WO2000070664A1 - Verfahren zum abscheiden einer zweischicht-diffusionsbarriere - Google Patents
Verfahren zum abscheiden einer zweischicht-diffusionsbarriere Download PDFInfo
- Publication number
- WO2000070664A1 WO2000070664A1 PCT/DE2000/001580 DE0001580W WO0070664A1 WO 2000070664 A1 WO2000070664 A1 WO 2000070664A1 DE 0001580 W DE0001580 W DE 0001580W WO 0070664 A1 WO0070664 A1 WO 0070664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- tan
- deposition
- semiconductor wafer
- temperature
- Prior art date
Links
- 238000000151 deposition Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000004888 barrier function Effects 0.000 title claims abstract description 24
- 238000009792 diffusion process Methods 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 42
- 230000008021 deposition Effects 0.000 claims abstract description 40
- 239000010949 copper Substances 0.000 claims abstract description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 238000001816 cooling Methods 0.000 claims abstract description 15
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 37
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 65
- 235000012431 wafers Nutrition 0.000 description 43
- 238000005240 physical vapour deposition Methods 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
Definitions
- the invention relates to a method for depositing a two-layer diffusion barrier on a semiconductor wafer, preferably consisting of a tantalum nitride (TaN) and an overlying tantalum layer (Ta) as a carrier layer for conductor tracks, in particular copper conductor tracks of wiring levels.
- a semiconductor wafer preferably consisting of a tantalum nitride (TaN) and an overlying tantalum layer (Ta) as a carrier layer for conductor tracks, in particular copper conductor tracks of wiring levels.
- the interconnects of the wiring levels of microelectronic components are usually made of aluminum, but this has limits with regard to the electrical conductivity and the feasible structure widths. For this reason, a new technology for the use of copper for the interconnects was developed, the core of which is the dual damascene - or also inlay concept (D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Poper, T. McDevitt,. Motsiff, A. Simon, J. Dukovic, R. achnik, H. Rathore, R. Schulz, L. Su, S. Luce, J. Slattery, IEEE VLSI Tech. Symp . 1997) forms.
- the negative shape of the transition hole and the interconnect is first etched into a planarly deposited silicon oxide layer of the intermetallic dielectric in a first step.
- a barrier and a copper start layer are deposited by sputtering.
- the copper start layer can be deposited electrochemically, or by Cu-PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition).
- the entire negative mold is then electrochemically filled with copper at a low temperature. Since a completely flat surface is required for the further layer structure on the semiconductor wafer, the excess copper is then removed by chemical mechanical polishing (CMP), so that the transition holes and the interconnects remain in the silicon oxide.
- CMP chemical mechanical polishing
- Such two-layer systems are usually deposited in a PVD chamber at fixed temperatures.
- the temperature used here is above 200 ° C., the deposition having such a high temperature having the disadvantage that the silicon wafer on which the barrier was deposited then subsequently drops to a temperature below 50 ° C must be cooled.
- the reason for this can be seen in the fact that the deposition of a copper starting layer must take place at low temperatures in order to ensure that a conformal, gapless copper film is formed and that the copper does not agglomerate.
- the required cooling of the silicon wafer means that a great deal of time is lost, which either limits the throughput of the sputtering system or increases the cost of the system by means of an additional cooling chamber.
- a process control is currently provided for the deposition of a diffusion barrier or seed deposition, in which the semiconductor wafer is pretreated in a degas or tempering step at> 100 ° C. and then in a preclean step with argon at 250 ° C.-300 ° C. Immediately afterwards, the TaN layer and subsequently the Ta layer are sputtered at approximately 250 ° C. Since the deposition of Cu must take place at low temperatures, the semiconductor wafer is cooled to 50 ° -25 ° C. in a further process step. This cooling process can also take place in a separate cooling chamber. A copper start layer can then be deposited at 25 ° C.
- the invention is therefore based on the object of providing a method for depositing a two-layer diffusion barrier on a semiconductor wafer, in which, with the quality of the layer deposition remaining the same, significant time savings can be achieved without additional system costs.
- the object on which the invention is based is achieved in a method of the type mentioned at the outset in that the deposition of the two-layer diffusion barrier takes place in a two-step process in which the TaN layer and subsequently the Ta layer are added in the first step at a high temperature of the semiconductor wafer a low temperature in the range of RT is made.
