり、 雑誌
「計測と制御」 (1999 Vol. 38 No. 4 P285-P288) には、 このような形状測定装置 を用いて、 足の形状を測定するシステムが記載されている。
このシステムにおいては、 1個の形状測定装置では、 装置から観察される部分 の形状のみ測定可能であり、 その反対側などの隠れている部分の形状を測定する ことができないため、 1 2個の形状測定装置を足の周囲に配置し、 これら 1 2個 の形状測定装置による測定結果をコンピュータ上で合成することにより足全体の 形状を測定している。
しかしながら、 このシステムでは、 複数の形状測定装置を足の周囲に配置する ため、 システムが大型化し、 且つ高価となるだけでなく、 複数の形状測定装置に よる測定結果を精度良く合成することが困難になるという問題がある。 これに対し、 本願出願人は、 コンパク トな測定ヘッドを手に把持し、 被測定物 の周りで測定へッドを移動させることにより測定を行う形状測定装置を既に開発 している (特開 2 0 0 0 - 3 9 3 1 0号参照) 。 この形状測定装置では、 測定へ ッドに取り付けられた複数のマ一力を 2台のカメラによって上方から撮像するこ とにより、 測定へッドの位置及び向きを測定している。
この提案では、 測定へッドの移動範囲の全てを 2台の上方カメラから撮影する 必要があるため、 カメラの共通視野を広く とるために測定対象から離れた位置に 2台のカメラを設置することとなり結果的に大きな設置スペースが必要となる。 また、 測定ヘッドのマーカの一部が 2台のカメラの共通視野から外れたり、 被測 定物ゃ測定へッドを把持する測定者の手により隠れてしまったりした場合、 被測 定物の形状測定が出来なくなるため、 測定者は、 常時、 2台のカメラによって測 定へッドのマ一力が撮像されるように注意を払わなければならないという煩わし さ力 めった。
この発明は、 コンパク トな装置構成で、 使用者がカメラの視野を意識すること なく被測定物の形状測定を行うことができ、 使用感を向上させた形状測定装置を 提供することを目的とする。
また本発明は、 少ない測定手順で適切な 3次元形状を測定することができる形 状測定装置を提供することを目的とする。 <発明の開示〉
この発明による第 1の形状測定装置は、 ガイドレールに沿って移動せしめられ る測定へッド、 ガイ ドレール上の所定位置を基準として、 ガイ ドレール上での測 定へッドの位置を検出する第 1位置検出手段、 ガイ ドレ一ル上の測定へッドのヮ —ルド座標系での位置を検出する第 2位置検出手段、 ガイ ドレール上の所定位置 を基準としたガイ ドレール上の測定へッドの各位置と、 対応するワールド座標系 での位置とを、 関連付けて記憶装置に記憶する手段、 ガイ ドレール上の各測定位 置において、 第 1位置検出手段によって測定へッドの位置を検出するとともに、 測定へッドを用いて、 測定へッ ド中心の座標系における被測定物上の測定点の座 標を求める測定手段、 ならびにガイ ドレール上の各測定位置において求められた 測定へッド中心の座標系における被測定物上の測定点の座標を、 記憶装置に記憶 されているガイ ドレール上の各測定位置に対応するワールド座標系での位置に基 づいて、 ワールド座標系の座標に変換する手段を備えていることを特徴とする。 このように測定へッドの移動をガイ ドレール上の軌道に制限すると、 ガイ ドレ ール上の所定位置を基準としたガイ ドレール上の測定へッ ドの各位置と、 測定へ ッドのワールド座標系での位置とが一義的に対応付けられる。 このため、 ガイ ド レール上の所定位置を基準としたガイ ドレール上の測定へッドの各位置と、 対応 するワールド座標系での位置とを、 関連付けて記憶装置に記憶しておけば、 形状 測定の際には、 ガイ ドレール上の所定位置を基準としたガイドレール上の測定へ ッドの位置に対応する測定へッドのワールド座標系での位置を記憶装置から読み 出して、 測定へッドを用いて求められた測定点の測定へッド中心の座標系におけ る座標をワールド座標系の座標に変換できる。 そして、 測定ヘッドを、 ガイ ドレ ールに沿って 1周させることにより、 被測定物の形状を測定できる。
測定ヘッドとしては、 たとえば、 被測定物に対して光束を照射する光照射手段、 および光照射手段からの光束が照射される被測定物上の測定点を撮像する撮像手 段を含んでいるものが用いられる。
測定へッドは、 ガイドレールに沿って移動するための駆動手段を備えているこ とが好ましい。
第 2位置検出手段としては、 たとえば、 所定の位置から測定ヘッドを撮像する 測定ヘッド撮像手段、 および測定ヘッド撮像手段の撮像画像に基づいて、 ワール ド座標系での測定へッドの位置を検出する手段を備えているものが用いられる。 さらに、 測定へッド撮像手段によって測定へッドのワールド座標系での位置を 計測しているため、 ガイ ドレールの形状を直線や円など単純な形状に限ることな く自由な形状にすることが可能となる。
また、 測定ヘッド撮像手段を、 形状測定装置本体に対して着脱可能に構成する ことが好ましい。 このようにすると、 被測定物の形状測定の際には測定ヘッド撮 像手段を形状測定装置本体から取り外すことができる。
また、 測定ヘッドは、 ガイ ドレールに沿って移動するための駆動手段を備えて いることが好ましい。 このようにすると、 測定ヘッドをガイドレールに沿って自 動的に走行させることができるので、 被測定物の形状測定を自動的に行なうこと ができるようになる。
また、 ガイ ドレールとしては、 被測定物との距離が略一定となる形状をなして いるものを用いることができる。 このようなガイ ドレールを用いると、 被測定物 との間隔を略一定に保ちながら測定へッドが移動するため、 被測定物と測定へッ ドとの間の距離に依存する測定誤差を均一化させることができる。
被測定物が人間の足である場合には、 ガイ ドレールとして、 足の踵からつま先 に至る方向に長軸を有する長円形状をなしているものを用いることができる。 こ のようなガイ ドレールを用いると、 足との間隔を略一定に保ちながら測定へッド が移動するため、 被測定物としての足と測定へッドとの間の距離に依存する測定 誤差を均一化させることができる。
また、 ガイ ドレールとして、 足のつま先から踵に向かって先細りする形状をな しているものを用いてもよい。 このようなガイドレールを用いると、 つま先から 踵に向かって先細りする足の形状に沿って測定へッドが移動するため、 被測定物 と測定へッドとの間に依存する測定誤差を均一化させることができる。
この発明による第 2の形状測定装置は、 測定台上に載置された被測定物の形状 を測定する測定ヘッド、 測定ヘッドの位置を検出する位置検出手段、 ならびに測 定へッドと位置検出手段との出力に基づレ、て被測定物の 3次元形状を求める演算 手段を備えた形状測定装置であって、 被測定物を映す鏡を測定台上に配置したこ とを特徴とする。
位置検出手段としては、 たとえば、 2台のカメラを用いてステレオ法により測 定へッドの位置を検出するものが用いられる。
測定ヘッドとしては、 たとえば、 被測定物に対して光束を照射する光照射手段、 および光照射手段からの光束が照射される被測定物上の測定点を撮像することに より、 被測定物の実像と鏡に映った被測定物の虚像とを撮像する撮像手段を含ん でいるものが用いられる。
鏡としては、 表面に光反射面が形成されているものが用いられる。 この場合に は、 演算手段としては、 たとえば、 撮像手段の撮像画面上での測定点の座標と、 光照射手段から出射された光束を表す平面を表す方程式とに基づいて、 測定へッ ド中心の座標系での測定点の座標を求める第 1手段、 第 1手段によって求められ た各測定点の座標を、 位置検出手段による検出結果に基づいて、 ワールド座標系 の座標に変換することにより、 被測定物の実像に対する 3次元形状と、 鏡に映つ た被測定物の虚像に対する 3次元形状とを求める第 2手段、 鏡の光反射面を表す ワールド座標系での方程式を求める第 3手段、 鏡の光反射面を表す方程式に基づ いて、 虚像に対する 3次元形状の光反射面に対して対称な 3次元形状を求める第 4手段、 ならびに虚像に対する 3次元形状の光反射面に対して対称な 3次元形状 と、 被測定物の実像に対する 3次元形状とを合成することにより被測定物の 3次 元形状を求める第 5手段を備えているものが用いられる。
鏡の光反射面を表す方程式を求める手段としては、 たとえば、 2台のカメラを 用いてステレオ法により光反射面上の 3点以上の点の座標を測定する手段、 およ び得られた光反射面上の 3点以上の点の座標に基づいて光反射面を表す方程式を 求める手段を備えているものが用いられる。
鏡の光反射面を表す方程式を求める手段としては、 たとえば、 光反射面上に不 透明な薄板を載せた状態で、 測定ヘッドを用いて薄板を撮像し、 薄板の平面を特 定するための 3点以上の点の測定へッド中心の座標系での座標を抽出する手段、 得られた測定へッド中心の座標系での 3点以上の点の座標を、 位置検出手段によ る検出結果に基づいて、 ワールド座標系での座標に変換する手段、 および得られ たワールド座標系での 3点以上の点の座標に基づいて、 ワールド座標系での薄板 の平面を表す方程式を求める手段を備えているものが用いられる。
測定へッドの光照射手段から照射される光束が、 鏡の光反射面に対して垂直に 出射されるように、 測定ヘッドの姿勢を規制するガイ ド手段を設けることが好ま しい。 ガイ ド手段は、 測定ヘッドの移動経路を規制するものであることが好まし レ、。 測定へッドをガイ ド手段に沿って移動させるための駆動手段を設けることが 好ましい。
測定ヘッドの移動経路全体を覆う筐体を設けてもよい。 筐体が被測定物を挿脱 するための開口部を備えていてもよい。 筐体の開口部に弾性部材からなる蓋部を 設け、 蓋部に被測定物を挿脱するための切込部を形成してもよし、。
