WO2000065709A1 - Elektronisch kommutierbarer motor - Google Patents

Elektronisch kommutierbarer motor Download PDF

Info

Publication number
WO2000065709A1
WO2000065709A1 PCT/DE2000/001235 DE0001235W WO0065709A1 WO 2000065709 A1 WO2000065709 A1 WO 2000065709A1 DE 0001235 W DE0001235 W DE 0001235W WO 0065709 A1 WO0065709 A1 WO 0065709A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
setpoint
voltage
output voltage
excitation windings
Prior art date
Application number
PCT/DE2000/001235
Other languages
English (en)
French (fr)
Inventor
Thomas Weigold
Johannes Pfetzer
Guenther Riehl
Matthias Schmitz
Gerta Rocklage
Torsten Heidrich
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2000614549A priority Critical patent/JP2002543747A/ja
Priority to US09/720,505 priority patent/US6388409B1/en
Priority to EP00938494A priority patent/EP1092263A1/de
Publication of WO2000065709A1 publication Critical patent/WO2000065709A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Definitions

  • the invention relates to an electronically commutatable motor, the excitation windings of the stator for generating a rotating field for the permanent magnet rotor with a commutation frequency can be connected to and separated from a DC supply voltage, the excitation windings being switchable via semiconductor output stages which are controlled by means of control signals at the commutation frequency a control unit can be controlled and their operating conditions change depending on a predetermined or predefinable setpoint.
  • Such motors are usually assigned a control unit which controls the semiconductor switches of the semiconductor output stages with pulse-width-modulated control signals.
  • the clock frequency of the clocked control signals is therefore in the high-frequency range, while the commutation frequency of the control signals depends on the structure of the motor and the speed of the motor and is significantly lower.
  • the semiconductor power amplifiers switch the applied DC supply voltage, which, for. B. when using such engines in a motor vehicle is formed by the battery of the vehicle.
  • the power and / or speed control in these motors is carried out by changing the pulse width of the clock pulses of the clocked control signals.
  • This object is achieved according to the invention in that the DC supply voltage is fed to a DC converter whose output voltage for the semiconductor output stages with the excitation windings changes as a function of the setpoint value and that the control unit independently of the setpoint value the semiconductor output stages with non-clocked Control signals with the commutation frequency always fully controlled.
  • the tax Unit only takes over the commutation, while the power or 5 speed adjustment is taken over by a DC converter whose
  • Output voltage changes depending on a specified or predefinable setpoint.
  • the semiconductor output stages with the excitation windings are always fully controlled by the control unit, so that the output voltage of the DC converter is responsible for the power or speed change.
  • the control unit can be implemented by reducing the commutation function without a microcomputer.
  • DC converter can be implemented without a microcomputer; all that is required is the electronic switch with a possible driver and an easy-to-install control circuit in the DC converter.
  • the direct current converter with a storage choke, a smoothing capacitor, a decoupling diode and an electronic switch is constructed in a known manner, the switch being switched at a clock frequency and the pulse width of the switching pulses changing as a function of the setpoint.
  • the regulation can take place in such a way that a controller for deriving the pulse width of the switching pulses for the electronic switch is assigned to the DC converter, to which the setpoint and the output voltage of the DC converter are supplied.
  • the dependency of the output voltage of the DC converter on the setpoint can be such that the pulse width of the switching pulses of the electronic switch and thus the output voltage of the DC converter increases or decreases as the setpoint increases or decreases.
  • the output and / or the speed of the motor change with the changing output voltage of the direct current converter.
  • the DC converter offers further variation possibilities in that the output voltage is greater or smaller than the DC supply voltage and that the increase or decrease in the output voltage of the DC converter is dependent on the increase or decrease in the setpoint.
  • Fig. 1 is a block diagram of the motor with DC converter and simple control unit and