- the semiconductor wafer can first be treated with a degas or tempering step before the two-layer diffusion barrier is removed to remove adsorbates, and the metal oxide layer in the bottom of transition holes in a lower metal path exposed there can also be removed in a subsequent preclean step by a physical sputtering effect become.
- the high-temperature deposition of the TaN layer is preferably carried out at more than 200 ° C. and the low-temperature deposition of the Ta layer at less than 50 ° C., for example at 25 ° C.
- the Ta layer is deposited in a development of the invention while the semiconductor wafer is cooling to below 50 ° C.
- a further development of the invention is characterized in that the deposition of the TaN and Ta layers is carried out in a PVD deposition system, the deposition of the TaN layer taking place in a nitrogen atmosphere.
- the deposition of the TaN and Ta layers is carried out in the same PVD chamber in that the semiconductor wafer after the degas and preclean step with the wafer temperature of 200 to 300 ° C. reached in the
- the PVD chamber is placed on an electro static chuck (ESC) at a temperature of approx. 25 ° C without chucking, the TaN layer is deposited in the nitrogen atmosphere and, after the TaN layer has been separated, the excess nitrogen is pumped off.
- the semiconductor wafer is then chucked on the ESC and the Ta layer is deposited in a low-nitrogen atmosphere during the cooling to the low temperature.
- ESC electro static chuck
- the semiconductor wafer in a special variant of the invention after the degas and preclean step with the wafer temperature of 200 to 300 ° C. achieved in the first PVD chamber on an electro static heated to approx. 250 to 300 ° C.
- Chuck (ESC) deposited and chucked and then deposited the TaN layer in the nitrogen atmosphere.
- the semiconductor wafer is then chucked in a second PVD chamber on an ESC tempered to less than 50 ° C., and the Ta layer is deposited while the semiconductor wafer is cooling to the chuck temperature.
- a further embodiment of the invention provides that the semiconductor wafer coated with the TaN and Ta layers immediately afterwards in one Cu-PVD chamber is coated with a copper start layer.
- a major advantage of the method according to the invention for depositing a two-layer barrier from TaN and Ta can be seen in the fact that the deposition of both layers can be carried out in a substantially shorter time, the total layer resistance or its morphology compared to a complete deposition of both layers at 250 ° C hardly differs.
- the method according to the invention is not only limited to the use for producing diffusion barriers for copper metallization, but is generally suitable for the formation of diffusion layers which are intended to prevent diffusion of, in particular, metals.
- metals are, for example, platinum, aluminum or tungsten.
- the invention will be explained in more detail below with the aid of two exemplary embodiments. The fundamental difference between the two exemplary embodiments is that in the first exemplary embodiment the TaN and Ta layers are deposited in the same PVD chamber, whereas in the second exemplary embodiment the deposition takes place in two separate PVD chambers.
- the semiconductor wafer has initially been pretreated with Degas and Preclean as standard.
- Degas and Preclean as standard.
- adsorbates are first detached from the surface of the pane at approx. 300 ° C in a vacuum.
- a physical sputtering effect removes the metal oxide layer from the exposed lower metal interconnect in the bottom of the transition holes in order to achieve the lowest possible contact resistance.
- the silicon wafer already has a wafer temperature of 250 to 300 ° C.
- the semiconductor wafer is now fed into the PVD chamber, the electro static chuck (ESC) of which is at a temperature below
- the TaN layer must be deposited at more than 200 ° C., the semiconductor wafer is not chucked on the ESC, so that there is no strong thermal coupling between the semiconductor wafer and the chuck.
- This is followed by the deposition of a thin TaN layer with a thickness of a few 10 nm in a nitrogen atmosphere (a few mT N2). Since the wafer temperature is still between 250 and 300 ° C and the wafer temperature can increase due to the TaN deposition the deposition of the TaN layer with the desired one
- the Ta layer is deposited with a sputter output of a few kW depending on the chamber type.
- the advantage of this method can be seen in the fact that after the Ta deposition the semiconductor wafer already has the low temperature below 50 ° C. required for the copper deposition, without additional cooling processes being necessary.
- the cold silicon wafer coated with TaN and Ta can then be transferred immediately into a Cu-PVD or CVD chamber, in which a copper starting layer is then first deposited.
- the TaN and Ta layers are deposited in separate PVD chambers.
- the semiconductor wafer is also pretreated as described by Degas and Preclean, the semiconductor wafer moving with the wafer temperature of 250 to 300 ° C. achieved in these process steps into the first PVD chamber and there on one ESC watched.