鏡として、 表面に光反射面が形成された光反射板と、 光反射板上に形成された 透明板とからなるものを用いてもよい。 この場合には、 演算手段としては、 たと えば、 被測定物の実像上の測定点に対しては、 撮像手段の撮像画面上での測定点 の座標と、 光照射手段から出射された光束を表す平面を表す方程式とに基づいて、 測定へッド中心の座標系での測定点の座標を求める第 1手段、 鏡に映った被測定 物の虚像上の測定点に対しては、 撮像手段の撮像画面上での測定点の座標値を鏡 の透明板の屈折量を考慮して補正した後の座標値と、 光照射手段から出射された 光束を表す平面の方程式を鏡の透明板の屈折量を考慮して補正した後の方程式と に基づいて、 測定ヘッド中心の座標系での測定点の座標を求める第 2手段、 第 1 手段および第 2手段によって求められた各測定点の座標を、 位置検出手段による 検出結果に基づいて、 ワールド座標系の座標に変換することにより、 被測定物の 実像に対する 3次元形状と、 鏡に映った被測定物の虚像に対する 3次元形状とを 求める第 3手段、 鏡の光反射面を表すワールド座標系での方程式を求める第 4手 段、 鏡の光反射面を表す方程式に基づいて、 虚像に対する 3次元形状の光反射面 に対して対称な 3次元形状を求める第 5手段、 ならびに虚像に対する 3次元形状 の光反射面に対して対称な 3次元形状と、 被測定物の実像に対する 3次元形状と を合成することにより被測定物の 3次元形状を求める第 6手段を備えているもの が用いられる。
鏡の光反射面を表す方程式を求める手段としては、 たとえば、 2台のカメラを 用いてステレオ法により、 鏡が載置された測定台上の 3点以上の点の座標を測定 する手段、 および得られた測定台上の 3点以上の点の座標に基づいて光反射面を 表す方程式を求める手段を備えているものが用いられる。
測定へッドの光照射手段から照射される光束が、 鏡の光反射面に対して垂直に 出射されるように、 測定へッドの姿勢を規制するガイ ド手段を設けることが好ま しレ、。
<図面の簡単な説明〉
図 1は、 第 1の実施の形態における形状測定装置の外観を表す斜視図である。 図 2は、 測定ヘッ ドを示す斜視図である。
図 3は、 測定ヘッドを示す正面図である。
図 4は、 測定ヘッドを示す平面図である。
図 5は、 測定原理を説明する説明図である。
図 6は、 第 1ステップにおける処理手順を説明するフローチヤ一トである。 図 7は、 測定へッドによる測定点の位置測定方法を説明する説明図である。 図 8は、 ガイ ドレールの他の形状を示す平面図である。
図 9は、 第 2の実施の形態における形状測定装置の外観を表す斜視図である。 図 1 0は、 第 4ステップで得られる足の像を示す説明図である。
図 1 1は、 第 5ステップで得られる足の像を示す説明図である。
図 1 2は、 形状測定装置の他の構成を表す概略構成図である。
図 1 3は、 形状測定装置のさらに他の構成を表す概略構成図である。
図 1 4は、 形状測定装置のさらに他の構成を表す概略構成図である。
図 1 5は、 表面に光反射面が形成された光反射板と光反射板上に形成された透 明ガラス板とからなる鏡を用いた場合に、 透明ガラス板で光が屈折する様子を示 す模式図である。
図 1 6は、 スリット光源および C C Dカメラの画像面が、 透明ガラス板の手前 側に位置しており、 被測定物が透明ガラス板の向こう側に位置している場合にお ける補正方法を説明するための模式図である。 図 1 7は、 被測定物に照射される際の光束を表す方程式の補正方法を説明する ための模式図である。
図 1 8は、 透明ガラス板から出力される光束の平面と、 透明ガラス板に入射さ れる元の光束の平面との距離 Rの算出方法を説明するための模式図である。
図 1 9は、 画像面 S上での測定点の座標を補正するための第 1方法を説明する ための模式図である。
図 2 0は、 光軸 (Z軸) を含みかつ透明ガラス板に垂直な平面 Qを示す模式図 である。
図 2 1は、 光軸を含みかつ透明ガラス板に垂直な平面 Qと、 画像面との交線を 示す模式図である。
図 2 2は、 画像面上で観察された画像を補正した場合の例を示す模式図である 図 2 3は、 画像面 S上での測定点の座標を補正するための第 2方法を説明する ための模式図である。
図 2 4は、 図 2 3の直線 Lを含みかつ透明ガラス板 4 0 0に垂直な平面 Qを示 す模式図である。
図 2 5は、 図 2 3の直線 Lを含みかつ透明ガラス板に垂直な平面 Qと、 画像面 との交線を示す模式図である。
<発明を実施するための最良の形態〉
〔A〕 第 1の実施の形態の説明
以下、 図 1〜図 8を参照して、 この発明の第 1の実施の形態について説明する。 〔A— 1〕 形状測定装置の概略構成の説明
図 1は、 形状測定装置の概略構成を示している。
測定台 2 0 1には、 長円形状のガイ ドレール 2 0 4が固定されており、 そのガ ィ ドレ一ノレ 2 0 4で囲まれる領域に被測定物としての足 1 0 0が載せられている。 また、 台 2 0 1には、 台 2 0 1に対して脱着可能な支柱 2 0 2が取り付けられて おり、 その上部には、 水平バー 2 0 3が取り付けられている。 形状測定装置は、 測定者によってガイ ドレール 204上を移動せしめられる測 定へッド 1 0と、 水平バ一 203の両端部に取り付けられたステレオカメラ 2 1、 22と、 それらの制御、 各種演算等を行うパーソナルコンピュータからなる制御 装置 30とを備えている。 各ステレオカメラ 21、 22の撮像レンズには、 図 2 に示すマーカ 14が放つ光の周波数帯を選択的に透過するバンドパスフィルタ 2 3が取り付けられている。
CA-2] 測定ヘッドの概略構成の説明
図 2、 図 3および図 4は、 測定ヘッド 1 0の概略構成を示している。
測定へッド 1 0は、 直方体状で前方開口のケ一シング 1 1と、 ケーシング 1 1 内に収納された 1台の CCDカメラ 1 2及びスリット光源 1 3と、 ケ一シング 1 1の上面に設けられた 6つの LED光源 14 a〜l 4 f からなるマーカ 14とを 備えている。 スリ ッ ト光源 1 3としては、 半導体レーザが用いられている。
マ一力 14を構成する 6つの L E D光源 14 a〜 14 f は、 測定へッ ド 10の 方向を特定するために、 点対称な配置とせず、 測定へッド 1 0の中心線に対し線 対称な配置となっている。 ここでは、 ケーシング 1 1の上面に LED光源 1 1 b、 1 1 c、 l i d, l i e, 1 1 ίの 5点が長方形をなすように配置され、 それら 5点の重心に LED光源 1 1 aが配置される。
なお、 3次元空間中での測定へッド 1 0の位置及び方向を測定するためには、 マーカとして少なく とも 3個の LED光源があれば十分であるが、 4個以上の L E D光源を用いることにより、 測定へッド 1 0の位置及び方向の測定精度が最小 2乗的に向上する。
測定へッド 1 0は、 図示しない支持機構によって、 ガイ ドレ一ノレ 204に沿つ て移動可能に取り付けられている。 また、 測定へッド 1 0は、 ガイ ドレ一ル 20 4上における所定位置を基準とした測定へッ ド 1 0の位置を検出するためのェン コーダ 1 6を備えている。 エンコーダ 1 6の出力は、 制御装置 30に入力される。 〔A— 3〕 形状測定装置の測定原理の説明
図 5は、 形状測定装置の測定原理を示している。 測定者によってガイ ドレール 2 0 4上を移動せしめられる測定へッド 1 0を用 いてある測定点 Aの座標を測定する。 測定された座標を測定へッド中心の座標系
(以下、 カメラ座標系という) における座標 (X , y , z ) で表す。 この座標系 は、 測定へッド 1 0の移動とともに移動する座標系である。
一方、 被測定物 1 0 0の形状は、 固定した座標系で表され、 この座標系をヮ一 ルド座標と呼ぶ。 測定へッ ド 1 0によつて測定された測定点のヮ一ルド座標系に おける座標を (X, Y , Z ) とする。 被測定物 1 0 0の形状はワールド座標系で 記述する必要があるため、 測定へッ ド 1 0によって測定された測定点 Aの測定へ ッド中心の座標系における座標 (x, y, z ) を、 ワールド座標系に変換する。 この変換は、 測定へッド 1 0の移動を表す回転行列 Rと並進べク トル t とを用い て、 次式 (1 ) に基づいて行われる。
Figure imgf000012_0001
したがって、 ヮ一ルド座標系における測定ヘッド 1 0の位置及び方向を、 回転 行列: Rと並進べク トル t として求めることで、 測定へッド中心の座標系における 座標 (X , y, z ) を、 ワールド座標系に変換することができる。
〔 A— 4〕 形状測定装置による形状測定処理手順の説明
この形状測定装置による形状測定は、 次のような処理手順によって実行される。 まず、 実際の形状測定を行う前に、 事前処理を行う。
( 1 ) 第 1ステップ (事前処理) : ワールド座標系における測定へッド 1 0の各 測定位置に関する情報を、 測定へッ ド 1 0の各測定位置におけるエンコーダ 1 6 の出力値と対応付けて、 制御装置 3 0に搭載されたメモリ (図示省略) に格納す る。
事前処理の後に以下のステップ 2および 3からなる形状測定処理を行なう。 形 状測定処理は、 ステレオ力メラ 21、 22を支持する支柱 202を測定台 201 から取り外して行なうことができる。
(2) 第 2ステップ: ステレオカメラ 21、 22を支持する支柱 202を測定台 201から取り外した後、 測定ヘッド 10を用いて、 カメラ座標系における被測 定物 100上の測定点の座標を求める。
(3) 第 3ステップ: ワールド座標系における測定へッド 10の位置に関する情 報に基づいて、 カメラ座標系における被測定物上の測定点の座標を、 ワールド座 標系における座標に変換する。
以下、 これら各ステップについて説明する。
〔A— 4— 1〕 第 1ステップの説明