  • FIG. 2 shows a schematic circuit diagram of an embodiment of the motor according to FIG. 1.
  • the DC supply voltage U batt for example the battery of a motor vehicle, feeds a DC converter DC / DC-W, which is supplied by a regulator RG as a function of a predetermined or predeterminable setpoint value U ⁇ o “an output voltage U. m delivers.
  • the output voltage U m can increase or decrease as the setpoint value U so n increases or decreases.
  • the changing output voltage U m serves as a DC supply voltage for the semiconductor output stages EST with the field windings of the motor M.
  • the semiconductor output stages EST of the motor are always fully controlled during operation by a control unit STE, so that the
  • Losses in the semiconductor switches of the semiconductor output stages EST can be kept small.
  • the control signals of the control unit STE are no longer clocked and only become the semiconductor output stages at the commutation frequency EST fed.
  • the control unit STE is therefore simple in construction and does not require a microcomputer, as in known electronically commutable motors with pulse-width-modulated control signals.
  • the direct current converter DC / DC-W comprises a storage inductor L, a smoothing capacitor ⁇ o capacitor C, a decoupling diode D and an electronic switch S.
  • the basic function of such a DC / DC converter is known.
  • the clock frequency for the electronic switch S can be 100 kHz, for example.
  • the pulse width ratio of the control signal for the switch S is dependent on the setpoint U soH and the output voltage U m of the direct current
  • DC supply voltage U batt of the electrical system is derived from the setpoint U. oll dependent variable output voltage U m , which the semiconductor output stages EST with their semiconductor switches T to T 2 (which are shown in simplified form as switches) and excitation windings U, V and W as variable supply voltage U m is supplied. About this variable operating voltage for the
  • Freewheeling diodes for the excitation windings U, V and W are not shown in FIG. 2 for the sake of simplicity.
  • the high-frequency, clocked control of the semiconductor switches T. to T ⁇ is omitted because the control signals of the control unit STE with the commutation frequency take control of the semiconductor switch T, to T 2 5.
  • the DC supply voltage U batt is increased from, for example, 1 2V to an operating voltage U m of, for example, 1 2V to 42V, the current to be switched for the excitation windings U, V and W can be reduced with the same motor power .
  • This offers the possibility of using simpler, less expensive semiconductors in the semiconductor output stages EST. Since the control signals for the semiconductor output stages EST are no longer clocked with a high switching frequency, semiconductor switches with longer switching times can also be used.
  • the DC / DC-W DC converter also decouples
  • the converter principle of the DC / DC converter can also be different and the motor M can be operated with different current and voltage values.
  • the 20 direct current converter DC / DC-W can reduce the supply voltage U batt from eg 42V to an operating voltage U-_ from 12V to 42V.
  • the switching frequency for the electronic switch S of the direct current converter DC / DC-W can also be variable.
  • DC / DC-W with the controller RG and the control unit STE with the semiconductor output stages EST can be designed for different types of motor M with different numbers of excitation windings, with different operating data of motor M being achieved by dimensioning the components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft einen elektronisch kommutierbaren Motor, dessen Erregerwicklungen des Stators zur Erzeugung eines Drehfeldes für den Dauermagnet-Rotor mit einer Kommutierungsfrequenz mit einer Versorgungsgleichspannung verbindbar und von dieser trennbar sind, wobei die Erregerwicklungen über Halbleiter-Endstufen schaltbar sind, die mittels Steuersignalen mit der Kommutierungsfrequenz einer Steuereinheit ansteuerbar sind und deren Betriebsbedingungen sich in Abhängigkeit eines vorgegebenen oder vorgebbaren Sollwertes ändern. Die Nachteile von Motoren mit pulsweitenmodulierter Steuerung der Erregerwicklungen lassen sich mit vereinfachter Motorsteuerung dadurch vermeiden, dass die Versorgungsgleichspannung einem Gleichstrom-Wandler zugeführt ist, dessen Ausgangsspannung für die Halbleiter-Endstufen mit den Erregerwicklungen sich in Abhängigkeit vom Sollwert ändert und dass die Steuereinheit unabhängig vom Sollwert die Halbleiter-Endstufen mit ungetakteten Steuersignalen mit der Kommutierungsfrequenz stets voll durchsteuert.