- This ESC is tempered at a temperature of approx. 250 to 300 ° C.
- the semiconductor wafer thus remains controlled at a temperature of 250 to 300 ° C., so that the TaN layer, which is a few 10 nm thick, can be deposited in a nitrogen atmosphere.
- the semiconductor wafer is guided into the next PVD chamber, the chuck of which has a temperature of less than 50 ° C.
- the semiconductor wafer chucked on the ESC.
- the Ta layer which is also some 10 nm thick, is deposited. Since the semiconductor wafer already has the low temperature required for the subsequent copper deposition after the Ta deposition, the half conductor wafers are transferred directly to the deposition of the Ta layer in the Cu-PVD or CVD chamber and the copper starting layer is deposited immediately.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000619017A JP3779161B2 (ja) | 1999-05-17 | 2000-05-17 | 2層拡散バリアーを析出させる方法 |
US09/992,977 US6579786B2 (en) | 1999-05-17 | 2001-11-19 | Method for depositing a two-layer diffusion barrier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19922557A DE19922557B4 (de) | 1999-05-17 | 1999-05-17 | Verfahren zum Abscheiden einer TaN/Ta-Zweischicht-Diffusionsbarriere |
DE19922557.5 | 1999-05-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/992,977 Continuation US6579786B2 (en) | 1999-05-17 | 2001-11-19 | Method for depositing a two-layer diffusion barrier |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000070664A1 true WO2000070664A1 (de) | 2000-11-23 |
Family
ID=7908267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/001580 WO2000070664A1 (de) | 1999-05-17 | 2000-05-17 | Verfahren zum abscheiden einer zweischicht-diffusionsbarriere |
Country Status (6)
Country | Link |
---|---|
US (1) | US6579786B2 (de) |
JP (1) | JP3779161B2 (de) |
KR (1) | KR100408543B1 (de) |
DE (1) | DE19922557B4 (de) |
TW (1) | TW472348B (de) |
WO (1) | WO2000070664A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003009372A2 (en) * | 2001-07-20 | 2003-01-30 | Applied Materials, Inc. | Low resistivity tantalum nitride/tantalum bilayer stack |
DE10146359A1 (de) * | 2001-09-20 | 2003-04-30 | Advanced Micro Devices Inc | Ein Metallisierungsprozesssequenz |
WO2002093648A3 (en) * | 2001-05-11 | 2003-12-31 | Ibm | Semiconductor device interconnect |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100576363B1 (ko) * | 2003-05-30 | 2006-05-03 | 삼성전자주식회사 | 인시투 화학기상증착 금속 공정 및 그에 사용되는화학기상증착 장비 |
US7186446B2 (en) | 2003-10-31 | 2007-03-06 | International Business Machines Corporation | Plasma enhanced ALD of tantalum nitride and bilayer |
KR100738211B1 (ko) * | 2005-12-29 | 2007-07-10 | 동부일렉트로닉스 주식회사 | 반도체 장치의 박막 및 금속 배선 형성 방법 |
US20070281476A1 (en) * | 2006-06-02 | 2007-12-06 | Lavoie Adrien R | Methods for forming thin copper films and structures formed thereby |
US20080233704A1 (en) * | 2007-03-23 | 2008-09-25 | Honeywell International Inc. | Integrated Resistor Capacitor Structure |
US8211794B2 (en) * | 2007-05-25 | 2012-07-03 | Texas Instruments Incorporated | Properties of metallic copper diffusion barriers through silicon surface treatments |
WO2010077998A1 (en) * | 2008-12-16 | 2010-07-08 | Silicon Light Machines Corporation | Method of fabricating an integrated device |
US9399812B2 (en) * | 2011-10-11 | 2016-07-26 | Applied Materials, Inc. | Methods of preventing plasma induced damage during substrate processing |
CN102569042B (zh) * | 2012-03-12 | 2014-08-20 | 四川大学 | 超薄、高热稳定性ZrGeN/CuGe复合梯度阻挡层制备工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0758148A2 (de) * | 1995-08-07 | 1997-02-12 | Applied Materials, Inc. | Verfahren und Apparat zum Herstellen elektrischer Kontakte in integrierten Mehrschicht-Schaltungen |
JPH09186157A (ja) * | 1995-12-28 | 1997-07-15 | Lg Semicon Co Ltd | 2層構造の銅拡散防止膜の形成方法 |
