WO2000070198A1 - Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston - Google Patents

Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston Download PDF

Info

Publication number
WO2000070198A1
WO2000070198A1 PCT/EP2000/004464 EP0004464W WO0070198A1 WO 2000070198 A1 WO2000070198 A1 WO 2000070198A1 EP 0004464 W EP0004464 W EP 0004464W WO 0070198 A1 WO0070198 A1 WO 0070198A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
valve
control
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2000/004464
Other languages
German (de)
English (en)
Inventor
Günter Schmitz
Christian Boie
Jürgen Hagen
Original Assignee
Fev Motorentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Motorentechnik Gmbh filed Critical Fev Motorentechnik Gmbh
Priority to JP2000618593A priority Critical patent/JP2002544434A/ja
Priority to DE10081312T priority patent/DE10081312D2/de
Priority to EP00943721A priority patent/EP1099044A1/fr
Publication of WO2000070198A1 publication Critical patent/WO2000070198A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Another problem with the electromagnetic valve train is that, due to the sticking times of the armature on the pole face, it is not possible to set arbitrarily short control times.
  • an electromagnetic actuator for actuating a gas exchange valve on a piston internal combustion engine, which has an armature which is operatively connected to the gas exchange valve and which is guided back and forth between the two electromagnets against the force of at least one return spring, the energization of which is controlled by a motor control. It is provided as a method according to the invention to solve these problems that a continuous adaptation of the control and / or regulating parameters to the respective operating states of the piston internal combustion engine by recording the respective actual conditions and / or via stored characteristic maps in the engine control and / or ongoing measurements are carried out and that the current is supplied in such a way that the armature of the electromagnetic valve drive strikes at the lowest possible speed.
  • the controller parameters such as the P component of a PID controller, are set depending on the operating state. At least one piece of information from the engine control system about the current operating state is used for this. This information can either be transmitted directly to the controller in the form of load information, speed information or the like, which then adjusts its parameters accordingly. Or the respective controller parameters for the current operating status are stored in the engine control, for example in the form of a map, and are transmitted to the controller.
  • Certain data can also be determined in the controller unit itself. For example, information on the sensor value (travel signal) in the end position, that is to say when the armature is present, can be determined from the travel signal of at least one of the preceding switching cycles. This enables self-calibration. It is also possible to determine an asymmetrical parameterization of the controller for opening and closing from the determination of the rest position of the armature if the rest position of the armature is not exactly in the middle between the two pole faces. This saves an exact adjustment of the middle position. This is important for a reduction in service intervals.
  • valve clearance is recorded by means of a measurement, or a required parameter variation is derived from the findings of the previous work cycles.
  • the "knowledge" of the controller can also be used to control the detachment process ie the start of the armature / valve movement. So far, different waste delay times (T ⁇ times) have been accepted or attempts have been made to compensate for them through specifications from the engine control. Such different "sticking" times are, on the one hand, a consequence of back pressure fluctuations caused by the cyclical fluctuations gen of the internal combustion engine or different load conditions. On the other hand, they also depend on the magnetic conditions of the actuator and are therefore dependent on the type variation. It may also be necessary to change the current switch-off time depending on the expected flight time. The control unit can determine all these influences by observation and compensate accordingly in the next cycle by correcting the switch-off time.
  • the controller is controlled so that the armature is not pulled up to the pole face, but rather "floats" shortly before it. From this state, the closing movement can be initiated without delay be reduced or switched off by the current flow through the opening coil.
  • Such an uncritical basic setting can also be made after a component replacement or another workshop intervention. Even when starting the engine, it makes sense to take some of the parameters (medium-term) from an uncritical basic setting.
  • Fig. 2 shows an idealized course of
  • Fig. 3 shows an idealized course of
  • FIG. 9 shows a stroke course with holding the armature in the floating position.
  • a schematic drawing in FIG. 1 shows an electromagnetic actuator that can be controlled via a motor control for actuating a gas exchange valve.
  • An electromagnetic actuator 1 for actuating a gas exchange valve 2 consists essentially of a closing magnet 3 and an opening magnet 4, which are arranged at a distance from one another and between which an armature 5 back and forth against the force of return springs, namely an opening spring 7 and a closing spring 8 is movably guided.
  • the arrangement is shown in the closed position, specifically in the "classic" arrangement of the opening spring and the closing spring.
  • the closing spring 8 acts directly via a spring plate 2.2 connected to the shaft 2.1 of the gas exchange valve 2.
  • the guide rod 11 of the electromagnetic actuator is separated from the shaft 2.1, usually a gap in the form of the so-called valve clearance VS is present here in the closed position.
  • the opening spring 7 is in turn supported on a spring plate 11.1 on the guide rod 11, so that the guide rod 11 is supported on the shaft 2.1 of the gas exchange valve 2 in the central position under the opposing effect of the opening spring 7 and the closing spring 8.
  • the closing spring 8 and the opening spring 7 are now generally designed so that in the rest position, ie when not in use. flowed electromagnets the armature 5 is in the central position between the two pole faces. From this central position, the electromagnetic actuator 2 with its gas exchange valve 2 must then be started in accordance with the above-described method for starting up the associated piston internal combustion engine.
  • the electromagnets 3 and 4 of the actuator 1 are controlled via an electronic motor control 9 in accordance with the specified control programs and depending on the operating data supplied to the motor control, such as speed, temperature, etc.