Description

Elektronisch kommutierbarer Motor
Stand der Technik
Die Erfindung betrifft einen elektronisch kommutierbaren Motor, dessen Erregerwicklungen des Stators zur Erzeugung eines Drehfeldes für den Dauermagnet- Rotor mit einer Kommutierungsfrequenz mit einer Versorgungsgleichspannung verbindbar und von dieser trennbar sind, wobei die Erregerwicklungen über Halbleiter-Endstufen schaltbar sind, die mittels Steuersignalen mit der Kommutierungsfrequenz einer Steuereinheit ansteuerbar sind und deren Betriebsbedingungen sich in Abhängigkeit eines vorgegebenen oder vorgebbaren Sollwertes ändern.
Derartigen Motoren ist üblicherweise eine Steuereinheit zugeordnet, die mit puls- weitenmodulierten Steuersignalen die Halbleiterschalter der Halbleiter-Endstufen ansteuert. Die Taktfrequenz der getakteten Steuersignale liegt daher im Hochfrequenzbereich, während die Kommutierungsfrequenz der Steuersignale abhängig vom Aufbau des Motors und der Drehzahl des Motors ist und dabei wesentlich niedriger ist. Die Halbleiter-Endstufen schalten dabei die angelegte Versorgungsgleichspannung, die z. B. beim Einsatz derartiger Motoren in einem Kraftfahrzeug von der Batterie des Fahrzeuges gebildet wird. Die Leistungs- und/oder Dreh- zahlregelung bei diesen Motoren erfolgt durch Ändern der Pulsweite der Taktimpulse der getakteten Steuersignale.
Bei diesen Motoren ergeben sich beim Einsatz verschiedene Probleme. In der Steuereinheit sind teuere Halbleiterschalter und Treiberschaltungen erforderlich und außerdem tritt in dieser eine hohe Verlustleistung auf. Dies zieht wiederum einen Aufwand zur Kühlung der Halbleiter in der Steuereinheit nach sich. Da die Steuereinheit direkt mit der Versorgungsgleichspannung, z.B. dem Bordnetz des Kraftfahrzeuges, gekoppelt ist, entstehen große EMV-Störsignale, die aufwendige Entstörschaltungen bedingen. Der Motor ist in verschiedenen Auslegungen bereit zu stellen, wenn unterschiedlich große Versorgungsgleichspannungen vorhanden sind. Durch die aufwendige Schaltungstechnik und den zusätzlichen Kühlungsaufwand wird der Motor in der Herstellung kostenintensiv.
Es ist Aufgabe der Erfindung, einen elektronisch kommutierbaren Motor der eingangs erwähnten Art zu schaffen, der ohne erhöhten Steuerungs- und Kühlungsaufwand die Nachteile der bekannten pulsweitenmodulierten Ansteuerung der Erregerwicklungen vermeidet.
Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass die Versorgungs- gleichspannung einem Gleichstrom-Wandler zugeführt ist, dessen Ausgangsspannung für die Halbleiter-Endstufen mit den Erregerwicklungen sich in Abhängigkeit vom Sollwert ändert und dass die Steuereinheit unabhängig vom Sollwert die Halbleiter-Endstufen mit ungetakteten Steuersignalen mit der Kommutierungsfrequenz stets voll durchsteuert.
Bei dieser Ausgestaltung des Motors wird die Kommutierung und die Leistungsoder Drehzahlveränderung aufgeteilt und getrennt vorgenommen. Die Steuerein- heit übernimmt nur noch die Kommutierung, während die Leistungs- oder 5 Drehzahlverstellung von einem Gleichstrom-Wandler übernommen wird, dessen
Ausgangsspannung sich in Abhängigkeit von einem vorgegebenen oder vorgebbaren Sollwert ändert. Die Halbleiter-Endstufen mit den Erregerwicklungen werden von der Steuereinheit stets maximal durchgesteuert, so dass die Ausgangsspannung des Gleichstrom-Wandlers für die Leistungs- oder Drehzahlände- ι o rung verantwortlich ist.
Dadurch ergeben sich für den elektronisch kommutierbaren Motor nach der Erfindung eine Vielzahl von Vorteilen. Das hochfrequenzte, pulsweitenmodu- iierte Takten der Steuersignale für die Halbleiter-Endstufen entfällt. Es können
