WO2000063429A2 - Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden - Google Patents

Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden Download PDF

Info

Publication number
WO2000063429A2
WO2000063429A2 PCT/EP2000/002980 EP0002980W WO0063429A2 WO 2000063429 A2 WO2000063429 A2 WO 2000063429A2 EP 0002980 W EP0002980 W EP 0002980W WO 0063429 A2 WO0063429 A2 WO 0063429A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
telomerase
htc
mrna
starter
Prior art date
Application number
PCT/EP2000/002980
Other languages
English (en)
French (fr)
Other versions
WO2000063429A3 (de
Inventor
Wolfgang Springer
Gustav Hagen
Maresa Wick
Dmitry Zubov
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU41153/00A priority Critical patent/AU774182B2/en
Priority to US09/959,014 priority patent/US6808883B1/en
Priority to JP2000612506A priority patent/JP2003519466A/ja
Priority to CA002370305A priority patent/CA2370305A1/en
Priority to EP00920657A priority patent/EP1187936A2/de
Publication of WO2000063429A2 publication Critical patent/WO2000063429A2/de
Publication of WO2000063429A3 publication Critical patent/WO2000063429A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the invention relates to an automated rapid test for the detection of cancer on the basis of telomerase (hTC) mRNA, suitable start nucleotides and oligonucleotide probes for this test as well as a corresponding detection method and a test kit.
  • hTC telomerase
  • telomeres The genetic material of eukaryotic cells is distributed on linear chromosomes.
  • the ends of the genes are derived from the Greek words telos (end) and meros (part, segment) as telomeres.
  • Most telomeres consist of repetitions of short sequences, which are mainly composed of thymine and guanine (Zakian, 1995).
  • the telomeric sequences of related organisms are often similar and even conserved between more distant species. It is remarkable that in all vertebrates examined so far, the telomeres are built up from the sequence TTAGGG (Meyne et al, 1989).
  • telomeres perform various important functions. They prevent the fusion of chromosomes (McClintock, 1941) and thus the development of dicentric inheritance. Such chromosomes with two centromeres can lead to the development of cancer by loss of heterozygosity or doubling or loss of genes.
  • telomeres serve to distinguish intact hereditary systems from damaged ones. For example, yeast cells stopped dividing when they contained a chromosome without telomer (Sandell and Zakian, 1993).
  • telomeres are required to initiate DNA replication. After cleavage of the RNA primer, extension of the Okazaki fragments and subsequent ligation, the newly synthesized DNA strand lacks the 5 'end, because there the RNA primer cannot be replaced by DNA. Without special protective mechanisms, the chromosomes would shrink with every cell division ("end-replication problem"; Harley et al, 1990). The non-coding telomer sequences presumably represent a buffer zone to prevent the loss of genes (Sandeil and Zakian, 1993).
  • telomeres also play an important role in regulating cellular aging (Olovnikov, 1973). Human somatic cells show a limited replication capacity in culture; after a certain time they become senese. In this state, the cells no longer divide even after stimulation with growth factors, but do not die, but remain metabolically active (Goldstein,
  • telomeres have central functions in the aging of cells and the stabilization of genetic material and prevention of cancer.
  • telomeres synthesize the telomeres
  • telomere As described above, organisms with linear chromosomes can only partially replicate their genome without a special protective mechanism. Most eukaryotes use a special enzyme, telomerase, to regenerate the telomer sequences. Telomerase is constitutively expressed in the unicellular organisms examined so far. In contrast, telomerase activity was only cells and tumor cells were measured, whereas neighboring somatic tissue contained no telomerase (Kim et al, 1994).
  • telomerase activity was originally only detectable in human germline cells, but not in normal somatic cells (Hastie et al, 1990; Kim et al, 1994). After developing a more sensitive detection method (Kim et al, 1994), low telomerase activity was also detected in hematopoietic cells (Broccoli et al, 1995; Counter et al, 1995; Hiyama et al, 1995).
  • telomeres Vaziri et al, 1994; Counter et al, 1995. It has not yet been clarified whether the amount of enzyme in these cells is not sufficient to compensate for telomer loss or whether the measured telomerase activity stems from a subpopulation, e.g. incompletely differentiated CD34 + 38 + precursor cells (Hiyama et al, 1995 ).
  • Clarification would require proof of telomerase activity in a single cell.
  • telomere activity was detected in a large number of tumor tissues tested to date (1734/2031, 85%; Shay, 1997), while no activity was found in normal somatic tissue (1/196, ⁇ 1%, Shay, 1997).
  • Various studies also showed that in senescent cells transformed with viral oncoproteins, the telomeres continued to shrink and telomerase could only be discovered in the subpopulation that survived the growth crisis (Counter et al, 1992). The telomeres were also stable in these immortalized cells (Counter et al, 1992). Similar findings from studies in mice (Blasco et al, 1996) support the assumption that reactivation of telomerase is a late event in tumorigenesis. Information on telomerase and in particular on human catalytic telomerase subunit and its sequence are contained in WO 98/14592 (Geron Corp.) and WO 98/59040 (Bayer AG).
  • telomerase mRNA for cancer diagnosis
  • telomerase hypothesis combines the loss of telomer sequences and cell aging with the activity of telomerase and the development of cancer.
  • shrinking of telomeres can be seen as a mechanism for tumor suppression. Differentiated cells that do not contain telomerase stop their cell division at a certain length of the telomeres. If such a cell mutates, it can only develop into a tumor if the cell can extend its telomeres. Otherwise, the cell would continue to lose telomere sequences until its chromosomes become unstable and it eventually perishes.
  • telomere Reactivation of telomerase is believed to be the main mechanism for tumor cells to stabilize their telomeres.
  • telomere activity was detected in almost all tumor tissues tested so far, so that a genetic test could be used to diagnose all types of cancer. This genetic test is particularly suitable for monitoring the course of cancer, but can also be used as a prognostic test or for early diagnosis of certain cancers
  • Gene probe diagnostics in particular in conjunction with amplification techniques, is a fast, specific and highly sensitive method that enables early detection of specific genes, gene fragments or individual mutations at the DNA / RNA level.
  • the technique can be carried out directly in the test material. It is based on the DNA / RNA hybridization technique, ie the specific one in vitro binding of complementary single-stranded nucleic acid to form Watson-Crick base pairs.
  • the DNA / DNA or DNA RNA double strands formed are also referred to as DNA hybrids.
  • Complementary sequence-specific gene probes are used to detect the specific DNA or RNA by means of the hybridization reaction. These gene probes are short, chemically synthesized oligonucleotide probes with a length of 10-200 nucleotides.
  • the gene probes can be photochemically (N. Dattagupta, PMMRae, ED Huguenel, E. Carlson, A. Lyga, JSShapiro, JPAlbarella, Analytical Biochem. 177,85,1989) or enzymatically by nick translation (Rigby, P.WJ. et al, J. Mol. Biol.
  • radioactive or non-radioactive label can be provided with a radioactive or non-radioactive label. Suitable for this are labels with 32 TPs or non-radioactive labels with digoxigenin-dUTP, biotin-dUTP or direct labeling with enzymes such as alk. Phosphatase or Horseradish Peroxidase.
  • the nucleic acids are first separated into single strands by denaturation (heat or alkali treatment) and then specifically hybridized with one another under stringent conditions which are achieved by temperature, ionic strength of the buffers and organic solvents.
  • the gene probe only binds to complementary sequences of the DNA or RNA to be detected.
  • This hybridization reaction can be carried out in various test formats, for example as solid-phase hybridization to a carrier such as, for example, nitrocellulose-coupled target DNA or gene probe, or as a liquid hybridization.
  • the evaluation takes place via the labeling of the gene probe with a reporter molecule as listed above or, as in the reversed phase hybridization system shown here, via the target DNA which is labeled with digoxigenin-dUTP during the amplification and the gene probe which is used for binding on magnetic particles is labeled with fluorescein.
  • the hybridization complex of target DNA and labeled gene probe is removed quantified by unbound gene probe via the reporter molecule used.
  • This read out can take place directly with fluorescence labeling or radioactive labeling or indirectly through enzyme tests and immunological methods with antibody conjugates, the enzymes such as the alk. Contain phosphatase and then allow a color reaction or chiluminescence reaction.
  • test sensitivity with gene probe diagnostics is in the range of 10 ⁇ to 10 "copies based on the detection of single genes.
  • An increase in test sensitivity can be achieved by combining it with DNA or RNA amplification techniques such as PCR (EP 200362) .LCR (EP 320308), NASBA (EP 329822), Qß (PCT
  • the invention relates to primers and probes (probes) for the amplification and detection of the mRNA of the human catalytically active telomerase subunit (hTC).
  • the human catalytic telomerase subunit (hTC) is described in WO 98/59040, to which express reference is made.
  • Such an oligonucleotide can in particular be an oligodeoxyribonucleotide or an oligoribonucleotide or a peptide nucleotide acid (PNA)
  • PNA peptide nucleotide acid
  • oligonucleotides which hybridize specifically with the hTC mRNA of the telomerase from the T-motif area, 5 'area and 3' area A DNA sequence or a degenerate variation of this sequence which encodes the protein hTC or a fragment of this protein, or DNA sequence which hybridizes with the DNA sequence under standard hybridization conditions.
  • a recombinant polynucleotide probe that contains a DNA sequence or a degenerate variation of that sequence that hybridizes hTC or a fragment of hTC
  • the invention further relates to a method for the detection of a neoplastic disease of a patient, in particular a method for determining the presence of the hTC protein in a cell or cellular sample, which is based on the amplification of an hTC polynucleotide or hybridization of an hTC polynucleotide, primers or an hTC complementary sequence with an hTC polynucleotide.
  • the process then comprises the following steps:
  • the invention further relates to a test kit for the detection of hTC mRNA in cellular samples and body fluids based on the above test principle.
  • the test kit is preferably used for the diagnosis of
  • test kit contains:
  • oligo- or polynucleic acids functional equivalents should be understood to mean those compounds which differ in the nucleotide sequence but code for the same protein. This is e.g. attributed to the degenerate genetic code.
  • the invention relates in particular to starter oligonucleotides comprising a nucleotide sequence selected from the group consisting of SEQ ID No 1, SEQ ID No 2, SEQ ID No 4, SEQ ID No 5, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9 and SEQ DD No 10.
  • the starter oligonucleotides are preferably used in suitable pairs, in the following sets:
  • the invention further relates to oligonucleotide probes, optionally labeled, containing a nucleotide sequence selected from the group consisting of SEQ ID NO: 1
  • the invention further relates to a method for the detection of increased telomerase activity, in which
  • telomerase (hTC) mRNA a sample of telomerase (hTC) mRNA using one or more starter oligonucleotides according to claim 1 and
  • the invention further relates to a test kit for detecting increased telomerase activity, containing one or more of the starter oligonucleotides.
  • an automatable genetic test for the detection of cancer diseases based on hTC-specific mRNA.
  • the previously described in situ tests based on the RNA component of telomerase had the disadvantage that no tumor-specific relevance was recognizable.
  • TRAP tests (Kim et al, Science 266, 2011-2015, 1994) had shown that telomerase activity was increased in various malignant tumors. The test specificity and sensitivity has so far been unsatisfactory for this test and not relevant for prognostic or diagnostic use (eg bladder cancer).
  • the advantage of the described invention is that the use of special primers optimized with regard to length and sequence and a readout that can be automated automatically enables a direct measurement of the amount of the telomerase amplicon formed via a chemiluminescence test or colorimetric test, and that Amplicon serves as a direct measure of telomerase expression or telomerase activity. Since the hTC telomerase obviously represents the speed-limiting step in the catalytic activity of the telomerase, this test provides a direct correlation between tumor tissue and telomerase activity at the nucleic acid level. So could in different
  • telomeres Tumors of the stomach, intestines, lungs, breast, ovary, prostate as well as melanomas and osteosarcomas, strongly increased telomerase values can be detected, whereas in normal tissues such as lungs, brain, kidneys, intestines and blood, only small signals were found.
  • the signal strength of the amplicon could be increased by a factor of 10 and the sensitivity of the test compared to conventional DNA tests by a factor of 10-100.