  • a sensor 10 is assigned to the actuator 1, which enables the actuator functions to be recorded.
  • the sensor 10 is shown schematically here.
  • the path of the armature 5 can be detected, for example, so that the respective armature position can be transmitted to the motor controller 9.
  • the armature speed can then optionally also be determined in the motor controller 9 by means of corresponding arithmetic operations, so that the energization of the two electromagnets 3, 4 can be controlled as a function of the armature position and / or as a function of the armature speed.
  • the sensor 10 does not necessarily have to be assigned to the armature 5 laterally, as shown, but it is also possible to arrange corresponding sensors in the region of the pole face of the respective electromagnet or, as with the sensor 10.1, one with the armature 5 in connection to assign standing push rod 11.1.
  • the sensor 10 shown in the schematic drawing is not shown in its geometric position.
  • the sensor 10 is part of the overall sensor system of the engine control.
  • the motor controller 9 also has corresponding means for detecting the current and the voltage for the respective electromagnet 3 and 4 and for changing the current profile and the voltage profile.
  • the actuator 1 of the gas exchange valve 2 can then be controlled in a fully variable manner as a function of predefinable operating programs, possibly based on corresponding characteristic maps, for example with regard to the start and end of the opening times. Controls regarding the amount of the opening stroke or the number of opening strokes during a closing time can also be controlled.
  • the speed can be compared with a preset value after a certain time. If, for example, the speed is lower than the specified value of a low load point, the corresponding back pressure parameters can be determined from the quotient of the specified value to the measured value using a table. Instead, a table that is filled differently can naturally also receive the difference as an input variable.
  • the influence of back pressure is determined from the behavior of the armature on the first path. While the sensor does not provide a usable signal, the model of an observer, who is now fed with the information about the estimated gas counter-pressure influence, can estimate the further course of the armature quite accurately and thus provide the controller with very good information about the current course of the path. If the armature then comes into the area of the other end position, the sensor signal again gives very precise information, so that an arrival at a low speed can then be achieved with this additional information.
  • the parameters that are influenced by the back pressure can be compared and corrected if necessary when using multiple outlet valves. Methods such as averaging or, depending on the version, maximum averaging (for the greatest possible reliability) are possible. If the exhaust valves are not actuated at the same time, the information of the earlier opening valve can already be used for the later opening valve.
  • the "self-learning ability" of neural networks can also be used to adapt the parameters. In this case, either all parameters or only a part can be adapted; the entire model formation can even be implemented using a neural network.
  • Fuzzy-based controllers or fuzzy-based algorithms can also be used to adapt the parameters.
  • a corresponding partial or complete implementation in fuzzy technology can also be carried out here
  • 3 and 4 show the idealized course of path and speed as a function of time and path.
  • 3 shows the path beginning at "A” and ending at "E", which initially runs according to the usual cosine curve, and then assumes a linear course when approaching the end position.
  • Linear course means constant speed. This can be seen in the representation of the course of the speed in FIG. 4.
  • the speed is plotted over the path starting at "A” and ending at "E".
  • the speed of impact is very low.
  • FIG. 7 shows a "normal" opening and closing movement of a gas exchange valve, in which the armature comes into contact alternately with the associated pole face of the two electromagnets and is held there for a period of time which can be predetermined by the engine control. If the energization of the electromagnet 3 held in the flow position of the armature 5 is switched off, as shown in FIG. 1, then the armature disengages from the pole face of the electromagnet 3 at time t ⁇ and moves in the direction of the force of the return spring 7 the pole face of the capturing electromagnet 4. This is energized accordingly, so that the armature 5 comes to rest on the pole face of the now capturing electromagnet 4 at time t 2 . At time t 3 , the current supply to the electromagnet 4 is switched off, so that at time t 4 and the corresponding current supply to the electromagnet 3, the armature 5 again reaches the closed position on the electromagnet 3.
  • the armature 5 shows a control for a so-called "free flight".
  • the armature 5 abuts the closing magnet 3, for example. If the closing magnet 3 is de-energized at time t x , the armature 5 moves in the opening direction. If the opening magnet 4 is not energized, the armature 5 reverses its movement in the direction of the closing magnet 3 under the action of the closing spring 8 and can be caught again at time t 5 if the current is applied appropriately. This results in a reduced opening stroke.
  • the method according to the invention in order to minimize or even switch off the adhesive time of the armature 5 on the closing magnet 3 for the opening process, consists of a corresponding parameterization of the current operating data the possibility to energize the "holding" magnet in such a way that the armature 5 does not come to rest on the pole face on its way to the opening position but "hovers" just before it for the duration of the opening time from t 2 to t 3 .
  • the closing process can be initiated practically without delay by switching off the current supply, so that the valve reaches its closed position again at time t 4 . This process is shown in Fig. 9.
  • cyclical fluctuations can occur in the combustion process if the leanness is excessive or the residual gas content is too high. These cyclical fluctuations can no longer be tolerated above a certain level of around 0.1 bar indicated mean pressure, because on the one hand the driver feels the uneven running of the piston internal combustion engine and on the other hand the emissions increase.
  • the presence of cyclical fluctuations can be recognized from the changes in the gas back pressure.
  • the opening time of the gas outlet valve varies depending on the exhaust gas back pressure, because the time of the equilibrium of forces between the decreasing magnetic force and the spring force is influenced by the exhaust gas back pressure that acts on the valve disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