US5893752A (en) * | 1997-12-22 | 1999-04-13 | Motorola, Inc. | Process for forming a semiconductor device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273775A (en) * | 1990-09-12 | 1993-12-28 | Air Products And Chemicals, Inc. | Process for selectively depositing copper aluminum alloy onto a substrate |
JPH0819516B2 (ja) * | 1990-10-26 | 1996-02-28 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | 薄膜状のアルファTaを形成するための方法および構造 |
US5576579A (en) * | 1995-01-12 | 1996-11-19 | International Business Machines Corporation | Tasin oxygen diffusion barrier in multilayer structures |
EP0751566A3 (de) * | 1995-06-30 | 1997-02-26 | Ibm | Metalldünnschichtbarriere für elektrische Verbindungen |
US5858099A (en) * | 1996-04-09 | 1999-01-12 | Sarnoff Corporation | Electrostatic chucks and a particle deposition apparatus therefor |
US6130124A (en) * | 1996-12-04 | 2000-10-10 | Samsung Electronics Co., Ltd. | Methods of forming capacitor electrodes having reduced susceptibility to oxidation |
US6139699A (en) * | 1997-05-27 | 2000-10-31 | Applied Materials, Inc. | Sputtering methods for depositing stress tunable tantalum and tantalum nitride films |
US6054768A (en) * | 1997-10-02 | 2000-04-25 | Micron Technology, Inc. | Metal fill by treatment of mobility layers |
US6887353B1 (en) * | 1997-12-19 | 2005-05-03 | Applied Materials, Inc. | Tailored barrier layer which provides improved copper interconnect electromigration resistance |
US5968333A (en) * | 1998-04-07 | 1999-10-19 | Advanced Micro Devices, Inc. | Method of electroplating a copper or copper alloy interconnect |
US6461675B2 (en) * | 1998-07-10 | 2002-10-08 | Cvc Products, Inc. | Method for forming a copper film on a substrate |
US6351406B1 (en) * | 1998-11-16 | 2002-02-26 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6372301B1 (en) * | 1998-12-22 | 2002-04-16 | Applied Materials, Inc. | Method of improving adhesion of diffusion layers on fluorinated silicon dioxide |
US6417094B1 (en) * | 1998-12-31 | 2002-07-09 | Newport Fab, Llc | Dual-damascene interconnect structures and methods of fabricating same |
US6362099B1 (en) * | 1999-03-09 | 2002-03-26 | Applied Materials, Inc. | Method for enhancing the adhesion of copper deposited by chemical vapor deposition |
US6593653B2 (en) * | 1999-09-30 | 2003-07-15 | Novellus Systems, Inc. | Low leakage current silicon carbonitride prepared using methane, ammonia and silane for copper diffusion barrier, etchstop and passivation applications |
US6403465B1 (en) * | 1999-12-28 | 2002-06-11 | Taiwan Semiconductor Manufacturing Company | Method to improve copper barrier properties |
-
1999
- 1999-05-17 DE DE19922557A patent/DE19922557B4/de not_active Expired - Fee Related
-
2000
- 2000-05-17 WO PCT/DE2000/001580 patent/WO2000070664A1/de active IP Right Grant
- 2000-05-17 KR KR10-2001-7014606A patent/KR100408543B1/ko not_active IP Right Cessation
- 2000-05-17 TW TW089109431A patent/TW472348B/zh not_active IP Right Cessation
- 2000-05-17 JP JP2000619017A patent/JP3779161B2/ja not_active Expired - Fee Related
-
2001
- 2001-11-19 US US09/992,977 patent/US6579786B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0758148A2 (de) * | 1995-08-07 | 1997-02-12 | Applied Materials, Inc. | Verfahren und Apparat zum Herstellen elektrischer Kontakte in integrierten Mehrschicht-Schaltungen |
JPH09186157A (ja) * | 1995-12-28 | 1997-07-15 | Lg Semicon Co Ltd | 2層構造の銅拡散防止膜の形成方法 |
US5893752A (en) * | 1997-12-22 | 1999-04-13 | Motorola, Inc. | Process for forming a semiconductor device |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 07 31 March 1999 (1999-03-31) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002093648A3 (en) * | 2001-05-11 | 2003-12-31 | Ibm | Semiconductor device interconnect |
CN100365811C (zh) * | 2001-05-11 | 2008-01-30 | 国际商业机器公司 | 半导体器件的互连 |
WO2003009372A2 (en) * | 2001-07-20 | 2003-01-30 | Applied Materials, Inc. | Low resistivity tantalum nitride/tantalum bilayer stack |