  • the amount of test material required was greatly reduced and the reliability of the test result was significantly improved by the significantly higher signals, even with low test material. Thanks to the already developed automation of the process, a large number of samples (> 100) can be read out within 20 minutes.
  • the present invention describes specific primers and oligonucleotide probes and their use for the rapid detection of telomerase expression based on hTC mRNA.
  • an automatic implementation is possible, for example on the Immuno I, Bayer Diagnostics, Tarrytown.
  • the test can also be carried out with the described primers and probes in Taqman or Lightcycler.
  • this test is particularly suitable for the cellular analysis of any sample material (eg smears) and for in situ hybridization.
  • the primers were prepared from the gene sequence of the telomerase gene by chemical synthesis.
  • the invention relates to primers and probes with a length of 15 to 40 (e.g. 15 to 30) nucleotides from the T motif area, 5 'area upstream from the start codon and 3' area of a splicing variant according to the im
  • the preferred primers were selected from the range
  • oligonucleotide probes were prepared by chemical synthesis
  • the mRNA was isolated from clinical samples using special RNA isolation methods.
  • the amplification of parts of the hTC mRNA was carried out with the specific primers from the T motif region, promoter region or splicing variant region.
  • N For the detection of the amplicons, a capture probe is used which hybridizes with the amplified nucleotide region.
  • the amplification was carried out using known amplification techniques, preferably the RT-PCR amplification method (U.S. Patent 5322770).
  • Fluorescence nucleotides or fluorescence-labeled primers of labeled amplification product Fluorescence nucleotides or fluorescence-labeled primers of labeled amplification product.
  • the amplification product is separated using additional biotin (primer or nucleotide)
  • amplification product labeled during the amplification e.g. digoxigenin d-UTP
  • the hybridization complex is separated with magnetic particles coated with fluorescein antibodies.
  • the evaluation of the hybridization complex formed as a measure of the telomerase expression and thus the telomerase activity is carried out by a chemiluminescence test with antidigoxigenin antibodies which are coupled with alkali phosphatase and which react with the digoxigenin built into the amplicon.
  • the test is carried out with one batch of test tissue mRNA and one batch of normal control tissue mRNA.
  • normal telomerase gene expression With normal telomerase gene expression, the amplification with the specific primers gives only little amplicon and thus also only a low chemiluminescence signal. A lot of amplicon and thus a strong chemiluminescence signal is produced in neoplastic tissue.
  • the great advantage of this test is that it can be decided immediately after the amplification whether there is an increased telomerase mRNA level, the test can be fully automated and can be carried out very quickly and with little effort and expense due to only a single amplification step.
  • the primer sets specific for the amplification products were selected from areas of the telomerase gene which are specific for the hTC telomerase gene and which do not result in homology with other RT motifs or other RT sequences. Primers with the sequence SEQ ID No 1, 2, 4, 5, 7, 8, 9, 10 were synthesized, which give specific amplification products. Suitable primers preferably have a length of 15 to 25 base pairs, particularly preferably 17 to 22 base pairs.
  • the selected primers were chemically synthesized using the phosphoramidite method of S.L. Beaucage and M.Carathers, Tetrahedron Letters, 22, 1859, 1981.
  • oligonucleotide probes specific for the amplification products of the primer sets were selected from regions of the telomerase gene which are specific for the hTC telomerase gene and which do not result in homology and hybridization with other RT motifs or other RT sequences. 30-36 mers were synthesized with the sequence SEQ ID No 3, 6, 11, which are specific for the amplification products.
  • Suitable probes preferably have a length of 20 to 36 base pairs, particularly preferably 25 to 36, very particularly preferably 30 to 36 base pairs.
  • Suitable probes can also have a solution of 25 to 30 base pairs.
  • the above-mentioned primers were each used as primer sets (Primer 1 + 2), (Primer4 + 5) or (Primer 7 + 8, 9 + 10), for the specific RTA amplification of the human telomerase m-RNA used.
  • primer sets (Primer 1 + 2), (Primer4 + 5) or (Primer 7 + 8, 9 + 10)
  • dNTPs deoxyadenosine triphosphate, deoxyguanosine triphosphate, deoxycytidine triphosphate and thymidine triphosphate
  • Digoxigenin-dUTP can be incorporated into the amplification product. This allows the amplification product to be combined with an antidigoxigenin antibody, e.g. alk. Phosphatase coupled can be evaluated via a chemiluminescence test with AMPPD as a substrate or a dye test with pNPP.
  • fluorescence-labeled nucleoside triphosphates such as fluorescein-dUTP or coumarin-dUTPs
  • biotinylated primers it is possible to separate the fluorescence-labeled, biotinylated amplification product via streptavidin-coated magnetic particles and to determine them quantitatively in the fluorescence photometer.
  • a DNA capture probe and a digoxigenin-labeled amplification product are preferably used. set.
  • a sample in the form of a fluorescein-labeled RNA sample can also be used, which serves as a capture and detector sample.
  • This genetic test using a DNA / RNA antibody significantly better sensitivities are achieved than with the previously usual genetic tests for other targets and therefore very little starting material is required to carry out the test.
  • the level of telomerase expression can be amplified by any of the primer sets described in the invention directly after amplification of part of the htCmRNA
  • a possible read out method is the staining of the amplification product separated by agarose gel electrophoresis with intercalating agents such as ethidium bromide.
  • a further possibility is the use of fluorescence-labeled primers for the amplification or the combination of biotinylated primers with fluorescence nucleotides, so that a terminally biotinylated, fluorescence-labeled amplification product is formed which can be bound and separated to magnetic particles coupled to streptavidin and the fluorescence can be determined semiquantitatively .
  • the most sensitive and preferred method is the described method of hybridizing the amplification products with the described oligonucleotide probe. If, for example, digoxigenin-dUTP is incorporated during the amplification and use of a biotinylated or fluorescent oligonucleotide probe, the Separate the hybridization complex of streptavidin / fluorescein antibody-coated magnetic particles and when using antidigoxigenin antibodies that are mixed with alk. Phosphatase are coupled, with AMPPD or CSPD as substrate semi-quantitatively via chemiluminescence.
  • An alternative method is the amplification without any incorporation of marker molecules and the detection of the
  • the detection of the hybridized amplicon takes place with a DNA / RNA antibody. This read out results in a high sensitivity and was specially developed for the automated process in
  • the selected starter oligonucleotides were chemically synthesized using the phosphoramidite method of S.L. Beaucage and M.Camthers, Tetrahedron Letters, 22, 1859, 1981.
  • the following nucleotide sequences were synthesized:
  • PCR primer 1 SEQ ID No 1
  • the oligonucleotide probes were selected from the nucleotide region which contains the amplified sequence of the different primer sets.
  • the selected oligonucleotide probes were synthesized using the phosphoramidite method of S.L. Beaucage and M. Caruthers, Tetrahedron Letters, 22, 1859, 1981.
  • reaction buffer potassium cocodylate 1 mol / 1; Tris / HCl 125 mmol / l; bovine serum albumin 1.25 mg / ml; pH 6.6; 25 ° C
  • oligonucleotide 25 units of terminals Transferase, C0CI2 2.5 mmol / 1 and 1 ml fluorescein-d-UTP (1 mmol / L) are calibrated after 60 minutes at 37 ° C approx. 50% 3 'end label.
  • the mRNA or total RNA was diluted and used in the concentrations 100 ng, 50 ng and 25 ng (10 ⁇ l).
  • the prepared mixtures were mixed with the prepared mixes (50 ⁇ l total volume / tube). For checking on
  • ethidium bromide was used as the intercalating agent after the amplification.
  • Biotin-dUTP or digoxigenin-dUTP can also be used and alk coupled with antibodies. Phosphatase a dye read out can be performed. Correspondingly fluorescent-labeled primers can also be used with lower sensitivity.
  • the amplification product was applied to a 0.8% agarose gel and electrophoresed at 100 mA for 30 minutes.
  • the fluorescence signals were evaluated directly under a UV transilluminator.
  • PCR Polymerase Chain Reaction
  • LCR LCR
  • gene probe technology a significant increase in sensitivity compared to conventional gene probe read-out methods is achieved.
  • the liquid hybridization tests were carried out with 100 ng digoxigenized amplicon and fluorescent capture probe according to Example 3 in a volume of 50 ⁇ l.
  • the blocking reaction and antibody reaction for the detection of hybridization via chemiluminescence was then carried out.
  • the beads loaded with DNA were added 1x with 500 ⁇ l buffer 2 (0.1 M maleic acid; 0.15 M NaCl pH 7.5; 1% blocking reagent (Boehringer)). After 5 minutes of incubation at room temperature, the mixture was separated, pipetted off and 250 ⁇ l of antibody conjugate solution (AK 1: 2500 in buffer 2) were added and incubated for 10 minutes at room temperature, then separated, pipetted off and treated with 500 ⁇ l of washing buffer 2 ⁇ 30 seconds, 1 x 2 minutes with weak movement. It was then incubated with detection solution with AMPPD 1: 100 in buffer 3 for 10 minutes at 37 ° C. in a water bath, then the chemiluminescence was measured in the luminescence photometer at 477 nm (Lumacounter from Lumac).
  • PCR polymerase chain reaction
  • LCR LCR
  • gene probe technology results in a significant increase in sensitivity compared to conventional gene probe read-out methods.
  • the liquid hybridization tests were carried out with 100 ng fluorescein-labeled RNA probe and amplified DNA according to Example 3 in a volume of 50 ⁇ l.
  • the coupled hybridization complex was separated with the beads, the residual liquid was pipetted off and washed once with buffer B (0.1 SSC; 0.1% SDS) once.
  • the blocking reaction and antibody reaction for the detection of hybridization via chemiluminescence was then carried out.
  • the loaded beads were added 1x with 500 ⁇ l buffer 2 (0.1 M maleic acid; 0.15 M NaCl pH 7.5; 1% blocking reagent (Boehringer)). After 5 minutes of incubation at room temperature, the mixture was separated, pipetted off and 250 ⁇ l of antibody conjugate solution
  • Lumac Lumac measured.
  • the process can be carried out automatically on the Immunol or subsequent devices.
  • 2xl0 7 cells (total) were centrifuged for 5 min at 2500 ⁇ m. Then the supernatant was poured off and dried overhead. The pellet was resuspended in 800 ⁇ L Lysis Buffer OL1 and incubated on ice for 3 min. 400 ⁇ L of the pellet lysed in OL1 were applied to 2 homogenizing columns. The mixture was then centrifuged for 1 min at 13000 ⁇ m and the column was discarded.
  • reaction tube was discarded and the column was placed on a new reaction tube containing 2 ⁇ L RNAsin.
  • 125 ⁇ L of elution buffer OEB (70 ° C.) was added to the column, mixed with the pellet and eluted for 5 min at 13000 ⁇ m. The two eluates were combined and the OD measured at 260 nm.
  • telomerase mRNA in clinical sample material (normal / neoplastic tissue)
  • the mRNA was isolated from the clinical sample material according to the method described in Example 7.
  • the RNA lysate was then amplified with the aid of suitable amplification methods as described in Example 5 with specific oligonucleotide primers.
  • the amplified nucleic acid was then with the
  • Oligonucleotide probes which are described in the sequence listing and the specific hybridization complex which forms under stringent conditions were separated using magnetic particles from Dynal and, as in Example 6 or preferably 7, determined quantitatively by chemiluminescence readout.
  • RNA or mRNA The tumor material of various origins listed in Table 1 was used to isolate total RNA or mRNA.
  • Cell cultures such as HeLa cells or Hek cells served as further positive controls.
  • Normal tissues from the lungs, brain, kidneys, intestines and blood (leukocytes) served as negative controls.
  • RNA was worked up using an RT-PCR as endpoint PCR on a normal thermal cycler or as kinetic PCR on the Lightcycler or the Perkin-Elmer-Taqman.
  • Primer sets and probes of the new telomerase assay have high signals that are comparable were with the signals in the HeLa and Hek cells.
  • the normal tissue on the other hand, gave only very low background signals even in the highest RNA concentration.
  • telomerase activity was also successful in the urine of patients with bladder tumors or in the sputum of patients with lung tumors.
  • various body fluids such as urine, sputum and blood are also suitable as starting materials for testing for increased telomerase activity.
  • the amplification was carried out via one- or two-stage RT-PCR and the detection via chemiluminescence test, fluorescence or colorimetric read out.
  • Sequences Telomerase T-motif sequences from
  • Probe Telo Tmotiv SeqlDNo 3 5 'TCCgTgACATAAAAgAAAgACCTgAgCAgCTCgA3' Probe
  • Rev5180 SEQIDNo 5 5 'TagTggCTgCgCAgCAgggA3'
  • Probe5100 SEQIDNo 6 5 'AagCCCTggCACCggTCACCCCCgCgATgCCgCgCg3 ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft einen automatisierbaren Schnelltest zum Nachweis von Krebserkrankungen auf der Basis der Telomerase(hTC) mRNA, geeignete Starternukleotide und Oligonukleotidsonden für diesen Test sowie ein entsprechendes Nachweisverfahren und ein Testkit.