図 6は、 第 1ステップの処理手順を説明するフ口一チヤ一トである。
まず、 測定へッド 10をガイ ドレーノレ 204の基準位置に配置して (ステップ S 01) 、 その位置におけるエンコーダ 16の出力値を制御装置 30のメモリに 格納する (ステップ S 02) 。
次に、 測定へッド 10に設けられたマーカ 14のワールド座標系における座標 を、 ステレオカメラ 21、 22によって測定する。 この位置測定方法は、 ステレ ォ法としてよく知られているため、 その説明を省略する (ステップ S O 3) 次に、 マーカ 14を構成する各 LED光源 14 a〜 14 f のカメラ座標系の座 標をそれぞれ (X i, y i , z i ) とし、 また、 ステレオカメラ 21、 22によ つて測定された各 LED光源 14 a〜l 4 f のワールド座標系における座標をそ れぞれ (X i, Y i , Z i ) とする。 但し、 iは、 1、 2'··6である。 各 LED 光源 14 a〜: I 4 ίのカメラ座標系の各座標 (X i, y i , z i ) は、 既知であ る。
測定へッ ド 10の移動を表す回転行列 Rと並進べク トル tを、 次式 (2) を満 足する行列 Rとベク トル tとして求める (ステップ S O 4) 。 そして、 求めた行 列 Rとべク トル tとを、 先にメモリに格納しておいたエンコーダ 16の出力値と 対応付けてメモリに格納する (ステップ S O 5) 。 mm r'"£ [(Xi - xi)2 + (Yi - yif + (Zi - zi)2 ]
here (2
Figure imgf000014_0001
そして、 測定へッド 1 0をガイ ドレ一ル 204に沿って移動させ、 全ての測定 位置について上述したステップ S 02 S 05の処理を繰り返す (ステップ S 0 6 S 07) 。 これにより、 エンコーダ 1 6の出力値とその位置における回転行 列 R及び並進べク トル tを対応付けたテーブルデータが生成され、 制御装置 30 のメモリに格納される。
〔A— 4一 2〕 第 2ステップについての説明
図 7は測定へッド 10による測定点の位置測定方法を示している。
図 7に示すように、 カメラ座標系とは、 CCDカメラ 1 2の光学中心を原点と し、 光軸方向を z軸、 CCDカメラ 1 2の水平方向を X軸、 CCDカメラ 1 2の 垂直方向を y軸とする座標系である。 CCDカメラ 1 2の画像面 Sは、 原点から 焦点距離 f の位置に存在する。 つまり、 画像面 Sは、 X— y平面に平行でかつ z
= f である平面である。
測定へッド 10による位置計測方法自体は、 光切断法と呼ばれる公知の測定方 法である。 被測定物 100の表面上におけるスリ ッ ト光源 1 3からのスリ ッ ト光 が照射されている線上の所定の点を測定点 Aとする。
この測定点 Aのカメラ座標系での座標を (x y, z) とし、 画像面 S上での 測定点 Aに対応する観察点 A 'の座標を (x s y s f ) とし、 スリ ッ ト光を 表す平面の方程式を a x + b y + c z + d,. =0とする。 観察点 A 'の座 標 (x s y s f ) における f は、 CCDカメラ 1 2の焦点距離として既知で あり、 (x s y s) は画像面で観察されるスリ ッ ト光の画素位置から求められ る。 スリツト光を表す平面の方程式は測定へッド 1 0の校正によって求められてい る。 したがって、 X, y , ζ, αを未知数とする次式 (3 ) で表される連立方程 式を解くことにより、 (x, y, z ) が求められる。
a , x + bL v + cL z + dL - 0 · · · (3)
y - a - ys
z - a · / この処理は、 C C Dカメラ 1 2の出力に基づいて、 制御装置 3 0によって行わ れる。
〔A— 4— 3〕 第 3ステップについての説明
第 3ステップでは、 まず、 エンコーダ 1 6の出力に基づいて、 制御装置 3 0の メモリから対応する回転行列 Rと並進べク トル tが読み出される。
次に、 得られた回転行列 Rと並進べク トル tとに基づいて、 第 3ステップで求 めたカメラ座標系における足 1 0 0上の測定点の座標を、 ワールド座標系の座標 に変換する。
そして、 測定へッド 1 0をガイ ドレール 2 0 4に沿って移動させながら、 ガイ ドレーノレ 2 0 4上における全ての観察位置について、 第 2ステップ及び第 4ステ ップの処理を繰り返すことにより、 その都度得られる測定点のワールド座標系に おける座標 (X, Y, Z ) の集合として、 足 1 0 0の形状が求められる。
このように、 上記実施の形態によれば、 ガイ ドレール 2 0 4上の所定位置を基 準とした測定へッド 1 0の位置とその位置に対応した回転行列 R及び並進べク ト ル t とを対応付けたテーブルデータを用いて、 測定へッド 1 0を用いて得られた 測定点の測定へッド中心の座標系における座標をワールド座標系における座標に 変換しているため、 形状測定にあたってステレオカメラ 2 1、 2 2が不用となる。 このため、 コンパク 卜な構成で、 且つ、 使用者がカメラの視野やコードの絡みを 意識することなく被測定物の形状測定を行うことができるようになる。
また、 上記実施の形態によれば、 事前処理においてガイ ドレール 2 0 4上の測 定ヘッド 1 0の位置をステレオカメラ 2 1、 2 2によって測定しているので、 ガ ィ ドレ一ノレ 2 0 4の形状としては、 直線や円などの単純な形状に限られることな く、 被測定物の形状に応じて長円形状をはじめ任意の曲線形状に構成することが 可能となる。
また、 上記実施の形態によれば、 ガイドレール 2 0 4を長円形状に構成してい るので、 被測定物 1 0 0として人の足を用いる場合には、 その足との間隔を略一 定に保ちながら測定ヘッド 1 0が移動する。 これにより、 足と測定ヘッドとの間 の距離に依存する測定誤差が均一化され、 測定により得られる足の形状データ全 体について、 一定以上の精度を保つことができる。
更に、 長円形状のガイ ドレール 2 0 4において曲率の大きな部分につま先部分 と踵部分が位置することになるため、 足の側部と比較して、 つま先部分と踵部分 の測定データをより詳細に取得することができる。 つま先部分には外反母趾によ る変形が現れていたり、 踵部分にはタコによる変形が現れていたりして、 足の形 状を測定する上では、 この部分の形状が特に重要となるため、 このつま先部分と 踵部分の形状データが詳細に取得できれば、 精度の高い足の形状測定を行うこと ができる。
また、 測定台 2 0 1に対してステレオカメラ 2 1、 2 2が取り外し可能に構成 されているため、 装置の設置や移動に伴ってガイ ドレ一ル 2 0 4の軌道が変化し た場合には、 ステレオカメラ 2 1、 2 2を取り付けてテーブルデータの登録もし くは更新を行うことにより、 精度を保つことができ、 より高い信頼性を提供する ことが可能となる。
なお、 上記実施の形態においては、 測定ヘッド 1 0を手動で移動させる構成と したが、 モータを用いて自動的に移動させるように構成してもよレ、。 このように すると、 自動的に被測定物の測定を行うことがてきるようになる。
また、 上記実施の形態においては、 ステレオカメラ 2 1、 2 2の出力を用いて ワールド座標系での測定へッドの位置に関する情報、 すなわち回転行列 R及び並 進べク トル tを求めているが、 測定台 2 0 1に対するガイ ドレール 2 0 4の軌道 が特定されている場合には、 ステレオカメラ 2 1、 2 2を用いることなく回転行 列 R及び並進べク トル tを求めることができる。
また、 測定へッド 1 0としては、 能動的なステレオ計測方法によって被測定物 上の測定点の位置を測定するものであれば、 上述した実施の形態と異なるもので あってもよレ、。 例えば、 スリ ッ ト光源 1 3の代わりにスポッ ト光源を用いてもよ レ、。
また、 マーカ 1 4としては、 L E D光源1 4 a〜 l 4 f に限定されることなく、 ステレオカメラにて抽出可能なものであればよい。 例えば、 L E D光源 1 4 a〜 1 4 f の代わりに反射率の高いシールを用いてもよい。 また、 マ一力 1 4の個数 は、 3個以上であればよい。
また、 上記実施の形態においては、 足の形状を測定するためにガイドレール 2 0 4の軌道を長円形状としたが、 これに限定されることなく、 足の踵部分からつ ま先部分に向かう方向に長手方向を有する形状であればよい。 例えば、 円を 4つ に分割しコーナ一を曲線で結んだような形状や、 瓢箪のようにくびれがある形状 でもよい。
また、 通常、 足の形状は、 つま先部分より踵部分の方が幅狭の形状をなしてい るため、 ガイ ドレール 2 0 4の軌道を、 図 8に示すように、 つま先部分から踵部 分に向かって先細りする長円形状にしてもよい。 この場合、 被測定物と測定へッ ドとの間に依存する測定誤差が更に均一化されるため、 測定により得られる足の 形状データ全体について、 一定以上の精度を保つことができる。
〔B〕 第 2の実施の形態の説明
以下、 図 9〜図 2 5を参照して、 この発明の第 2の実施の形態について説明す る。
〔B _ 1〕 形状測定装置の概略構成の説明
図 9は、 形状測定装置の概略構成を示している。 図 9において、 図 1と同じものには、 同じ符号を付してその説明を省略する。 測定台 2 0 1には、 ガイ ドレール 2 0 4で囲まれる領域に平板状の鏡 2 0 5が 配置されている。 鏡 2 0 5としては、 表面に光反射面を有するステンレスミラ一 2 0 5が用いられている。 そして、 このステンレスミラ一 2 0 5上に、 被測定物 としての足 1 0 0が載せられている。