WO2003009372A3 (en) * | 2001-07-20 | 2003-10-16 | Applied Materials Inc | Low resistivity tantalum nitride/tantalum bilayer stack |
DE10146359A1 (de) * | 2001-09-20 | 2003-04-30 | Advanced Micro Devices Inc | Ein Metallisierungsprozesssequenz |
DE10146359B4 (de) * | 2001-09-20 | 2006-12-28 | Advanced Micro Devices, Inc., Sunnyvale | Eine Metallisierungsprozesssequenz |
Also Published As
Publication number | Publication date |
---|---|
US20020086527A1 (en) | 2002-07-04 |
DE19922557B4 (de) | 2004-11-04 |
DE19922557A1 (de) | 2000-12-07 |
KR20020011135A (ko) | 2002-02-07 |
JP3779161B2 (ja) | 2006-05-24 |
US6579786B2 (en) | 2003-06-17 |
KR100408543B1 (ko) | 2003-12-06 |
TW472348B (en) | 2002-01-11 |
JP2003500828A (ja) | 2003-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4342047B4 (de) | Halbleiterbauelement mit einer Diffusionsbarrierenschichtanordnung und Verfahren zu seiner Herstellung | |
DE69837674T2 (de) | Doppeldamaszen-metallisierung | |
DE69030229T2 (de) | Verfahren zum Herstellen einer Halbleitervorrichtung | |
US5747360A (en) | Method of metalizing a semiconductor wafer | |
DE69314679T2 (de) | Mit schwerschmelzendem Metal abgedeckte metallische Leiterbahnen und Kontaktlöcher | |
US5443995A (en) | Method for metallizing a semiconductor wafer | |
DE69929496T2 (de) | Struktur für Kupferleitungsverbindungsleitung, die eine metallische Keimschicht umfasst | |
US6121685A (en) | Metal-alloy interconnections for integrated circuits | |
US6506668B1 (en) | Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability | |
EP1724827B1 (de) | Verfahren zur Herstellung einer Leitstruktur mit Barrieren-Schichtstapel und entsprechende Leitstruktur | |
DE19922557B4 (de) | Verfahren zum Abscheiden einer TaN/Ta-Zweischicht-Diffusionsbarriere | |
EP0132720A1 (de) | Integrierte Halbleiterschaltung mit einer aus Aluminium oder aus einer Aluminiumlegierung bestehenden äusseren Kontaktleiterbahnebene | |
EP0950261B1 (de) | Halbleiterkörper mit rückseitenmetallisierung | |
DE60214572T2 (de) | Hartlötbare metallisierungen für diamantbauteile | |
DE10261466B4 (de) | Verfahren zur Herstellung einer leitenden Barrierenschicht mit verbesserten Haft- und Widerstandseigenschaften | |
US5976970A (en) | Method of making and laterally filling key hole structure for ultra fine pitch conductor lines | |
DE19952273A1 (de) | Verfahren zur Bildung eines Verbindungsfilmes | |
DE69922617T2 (de) | Verfahren zur Herstellung einer Halbleitervorrichtung | |
US6140701A (en) | Suppression of hillock formation in thin aluminum films | |
DE10146359A1 (de) | Ein Metallisierungsprozesssequenz | |
DE102007043710A1 (de) | Tiefe Durchkontaktierungskonstruktion für eine Halbleitereinrichtung und ein Verfahren zu Ihrer Herstellung | |
DE102005035728B3 (de) | Verfahren zum Reduzieren der Kontamination durch Entfernung eines Zwischenschichtdielektrikums von dem Substratrand | |
DE10351005B4 (de) | Barrierenschicht mit einer Titannitridbeschichtung für eine Kupfermetallisierungsschicht, die ein Dielektrikum mit kleinem ε aufweist | |
DE10339990B4 (de) | Verfahren zur Herstellung einer Metallleitung mit einer erhöhten Widerstandsfähigkeit gegen Elektromigration entlang einer Grenzfläche einer dielektrischen Barrierenschicht mittels Implantieren von Material in die Metalleitung | |
EP0448763A1 (de) | Verfahren und Vorrichtung zur Herstellung von leitenden Schichten oder Strukturen für höchstintegrierte Schaltungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 619017 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017014606 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09992977 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017014606 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase | ||
WWG | Wipo information: grant in national office |
Ref document number: 1020017014606 Country of ref document: KR |