Description

Ein automatisierbarer Schnelltest zum Nachweis von Krebserkrankungen auf der Basis der Telomerase(hTC) mRNA mit spezifischen Primern und Sonden
Die Erfindung betrifft einen automatisierbaren Schnelltest zum Nachweis von Krebserkrankungen auf der Basis der Telomerase(hTC) mRNA, geeignete Startemukleotide und Oligonukleotidsonden für diesen Test sowie ein entsprechendes Nachweisverfahren und ein Testkit.
Das genetische Material eukaryontischer Zellen ist auf linearen Chromosomen verteilt. Die Enden der Erbanlagen werden, abgeleitet von den griechischen Wörtern telos (Ende) und meros (Teil, Segment), als Telomere bezeichnet. Die meisten Telomere bestehen aus Wiederholungen von kurzen Sequenzen, die überwiegend aus Thymin und Guanin aufgebaut sind (Zakian, 1995). Die Telomersequenzen ver- wandter Organismen sind oft ähnlich und sogar zwischen phyllogenetisch weiter entfernten Spezies konserviert. Bemerkenswert ist, daß in allen bislang untersuchten Wirbeltieren die Telomere aus der Sequenz TTAGGG aufgebaut werden (Meyne et al, 1989).
Die Telomere üben verschiedene wichtige Funktionen aus. Sie verhindern die Fusion von Chromosomen (McClintock, 1941) und damit die Entstehung von dizentrischen Erbanlagen. Solche Chromosomen mit zwei Centromeren können durch Verlust der Heterozygotie bzw. Verdopplung oder Verlust von Genen zur Entwicklung von Krebs führen.
Desweiteren dienen Telomere dazu, intakte Erbanlagen von beschädigten zu unterscheiden. So stellten Hefezellen ihre Zellteilung ein, wenn sie ein Chromosom ohne Telomer enthielten (Sandell und Zakian, 1993).
Eine weitere wichtige Aufgabe erfüllen Telomere bei der DNA-Replikation eukaryontischer Zellen. Im Gegensatz zu den zirkulären Genomen von Prokaryonten können die linearen Chromosomen der Eukaryonten von dem DNA Polymerase- Komplex nicht vollständig repliziert werden. Zur Initiation der DNA-Replikation sind RNA-Primer notwendig. Nach Abspaltung der RNA-Primer, Verlängerung der Okazaki-Fragmente und anschließender Ligation fehlt dem neu-synthetisierten DNA- Strang das 5 '-Ende, denn dort kann der RNA-Primer nicht durch DNA ersetzt werden. Ohne besondere Schutzmechanismen würden daher die Chromosomen mit jeder Zellteilung schrumpfen ("end-replication problem"; Harley et al, 1990). Die nicht-kodierenden Telomersequenzen stellen vermutlich eine Pufferzone dar, um dem Verlust von Genen vorzubeugen (Sandeil und Zakian, 1993).
Darüber hinaus spielen Telomere auch eine wichtige Rolle bei der Regulation der zellulären Alterung (Olovnikov, 1973). Humane somatische Zellen zeigen in Kultur eine limitierte Replikationskapazität; sie werden nach einer gewissen Zeit seneszent. In diesem Zustand teilen sich die Zellen selbst nach Stimulierung mit Wachstumsfak- toren nicht mehr, sterben aber nicht, sondern bleiben metabolisch aktiv (Goldstein,
1990). Verschiedene Beobachtungen sprechen für die Hypothese, daß eine Zelle anhand der Länge ihrer Telomere bestimmt, wie oft sie sich noch teilen kann (Allsopp et al, 1992).
Zusammenfassend besitzen die Telomere somit zentrale Funktionen bei der Alterung von Zellen sowie der Stabilisierung des genetischen Materials und Verhinderung von Krebs.
Das Enzym Telomerase synthetisiert die Telomere
Wie oben beschrieben können Organismen mit linearen Chromosomen ohne einen speziellen Schutzmechanismus ihr Genom nur unvollständig replizieren. Die meisten Eukaryonten verwenden zur Regeneration der Telomersequenzen ein spezielles Enzym, die Telomerase. In den bislang untersuchten Einzellern wird Telomerase konsti- tutiv exprimiert. Dagegen wurde in Menschen die Telomerase- Aktivität nur in Keim- zellen und Tumorzellen gemessen, wogegen benachbartes somatisches Gewebe keine Telomerase enthielt (Kim et al, 1994).
Aktivierung der Telomerase in menschlichen Tumoren
Eine Aktivität der Telomerase konnte in Menschen ursprünglich nur in Keimbahnzel- len, nicht aber in normalen somatischen Zellen (Hastie et al, 1990; Kim et al, 1994) nachgewiesen werden. Nach der Entwicklung eines sensitiveren Nachweisverfahrens (Kim et al, 1994) wurde auch in hematopoietischen Zellen eine geringe Telomerase- aktivität detektiert (Broccoli et al, 1995; Counter et al, 1995; Hiyama et al, 1995).
Allerdings wiesen diese Zellen trotzdem eine Reduktion der Telomere auf (Vaziri et al, 1994; Counter et al, 1995). Noch ist nicht geklärt, ob die Menge an Enzym in diesen Zellen nicht ausreichend für eine Kompensation des Telomerverlustes ist, oder ob die gemessene Telomerase- Aktivität von einer Subpopulation, z.B. unvollständig ausdifferenzierten CD34+38+- Vorläuferzellen, herrührt (Hiyama et al, 1995). Zur
Klärung wäre ein Nachweis der Telomerase- Aktivität in einer einzelnen Zelle nötig.
Interessanterweise wurde jedoch in einer großen Zahl der bislang getesteten Tumorgeweben eine signifikante Telomerase-Aktivität nachgewiesen (1734/2031, 85%; Shay, 1997), während in normalem somatischen Gewebe keine Aktivität gefunden wurde (1/196, <1%, Shay, 1997). Verschiedene Untersuchungen zeigten außerdem, daß in seneszenten Zellen, die mit viralen Oncoproteinen transformiert wurden, die Telomere weiterhin schrumpften und Telomerase nur in der Subpopulation entdeckt werden konnte, die die Wachstumskrise überlebte (Counter et al, 1992). In diesen immortalisierten Zellen waren auch die Telomere stabil (Counter et al, 1992). Ähnliche Befunde aus Untersuchungen an Mäusen (Blasco et al, 1996) stützen die Annahme, daß eine Reaktivierung der Telomerase ein spätes Ereignis in der Tumorgenese ist. Angaben zu Telomerase und insbesondere zu humanen katalytischen Telomerase- Untereinheit und ihrer Sequenz sind enthalten in WO 98/14592 (Geron Corp.) und WO 98/59040 (Bayer AG).
Nachweis der Telomerase mRNA zur Krebsdiagnostik
Basierend auf diesen Ergebnissen wurde eine "Telomerase-Hypothese" entwickelt, die den Verlust von Telomersequenzen und Zellalterung mit der Aktivität von Telomerase und der Entstehung von Krebs verbindet. In langlebigen Spezies wie dem Menschen kann das Schrumpfen der Telomere als ein Mechanismus zur Tumor- suppression angesehen werden. Ausdifferenzierte Zellen, die keine Telomerase enthalten, stellen bei einer bestimmten Länge der Telomere ihre Zellteilung ein. Mutiert eine solche Zelle, so kann aus ihr nur dann ein Tumor entstehen, wenn die Zelle ihre Telomere verlängern kann. Ansonsten würde die Zelle weiterhin Telomersequenzen verlieren, bis ihre Chromosomen instabil werden und sie schließlich zugrunde geht.
Die Reaktivierung der Telomerase ist vermutlich der Hauptmechanismus von Tumorzellen zur Stabilisation ihrer Telomere.
Aus diesen Beobachtungen und Überlegungen ergibt sich, daß eine erhöhte Expres- sion der Telomerase eine Diagnostik von Tumoren erlauben sollte. In nahezu allen bislang getesteten Tumorgeweben wurde eine Telomerase-Aktivität nachgewiesen, so daß ein Gentest zur Diagnostik von allen Krebsarten eingesetzt werden könnte. Dieser Gentest eignet sich besonders zur Verlaufskontrolle von Krebserkrankungen, kann aber auch als prognostischer Test oder zur Frühdiagnostik bei bestimmten Krebserkrankungen eingesetzt werden
Die Gensonden-Diagnostik insbesondere in Verbindung mit Amplifikationstechniken ist eine schnelle, spezifische und hochempfindliche Methode, die eine Früherkennung von spezifischen Genen, Genfragmenten oder Einzelmutationen auf DNA/RNA Ebene ermöglicht. Die Technik kann direkt im Untersuchungsmaterial durchgeführt werden. Sie basiert auf der DNA/RNA Hybridisierungstechnik d.h. der spezifischen in vitro Bindung von komplementärer Einzelstrang-Nukleinsäure unter Bildung von Watson-Crick-Basenpaaren. Die gebildeten DNA/DNA oder DNA RNA Doppelstränge werden auch als DNA-Hybride bezeichnet. Zur Detektion der spezifischen DNA oder RNA durch die Hybridisierungsreaktion werden komplementäre sequenz- spezifische Gensonden verwendet. Diese Gensonden sind kurze, chemisch synthetisierte Oligonukleotidsonden mit einer Länge von 10-200 Nukleotiden.