測定ヘッド 1 0は、 図示しない支持機構によって、 ガイ ドレール 2 0 4に取り 付けられており、 これにより、 スリ ッ ト光源 1 3から出射される光束がステンレ スミラ一 2 0 5に対して垂直な面に沿って出射されるように測定へッド 1 0の姿 勢が規制されている。
〔B— 2〕 形状測定装置による測定処理手順の説明
この形状測定装置による形状測定は、 次のような処理手順によって実行される。
( 1 ) 第 1ステップ (事前処理 1 ) : ワールド座標系における測定へッド 1 0の 各測定位置に関する情報を、 測定へッド 1 0の各測定位置におけるエンコーダ 1 6の出力値と対応付けて、 制御装置 3 0に搭載されたメモリ (図示省略) に格納 する。
( 2 ) 第 2ステップ (事前処理 2 ) : ワールド座標系におけるステンレスミラー 2 0 5の平面を表す方程式を算出する。
( 3 ) 第 3ステップ:測定ヘッド 1 0を用いて、 カメラ座標系における被測定物 上の測定点の座標を求める。
( 4 ) 第 4ステップ: ワールド座標系における測定へッド 1 0の位置に関する情 報に基づいて、 カメラ座標系における被測定物上の測定点の座標を、 ワールド座 標系における座標に変換する。
( 5 ) 第 5ステップ: ワールド座標系における測定点のうち、 ステンレスミラ一 2 0 5に映り込んだ虚像上の座標を、 実像上の座標に変換する。
以下、 これら各ステップについて説明する。
〔B— 2— 1〕 第 1ステップについての説明
この第 1ステップは、 上記第 1の実施の形態の第 1ステップと同じであるので (図 6参照) 、 その詳細な説明を省略する。
〔B— 2— 2〕 第 2ステップについての説明
第 2ステップでは、 まず、 測定台 2 0 1上に設けられたステンレスミラ一 2 0 5を不透明な薄板で覆い、 その薄板上の点についてワールド座標系における座標 がステレオ法により測定される。
次に、 得られた薄板上の点のワールド座標系における座標に基づいて、 ステン レスミラ一 2 0 5の平面を表す方程式 AM X + B M Y + C M Z + D M = 0を算出 する。 平面の方程式の算出にあたっては、 平板上の点として少なくとも 3点あれ ばよい。
このとき、 ステンレスミラー 2 0 5を不透明な薄板で覆い測定する代わりに、 ステンレスミラ一 2 0 5上に少なくとも 3個のマーカを設け、 そのマ一力の位置 を計測することにより、 ステンレスミラー 2 0 5の平面の方程式を算出するよう にしてもよレ、。
また、 測定ヘッド 1 0を用いて、 ステンレスミラー 2 0 5の平面を表す方程式 AM X + B M Y + C M Z + D M = 0を求めてもよレ、。 つまり、 測定台 2 0 1上に 設けられたステンレスミラ一 2 0 5を不透明な薄板で覆い、 この薄板を測定へッ ド 1 0によって撮像し、 薄板の平面を求めるための 3点の座標 (カメラ座系での 座標) を抽出する。 抽出したカメラ座標系での 3点の座標を、 第 1ステップで求 められた、 当該測定へッド 1 0の位置に対応する回転行列 Rと並進べク トル t と に基づいて、 ワールド座標系での座標に変換する。 得られたヮ一ルド座標系での 3点の座標に基づいて、 ワールド座標系での薄板の平面の方程式を求める。
なお、 被測定物を測定台 2 0 1上に配置して測定を行う以下の処理においては、 ステレオカメラ 2 1 、 2 2を用いないため、 図 9に矢印で示すように、 支柱 2 0 2ごと測定台 2 0 1力 ら取り外して測定が行われる。
〔B— 2— 3〕 第 3ステップについての説明
この第 3ステツプは、 上記第 1の実施の形態の第 2ステップと同じであるので、 その詳細な説明を省略する。 [B- 2-4] 第 4ステップについての説明
この第 4ステップは、 上記第 1の実施の形態の第 3ステップと同じであるので、 その詳細な説明を省略する。 ただし、 第 2の実施の形態では、 図 1 0に示すよう に、 スリ ッ ト光源 1 3からの光束が足 1 00に対して直接照射された測定点から 生成された実像 I , (図 1 0に破線で示す) と、 スリ ッ ト光源 1 3からの光束が ステンレスミラー 205を介して足 1 00に対して照射された測定点から生成さ れた虚像 l (図 1 0に実線で示す) とからなる足 1 00の像が生成される c 〔B— 2— 5〕 第 5ステップについての説明
第 5ステップでは、 まず、 第 4ステップにおいて得られた図 1 0に示す足 1 0 0の像に基づいて、 図 1 0に破線で示す足 1 00の実像 I , と、 図 1 0に実線で 示すステンレスミラ一 20 5に映った足 1 00の虚像 I 2 とが識別される。
この識別方法について説明する。 例えば、 第 2ステップにおいて得られたステ ンレスミラ一 20 5の平面を表す方程式を AM X+BM Y + CM Z +DM = 0と する。 各測定点のヮ一ルド座標系の座標を用いて、 測定点毎に 3 ( = AM X + B M Y + CM Z+DM ) を求める。 3≥ 0となる測定点は、 ステンレスミラ一 20 5の平面より上側 (座標軸上では正側) にあるため、 足 1 00の実像 I , 上の測 定点であると識別される。 逆に j3く 0となる測定点は、 ステンレスミラ一 20 5 に映った足 1 00の虚像 12 上の測定点であると識別される。
そして、 虚像 12 のステンレスミラ一 20 5の平面に対して対称な像 I 2 'を 求め、 得られた対称な像 I 2 'を実像 1 と合成することにより、 図 1 1に示す ような足 1 00の像が得られる。
図 1 1に示すように、 このようにして得られた像は、 足 1 00の土踏まずの部 分が、 ステンレスミラ一 205に映り込んだ虚像 I 2 に基づいて生成された像 I 2 'により補われており、 より忠実に足 1 00の形状が再現されている。
このように上記実施の形態によれば、 測定台 20 1の上面にステンレスミラー 20 5を配置して、 被測定物としての足 1 00の実像に、 ステンレスミラー 20 5に映り込んだ虚像に基づいて生成された像を合成しているため、 足 1 00にお ける土踏まずなど凹みのある部分の像を補うことができ、 適切な足 1 0 0の 3次 元形状を生成することが可能となる。
このとき、 足 1 0 0における土踏まずなど凹みのある部分の像 (虚像) と側面 (実像) とが同時に測定されているため、 少ない測定手順で適切な 3次元形状を 測定することができる。
また、 上記実施の形態によれば、 スリツト光源 1 3から出射される光束がステ ンレスミラ一 2 0 5に対して垂直な面に沿って出射されるように測定へッド 1 0 の姿勢が規制されているため、 測定時においては、 スリツ ト光源 1 3から直接足 1 0 0に照射される光束と、 一旦ステンレスミラー 2 0 5に反射されてから足 1 0 0に照射される光束とが重なることになる。 これにより、 ステンレスミラ一 2 0 5に反射された光束が、 誤った像を生成することがなくなり、 精度良く測定を 行うことが可能となる。
また、 上記実施の形態によれば、 第 1及び第 2ステップにおける初期設定が完 了した後は、 測定台 2 0 1に対してステレオカメラ 2 1、 2 2を取り外して被測 定物の測定を行うことができるため、 測定装置の小型化を図ることが可能となる。 たとえ、 測定装置の移動等によりガイ ドレール 2 0 4の軌道が変化した場合で も、 ステレオカメラ 2 1、 2 2を取り付けてテーブルデータの更新を行うことに より、 精度を保つことができる。
また、 上記実施の形態によれば、 測定台 2 0 1上面を鏡面とするために、 光反 射面が露出しているステンレスミラー 2 0 5を用いているため、 反射面上におけ る光の屈折が生じることがなく、 精度良く測定を行うことが可能となる。
なお、 上記実施の形態においては、 測定ヘッド 1 0を測定者が手動で移動させ る構成としたが、 モータを用いて測定へッド 1 0を自動的にガイ ドレ一ノレ 2 0 4 に沿って移動させるようにしてもよい。 このようにすると、 測定者が測定ヘッド 1 0に触れることなく自動的に被測定物の測定を行うことができるようになる。 更に、 測定へッド 1 0をモータで移動させる場合には、 被測定物を配置して測 定を行う間、 測定者は測定へッド 1 0に触れる必要がないため、 図 1 2に示すよ うに、 測定装置全体を筐体 2 0 6で覆うことができる。 このようにすると、 照明 光等の外乱光を遮断することができるため、 精度よく測定を行うことが可能とな る。
また、 人の足の形状を測定するような場合には、 図 1 3に示すように、 筐体 2 0 6の上部に開口部 2 0 7を設ければよレ、。 この場合、 開口部 2 0 7をゴム等の 弾性部材からなる弾性板 2 0 8で塞ぎ、 その弾性板 2 0 8に設けたスリット 2 0 9から足等の被測定物が挿入できるように構成することにより、 開口部 2 0 7と 被測定物との隙間から照明光等の外乱光が入射することがなくなり、 精度よく測 定を行うことが可能となる。
また、 上記実施の形態においては、 測定へッド 1 0をガイ ドレール 2 0 4に沿 つて移動させる場合について説明したが、 図 1 4に示すように、 測定ヘッド 1 0 を自由に移動させるように構成してもよレ、。 この場合、 第 1ステップにおけるス テツプ S 0 3、 S 0 4の処理 (図 6参照) 力 測定へッド 1 0の測定位置毎に行 われることになる。
また、 ステンレスミラー 2 0 5は、 測定台 2 0 1 の上面と平行な位置だけでな く、 例えば図 1 4において破線で示すような測定台 2 0 1の上面と垂直な位置な ど、 任意の位置に配置してもよい。 この場合、 ステンレスミラ一 2 0 5の位置を 変える毎に第 2のステップを行えば、 ステンレスミラ一 2 0 5の位置に拠らず、 適切な測定を行うことができる。 これにより、 測定対象物 1 0 0の大きさや形状 に応じて、 任意にステンレスミラ一 2 0 5の位置を変更することができるため、 ステンレスミラー 2 0 5を適切な位置に配置すれば、 より少ない測定手順で適切 な 3次元形状を測定することができる。