15 langsamere Halbleiterschalter und einfachere Treiberschaltungen verwendet werden. Durch Hochsetzen der Bordnetzspannuπg über den Gleichstrom-Wandler ergibt sich bei gegebener Motorleistung eine Reduzierung des Motorstromes und damit der Verlustleistung in den Halbleiterschaltern. Die Halbleiterschalter können daher ohne aufwendige Kühlung betrieben werden. Da die Steuereinheit
20 über den Gleichstrom-Wandler vom Bordnetz, d.h. der Versorgungsgleichspannung, entkoppelt ist und kein hochfrequentes Takten in der Steuereinheit mehr erforderlich ist, resultiert daraus ein niedriger EMV-Störpegel, so dass ein geringerer Entstöraufwand erforderlich wird. Die Steuereinheit ist durch die Reduzierung auf die Funktion der Kommutierung ohne Mikrocomputer realisier-
25 bar, sie ist daher auch bei höheren Temperaturen einsetzbar. Die Steuerung des
Gleichstrom-Wandlers ist ohne Mikrocomputer ausführbar, es wird lediglich der elektronische Schalter mit eventuellem Treiber und einer einfach aufzubauenden Regelschaltung im Gleichstrom-Wandler erforderlich. Nach einer Ausgestaltung ist vorgesehen, dass der Gleichstrom-Wandler mit einer Speicherdrossel, einem Glättungskondensator, einer Entkopplungsdiode und einem elektronischen Schalter in bekannter Weise aufgebaut ist, wobei der Schalter mit einer Taktfrequenz geschaltet wird und die Pulsweite der Schaltimpulse sich in Abhängigkeit des Sollwertes ändert. Selbstverständlich können auch anders aufgebaute und anders steuerbare Gleichstrom-Wandler eingesetzt werden. Die Regelung kann dabei so erfolgen, dass dem Gleichstrom-Wandler ein Regler zur Ableitung der Pulsweite der Schaltimpulse für den elektronischen Schalter zugeordnet ist, dem der Sollwert und die Ausgangsspannung des Gleichstrom-Wandlers zugeführt sind.
Die Abhängigkeit der Ausgangsspannung des Gleichstrom-Wandlers vom Sollwert kann dabei so ausgeführt sein, dass mit zunehmendem oder abnehmendem Sollwert die Pulsweite der Schaltimpulse des elektronischen Schalters und damit die Ausgangsspannung des Gleichstrom-Wandlers zunimmt oder abnimmt.
Mit der sich ändernden Ausgangsspannung des Gleichstrom-Wandlers verändert sich die Leistung und/oder die Drehzahl des Motors.
Nach einer weiteren Ausgestaltung bietet der Gleichstrom-Wandler dadurch weitere Variationsmöglichkeiten, dass die Ausgangsspannung größer oder kleiner ist als die Versorgungsgleichspannung und dass die Zunahme oder Abnahme der Ausgangsspannung des Gleichstrom-Wandlers von der Zunahme oder der Abnahme des Sollwertes abhängig ist. Die Erfindung wird anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 ein Prinzipschaltbild des Motors mit Gleichstrom-Wandler und einfacher Steuereinheit und
Fig. 2 im schematischen Stromlauf ein Ausführungsbeispiel des Motors nach Fig. 1 .
Wie der Fig. 1 zu entnehmen ist, speist die Versorgungsgleichspannung Ubatt, z.B. die Batterie eines Kraftfahrzeuges, einen Gleichstrom-Wandler DC/DC-W, der von einem Regler RG in Abhängigkeit von einem vorgegebenen oder vorgebbaren Sollwert Uεo„ eine Ausgangsspannung Um abgibt. Dabei kann mit zunehmendem oder abnehmendem Sollwert Uson die Ausgangsspannung Um zunehmen oder abnehmen. Die Abhängigkeit der Ausgangsspannung Um vom
Sollwert Uso„ kann beliebig gewählt und durch die Reglercharakteristik festgelegt sein. Die sich ändernde Ausgangsspannung Um dient als Versorgungsgleichspannung für die Halbleiter-Endstufen EST mit den Erregerwicklungen des Motors M. Die Halbleiter-Endstufen EST des Motors werden während des Betriebes von einer Steuereinheit STE stets voll durchgesteuert, damit die