Die Gensonden können photochemisch (N. Dattagupta, P.M.M.Rae, E.D. Huguenel, E.Carlson, A.Lyga, J.S.Shapiro, J.P.Albarella, Analytical Biochem. 177,85,1989) oder enzymatisch durch nick Translation (Rigby,P.WJ. et al, J. Mol. Biol.
113,237,1977) oder Random Primed Techniken (Feinberg und Vogelstein, Anal. Biochem.132,6, 1983) mit einer radioaktiven oder nicht radioaktiven Markierung versehen werden. Geeignet sind hierfür Markierungen mit 32 TPs oder nicht radioaktive Markierungen mit Digoxigenin-dUTP, Biotin-dUTP oder direkte Markie- rang mit Enzymen wie alk. Phosphatase oder Horseradish Peroxidase.
Für die spezifische Hybridisierung zwischen der nachzuweisenden Nukleinsäure und der spezifischen Gensonde werden die Nukleinsäuren zunächst durch Denaturierung (Hitze oder Alkalibehandlung) in Einzelstränge getrennt und dann unter stringenten Bedingungen, die durch Temperatur, Ionenstärke der Puffer und organische Lösungsmittel erreicht werden, ganz spezifisch miteinander hybridisiert. Bei geeigneten Hybridisierungsbedingungen bindet die Gensonde nur an komplementäre Sequenzen der nachzuweisenden DNA oder RNA. Diese Hybridisierungsreaktion kann in verschiedenen Testformaten z.B. als Festphasenhybridisierung an einen Träger wie z.B. Nitrozellulose gekoppelter Target-DNA oder Gensonde oder als Flüssighybridisie- rung durchgeführt werden. Die Auswertung (Read Out) erfolgt über die Markierung der Gensonde mit einem Reportermolekül wie oben aufgeführt oder wie in dem hier dargestellten Reversed Phase Hybridisierungssystem über die Target-DNA, die während der Amplifikation mit Digoxigenin-dUTP markiert wird und die Gensonde, die zur Bindung an magnetische Partikel mit Fluorescein markiert wird. Der Hybridi- sierungskomplex aus Target-DNA und markierter Gensonde wird nach Entfernen von nicht gebundener Gensonde über das verwendete Reportermolekül quantitativ bestimmt. Dieser Read Out kann direkt erfolgen bei Fluoreszenz-Markierung oder radioaktiver Markierung oder indirekt durch Enzymteste und immunologische Verfahren mit Antikörperkonjugaten, die Enzyme wie die alk. Phosphatase enthalten und dann eine Farbreaktion oder Che ilumineszenz-Reaktion ermöglichen.
Die Testsensitivität mit der Gensonden-Diagnostik liegt im Bereich von 10^ bis 10" Kopien auf der Basis der Detektion von Einzelgenen. Eine Erhöhung der Testsensitivität kann durch die Kombination mit DNA oder RNA-Amplifikationstechniken wie der PCR (EP 200362).LCR (EP 320308),NASBA (EP 329822),Qß (PCT
87/06270) oder HAS-Technik (EP 427074) erreicht werden. Mit diesen Techniken kann bis zu einer 10^ fachen Multiplikation der nachzuweisenden DNA erzielt werden. Durch die Kombination von Amplifikation und Hybridisierung wird so die Detektion von einzelnen DNA-Molekülen möglich.
Die Erfindung betrifft Primer und Sonden (Probes) zur Amplifikation und Detektion der mRNA der humanen katalytisch aktiven Telomerase-Untereinheit (hTC). Die humane katalytische Telomerase-Untereinheit (hTC) wird in der WO 98/59040 beschrieben, auf die ausdrücklich Bezug genommen wird.
Oligonukleotide in aufgereinigter Form mit einer Sequenz, die identisch oder exakt komplementär sind zu einer 10 bis 500 Nukleotide langen, zusammenhängenden Sequenz der mRNA von hTC.
- Ein solches Oligonukleotid kann insbesondere ein Oligodesoxyribonucleotid oder ein Oligoribonucleotid oder eine Peptidnukleotidsäure (PNA) sein
Bevorzugt sind Oligonukleotide, welche mit der hTC mRNA der Telomerase aus dem T-Motiv-B ereich, 5 'Bereich und 3 'Bereich spezifisch hybridisieren Eine DNA Sequenz oder eine degenerierte Variation dieser Sequenz, die das Protein hTC oder ein Fragment dieses Proteins kodiert, oder DNA Sequenz, die mit der DNA Sequenz unter Standard-Hybridi- sierungsbedingungen hybridisiert.
Eine rekombinante Polynukleotidsonde, die eine DNA Sequenz oder eine degenerierte Variation dieser Sequenz beinhaltet, die hTC oder ein Fragment von hTC hybridisiert
Die Erfindung betrifft weiterhin ein Verfahren zur Detektion einer neoplastischen Erkrankung eines Patienten, insbesondere ein Verfahren zur Bestimmung der Gegenwart des hTC Proteins in einer Zelle oder zellulären Probe, die auf der Amplifikation eines hTC-Polynukleotids oder Hybridisierung eines hTC-Polynukleotids, Primern oder einer hTC komplementären Sequenz mit einem hTC Polynukleotid beruhen. Das
Verfahren umfaßt dann folgende Schritte:
A. Detektion der hTC mRNA in zellulären Proben, um einen diagnostischen Wert zu erhalten;
B. Vergleich des diagnostischen Werts mit Standardwerten für die hTC mRNA in nicht-neoplastischen Zellen des gleichen Typs wie die Testprobe;
C. Diagnostische Werte, die deutlich höher als Standardvergleichswerte liegen, indizieren einen neoplastischen Zustand.
Die Erfindung betrifft weiterhin ein Testkit zum Nachweis von hTC-mRNA in zellulären Proben und Körperflüssigkeiten basierend auf dem obigen Testprinzip. Bevorzugt wird das Testkit eingesetzt zur Diagnostik von
Krebserkrankungen. Insbesondere enthält das Testkit:
Eine Zusammenstellung, bestehend aus einem Paar von humanen hTC Poly- nukleotid-PCR Primern, wobei die Primer bevorzugt aus Sequenzen bestehen, die mit der Sequenz der humanen hTC mRNA korrespondieren oder zu dieser Sequenz komplementär sind und/oder eine Zusammenstellung, die eine Polynukleotid- Hybridisierungssonde für das humane hTC Gen enthält, wobei die Sonde 20-36, beispielsweise 30 aufeinanderfolgende Nukleotide enthält, die mit der Sequenz der humanen hTC mRNA korrespondieren oder zu dieser komplementär sind.
Im Fall der Oligo- oder Polynucleinsäuren sollten unter funktioneilen Äquivalenten solche Verbindungen verstanden werden, die sich in der Nucleotid-Sequenz unterscheiden, aber für das selbe Protein codieren. Dies ist z.B. auf den degenerierten genetischen Code zurückzuführen.
Die Erfindung betrifft insbesondere Starteroligonukleotide enthaltend eine Nukleo- tidsequenz ausgewählt aus der Gruppe bestehend aus SEQ ID No 1, SEQ ID No 2, SEQ ID No 4, SEQ ID No 5, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9 und SEQ DD No lO.
Bevorzugt werden die Starteroligonukleotide in geeigneten Paaren eingesetzt und zwar in folgenden Sets:
Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ED No 1 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ
ID No 2.
Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 4 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 5. Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 7 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID N0 8.
Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID
No 9 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No lO.
Die Erfindung betrifft weiterhin Oligonukleotidsonden, gegebenenfalls markiert, enthaltend eine Nukleotidsequenz ausgewählt aus der Gruppe bestehend aus SEQ ID
No 3, SEQ ID No 6 und SEQ ID No 11.
Die Erfindung betrifft weiterhin ein Verfahren zum Nachweis erhöhter Telomerase- aktivität, bei dem man
a) in einer Probe Telomerase(hTC)-mRNA unter Verwendung eines oder mehrerer Starteroligonukleotide gemäß Anspruch 1 amplifiziert und
b) die Amplifikationsergebnisse auswertet.
Die Erfindung betrifft weiterhin ein Testkit zum Nachweise erhöhter Telomerase- aktivität, enthaltend eines oder mehrerer der Starteroligonukleotide.