また、 鏡 2 0 5としては、 ステンレスミラーに限定されることはなく、 光反射 率の高い種々の部材を用いてもよい。
また、 上記実施の形態においては、 ステレオカメラ 2 1 、 2 2の出力を用いて ワールド座標系での測定へッド 1 0の位置に関する情報、 すなわち回転行列 R及 び並進べク トル tを求めたが、 測定へッド 1 0の移動軌跡が特定されていればス テレオカメラ 2 1 2 2を用いることなく回転行列 R及び並進べク トル tが求め られる。
また、 測定へッド 1 0としては、 被測定物上の測定点の位置を測定できるもの であれば、 上述した実施の形態と異なるものであってもよい D 例えば、 スリ ッ ト 光源 1 3の代わりにスポット光源を用いてもよい。
〔B— 3〕 表面に光反射面が形成された光反射板と光反射板上に形成された透明 ガラス板とからなる鏡を用レ、た場合の実施の形態の説明
上記実施の形態では、 鏡として表面に光反射面を有するステンレスミラ一 2 0 5が用いられているが、 足の 1 0 0の裏面の形状をより広い範囲にわたって測定 するために、 図 1 5に示すような表面に光反射面が形成された光反射板 3 0 1と 光反射板 3 0 1上に形成された透明ガラス板 3 0 2とからなる鏡 3 0 0を、 ステ ンレスミラー 2 0 5に代えて用いることができる。
ただし、 このような鏡 3 0 0を用いた場合には、 透明ガラス板 3 0 2内を光が 通過する際に光が屈曲するので、 次のような補正が必要となる。
測定ヘッド 1 0内のスリット光源 1 3から出射された光束は、 矢印 L 1で示す ように、 鏡 3 0 0の上面から入射し、 透明ガラス板 3 0 2内を通って鏡 3 0 0の 光反射板 3 0 1で反射される。 この反射光は、 矢印 L 2で示すように、 再度、 透 明ガラス板 3 0 2内を通って、 鏡 3 0 0の上面から出射され、 被測定物 1 0 0に 照射される。 光束は、 透明ガラス板 3 0 2内を通過する際に屈曲するため、 被測 定物 1 0 0に照射される際の光束を表す方程式 a X + b i. y + c z + d ,. = 0を、 光の屈曲を考慮して補正する必要がある。
つまり、 第 3ステップで用いられる光束を表す方程式 a ,. X + b .. y + c. z + d ,. = 0を、 光の屈曲を考慮して補正する必要がある。
また、 被測定物 1 0 0から反射された光束は、 同様に、 鏡 3 0 0の上面から入 射し、 透明ガラス板 3 0 2内を通って鏡 3 0 0の光反射板 3 0 1で反射される。 この反射光は、 再度、 透明ガラス板 3 0 2内を通って、 鏡 3 0 0の上面から出射 され、 C C Dカメラ 1 2に入射する。 したがって、 C C Dカメラ 1 2の画像面 S 上での測定点の座標 (観察点での座標) (x s , y s, f ) における (x s, y s) も、 光の屈曲を考慮して補正する必要がある。
つまり、 第 3ステップで用いられる観察点での座標 (x s, y s, ί ) におけ る (x s, y s) を、 光の屈曲を考慮して補正する必要がある。
さらに、 第 2ステップでは、 測定台 201上に設けられたステンレスミラ一 2 05の上面を表すワールド座標系での方程式 a M X Y+ C M Z + c = 0 が求められているが、 鏡 300を用いた場合には鏡 300内の光反射板 30 1の 上面を表すワールド座標系での方程式 a X Y + C M Z + dM =0を求め る必要がある。
ここでは、 鏡 300内の光反射板 301の厚さがごく薄いものであると仮定し、 鏡 300内の光反射板 30 1の上面を表すワールド座標系での方程式 a M X+ b M Y+ C M Ζ + dM =0の代わりに、 鏡 300が載せられる測定台 201の表面 を表すワールド座標系での方程式が求められる。 測定台 201の表面の方程式は、 次のようにして求めることができる。
つまり、 測定台 201を不透明な薄板で覆い、 その平板上の点についてワール ド座標系における座標をステレオ法により測定する。 そして、 得られた薄板上の 点のワールド座標系における座標に基づいて、 測定台 201の表面を表す方程式 を算出する。 平面の方程式の算出にあたっては、 薄板上の点として少なくとも 3 点あればよい。
測定台 201を不透明な薄板で覆い測定する代わりに、 測定台 201上に少な くとも 3個のマーカを設け、 そのマ一力の位置を計測することにより、 測定台 2 01の表面の方程式を算出するようにしてもよい。
ところで、 図 1 5に矢印 L l、 L 2で示すように、 スリ ッ ト光源 1 3から出射 された光束は、 透明ガラス板 302を 2回通過した後に被測定物 100に照射さ れている。 したがって、 スリッ ト光源 1 3から出射された光束が鏡 300で反射 されて被測定物 100に照射される際の光の屈曲特性は、 鏡 300の厚み (正確 には透明ガラス板 302の厚み) を Vとすると、 図 1 5に矢印 L l、 L 3で示す ように、 厚みが 2 vの仮想透明ガラス板を介して、 この仮想透明ガラス板の向こ う側にある被測定物 100' に光が照射される場合の屈曲特性と等価となる。 同様に、 被測定物 100から反射された光束が、 鏡 300で反射されて CCD カメラ 12に入射する際の光の屈曲特性は、 鏡 300の厚み (正確には透明ガラ ス板 302の厚み) を Vとすると、 厚みが 2 Vの仮想透明ガラス板を介して、 こ の仮想透明ガラス板の向こう側にある C C Dカメラに光が照射される場合の屈曲 特性と等価となる。
CB-4] 屈曲の影響を考慮した補正方法の説明
以下、 これらの屈曲の影響を考慮した補正方法について説明する。
説明を簡単にするために、 図 16に示すように、 スリ ッ ト光源 13および CC Dカメラの画像面 Sが、 厚さ wの透明ガラス板 400の手前側に位置しており、 被測定物 100が透明ガラス板 400の向こう側に位置している場合における補 正方法について説明する。 そして、 図 15のように鏡 300が測定台 201上に 載置されている場合の補正方法との違いについて説明を追加することにする。
(B-4 - 1 ] 被測定物 100に照射される際の光束を表す方程式 a x + b】. y + c z + d i, = 0の補正方法の説明
図 16および図 1 7に基づいて、 まず、 被測定物 100に照射される際の光束 を表す方程式 a X + b ,. y + z + d ... = 0の補正方法について説明する。
(1) まず、 測定ヘッド 10の構成によって求められている光束を表す平面の力 メラ座標系で表した方程式 a X + bi. y + C L z + d 0を、 ワールド座標 系の方程式を表す a ' X+b.. ' Y+ c. ' Z + d., ' =0に変換する。
(2) 次に、 ワールド座標系での光束を表す平面の方程式 (a,. ' X+ b>. ' Y + c. ' Z + d =0) と、 ワールド座標系での透明ガラス板 400を表す平 面の方程式 (aM ' X+ bw ' Y+ C M ' Z + dM ' =0) とに基づいて、 光束 を表す平面と透明ガラス板 400のなす角度 (入射角) 0 1を求め、 スネルの法 則から図 1 7の 62を求める。
図 1 5のように測定台 201上に鏡 300が載置されている場合には、 透明ガ ラス板 4 0 0を表す平面の方程式 (aM ' X+ bM ' Y+ C M ' Z + dM ' = 0) の代わりに、 鏡 3 0 0が載せられる測定台 2 0 1の表面の方程式が用いられ る。
なお、 空気の屈折率を n l、 透明ガラス板 4 0 0の屈折率を n 2とすると、 Θ 1と Θ 2との関係は、 スネルの法則によって次式 (4) で表される。 nix sinO I = n2x sinO 2 ··■ i 4 )
(3) 次に、 ワールド座標系での屈曲後の光束の平面の方程式 (a ,. " X+ b,. ' ' Y+ c ,ノ' Z + d】. ' ' = 0) を求める。
透明ガラス板 4 0 0から出力される光束の平面と、 透明ガラス板 4 0 0に入射 される元の光束の平面との距離 Uは、 図 1 7から、 次式 (5) で表される。
U = w(tan01 - ίαηθ 2 ) x cos61 … (5)
図 1 5に示すように測定台 2 0 1上に鏡 3 0 0が載せられている場合には、 鏡 3 0 0の透明ガラス板 3 0 2の厚さを Vとすると、 上記数式 5における wは、 2 Vとなる。
ワールド座標系での屈曲後の光束の平面は、 透明ガラス板 4 0 0に入射される 元の光束の平面 (a i. ' X+ b.. ' Y+ C ' Z + d.. ' = 0) に平行でかつ、 距離が Uだけ離れた平面となる。 したがって、 ワールド座標系での屈曲後の光束 の平面の方程式 ( a,. " X+ b.. " Y+ c. · ' Z + d.. · ' = 0 ) は、 次式 ( 6 ) によって求められる。 a,"X +b,"Y + c,"Z + dL"
, _~——:—— ^ ··■ (6)
= aL'X +b, Ύ + cL'Z + dL'+( a, "+bL'~+cL" xU) (4) 第 1ステップで求められたカメラ座標の回転 Rと並進 t とを用いて、 ヮ一 ノレド座標系での屈曲後の光束の平面の方程式 a " X+b.. - - Y+ c,. - ' Z + d ,ノ 'を、 カメラ座標系での平面の方程式 (a【ノ'' X + b ' · ' y + c,ノ '· z + dL "' ) に変換する。