L'invention concerne un procédé pour l'exploitation d'un mécanisme de distribution électromagnétique pour l'actionnement d'une soupape d'échange gazeux sur un moteur à combustion interne à piston, mécanisme de distribution dont l'alimentation en courant est pilotée par une commande de moteur. Le procédé selon l'invention est caractérisé en ce qu'il y a adaptation continue des paramètres de commande et de régulation aux différents états de fonctionnement du moteur à combustion interne par l'intermédiaire d'une détection des différents états effectifs, de réseaux de caractéristiques stockés dans la commande de moteur ou de mesures continues et en ce que l'alimentation en courant se fait alors de telle façon que l'impact de l'induit du mécanisme de distribution électromagnétique a lieu à la vitesse la plus faible possible.
PCT/EP2000/004464 1999-05-19 2000-05-17 Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston WO2000070198A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000618593A JP2002544434A (ja) 1999-05-19 2000-05-17 ピストン式内燃機関のガス交換弁を操作する電磁式動弁機構を運転する方法
DE10081312T DE10081312D2 (de) 1999-05-19 2000-05-17 Verfahren zum Betrieb eines elektromagnetischen Ventiltriebs zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
EP00943721A EP1099044A1 (fr) 1999-05-19 2000-05-17 Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19922969.4 1999-05-19
DE19922969A DE19922969A1 (de) 1999-05-19 1999-05-19 Verfahren zum Betrieb eines elektromagnetischen Ventiltriebs zur Betätigung eines Gaswechselventils an einer Kolbenbrennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2000070198A1 true WO2000070198A1 (fr) 2000-11-23

Family

ID=7908513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004464 WO2000070198A1 (fr) 1999-05-19 2000-05-17 Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston

Country Status (4)

Country Link
EP (1) EP1099044A1 (fr)
JP (1) JP2002544434A (fr)
DE (2) DE19922969A1 (fr)
WO (1) WO2000070198A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062107C5 (de) * 2000-12-13 2004-05-13 Daimlerchrysler Ag Aktorregelung
DE10117218A1 (de) * 2001-04-06 2002-10-17 Daimler Chrysler Ag Verfahren zur Positions-oder Geschwindigkeitsbestimmung eines Ankers
US6729314B2 (en) * 2002-02-11 2004-05-04 Eaton Corporation Staged translation control algorithm for reduction in impact force
DE102005042110A1 (de) * 2005-09-05 2007-03-08 Siemens Ag Vorrichtung und Verfahren zum Ansteuern eines elektromagnetischen Aktors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794891A (en) * 1986-10-13 1989-01-03 Hans Knobloch Method for operating an internal combustion engine
EP0376716A1 (fr) * 1988-12-28 1990-07-04 Isuzu Motors Limited Dispositif de commande d'une soupape entraînée par force électromagnétique
US5818680A (en) * 1995-05-17 1998-10-06 Fev Motorentechnik Gmbh & Co. Kg Apparatus for controlling armature movements in an electromagnetic circuit
DE19739840A1 (de) * 1997-09-11 1999-03-18 Daimler Benz Ag Elektromagnetisch betätigbare Stellvorrichtung und Verfahren zum Betreiben der Stellvorrichtung
WO2000028192A1 (fr) * 1998-11-06 2000-05-18 Siemens Automotive Corporation Procede de compensation pour commande de flux d'un actionneur electromagnetique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794891A (en) * 1986-10-13 1989-01-03 Hans Knobloch Method for operating an internal combustion engine
EP0376716A1 (fr) * 1988-12-28 1990-07-04 Isuzu Motors Limited Dispositif de commande d'une soupape entraînée par force électromagnétique
US5818680A (en) * 1995-05-17 1998-10-06 Fev Motorentechnik Gmbh & Co. Kg Apparatus for controlling armature movements in an electromagnetic circuit
DE19739840A1 (de) * 1997-09-11 1999-03-18 Daimler Benz Ag Elektromagnetisch betätigbare Stellvorrichtung und Verfahren zum Betreiben der Stellvorrichtung
WO2000028192A1 (fr) * 1998-11-06 2000-05-18 Siemens Automotive Corporation Procede de compensation pour commande de flux d'un actionneur electromagnetique