In der vorliegenden Erfindung wird ein automatisierbarer Gentest beschrieben zum Nachweis von Krebserkrankungen auf der Basis von hTC spezifischer mRNA. Die bislang beschriebenen insitu Tests auf Basis der RNA-Komponente der Telomerase hatten den Nachteil, daß keine tumorspezifische Relevanz erkennbar war. TRAP Teste (Kim et al,Science 266,2011-2015,1994) hatten zwar gezeigt, daß die Telo- meraseaktivität in verschiedenen malignen Tumoren erhöht war. Die Testspezifität und Sensitivität war bislang bei diesem Test aber unbefriediegend und für eine prognostischen oder diagnostischen Einsatz (z.B Blasenkrebs) nicht relevant. Der Vorteil der beschriebenen Erfindung besteht darin, daß durch die Verwendung von speziellen im Hinblick auf Länge und Sequenz optimierten spezifischen Primern und einem voUautomatisierbaren Read out eine direkte Messimg der Menge des gebildeten Telomerase-Amplikons über einen Chemilumineszenztest oder colorime- trischen Test möglich ist und das Amplikon als direktes Maß für die Telomerase- expression bzw Telomeraseaktivität dient. Da offensichtlich die hTC Telomerase den geschwindigkeitslimitierenden Schritt in der katalytischen Aktivität der Telomerase darstellt, ist mit diesem Test eine direkte Korrelation von Tumorgewebe und Telo- meraseaktivität auf Nukleinsäureebene gegeben. So konnte in verschiedenen
Tumoren von Magen, Darm, Lunge, Brust, Ovar, Prostata sowie Melanomen und Osteosarkomen stark erhöhte Telomerasewerte nachgewiesen werden, in Normalgewebe wie Lunge, Gehirn, Niere, Darm und Blut wurden dagegen nur geringe Signale festgestellt.
Durch die Verwendung einer RNA Detector Probe in Verbindung mit einem DNA/RNA Antikörper konnte darüber hinaus die Signalstärke des Amplikons um den Faktor 10 und die Sensitivität des Tests gegenüber herkömmlichen DNA-Tests um den Faktor 10-100 gesteigert werden. Dadurch konnte die Menge an erforder- lichem Testmaterial stark reduziert werden und die Zuverlässigkeit der Testaussage durch die deutlich höheren Signale selbst bei geringem Testmaterial deutlich verbessert werden. Durch die bereits entwickelte Automatisierung des Verfahrens ist der Read out einer großen Probenzahl (> 100) innerhalb von 20 Minuten möglich .
Die vorliegende Erfindung beschreibt spezifische Primer und Oligonukleotidsonden und ihre Verwendung zum schnellen Nachweis der Telomerase-Expression auf der Basis von hTC-mRNA. Mit dem Read out mit magnetischen Beads nach dem in Beispiel 5 und 6 beschriebenen Methoden ist eine automatische Durchführung möglich z.B. auf dem Immuno I, Bayer Diagnostics, Tarrytown. Der Test kann auch mit den beschriebenen Primern und Probes im Taqman oder Lightcycler durchgeführt werden. Darüber hinaus ist dieser Test zur zellulären Analyse von beliebigem Probenmaterial (z.B. Ausstrichen) auch zur in situ Hybridisierung besonders geeignet.
I. Die Primer wurden aus der Gensequenz des Telomerasegens durch chemische Synthese hergestellt.
Die Erfindung betrifft Primer und Probes mit einer Länge von 15 bis 40, (z.B. 15 bis 30) Nukleotiden aus dem T-Motivbereich, 5 'Bereich upstream vom Startcodon sowie 3 'Bereich einer Splicevariante nach den im
Sequenzprotokoll aufgeführten Sequenzen 1-11.
Die bevorzugten Primer wurden aus dem Bereich ausgewählt
a) der spezifisch ist für den Telomerase -T-Motiv (Primer 1 +2 SEQ ID
No 1+2)
b) der spezifisch ist für den 5 'Bereich (Promotorbereich) (Primer 4+5 SEQ ID No 4+5)
c) der spezifisch ist für den 3 'Splicebereich mit Splicevarianten (Primer 7+8 SEQ ID No7+8 oder 9+10)
II. Die Oligonukleotidsonden wurden durch chemische Synthese hergestellt
III. Die mRNA wurde durch spezielle RNA-Isolierungsverfahren aus klinischen Proben isoliert.
IV. Die Amplifikation von Teilen der hTC mRNA wurde mit den spezifischen Primern aus dem T-Motivbereich, Promotorbereich oder Splicevarianten- bereich, durchgeführt. N. Für den Nachweis der Amplicons wird eine capture Probe eingesetzt, die mit dem amplifizierten Nukleotidbereich hybridisiert.
VI. Die Amplifikation wurde mit Hilfe von bekannten Amplifikationstechniken, bevorzugt der RT-PCR-Amplifikationsmethode (U.S.Patent 5322770) durchgeführt.
VII. Der Nachweis des spezifischen Amplifikationsproduktes erfolgte
a) durch direkte Elektrophorese des Amplifikationsproduktes im Agaro- segel und Anfärbung durch interkalierende Agenzien wie Ethidium- bromid
b) durch Fluoreszenzbestimmung des während der Amplifikation mit
Fluoreszenznukleotiden oder fluoreszenzmarkierten Primern markierten Amplifikationsproduktes. Das Amplifikationsprodukt wird über zusätzlich eingebautes Biotin (Primer oder Nukleotid) separiert
c) und bevorzugt durch Hybridisierung des während der Amplifikation markierten Amplifikationsproduktes z.B Digoxigenin d-UTP) mit den obengenannten Fluorescein gelabelten Oligonukleotidsonden durchgeführt. Der Hybridisierungskomplex wird mit Fluorescein Antikörper gecoateten magnetischen Partikeln separiert.
d) Die Auswertung des gebildeten Hybridisierungskomplexes als Maß für die Telomeraseexpression und damit der Telomeraseaktivität erfolgt durch einen Chemilumineszenztest mit Antidigoxigenin-Anti- körpern, die mit alk.Phosphatase gekoppelt sind und mit dem in das Amplikon eingebauten Digoxigenin reagieren. Der Test wird jeweils mit einem Ansatz Testgewebe mRNA und einem Ansatz normalen Kontrollgewebe mRNA durchgführt. Bei normaler Telomerasegenexpres- sion ergibt die Amplifikation mit den spezifischen Primern nur wenig Amplicon und damit auch nur ein geringes Chemilummeszenzsignal. Bei neoplastischem Gewebe entsteht viel Amplicon und damit ein starkes Chemilummeszenzsignal.
Der große Vorteil dieses Tests besteht darin, daß nach der Amplifikation direkt entschieden werden kann, ob ein erhöhtes Telomerase-mRNA Level vorliegt, der Test voll automatisierbar ist und aufgrund nur eines einzigen Amplifikationsschrittes sehr schnell und mit wenig Arbeits- und Kostenaufwand durchgeführt werden kann.
Auswahl und Synthese von Primern
Die Auswahl der für die Amplifikationsprodukte spezifischen Primersets erfolgte aus Bereichen des Telomerasegens die spezifisch für das hTC Telomerasegen sind und keine Homologie mit anderen RT Motiven oder anderen RT Sequenzen ergeben. Es wurden Primer mit der Sequenz SEQ ID No 1, 2, 4, 5, 7, 8, 9, 10 synthetisiert, die spezifische Amplifikationsprodukte ergeben. Geeignete Primer haben vorzugsweise eine Länge von 15 bis 25 Basepaaren, besonders bevorzugt 17 bis 22 Basenpaaren.
Die chemische Synthese der ausgewählten Primer erfolgte nach der Phosphoramidit- methode von S.L. Beaucage und M.Carathers, Tetrahedron Letters, 22, 1859, 1981.
Auswahl und Synthese der Oligonukleotidsonden
Die Auswahl der für die Amplifikationsprodukte der Primersets spezifischen Oligonukleotidsonden erfolgte aus Bereichen des Telomerasegens, die spezifisch für das hTC Telomerasegen sind und keine Homologie und Hybridisierung mit anderen RT- Motiven oder anderen RT Sequenzen ergeben. Es wurde 30-36 mere mit der Sequenz SEQ ID No 3, 6, 11 synthetisiert, die spezifisch für die Amplifikationsprodukte sind. Geeignete Sonden haben bevorzugt eine Länge von 20 bis 36 Basenpaaren, besonders bevorzugt 25 bis 36, ganz besonders bevorzugt 30 bis 36 Basenpaaren.
Geeignete Sonden können auch eine Lösung von 25 bis 30 Basenpaaren haben.
Die chemische Synthese erfolgte nach der Phosphoramiditmethode von S.L. Beaucage und M.Caruthers, Tetrahedron Letters, 22, 1859, 1981.
Amplifikation von m-RNA von hTC Telomerase
Für die Amplifikation der mRNA Sequenz der humanen Telomerase wurden die oben genannten Primer jeweils als Primersets (Primer 1+2), (Primer4+5) oder (Primer 7+8, 9+10), zur spezifischen RTAmplifikation der humanen Telomerase m- RNA eingesetzt. Sie ergeben mit der mRNA von neoplastischen Zellen im Agarose- gel ein sichtbares Amplifikationsprodukt.