このようにして求められたカメラ座標系での屈曲後の光束の平面の方程式 (a … x + b] '■' y+ c, '·' z + di '■' ) を、 上記第 3ステップで用いら れる光束を表す平面の方程式として用いる。
〔B— 4一 2〕 CCDカメラ 1 2の画像面 S上での測定点の座標 (観察点での座 標) (x s, y s, f ) における (x s, y s) の補正方法の説明
CCDカメラ 1 2の画像面 S上での測定点の座標 (観察点での座標) ( X s, y s , f ) における (x s, y s) の補正方法について説明する。 この方法には 2つの方法がある。
第 1方法は、 被測定物 100から反射してくる光 (以下、 反射光という) 力 CCDカメラ 1 2の画像面 Sに対して全て垂直に入射すると仮定して、 画像面 S 上での測定点の座標 (x s, y s, f ) における (x s, y s ) を補正する方法 である。
第 2方法は、 被測定物 1 00から反射してくる光 (以下、 反射光という) 力 CCDカメラ 1 2の焦点位置 (カメラ座標原点) に向かって CCDカメラ 1 2に 入射すると仮定して、 画像面 S上での測定点の座標 (x s, y s, f ) における (x s , y s) を補正する方法である。
〔B— 4一 2— 1〕 第 1方法の説明
まず、 図 16および図 1 9に基づいて、 第 1方法について説明する。
第 1方法では、 被測定物 100から反射してくる光 (以下、 反射光という) が、
CCDカメラ 1 2の画像面 Sに対して全て垂直に入射すると仮定している。
(1) まず、 カメラ座標系での CCDカメラ 1 2の光軸 (z軸) の直線方程式を、 第 1ステップで求められたカメラ座標の回転 Rと並進 t とを用いて、 ワールド座 標系に変換する。 (2) ワールド座標系の光軸 (z軸) の直線方程式と、 ワールド座標系の透明ガ ラス板 400の方程式 (aM ' X+ bM ' Y+ C M ' Z + dM ' = 0) とに基づ いて、 透明ガラス板 400と CCDカメラ 12の光軸 (z軸) のなす角度 (入射 角) θ 1を求め、 スネルの法則から図 1 9の Θ 2を求める。
図 1 5のように測定台 201上に鏡 300が载置されている場合には、 透明ガ ラス板 400を表す平面の方程式 (aM ' X+bM ' Y+ C M ' Z + dM ' = 0) の代わりに、 鏡 300が載せられる測定台 201の表面の方程式が用いられ る。
(3) 透明ガラス板 400から出力される光束の平面と、 透明ガラス板 400に 入射される元の光束の平面との距離 U (=wX (tan θ 1 -tan θ 2) X c o s θ 1) を、 上記数式 5を用いて求める。
図 15に示すように測定台 201上に鏡 300が載せられている場合には、 鏡 300の透明ガラス板 302の厚さを Vとすると、 上記数式 5における wは、 2 Vとなる。
(4) 次に、 図 20に示すように、 ワールド座標系での CCDカメラ 1 2の光軸 (z軸) の直線方程式と、 ワールド座標系での透明ガラス板 40 ϋの平面の方程 式とに基づいて、 光軸 (ζ軸) を含みかつ透明ガラス板 400に垂直な平面 Qを 表す方程式を求める。
(5) 第 1ステップで求められたカメラ座標の回転 Rと並進 tとを用いて、 ヮ一 ルド座標系での光軸 (z軸) を含みかつ透明ガラス板 400に垂直な平面 Qを表 す方程式を、 カメラ座標系での方程式に変換する。
(6) 次に、 図 21に示すように、 カメラ座標系での光軸を含みかつ透明ガラス 板 400に垂直な平面 Qを表す方程式と、 カメラ座標系での画像面 Sを表す方程 式とに基づいて、 光軸を含みかつ透明ガラス板 400に垂直な平面 Qと、 画像面 Sとの交線の方程式を求める。
(7) 光軸を含みかつ透明ガラス板 400に垂直な平面 Qと、 画像面 Sとの交線 の方程式に基づいて、 平面 Qと画像面 Sとの交線上において、 画像面 S上の z軸 と交差する位置 Pから、 距離 Uだけずれた位置 P' の座標 (x l, y 1) を求め る。 求めた座標値 (x l, y 1 ) が補正値となる。
(8) そして、 上記第 3ステップで用いられる画像面上 S上での測定点に対応す る観察点の座標 (x sy s, f ) を、 補正値 (x l, y 1) を用いて補正する。 画像面上 S上での測定点に対応する観察点の座標 (x s, y s, f ) に対する補 正後の座標を (x s ' , y s ' , f ) とすると、 x s ' および y s ' は次式
(7) で表される。 図 22に、 画像面上 Sで観察された画像を補正した場合の例 を示す。 ·図 22において破線は画像面上 Sで観察された画像を示し、 実線は補正 後の画像を示している。 xs'=xs + xl , 、
VS , = VS + VI 7 -· (7)
〔B— 4一 2— 2〕 第 2方法の説明
図 16および図 23に基づいて、 第 2方法について説明する。
第 2方法では、 被測定物 100から反射してくる光 (以下、 反射光という) が、
CCDカメラ 12の焦点位置 (カメラ座標原点) に向かって CCDカメラ 12に 入射すると仮定している。
(1) 画像面 S上での観測点の座標を抽出する。 そして、 カメラ座標原点から上 記観測点を通る直線 Lの方程式をカメラ座標系において求める。
(2) カメラ座標系で求めた上記直線 Lの方程式を、 第 1ステップで求められた カメラ座標の回転 Rと並進 tとを用いて、 ワールド座標系に変換する。
(3) ヮ一ルド座標系での直線 Lの方程式と、 ワールド座標系の透明ガラス板 4 00の方程式 (aM ' X+ bM ' Y+ C M ' Z + dM ' =0) とに基づいて、 透 明ガラス板 400と CCDカメラ 12の光軸 (z軸) のなす角度 (入射角) θ 1 を求め、 スネルの法則から図 23の Θ 2を求める。
図 1 5のように測定台 201上に鏡 300が載置されている場合には、 透明ガ ラス板 400を表す平面の方程式 (aM ' X + bM ' Y+ C M ' Z + dM ' = 0) の代わりに、 鏡 300が載せられる測定台 201の表面の方程式が用いられ る。
(4) 次に、 透明ガラス板 400から出力される反射光の平面と、 透明ガラス板 400に入射される元の反射光の平面との距離 U ( = wX (tan θ 1 -tan θ 2) X c o s θ 1) を、 上記数式 5を用いて求める。
図 1 5に示すように測定台 201上に鏡 300が載せられている場合には、 鏡 300の透明ガラス板 302の厚さを Vとすると、 上記数式 5における wは、 2 Vとなる。
(5) 次に、 図 24に示すように、 ワールド座標系での直線 Lの方程式と、 ヮ一 ノレド座標系での透明ガラス板 400の平面の方程式とに基づいて、 直線 Lを含み かつ透明ガラス板 400に垂直な平面 Qの方程式を求める。
図 1 5のように測定台 201上に鏡 300が載置されている場合には、 透明ガ ラス板 400を表す平面の方程式 (aM , X+ bM ' Y+ C M ' Z + dM ' = 0) の代わりに、 鏡 300が載せられる測定台 201の表面の方程式が用いられ る。
(6) 第 1ステップで求められたカメラ座標の回転 Rと並進 t とを用いて、 ヮー ノレド座標系での直線 Lを含みかつ透明ガラス板 400に垂直な平面 Qを表す方程 式を、 カメラ座標系での方程式に変換する。
(7) 次に、 図 25に示すように、 カメラ座標系での直線 Lを含みかつ透明ガラ ス板 400に垂直な平面 Qを表す方程式と、 カメラ座標系での画像面 Sを表す方 程式とに基づいて、 直線 Lを含みかつ透明ガラス板 400に垂直な平面 Qと、 画 像面 Sとの交線の方程式を求める。
(8) 直線 Lを含みかつ透明ガラス板 400に垂直な平面 Qを表す方程式とカメ ラ座標系での画像面 Sを表す方程式とに基づいて、 平面 Qと画像面 Sとの交線の 方程式を求める。
(9) 画像面 S上の直線 Lと交差する位置 Pから、 距離 Uだけずれた位置 P' の 座標 (x s ' , y s ' , f ) を求める。 求めた座標値 (X s ' , y s ' , ί ) 力; 観察点の座標 (x s, y s, f ) の補正後の座標となる。

Claims

請 求 の 範 囲
1 . ガイ ドレールに沿って移動せしめられる測定へッド、
ガイ ドレール上の所定位置を基準として、 基準位置からガイ ドレール上での測 定へッドの位置を検出する第】位置検出手段、
ガイ ドレール上の測定へッ ドのワールド座標系での位置を検出する第 2位置検 出手段、
ガイ ドレール上の所定位置を基準としたガイ ドレール上の測定へッドの各位置 と、 対応するワールド座標系での位置とを、 関連付けて記憶装置に記憶する手段、 ガイ ドレール上の各測定位置において、 第 1位置検出手段によって測定へッ ド の位置を検出するとともに、 測定ヘッドを用いて、 測定ヘッド中心の座標系にお ける被測定物上の測定点の座標を求める測定手段、 ならびに
ガイ ドレ一ル上の各測定位置において求められた測定へッド中心の座標系にお ける被測定物上の測定点の座標を、 記憶装置に記憶されているガイ ドレール上の 各測定位置に対応するワールド座標系での位置に基づいて、 ワールド座標系の座 標に変換する手段、
を備えていることを特徴とする形状測定装置。
2 . 測定ヘッドは、
被測定物に対して光束を照射する光照射手段、 および
光照射手段からの光束が照射される被測定物上の測定点を撮像する撮像手段、 を含んでいることを特徴とする請求項 1に記載の形状測定装置。
3 . 測定へッドは、 ガイドレールに沿って移動するための駆動手段を備えてい ることを特徴とする請求項 1および 2のいずれかに記載の形状測定装置。