Verluste in den Halbleiterschaltern der Halbleiter-Endstufen EST klein gehalten werden können. Die Steuersignale der Steuereinheit STE sind nicht mehr getaktet und werden nur mit der Kommutierungsfrequenz den Halbleiter-Endstufen EST zugeführt. Die Steuereinheit STE ist daher einfach im Aufbau und erfordert 5 keinen Mikrocomputer wie bei bekannten elektronisch kommutierbaren Motoren mit pulsweitenmodulierten Steuersignalen.
Anhand der Fig. 2 wird ein Ausführungsbeispiel näher erläutert. Dabei umfaßt der Gleichstrom-Wandler DC/DC-W eine Speicherdrossel L, einen Glättungskon- ι o densator C, eine Entkopplungsdiode D und einen elektronischen Schalter S. Die prinzipielle Funktion eines derartigen DC-/DC-Wandlers ist bekannt. Die Taktfrequenz für den elektronischen Schalter S kann z.B. 100 kHz betragen. Mittels des Reglers RG wird das Pulsweitenverhältnis des Steuersignals für den Schalter S abhängig vom Sollwert UsoH und der Ausgangsspannung Um des Gleichstrom-
15 Wandlers DC/DC-W so nachgeführt, dass die Ausgangsspannung Um ein Vielfaches des Sollwertes Usoll ist. Dabei kann Um größer oder kleiner als Ubatt gewählt werden. Weitere Eingangsgrößen für den Regler RG können die Spannung Ubatt oder der Strom aus der Spannung Ubatt oder der Strom aus der Spannung Um sein. Mittels des Reglers RG wird sicher gestellt, dass aus der
20 Versorgungsgleichspannung Ubatt des Bordnetzes eine vom Sollwert U.oll abhängige variable Ausgangsspannung Um abgeleitet wird, die den Halbleiter- Endstufen EST mit ihren Haibleiterschaltern T- bis T2 (die als Schalter vereinfacht dargestellt sind) und Erregerwicklungen U, V und W als variable Versorgungsspannung Um zugeführt wird. Über diese variable Betriebsspannung für den
25 Motor erfolgt die Leistungs- oder Drehzahlverstellung. Die erforderlichen
Freilaufdioden für die Erregerwicklungen U, V und W sind der Einfachheit halber in Fig. 2 nicht dargestellt. Die hochfrequente, getaktete Ansteuerung der Halbieiterschalter T. bis Tβ entfällt, da die Steuersignale der Steuereinheit STE mit der Kommutierungsfrequenz die Ansteuerung der Halbleiterschalter T, bis T2 5 übernehmen.
Wird, wie beim Ausführungsbeispiel, die Versorgungsgleichspannung Ubatt von z.B. 1 2V auf eine Betriebsspannung Um von z.B. 1 2V bis 42V hochgesetzt, dann kann bei gleicher Motorleistung der zu schaltende Strom für die Erreger- ι o Wicklungen U, V und W reduziert werden. Dies bietet die Möglichkeit, einfachere, kostengünstigere Halbleiter in den Halbleiter-Endstufen EST einzusetzen. Da die Steuersignale für die Halbleiter-Endstufen EST auch nicht mehr mit hoher Schaltfrequenz getaktet werden, lassen sich auch Halbleiterschalter mit größeren Schaltzeiten einsetzen. Der Gleichstrom-Wandler DC/DC-W entkoppelt zudem
15 den Motor M von der Versorgungsgleichspannung Ubatt und es entsteht darauf ein wesentlich geringerer EMV-Störpegel.
Das Wandlerprinzip des DC/DC-Wandlers kann auch anders sein und der Motor M kann mit anderen Strom- und Spannungswerten betrieben werden. Der 20 Gleichstrom-Wandler DC/DC-W kann die Versorgungsgleichspannung Ubatt von z.B. 42V auch auf eine Betriebsspannung U-_ von 12V bis 42V herabsetzen. Die Schaltfrequenz für den elektronischen Schalter S des Gleichstrom-Wandlers DC/DC-W kann auch variabel sein.
25 Die Erfindung ist durch entsprechende Anpassung des Gleichstrom-Wandlers
DC/DC-W mit dem Regler RG und der Steuereinheit STE mit den Halbleiter- Endstufen EST auf verschiedene Bauarten des Motors M mit unterschiedlicher Anzahl von Erregerwicklungen auslegbar, wobei durch Dimensionierung der Bauteile auch unterschiedliche Betriebsdaten des Motors M erreicht werden
30 können.