Bei der RTPCR-Amplifikation kann neben den 4 dNTPs (Desoxyadenosintriphos- phat, Desoxyguanosintriphosphat, Desoxycytidintriphosphat und Thymidintriphos- phat) zusätzlich z.B. Digoxigenin-dUTP in das Amplifikationsprodukt eingebaut werden. Dadurch kann das Amplifikationsprodukt mit einem Antidigoxigenin-Anti- körper, der z.B. alk. Phosphatase gekoppelt enthält über einen Chemilumineszenztest mit AMPPD als Substrat oder einem Farbstofftest mit pNPP ausgewertet werden.
Alternativ besteht die Möglichkeit fluoreszenzmarkierte Nukleosidtriphosphate wie z.B. Fluoreszein-dUTP oder Cumarin-dUTPs in das Amplifikationsprodukt einzubauen und das Amplifikationsprodukt mit viel höherer Sensitivität als mit Ethidium- bromidanfarbung zu identifizieren. Bei der Verwendung von biotinylierten Primern besteht so die Möglichkeit das fluoreszenzmarkierte, biotinylierte Amplifikationsprodukt über Streptavidin gecoatete magnetische Partikel abzutrennen und im Fluor- eszenzphotometer quantitativ zu bestimmen. Bevorzugt in dieser Erfindung werden eine DNA capture Probe und ein Digoxigeninmarkiertes Amplifikationsprodukt ein- gesetzt. Es kann auch eine Probe in Form einer Fluoresceinmarkierten RNA-Probe eingesetzt werden die als Capture- und Detector-Probe dient. Mit diesem Gentest unter Verwendung eines DNA/RNA Antikörpers werden deutlich bessere Sensiti- vitäten als mit den bisher üblichen Gentesten für andere Targets erreicht und damit sehr wenig Ausgangsmaterial für die Durchführung des Tests benötigt.
Detektion der Telomeraseexpression
Das Telomerase-Expressions-Level kann direkt nach Amplifikation eines Teils des htCmRNA durch die in der Erfindung beschriebenen Primersets mit beliebigen
Analyseverfahren bestimmt werden.
Eine mögliche Read Out Methode ist die Anfärbung des durch Agarosegelelektro- phorese separierten Amplifikationsproduktes mit interkalierenden Agenzien wie Ethidiumbromid.
Eine andere Möglichkeit ist der Einbau von fluoreszenzmarkierten Nukleosidtriphos- phaten in das Amplifikationsprodukt. Hierdurch wird eine deutliche Verbesserung der Testsensitivität erreicht.
Eine weitere Möglichkeit ist die Verwendung von fluoreszenzmarkierten Primern für die Amplifikation oder die Kombination von biotinylierten Primern mit Fluoreszenz- nukleotiden, sodaß ein endständig biotinyliertes, fluoreszenzmarkiertes Amplifikationsprodukt entsteht, das an Streptavidin gekoppelte magnetische Partikel gebunden und separiert werden kann und die Fluoreszenz semiquantitativ bestimmt werden kann.
Die sensitivste und bevorzugte Methode ist die beschriebene Methode der Hybridisierung der Amplifikationsprodukte mit den beschriebenen Oligonukleotidsonde. Beim Einbau von z.B. Digoxigenin-dUTP während der Amplifikation und Verwendung einer biotinylierten oder fluoreszinierten Oligonukleotidsonde, läßt sich der Hybridisierungskomplex an Streptavidin/Fluorescein-Antikörper gecoateten magnetischen Partikeln separieren und bei Verwendung von Antidigoxigenin-Antikörpern, die mit alk. Phosphatase gekoppelt sind, mit AMPPD oder CSPD als Substrat über Chemilumineszenz semiquantitativ auswerten. Eine alternative Methode ist die Amplifikation ohne irgendeinen Einbau von Markermolekülen und der Nachweis des
Amplikons durch Hybridisierung mit einer fluoreseinmarkierten Capture Probe und einer zusätzlichen RNA Probe als Detektoφrobe oder alleinigen fluoresceinmarkierten RNA Capture und Detektoφrobe. Die Detektion des hybridisierten Amplicons erfolgt dabei mit einem DNA/RNA Antiköφer. Dieser Read out ergibt eine hohe Sensitivität und wurde speziell für das automatisierte Verfahren im
Immunol Automaten und Nachfolgegeräten entwickelt.
Beispiel 1
Synthese von Starteroligonukleotiden (Primer)
Die chemische Synthese der ausgewählten Starteroligonukleotide (Primer) erfolgte nach der Phosphoramiditmethode von S.L. Beaucage und M.Camthers, Tetrahedron Letters, 22, 1859, 1981. Folgende Nukleotidsequenzen wurden synthetisiert:
Nachweis des Telomerasemotivs: PCR-Primer 1 : SEQ ID No 1
PCR-Primer 2 SEQ ID No 2
Nachweis des 5 'Bereiches PCR-Primer4+5 SEQ ID No 4+5
Nachweis des 3 'Bereiches
PCR Primer 7+8 SEQ ID No 7+8
PCR Primer 9+10 SEQ ID No 9+10
Beispiel 2
Synthese und Auswahl der Oligonukleotidsonden
Die Oligonukleotidsonden wurden aus dem Nukleotidbereich ausgewählt, der die jeweils amplifizierte Sequenz der verschiedenen Primersets enthält. Die chemische
Synthese der ausgewählten Oligonukleotidsonden erfolgte nach der Phosphoramiditmethode von S.L. Beaucage und M. Caruthers, Tetrahedron Letters, 22, 1859, 1981.
T-Motiv-Bereich: Probe 3 SEQ ID No 3 5 'Bereich : Probe 6 SEQ ID No 6
3 'Bereich: Probe 11 SEQ ID No 11 Die Capture Probe wurde nach der Methode von BoUum, The enzymes, Boyer ed, Vol 10, p 145 Academic Press New York, am 3' Ende markiert. Die Endgruppenmarkierung wurde nicht radioaktiv mit Fluorescein-dUTP vorgenommen. (Chang, L.M.S., Bollum T.J., J.Biol. Chem. 246, 909, 1971).
In einem 50 ml Ansatz mit 10 ml Reaktionspuffer (Kaliumkakodylat 1 mol/1; Tris/HCl 125 mmol/l; Rinderserumalbumin 1,25 mg/ml; pH 6,6; 25°C) 1-2 mg Oligonukleotid, 25 Einheiten Terminale Transferase, C0CI2 2,5 mmol/1 und 1 ml Fluorescein-d-UTP(l mmol/L) werden nach 60 Minuten bei 37°C ca. 50 % 3'End- markierung eπeicht.
Beispiel 3
Telomerase spezifische Amplifikation mit der RT- PCR-Methode
(Titan One Tube RT-PCR-System)
Die mRNA oder Total RNA wurde verdünnt und in den Konzentrationen 100 ng, 50 ng und 25 ng eingesetzt (10 μl). Die nun vorgelegten Proben wurden mit den vorbereiteten Mixen versetzt (50 μl Totalvolumen / Tube). Für die Kontrolle auf
DNA Kontamination wurde das Enzym-Mix durch Taq Polymerase ersetzt.
Mix l lμl PCR-Nukleotide-Mix (lOmM) 200ng forward Primer (0,4- 1 μm)
200ng reverse Primer (0,4-1 μm)
2,5μl l00mM DTT
0,2μl RNAsin (20 units)
2μl MgCl2 (25mM) l,5μl Dig dUTP l:10verd (25nM) bidest ad 15μl Mi 2
10μl 5x RT-PCR Puffer l,5μl Enzym-Mix ,bidest ad 25 μl
PCR Tubes mit Verdünnungen an RNA (lOμl) vorbereiten . Mit je 25μl Mix 2 + 15μl Mix 1 versetzen.
PCR-Profü für T-Motiv: 20' 58°C / 2' 94°C // 30" 94°C _ 1 ' 54°C_1 ' 68°C 30Zyklen
T 68°C/4°C BoehringeπBestell.Nr. 1855476
Beispiel 4
Direkte Auswertung des Amplifikationsproduktes
Zur direkten Auswertung des DNA-Amplifikationsproduktes wurden nach der Amplifikation als interkalierende Agens Ethidiumbromid eingesetzt.
Es können auch Biotin-dUTP oder Digoxigenin-dUTP eingesetzt werden und mit Antiköφer gekoppelter alk. Phosphatase ein Farbstoff-Read Out durchgeführt werden. Auch können bei geringerer Sensitivität entsprechend floureszenzmarkierte Primer verwendet werden.
Das Amplifikationsprodukt wurde auf ein 0,8 %iges Agarosegel aufgetragen und 30 Minuten bei 100 mA elektrophoretisiert. Die Fluoreszenz-Signale wurden unter einem UV-Transilluminator direkt ausgewertet. Beispiel 5
Gensondentest von RT-Amplifikationsprodukten
Durch die Kombination von geeigneten Target-Amplifikationsmethoden wie der
Polymerase Chain Reaction (PCR)(EP200362),LCR(EP320308) und der Gensondentechnik wird eine signifikante Sensitivitätssteigerung gegenüber den herkömmlichen Gensonden-Read Out Methoden erzielt.
Die Flüssighybridisierungsteste wurden mit 100 ng digoxigeniertem Amplicon und fluoreszinierter Capturesonde nach Beispiel 3 in einem Volumen von 50 μl durchgeführt.
Nach 10 minütigem Erhitzen auf 100°C und anschließendem Abkühlen auf 0°C wurden 50 μl 2x Hybridisierungsmix (50 ml 20XSSC,lg Blocking Reagenz
(Boehringer), 2 ml 10 %iges Lauroylsarcosin, 200 ml 20%iges SDS ad 100 ml bidest H2O) zugegeben und 5-10 Minuten bei 37°C hybridisiert Oligonukleotidsonde). Die magnetischen Beads wurden mit lx Hybridisiermix vorbehandelt und nach dem Separieren über einen Magneten die Flüssigkeit abpipettiert, der Hybridisierungs- ansatz und 100 μl lx Hybridisiermix zugegeben und 5-10 Minuten bei Raumtemperatur unter schwacher Bewegung inkubiert. Der gekoppelte Hybridisierungskomplex wurde mit den Beads separiert, die Restflüssigkeit abpipettiert und einmal mit Puffer B(0,1 SSC;0,1 % SDS) gewaschen.