Also Published As

Publication number Publication date
EP1099044A1 (fr) 2001-05-16
JP2002544434A (ja) 2002-12-24
DE19922969A1 (de) 2000-11-23
DE10081312D2 (de) 2001-08-30

Similar Documents

Publication Publication Date Title
DE60102131T2 (de) Verfahren zur Steuerung eines elektromagnetischen Ventilantriebes in einem nockenwellenlosen Motor
DE102008002901A1 (de) Steuerung für ein elektromagnetisch betätigtes Ventil
DE3843138C2 (fr)
DE102007025619B4 (de) Verfahren und Vorrichtung zur Steuerung eines hydraulischen Stellers
EP1099043B1 (fr) Procede de commande d'un mecanisme de distribution electromagnetique pour soupape a gaz a deux voies dans un moteur a combustion interne a piston
EP2388583B1 (fr) Procédé et dispositif de commande pour l'établissement d'une grandeur caractéristique de viscosité d'une huile
DE19623698A1 (de) Verfahren zur Steuerung der Antriebe von Hubventilen an einer Kolbenbrennkraftmaschine
EP0973178A2 (fr) Procédé de commande du mouvement d'une armature d'un vérin électromagnétique
EP1262639A9 (fr) Méthode de commande d'un actionneur électromagnétique, en particulier pour l'actionnement de soupapes de moteur à combustion interne
DE102010041320B4 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
EP3597891B1 (fr) Détermination électrique des caractéristiques d'actionneurs magnétiques
DE19880737B4 (de) Verfahren zur Funktionsüberwachung eines elektromagnetischen Aktuators
DE19920181A1 (de) Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch eine kennfeldgestützte Regelung der Bestromung
DE102011016895B4 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP2388447A1 (fr) Procédé d'établissement d'une grandeur caractéristique de viscosité d'une huile de moteur et dispositif de commande électronique d'un moteur
WO2013079553A1 (fr) Détermination du comportement d'ouverture d'un injecteur de carburant au moyen d'une excitation électrique de test sans saturation magnétique
DE19531435B4 (de) Verfahren zur Anpassung der Steuerung eines elektromagnetischen Aktuators an betriebsbedingte Veränderungen
EP0973177B1 (fr) Procédé de commande du mouvement d'une armature d'un vérin électromagnétique
DE19832196A1 (de) Verfahren zur Reduzierung der Auftreffgeschwindigkeit eines Ankers eines elektromagnetischen Aktuators
DE19641244A1 (de) Verfahren zur Justierung eines elektromagnetischen Aktuators
WO2000070198A1 (fr) Procede pour l'exploitation d'un mecanisme de distribution electromagnetique pour l'actionnement d'une soupape d'echange gazeux sur un moteur a combustion interne a piston
DE102005062558A1 (de) Verfahren und Vorrichtung zur Regelung eines Ventils
WO2000073635A1 (fr) Procede de commande de la position de fin de course d'une valve de commutation des gaz actionnee par un actuateur electromagnetique dans un moteur a combustion interne
DE10019739A1 (de) Verfahren zur Endlagenansteuerung eines durch einen elektromagnetischen Aktuator betätigten Gaswechselventils an einer Kolbenbrennkraftmaschine
DE19610210A1 (de) Verfahren und Vorrichtung zur Steuerung eines Stellelements einer Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000943721

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 618593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09743640

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000943721

Country of ref document: EP

REF Corresponds to

Ref document number: 10081312

Country of ref document: DE

Date of ref document: 20010830

WWE Wipo information: entry into national phase

Ref document number: 10081312

Country of ref document: DE

WWW Wipo information: withdrawn in national office

Ref document number: 2000943721

Country of ref document: EP