Claims

Ansprüche
1 . Elektronisch kommutierbarer Motor, dessen Erregerwicklungen des Stators zur Erzeugung eines Drehfeldes für den Dauermagnet-Rotor mit einer Kommutierungsfrequenz mit einer Versorgungsgieichspannung verbindbar und von dieser trennbar sind, wobei die Erregerwicklungen über Halbleiter-Endstufen schaltbar sind, die mittels Steuersignalen mit der
Kommutierungsfrequenz einer Steuereinheit ansteuerbar sind und deren Betriebsbedingungen sich in Abhängigkeit eines vorgegebenen oder vorgebbaren Sollwertes ändern, dadurch gekennzeichnet, dass die Versorgungsgieichspannung (Ubatt) einem Gleichstrom-Wandler
(DC/ DC-W) zugeführt ist, dessen Ausgangsspannung (U für die Halbleiter-Endstufen (EST) mit den Erregerwicklungen (U,V,W) sich in Abhängigkeit vom Sollwert (U-oM) ändert und dass die Steuereinheit (STE) unabhängig vom Sollwert (Uso„) die Halbleiter- Endstufen (EST) mit ungetakteten Steuersignalen mit der Kommutierungsfrequenz stets voll durchsteuert.
2. Elektronisch kommutierbarer Motor nach Anspruch 1 , dadurch gekennzeichnet, dass der Gleichstrom-Wandler (DC/DC-W) mit einer Speicherdrossel (L), einem Glättungskondensator (C), einer Eπtkopplungsdiode (D) und einem elektronischen Schalter (S) in bekannter Weise aufgebaut ist, wobei der Schalter (S) mit einer Taktfrequenz (z.B. 100 kHz) geschaltet wird und die Pulsweite der Schaltimpulse sich in Abhängigkeit des Sollwertes (Usoll) ändert.
3. Elektronisch kommutierbarer Motor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mit zunehmendem oder abnehmendem Sollwert (Usoπ) die Pulsweite der Schaltimpulse des elektronischen Schalters (S) und damit die Ausgangsspannung (Um) des Gleichstrom-Wandlers (DC/DC-W) zunimmt oder abnimmt.
4. Elektronisch kommutierbarer Motor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dem Gleichstrom-Wandler (DC/DC-W) ein Regler (RG) zur Ableitung der Pulsweite der Schaltimpulse für den elektronischen Schalter (S) zugeordnet ist, dem der Sollwert (Uson) und die Ausgangsspannung (UJ des Gleichstrom-Wandlers (DC/DC-W) zugeführt sind.
5. Elektronisch kommutierbarer Motor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mit der sich ändernden Ausgangsspannung (UJ des Gleichstrom- Wandlers (DC/DC-W) die Leistung und/oder die Drehzahl des Motors (M) veränderbar ist.
6. Elektronisch kommutierbarer Motor nach einem der Ansprüche 1 bis 5, 5 dadurch gekennzeichnet, dass die Ausgangsspannung (UJ größer oder kleiner ist als die Versorgungsgieichspannung (Ubatt) und dass die Zunahme oder Abnahme der Ausgangsspannung (U J des Gleichstrom-Wandlers (DC/DC-W) von der Zunahme oder der Abnahme des Soll- 10 wertes (USD„) abhängig ist.
7. Elektronisch kommutierbarer Motor nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Schaltfrequenz für den elektronischen Schalter (S) des Gleich- i 5 strom-Wandlers (DC/DC-W) variabel ist.
PCT/DE2000/001235 1999-04-27 2000-04-20 Elektronisch kommutierbarer motor WO2000065709A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000614549A JP2002543747A (ja) 1999-04-27 2000-04-20 電子コミュテーション式モータ
US09/720,505 US6388409B1 (en) 1999-04-27 2000-04-20 Electronically commutatable motor
EP00938494A EP1092263A1 (de) 1999-04-27 2000-04-20 Elektronisch kommutierbarer motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19919035A DE19919035A1 (de) 1999-04-27 1999-04-27 Elektronisch kommutierbarer Motor
DE19919035.6 1999-04-27

Publications (1)

Publication Number Publication Date
WO2000065709A1 true WO2000065709A1 (de) 2000-11-02

Family

ID=7905979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001235 WO2000065709A1 (de) 1999-04-27 2000-04-20 Elektronisch kommutierbarer motor

Country Status (6)

Country Link
US (1) US6388409B1 (de)
EP (1) EP1092263A1 (de)
JP (1) JP2002543747A (de)
CN (1) CN1302475A (de)
DE (1) DE19919035A1 (de)
WO (1) WO2000065709A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278943A (zh) * 2013-07-03 2015-01-14 Somfy两合公司 用于驱动住宅自动化幕帘的致动器和包括这类致动器的设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1023532C2 (nl) * 2003-05-26 2004-11-29 Innosource B V Toerentalregeling voor een borstelloze gelijkstroommotor.
EP3004565B1 (de) * 2013-06-06 2021-05-19 GE Aviation Systems LLC Strahltriebwerksanordnung und verfahren zur erzeugung von elektrizität