Anschließend wurde die Blocking Reaktion und Antiköφer-Reaktion zum Nachweis der Hybridisierung über Chemilumineszenz durchgeführt. Die mit DNA beladenen Beads wurden lx mit 500μl Puffer 2 (0,1 M Maleinsäure; 0,15 M NaCl pH 7,5; 1 % Blocking Reagenz (Boehringer)) zugegeben. Nach 5 Minuten Inkubation bei Raumtemperatur wurde separiert, abpipettiert und 250 μl Antiköφerkonjugat-Lösung (AK 1:2500 in Puffer 2) zugeben und 10 Minuten bei Raumtemperatur inkubiert, dann separiert, abpipettiert und mit 500 μl Waschpuffer behandelt 2 x 30 Sekunden, 1 x 2 Minuten bei schwacher Bewegung. Es wurde dann mit Detektionslösung mit AMPPD 1:100 in Puffer 3 10 Minuten bei 37°C im Wasserbad inkubiert, dann die Chemilumineszenz im Lumineszenz-Photometer bei 477 nm (Lumacounter von Lumac) gemessen.
Beispiel 6
Gensondentest von DNA-Amplifikationsprodukten mit DNA/RNA Antikörper- Read out
Durch die Kombination von geeigneten Target-Amplifikationsmethoden wie der Polymerase Chain Reaction (PCR)(EP200362), LCR(EP320308) und der Gensondentechnik wird eine signifikante Sensitivitätssteigerung gegenüber den herkömmlichen Gensonden-Read Out Methoden erzielt.
Die Flüssighybridisierungsteste wurden mit 100 ng fluoresceinmarkierter RNA Sonde und amplifizierter DNA nach Beispiel 3 in einem Volumen von 50 μl durchgeführt.
Nach 10 minütigem Erhitzen auf 100°C und anschließendem Abkühlen auf 0°C wurden 50 μl 2x Hybridisierungsmix (50 ml 20XSSC, 1 g Blocking Reagenz (Boehringer), 2 ml 10 %iges Lauroylsarcosin, 200 ml 20 %iges SDS ad 100 ml bidest H2O) zugegeben und 5-10 Minuten bei 37°C hybridisiert Oligonukleotidsonde). Die magnetischen Beads wurden mit lx Hybridisiermix vorbehandelt und nach dem Separieren über einen Magneten die Flüssigkeit abpipettiert, der Hybridis- ierungsansatz und lOOμl lx Hybridsiermix zugegeben und 5-10 Minuten bei Raumtemperatur unter schwacher Bewegung inkubiert. Der gekoppelte Hybridisierungs- komplex wurde mit den Beads separiert, die Restflüssigkeit abpipettiert und einmal mit Puffer B (0,1 SSC; 0,1 % SDS) lx gewaschen. Anschließend wurde die Blocking Reaktion und Antiköφer-Reaktion zum Nachweis der Hybridisierung über Chemilumineszenz durchgeführt. Die beladenen Beads wurden lx mit 500 μl Puffer 2 (0,1 M Maleinsäure; 0,15 M NaCl pH 7,5; 1 % Blocking Reagenz (Boehringer)) zugegeben. Nach 5 Minuten Inkubation bei Raum- temperatur wurde separiert, abpipettiert und 250 μl Antiköφerkonjugat-Lösung
(AK 1:2500 in Puffer 2) zugeben und 10 Minuten bei Raumtemperatur inkubiert, dann separiert, abpipettiert und mit 500 μl Waschpuffer behandelt 2x30 Sekunden, 1x2 Minuten bei schwacher Bewegung. Es wurde dann mit Detektionslösung mit AMPPD 1:100 in Puffer 3 10 Minuten bei 37°C im Wasserbad inkubiert, dann die Chemilumineszenz im Lumineszenz-Photometer bei 477 nm (Lumacounter von
Lumac) gemessen. Das Verfahren ist automatisiert auf dem Immunol oder Nachfolgegeräten durchführbar.
Beispiel 7
mRNA-Isolierung mit dem Oligotex Direct mRNA Mikro Kit von Qiagen
2xl07 Zellen (total) wurden 5 min bei 2500 φm zentrifügiert. Dann der Überstand abgegossen und über Kopf getrocknet. Das Pellet wurde in 800 μL Lysis Buffer OL1 resuspendiert und 3 min auf Eis inkubiert. Auf 2 Homogenisiersäulen wurden jeweils 400 μL des in OL1 lysierten Pellets aufgetragen. Anschließend wurde 1 min bei 13000 φm zentrifügiert und die Säule verworfen. Nach Zugabe von 800 μL Dilution Buffer ODB und mischen wurde 5 min bei 13000 φm zentrifügiert und danach der Überstand in autoklavierte 2 mL Reaktionsgefaße überführt, 30-50 μL Oligotex Suspension zugeben (die Suspension wird 10 min bei bis zu 37°C vorgewärmt und aufgeschüttelt, danach auf Eis gestellt. Dann 10 min bei RT geschüttelt. Nach 5 minü- tiger Zentrifügation bei 13000 φm wird der Überstand verworfen und das Pellet in 350 μL Wash Buffer OW1 resuspendiert. Anschließend wurde 5 min bei 13000 φm zentrifügiert, der Überstand verworfen und noch 2x mit Wash Buffer OW2 gewaschen. Nach dem zweiten Mal wird die Suspension auf die Säule gegeben und zentrifügiert. Das Reaktionsgefaß wurde verworfen und die Säule auf ein neues Reaktionsgefäß gesetzt, das 2 μL RNAsin enthielt. Auf die Säule wurde 125 μL Elutionspuffer OEB gegeben (70°C), mit dem Pellet vermischt und 5 min bei 13000 φm eluiert. Die beiden Eluate wurden vereinigt und die OD bei 260 nm gemessen.
Beispiel 8
Nachweis der Telomerase-mRNA in klinischem Probenmaterial (normales/neo- plastisches Gewebe)
Die mRNA wurde aus dem klinischen Probenmaterial nach der in Beispiel 7 beschriebenen Methode isoliert. Das RNA-Lysat wurde dann mit Hilfe geeigneter Amplifikationsmethoden wie im Beispiel 5 beschrieben mit spezifischen Oligonu- kleotid-Primern amplifiziert. Die amplifizierte Nukleinsäure wurde dann mit den
Oligonukleotidsonden, die im Sequenzprotokoll beschrieben sind hybridisiert und der unter stringenten Bedingungen sich ausbildende spezifische Hybridisierungs- komplex wurde mit magnetischen Partikeln der Firma Dynal separiert und wie im Beispiel 6 oder bevorzugt 7 durch Chemilumineszenz-Read Out quantitativ be- stimmt.
Das in Tabelle 1 aufgeführte Tumormaterial verschiedenen Ursprungs wurde zur Isolierung von total-RNA oder m-RNA verwendet. Als weitere Positivkontrollen dienten Zellkulturen wie HeLaZellen oder Hek-Zellen. Als Negativkontrollen dienten Normalgewebe aus Lunge, Hirn, Niere, Darm und Blut (Leukozyten). Nach
Aufarbeitung der RNA wurde eine RT-PCR durchgeführt als Endpunkt-PCR auf einem normalen Thermocycler oder als kinetic PCR auf dem Lightcycler oder dem Perkin-Elmer-Taqman.
Das Ergebnis ist in Tabelle 1 zusammengefaßt. Alle Tumorgewebe ergaben mit den
Primersets und Probes des neuen telomerase-Assays hohe Signale, die vergleichbar waren mit den Signalen in den HeLa und Hek Zellen. Das Normalgewebe dagegen gab selbst in höchster RNA Konzentration nur sehr geringe Background-Signale.
Ein positiver Nachweis von Telomeraseaktivität gelang auch in Urin von Patienten mit Blasentumoren oder in Sputum von Patienten mit Lungentumoren. Als Aus- gangsmateial zur Testung auf erhöhte Telomeraseaktivität eignen sich somit neben Biopsiematerial auch verschiedene Köφerflüssigkeiten wie z.B. Urin, Sputum, Blut.
Tabelle 1
Karzinome und Kontrollgewebe:
Figure imgf000027_0001
Kontrollen:
Zelllinien (Positivkontrollen)
Heia mRNA und Hek 293 mRNA und Total RNA Pos.
Normalgewebe: (Negativkontrollen)
Lunge Total RNA / mRNA Neg.
Him Total RNA Neg.
Niere Total RNA Neg.
Darm Total RNA Neg.
Blut Total RNA / mRNA Neg.
Die Amplifikation erfolgte über ein- oder zweistufige RT-PCR und die Detektion über Chemilumineszenztest, Fluoreszenz, oder colorimetrischen Read out. Sequenzen : Telomerase T-Motiv Sequenzen aus
HTC . PD 1>4014 Primer : TeloTmotiv SeQIDNo 1 5 'AgCgTgCgggACTgCgCT3 ' Forwardprimer ( 1592 )
Telo Tmotiv SEQIDNo 2 5'ACCCTCTTCAAgTgCTgT3' Reverseprimer
(1842) Sonde: Telo Tmotiv SeqlDNo 3 5 ' TCCgTgACATAAAAgAAAgACCTgAgCAgCTCgA3 ' Probe
(1749-1712) Reverse sequenz
Telomerase 5 ' Bereich Sequenzen aus
SAC85 .MPD 1>8377 Printer :
For5050 SEQIDNo 4 5 * TcgCggCgCgAgTTTCAggCA3 '
Rev5180 SEQIDNo 5 5 ' TagTggCTgCgCAgCAgggA3 '
Sonde:
Probe5100 SEQIDNo 6 5 ' AagCCCTggCACCggTCACCCCCgCgATgCCgCgCg3
Telomerase 3 ' Bereich
Primer:
Tforl Intronl4 SEQIDNo 7 5 ' TgCCTgCTggTgTTAgTgTgT 3 ' Pos 1490
Tfor2 Intronl4 SEQIDNo 9 5 'AAACCCAggCCAAgggCTTA3 ' Pos 1790
Trevl Exon 16 SEQIDNo 8 5 'AgggTCTCCACAACACAgA3 ' Pos 2041
Trev2 Exon 16 SEQIDNo 10 5 ' TTCTCAgggTCTCCACAACA3 '
Pos 2046
Sond :
T3 ' Probe Pos SEQIDNo 11 5 ' TCTCAggAgCAgAggCCgCgTATCACCACgACAgA3 '
1870