4 . 第 2位置検出手段は、
所定の位置から測定へッドを撮像する測定へッド撮像手段、 および
測定へッド撮像手段の撮像画像に基づいて、 ワールド座標系での測定へッドの 位置を検出する手段、
を備えていることを特徴とする請求項 1、 2および 3のいずれかに記載の形状 測定装置。
5 . 測定ヘッド撮像手段は、 形状測定装置本体に対して着脱可能に構成されて いることを特徴とする請求項 4に記載の形状測定装置。
6 . ガイ ドレールは、 被測定物との距離が略一定となる形状をなしていること を特徴とする請求項 1、 2、 3、 4および 5のいずれかに記載の形状測定装置。
7 . 被測定物が足であり、 ガイ ドレールが被測定物である足の踵からつま先に 至る方向に長軸を有する長円形状をなしていることを特徴とする請求項 6記載の 形状測定装置。
8 . ガイドレールが、 被測定物である足のつま先から踵に向かって先細りする 形状をなしていることを特徴とする請求項 7に記載の形状測定装置。
9 . 測定台上に載置された被測定物の形状を測定する測定へッド、 測定へッド の位置を検出する位置検出手段、 ならびに測定へッドと位置検出手段との出力に 基づいて被測定物の 3次元形状を求める演算手段を備えた形状測定装置であって、 被測定物を映す鏡を測定台上に配置したことを特徴とする形状測定装置。
1 0 . 位置検出手段は、 2台のカメラを用いてステレオ法により測定ヘッドの 位置を検出するものである請求項 9に記載の形状測定装置。
1 1 . 測定へッドは、
被測定物に対して光束を照射する光照射手段、 および
光照射手段からの光束が照射される被測定物上の測定点を撮像することにより、 被測定物の実像と鏡に映った被測定物の虚像とを撮像する撮像手段、
を含んでレ、ることを特徴とする請求項 9および 1 0のいずれかに記載の形状測
1 2 . 鏡は表面に光反射面が形成されていることを特徴とする請求項 9、 1 0 および 1 1のいずれかに記載の形状測定装置。
1 3 . 演算手段は、 撮像手段の撮像画面上での測定点の座標と、 光照射手段から出射された光束を 表す平面を表す方程式とに基づいて、 測定へッド中心の座標系での測定点の座標 を求める第 1手段、
第 1手段によって求められた各測定点の座標を、 位置検出手段による検出結果 に基づいて、 ワールド座標系の座標に変換することにより、 被測定物の実像に対 する 3次元形状と、 鏡に映った被測定物の虚像に対する 3次元形状とを求める第 2手段、
鏡の光反射面を表すワールド座標系での方程式を求める第 3手段、
鏡の光反射面を表す方程式に基づいて、 虚像に対する 3次元形状の光反射面に 対して対称な 3次元形状を求める第 4手段、 ならびに
虚像に対する 3次元形状の光反射面に対して対称な 3次元形状と、 被測定物の 実像に対する 3次元形状とを合成することにより被測定物の 3次元形状を求める 第 5手段、
を備えていることを特徴とする請求項 1 2に記載の形状測定装置。
1 4 . 鏡の光反射面を表す方程式を求める手段は、
2台のカメラを用いてステレオ法により光反射面上の 3点以上の点の座標を測 定する手段、 および
得られた光反射面上の 3点以上の点の座標に基づいて光反射面を表す方程式を 求める手段、
を備えていることを特徴とする請求項 1 3に記載の形状測定装置。
1 5 . 鏡の光反射面を表す方程式を求める手段は、
光反射面上に不透明な薄板を載せた状態で、 測定へッドを用いて薄板を撮像し、 薄板の平面を特定するための 3点以上の点の測定へッド中心の座標系での座標を 抽出する手段、
得られた測定ヘッド中心の座標系での 3点以上の点の座標を、 位置検出手段に よる検出結果に基づいて、 ワールド座標系での座標に変換する手段、 および 得られたワールド座標系での 3点以上の点の座標に基づいて、 ワールド座標系 での薄板の平面を表す方程式を求める手段、
を備えていることを特徴とする請求項 1 3に記載の形状測定装置。
1 6 . 測定へッドの光照射手段から照射される光束が、 鏡の光反射面に対して 垂直に出射されるように、 測定へッドの姿勢を規制するガイド手段を備えている ことを特徴とする請求項 1 3、 1 4および 1 5のいずれかに記載の形状測定装置
1 7 . ガイ ド手段は、 測定へッドの移動経路を規制するものであることを特徴 とする請求項 1 3、 1 4、 1 5および 1 6のいずれかに記載の形状測定装置。
1 8 . 測定へッドをガイ ド手段に沿って移動させるための駆動手段を備えてい ることを特徴とする請求項 1 7に記載の形状測定装置。
1 9 . 測定ヘッドの移動経路全体を覆う筐体を備えていることを特徴とする請 求項 1 8に記載の形状測定装置。
2 0 . 筐体が被測定物を挿脱するための開口部を備える請求項 1 9に記載の形 状測定装置。
2 1 . 筐体の開口部に弾性部材からなる蓋部を設け、 蓋部が被測定物を挿脱す るための切込部を備えていることを特徴とする請求項 2 0に記載の形状測定装置。
2 2 . 鏡は、 表面に光反射面が形成された光反射板と、 光反射板上に形成され た透明板とからなることを特徴とする請求項 9、 1 0および 1 1のいずれかに記 載の形状測定装置。
2 3 . 演算手段は、
被測定物の実像上の測定点に対しては、 撮像手段の撮像画面上での測定点の座 標と、 光照射手段から出射された光束を表す平面を表す方程式とに基づいて、 測 定へッド中心の座標系での測定点の座標を求める第 1手段、
鏡に映った被測定物の虚像上の測定点に対しては、 撮像手段の撮像画面上での 測定点の座標値を鏡の透明板の屈折量を考慮して補正した後の座標値と、 光照射 手段から出射された光束を表す平面の方程式を鏡の透明板の屈折量を考慮して補 正した後の方程式とに基づいて、 測定へッド中心の座標系での測定点の座標を求 める第 2手段、 第 1手段および第 2手段によって求められた各測定点の座標を、 位置検出手段 による検出結果に基づいて、 ワールド座標系の座標に変換することにより、 被測 定物の実像に対する 3次元形状と、 鏡に映った被測定物の虚像に対する 3次元形 状とを求める第 3手段、
鏡の光反射面を表すワールド座標系での方程式を求める第 4手段、
鏡の光反射面を表す方程式に基づいて、 虚像に対する 3次元形状の光反射面に 対して対称な 3次元形状を求める第 5手段、 ならびに
虚像に対する 3次元形状の光反射面に対して対称な 3次元形状と、 被測定物の 実像に対する 3次元形状とを合成することにより被測定物の 3次元形状を求める 第 6手段、
を備えていることを特徴とする請求項 2 2に記載の形状測定装置。
2 4 . 鏡の光反射面を表す方程式を求める手段は、
2台のカメラを用いてステレオ法により、 鏡が載置された測定台上の 3点以上 の点の座標を測定する手段、 および
得られた測定台上の 3点以上の点の座標に基づいて光反射面を表す方程式を求 める手段、
を備えていることを特徴とする請求項 2 3に記載の形状測定装置。
2 5 . 測定ヘッドの光照射手段から照射される光束が、 鏡の光反射面に対して 垂直に出射されるように、 測定へッドの姿勢を規制するガイド手段を備えている ことを特徴とする請求項 2 2、 2 3および 2 4のいずれかに記載の形状測定装置。
PCT/JP2000/003332 1999-05-26 2000-05-24 Dispositif de mesure de forme WO2000073738A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00929852A EP1197729A4 (en) 1999-05-26 2000-05-24 FORM MEASURING DEVICE
US09/926,601 US6909513B1 (en) 1999-05-26 2000-05-24 Shape measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14690499 1999-05-26
JP11/146904 1999-05-26

Publications (1)

Publication Number Publication Date
WO2000073738A1 true WO2000073738A1 (fr) 2000-12-07

Family

ID=15418211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003332 WO2000073738A1 (fr) 1999-05-26 2000-05-24 Dispositif de mesure de forme

Country Status (3)

Country Link
US (1) US6909513B1 (ja)
EP (1) EP1197729A4 (ja)
WO (1) WO2000073738A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422495A1 (en) * 2001-07-30 2004-05-26 Topcon Corporation Surface shape measurement apparatus, surface shape measurement method, surface state graphic apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418398A1 (en) * 2001-07-17 2004-05-12 Sanyo Electric Co., Ltd. Shape measuring device
BE1014484A3 (nl) * 2001-11-22 2003-11-04 Krypton Electronic Eng Nv Werkwijze en inrichting voor het vergroten van het meetvolume van een optisch meetsysteem.