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289582A (ja) * 1995-04-17 1996-11-01 Matsushita Refrig Co Ltd 電源回路の制御装置
DE19725521A1 (de) * 1997-06-17 1998-12-24 Bosch Gmbh Robert Elektronisch kommutierter Motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128610A (en) * 1974-09-04 1976-03-11 Hitachi Ltd Museiryushimoota no sokudoseigyokairo
DE2747267A1 (de) * 1977-10-21 1979-04-26 Teldix Gmbh Schaltungsanordnung
CA1169919A (en) * 1979-02-22 1984-06-26 Makoto Gotou Control system for a dc motor
IT1285280B1 (it) * 1996-03-01 1998-06-03 Bitron Spa Motore elettrico a commutazione elettronica ad alta efficienza.
US6051952A (en) * 1997-11-06 2000-04-18 Whirlpool Corporation Electric motor speed and direction controller and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289582A (ja) * 1995-04-17 1996-11-01 Matsushita Refrig Co Ltd 電源回路の制御装置
DE19725521A1 (de) * 1997-06-17 1998-12-24 Bosch Gmbh Robert Elektronisch kommutierter Motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 03 31 March 1997 (1997-03-31) *
See also references of EP1092263A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278943A (zh) * 2013-07-03 2015-01-14 Somfy两合公司 用于驱动住宅自动化幕帘的致动器和包括这类致动器的设备
CN104278943B (zh) * 2013-07-03 2018-05-25 Somfy两合公司 用于驱动住宅自动化幕帘的致动器和包括这类致动器的设备
US10233691B2 (en) 2013-07-03 2019-03-19 Somfy Sas Actuator for driving a home-automation screen and installation comprising such an actuator

Also Published As

Publication number Publication date
CN1302475A (zh) 2001-07-04
US6388409B1 (en) 2002-05-14
EP1092263A1 (de) 2001-04-18
DE19919035A1 (de) 2000-11-02
JP2002543747A (ja) 2002-12-17

Similar Documents

Publication Publication Date Title
EP0242387B1 (de) Kollektorloser gleichstrommotor, treiberschaltung für einen kollektorlosen gleichstrommotor sowie verfahren zum betrieb eines kollektorlosen gleichstrommotors
EP1145416B1 (de) Umrichter für die umformung von elektrischer energie
DE4310260C1 (de) Elektronische Steuervorrichtung für einen elektronisch kommutierten Gleichstrommotor (EC-Motor)
DE3327761C2 (de)
EP2267882A1 (de) "Verfahren und Steuersystem zum Ansteuern eines bürstenlosen Elektromotors"
DE19845569A1 (de) Vorrichtung und Verfahren zur Regelung eines Generators
DE60219851T2 (de) Verfahren zur Strombegrenzung eines Gleichstrommotors
WO2009098124A1 (de) Verfahren für die steuerung eines elektrischen bordnetzes und elektrisches bordnetz
EP0935336B1 (de) Verfahren und Vorrichtung zur Steuerung eines Synchronmotors
DE3044150A1 (de) Spannungsreglerschnittstellenschaltung
EP0467085B1 (de) Treiberschaltung für einen bürstenlosen Gleichstrommotor
WO2000065709A1 (de) Elektronisch kommutierbarer motor
EP1934486B1 (de) Kühlerlüftermodul für ein kraftfahrzeug
DE4339195C2 (de) Steuerungseinrichtung für einen bürstenlosen Motor
DE10132909A1 (de) Steuergerät für Gleichstrommotoren
WO2002003538A1 (de) Verfahren zum betrieb eines bürstenlosen gleichstrommotors
EP1427095A2 (de) Elektronisch kommutierter Elektromotor
EP0190240B1 (de) Kollektorloser gleichstrommotor
DE10232716A1 (de) Lüfteransteuerung mit verbesserter elektromagnetischer Verträglichkeit
WO2001031772A1 (de) Elektronisch kommutierbarer motor
EP1992060B1 (de) Vorrichtung und verfahren zur gleichspannungsversorgung von elektronischen ansteuerschaltungen für elektromotoren
EP1689073B1 (de) Elektromotorantrieb
DE202005006693U1 (de) Hilfsantrieb mit PWM-Steuerung für einen Fahrzeuganhänger
DE3448483C2 (de) Steuerschaltung für einen Motor mit elektronischem Kommutator und Verfahren zum Betreiben desselben
EP1059725A2 (de) Elektronisch kummutierbarer Motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800707.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000938494

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09720505

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000938494

Country of ref document: EP