Claims

Patentansprttche
1. Starteroligonukleotide enthaltend eine Nukleotidsequenz ausgewählt aus der Gmppe bestehend aus SEQ ID No 1, SEQ ID No 2, SEQ ID No 4, SEQ ID No 5, SEQ ID No 7, SEQ ID No 8, SEQ ID No 9 und SEQ ID No 10.
2. Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 1 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 2.
3. Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 4 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 5.
4. Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß
SEQ ID No 7 und einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 8.
5. Set aus einem Starteroligonukleotid enthaltend die Nukleotidsequenz gemäß SEQ ID No 9 und einem Starteroligonukleotid enthaltend die SEQ ID No 10.
6. Oligonukleotidsonden, gegebenenfalls markiert, enthaltend eine Nukleotidsequenz ausgewählt aus der Gmppe bestehend aus SEQ ID No 3, SEQ ID No 6 und SEQ ID No 11.
7. Verfahren zum Nachweis erhöhter Telomeraseaktivität, bei dem man
a) in einer Probe Telomerase(hTC)-mRNA unter Verwendung eines oder mehrerer Starteroligonukleotide gemäß Ansprach 1 amplifiziert und
b) die Amplifikationsergebnisse auswertet.
8. Verfahren gemäß Ansprach 7, bei dem man eine geeignete Oligonukleotidsonde gemäß Ansprach 6 zur spezifischen Hybridisierung und Detektion des Telomerase(hTC) Amplikons einsetzt.
9. Testkit zum Nachweise erhöhter Telomeraseaktivität, enthaltend eines oder mehrere der Starteroligonukleotide gemäß Anspruch 1.
10. Testkit gemäß Ansprach 9, welches weiterhin eine oder mehrere der Oligonukleotidsonden gemäß Ansprach 6 enthält.
PCT/EP2000/002980 1999-04-15 2000-04-04 Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden WO2000063429A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU41153/00A AU774182B2 (en) 1999-04-15 2000-04-04 Automatable rapid test for detecting cancers, on the basis of telomerase(hTC) mRNA and specific primers and probes
US09/959,014 US6808883B1 (en) 1999-04-15 2000-04-04 Automatable rapid test for detection of cancer, based on telomerase (hTC) mRNA with specific primers and probes
JP2000612506A JP2003519466A (ja) 1999-04-15 2000-04-04 テロメラーゼ(hTC)mRNAおよび特異的プライマーおよびプローブに基づいたガンを検出するための自動化可能な迅速な試験
CA002370305A CA2370305A1 (en) 1999-04-15 2000-04-04 Automatable rapid test for detecting cancers, on the basis of telomerase(htc) mrna and specific primers and probes
EP00920657A EP1187936A2 (de) 1999-04-15 2000-04-04 Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19916929A DE19916929A1 (de) 1999-04-15 1999-04-15 Ein automatisierbarer Schnelltest zum Nachweis von Krebserkrankungen auf der Basis von Telomerase(hTC) mRNA mit spezifischen Primern und Sonden
DE19916929.2 1999-04-15

Publications (2)

Publication Number Publication Date
WO2000063429A2 true WO2000063429A2 (de) 2000-10-26
WO2000063429A3 WO2000063429A3 (de) 2002-01-03

Family

ID=7904587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/002980 WO2000063429A2 (de) 1999-04-15 2000-04-04 Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden

Country Status (7)

Country Link
US (1) US6808883B1 (de)
EP (1) EP1187936A2 (de)
JP (1) JP2003519466A (de)
AU (1) AU774182B2 (de)
CA (1) CA2370305A1 (de)
DE (1) DE19916929A1 (de)
WO (1) WO2000063429A2 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420260A2 (de) * 1989-09-29 1991-04-03 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Durch Polymerase-Kettenreaktion Biotin-markierte DNS und ihr Nachweis
WO1991014788A1 (en) * 1990-03-23 1991-10-03 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
GB2317891A (en) * 1996-10-01 1998-04-08 Geron Corp hTRT, the reverse transcriptase subunit of human telomerase
WO1998059040A2 (de) * 1997-06-20 1998-12-30 Bayer Aktiengesellschaft Humane katalytische telomerase-untereinheit und deren diagnostische und therapeutische verwendung
WO1999001560A1 (en) * 1997-07-01 1999-01-14 Cambia Biosystems Llc Vertebrate telomerase genes and proteins and uses thereof
WO1999035261A1 (fr) * 1998-01-08 1999-07-15 Chugai Seiyaku Kabushiki Kaisha Nouveau gene presentant un motif de transcriptase inverse
WO1999050279A1 (en) * 1998-03-31 1999-10-07 Geron Corporation Antisense compositions for detecting and inhibiting telomerase reverse transcriptase
US5994076A (en) * 1997-05-21 1999-11-30 Clontech Laboratories, Inc. Methods of assaying differential expression
WO2000027858A1 (fr) * 1998-11-09 2000-05-18 Institute Of Radiation Medicine, Academy Of Military Medecine Science Oligonucleotides antisens inhibant l'activite de la telomerase et leurs applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957858A (en) 1986-04-16 1990-09-18 The Salk Instute For Biological Studies Replicative RNA reporter systems
DK171161B1 (da) 1985-03-28 1996-07-08 Hoffmann La Roche Fremgangsmåde til påvisning af forekomst eller fravær af mindst én specifik nukleinsyresekvens i en prøve eller til skelnen mellem to forskellige nukleinsyresekvenser i denne prøve
US5322770A (en) 1989-12-22 1994-06-21 Hoffman-Laroche Inc. Reverse transcription with thermostable DNA polymerases - high temperature reverse transcription
AU622426B2 (en) 1987-12-11 1992-04-09 Abbott Laboratories Assay using template-dependent nucleic acid probe reorganization
CA1340807C (en) 1988-02-24 1999-11-02 Lawrence T. Malek Nucleic acid amplification process
NO904633L (no) 1989-11-09 1991-05-10 Molecular Diagnostics Inc Amplifikasjon av nukleinsyrer ved transkriberbar haarnaalsprobe.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420260A2 (de) * 1989-09-29 1991-04-03 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Durch Polymerase-Kettenreaktion Biotin-markierte DNS und ihr Nachweis
WO1991014788A1 (en) * 1990-03-23 1991-10-03 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
GB2317891A (en) * 1996-10-01 1998-04-08 Geron Corp hTRT, the reverse transcriptase subunit of human telomerase
US5994076A (en) * 1997-05-21 1999-11-30 Clontech Laboratories, Inc. Methods of assaying differential expression
WO1998059040A2 (de) * 1997-06-20 1998-12-30 Bayer Aktiengesellschaft Humane katalytische telomerase-untereinheit und deren diagnostische und therapeutische verwendung
WO1999001560A1 (en) * 1997-07-01 1999-01-14 Cambia Biosystems Llc Vertebrate telomerase genes and proteins and uses thereof
WO1999035261A1 (fr) * 1998-01-08 1999-07-15 Chugai Seiyaku Kabushiki Kaisha Nouveau gene presentant un motif de transcriptase inverse
WO1999050279A1 (en) * 1998-03-31 1999-10-07 Geron Corporation Antisense compositions for detecting and inhibiting telomerase reverse transcriptase
WO2000027858A1 (fr) * 1998-11-09 2000-05-18 Institute Of Radiation Medicine, Academy Of Military Medecine Science Oligonucleotides antisens inhibant l'activite de la telomerase et leurs applications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONG YU-SHENG ET AL: "The human telomerase catalytic subunit hTERT: Organization of the gene and characterization of the promoter." HUMAN MOLECULAR GENETICS, Bd. 8, Nr. 1, Januar 1999 (1999-01), Seiten 137-142, XP002176111 ISSN: 0964-6906 *
WICK M ET AL: "Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT)." GENE (AMSTERDAM), Bd. 232, Nr. 1, 17. Mai 1999 (1999-05-17), Seiten 97-106, XP002176112 ISSN: 0378-1119 *

Also Published As

Publication number Publication date
AU774182B2 (en) 2004-06-17
DE19916929A1 (de) 2000-10-19
WO2000063429A3 (de) 2002-01-03
US6808883B1 (en) 2004-10-26
EP1187936A2 (de) 2002-03-20
AU4115300A (en) 2000-11-02
JP2003519466A (ja) 2003-06-24
CA2370305A1 (en) 2000-10-26

Similar Documents

Publication Publication Date Title
US6015666A (en) Rapid DNA test for detecting quinolone-resistant Staphylococcus aureus pathogens in clinical material
AU624601B2 (en) Amplification and detection of nucleic acid sequences
US6514706B1 (en) Linear amplification mediated PCR (LAM PCR)
EP0324474B1 (de) Verfahren zum Nachweis von Nukleinsäuren
DE69735894T2 (de) Spezifische bestimmung der methylierung
KR960002876B1 (ko) 올리고 누클레오티드탐침, 마이코박테리아 핵산 검측 및 증폭방법, 및 검측용 키트
JPH08504081A (ja) 糞便試料から単離した哺乳類の核酸を検出する方法、およびその検出用試薬
NZ229672A (en) Amplification and detection of nucleic acid sequences
JPH09512428A (ja) リゾルベース開裂による突然変異の検出
DE4338119A1 (de) Spezifische Gensonden und Verfahren zum quantitativen Nachweis von methicillinresistenten Staphylococcen
JP2002505117A (ja) チモーゲン性核酸検出方法、および関連分子およびキット
JPH07502654A (ja) 溶液相サンドイッチハイブリダイゼーションアッセイに用いるためのhivプローブ
US5314801A (en) Probes to Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium paratuberculosis
WO1997044488A2 (en) Compositions and methods for the detection of mycobacterium kansasii
WO2000063429A2 (de) Ein automatisierbarer schnelltest zum nachweis von krebserkrankungen auf der basis der telomerase(htc) mrna mit spezifischen primern und sonden
US6960438B2 (en) Method for the affinity isolation of newly synthesized RNA
EP3973081A1 (de) Verfahren zur detektion von seltenen dns-sequenzen in stuhlproben
EP3699297A1 (de) Verfahren zur bestimmung des spiegels eines antisense-oligonukleotids
EP1121467A2 (de) Ein automatisierbarer schnelltest zum direkten nachweis der apc resistenz mutation mit spezifischen primern und oligonukleotiden zur detektion
WO2000029568A1 (en) Hybridization probe
WO2020169666A1 (en) Improved nucleic acid target enrichment and related methods
Coates Paraffin Section Molecular Biology: Review of Current Techniques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000920657

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 612506

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2370305

Country of ref document: CA

Ref country code: CA

Ref document number: 2370305

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09959014

Country of ref document: US

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2000920657

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000920657

Country of ref document: EP