US7679757B1 (en) * 2002-10-31 2010-03-16 BYTEWISE Measurement Systems LLC. Non-contact profile measurement system
JP3624353B2 (ja) 2002-11-14 2005-03-02 有限会社テクノドリーム二十一 3次元形状計測方法およびその装置
FI117650B (fi) * 2004-10-27 2006-12-29 Mapvision Ltd Oy Symmetria-akselin määrittäminen
US7552494B2 (en) * 2005-04-28 2009-06-30 Esoles, L.L.C. Method and apparatus for manufacturing custom orthotic footbeds that accommodate the effects of tibial torsion
US8294082B2 (en) * 2007-11-14 2012-10-23 Boulder Innovation Group, Inc. Probe with a virtual marker
US8870876B2 (en) 2009-02-13 2014-10-28 Tarsus Medical Inc. Methods and devices for treating hallux valgus
US8277459B2 (en) 2009-09-25 2012-10-02 Tarsus Medical Inc. Methods and devices for treating a structural bone and joint deformity
US8652141B2 (en) 2010-01-21 2014-02-18 Tarsus Medical Inc. Methods and devices for treating hallux valgus
US8696719B2 (en) 2010-06-03 2014-04-15 Tarsus Medical Inc. Methods and devices for treating hallux valgus
USRE48771E1 (en) 2010-08-31 2021-10-12 Northwest Podiatrie Laboratory, Inc. Apparatus and method for imaging feet
US8567081B2 (en) 2010-08-31 2013-10-29 Northwest Podiatric Laboratory, Inc. Apparatus and method for imaging feet
DE102011000304B4 (de) * 2011-01-25 2016-08-04 Data M Sheet Metal Solutions Gmbh Kalibrierung von Laser-Lichtschnittsensoren bei gleichzeitiger Messung
US20140276094A1 (en) * 2013-03-15 2014-09-18 Roy Herman Lidtke Apparatus for optical scanning of the foot for orthosis
JP6176957B2 (ja) * 2013-03-18 2017-08-09 株式会社ミツトヨ 形状測定装置
FR3009168B1 (fr) * 2013-07-31 2015-08-28 Gabilly Dispositif d'examen visiometrique du pied
DE102013111761B4 (de) * 2013-10-25 2018-02-15 Gerhard Schubert Gmbh Verfahren und Scanner zum berührungslosen Ermitteln der Position und dreidimensionalen Form von Produkten auf einer laufenden Fläche
EP2954798B1 (de) * 2014-06-11 2017-04-12 VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Messverfahren zur Bestimmung biometrischer Daten menschlicher Füße
FR3032535B1 (fr) * 2015-02-05 2018-03-09 Frederic Clodion Dispositif de prise de mesures et de vues 3d

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
JPH05141930A (ja) * 1991-11-19 1993-06-08 Nippon Telegr & Teleph Corp <Ntt> 3次元形状計測装置
JPH05280955A (ja) * 1991-06-24 1993-10-29 Fuji Photo Optical Co Ltd 光学測定機
JPH05302823A (ja) * 1991-06-24 1993-11-16 Fuji Photo Optical Co Ltd 光学測定機
JPH10124704A (ja) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd 立体モデル作成装置、立体モデル作成方法および立体モデル作成プログラムを記録した媒体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU169731B (ja) * 1974-02-07 1977-02-28
JPS58206909A (ja) 1982-05-07 1983-12-02 Yokogawa Hokushin Electric Corp 物体の任意形状測定装置
US5376796A (en) * 1992-11-25 1994-12-27 Adac Laboratories, Inc. Proximity detector for body contouring system of a medical camera
JP3513936B2 (ja) * 1993-12-22 2004-03-31 松下電工株式会社 光走査型変位測定装置
FR2720155B1 (fr) 1994-05-19 1996-06-28 Lorraine Laminage Mesure tridimensionnelle de la surface d'un objet de grande dimension.
FR2735859B1 (fr) * 1995-06-23 1997-09-05 Kreon Ind Procede d'acquisition et de numerisation d'objets au travers d'une paroi transparente et systeme de mise en oeuvre d'un tel procede
JPH0914930A (ja) 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd 形状測定方法とその測定装置
JP3402021B2 (ja) 1995-11-07 2003-04-28 株式会社明電舎 ロボット装置の相対位置姿勢検出方法
US6064749A (en) * 1996-08-02 2000-05-16 Hirota; Gentaro Hybrid tracking for augmented reality using both camera motion detection and landmark tracking
US6069700A (en) 1997-07-31 2000-05-30 The Boeing Company Portable laser digitizing system for large parts
JP3912867B2 (ja) 1997-09-29 2007-05-09 シーケーディ株式会社 足型計測装置
JP2000039310A (ja) 1998-07-22 2000-02-08 Sanyo Electric Co Ltd 形状測定方法および形状測定装置
JP2000065548A (ja) 1998-08-21 2000-03-03 Genichi Tagata 三次元形状計測方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
JPH05280955A (ja) * 1991-06-24 1993-10-29 Fuji Photo Optical Co Ltd 光学測定機
JPH05302823A (ja) * 1991-06-24 1993-11-16 Fuji Photo Optical Co Ltd 光学測定機
JPH05141930A (ja) * 1991-11-19 1993-06-08 Nippon Telegr & Teleph Corp <Ntt> 3次元形状計測装置
JPH10124704A (ja) * 1996-08-30 1998-05-15 Sanyo Electric Co Ltd 立体モデル作成装置、立体モデル作成方法および立体モデル作成プログラムを記録した媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1197729A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422495A1 (en) * 2001-07-30 2004-05-26 Topcon Corporation Surface shape measurement apparatus, surface shape measurement method, surface state graphic apparatus
EP1422495A4 (en) * 2001-07-30 2009-06-03 Topcon Corp SURFACE MEASUREMENT DEVICE, SURFACE FORMAT METHOD, SURFACE STATE GRAPHIC DEVICE

Also Published As

Publication number Publication date
EP1197729A1 (en) 2002-04-17
EP1197729A4 (en) 2006-10-18
US6909513B1 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
WO2000073738A1 (fr) Dispositif de mesure de forme
US5967979A (en) Method and apparatus for photogrammetric assessment of biological tissue
CN106662434B (zh) 共焦平面相对于共焦设备与样品的相对移动方向倾斜的共焦表面形貌测量
US11176669B2 (en) System for remote medical imaging using two conventional smart mobile devices and/or augmented reality (AR)
US7791738B2 (en) Three-dimensional shape measuring device, and portable measuring device
CN103782321B (zh) 当3d扫描刚性对象时可移动对象的检测
US5299254A (en) Method and apparatus for determining the position of a target relative to a reference of known co-ordinates and without a priori knowledge of the position of a source of radiation
US20070075997A1 (en) Artifact mitigation in three-dimensional imaging
US20060173357A1 (en) Patient registration with video image assistance
JP3912867B2 (ja) 足型計測装置
JPH02161962A (ja) 放射線治療装置における患者の位置を測定しかつ検査する装置及びその方法
JPH032531B2 (ja)
WO2004044522A1 (ja) 3次元形状計測方法およびその装置
CN110910506B (zh) 基于法线检测的三维重建方法、装置、检测装置及系统
JP2004507730A (ja) 光学要素の幾何学構造の伝達測定方法と装置
JPWO2003008904A1 (ja) 形状測定装置
JPH09113223A (ja) 非接触距離姿勢測定方法及び装置
Malian et al. Medphos: A new photogrammetric system for medical measurement
JP3574044B2 (ja) 形状測定装置
CN106840030B (zh) 一种二维长程面形检测装置及检测方法
JP3408237B2 (ja) 形状測定装置
KR20110082759A (ko) 구강용 스캐너 및 이를 포함하는 기공물 제조 시스템
CN109313016A (zh) 利用流体分割的口内3d扫描仪
CN114176777B (zh) 手术辅助导航系统的精度检测方法、装置、设备及介质
JP3370049B2 (ja) 形状測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09926601

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000929852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000929852

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000929852

Country of ref document: EP