WO2000029568A1 - Hybridization probe - Google Patents

Hybridization probe Download PDF

Info

Publication number
WO2000029568A1
WO2000029568A1 PCT/JP1999/004520 JP9904520W WO0029568A1 WO 2000029568 A1 WO2000029568 A1 WO 2000029568A1 JP 9904520 W JP9904520 W JP 9904520W WO 0029568 A1 WO0029568 A1 WO 0029568A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide
labeled
dna
derivative
labeling
Prior art date
Application number
PCT/JP1999/004520
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyasu Sugiyama
Toshio Ota
Shizuko Ishii
Ai Wakamatsu
Original Assignee
Helix Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helix Research Institute filed Critical Helix Research Institute
Priority to AU53044/99A priority Critical patent/AU5304499A/en
Publication of WO2000029568A1 publication Critical patent/WO2000029568A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction

Definitions

  • the present invention relates to a labeled DNA and a method for detecting a gene using the labeled DNA.
  • Labeled DNA is used in a wide range of analysis methods based on the specific binding between DNAs with complementary base sequences. The following methods are known for labeling DNA.
  • a labeling nucleotide is added to the synthesized oligo MA later using Yuichi Minar Transferase, etc.
  • the method of (3) is a reaction that links multiple nucleotides.
  • a large number of labeled nucleotides and nucleotide derivatives (hereinafter sometimes referred to as “nucleotides” as a term meaning both at the same time) can be introduced, and high specific activity can be achieved.
  • nucleotides labeled nucleotides and nucleotide derivatives
  • high specific activity can be achieved.
  • steric hindrance of the nucleotide derivative to be introduced becomes a problem, and it becomes difficult to introduce a plurality of nucleotide derivatives.
  • the steric hindrance is steric hindrance such as dexadenylic acid (dAMP), deoxycytidylic acid (dCMP), deoxyguanylic acid (dGMP), thymidylate (dTMP), or dexidyridylate (dUMP) nucleotides as spacers.
  • dAMP dexadenylic acid
  • CMP deoxycytidylic acid
  • dGMP deoxyguanylic acid
  • dTMP thymidylate
  • dUMP dexidyridylate
  • One of the base sequences that produce such a hybridization is a continuous sequence of only one type of base represented by the poly A tail of cDNA. If the signal / noise ratio (hereinafter referred to as the S / N ratio) decreases due to hybridization due to the nucleotide sequence of nucleotides newly added for labeling, even if the specific activity of the probe is low. Even if it is high, it does not lead to an increase in sensitivity.
  • dAMP deoxyadenylic acid
  • dCMP deoxycytidylic acid
  • dGMP deoxyguanylic acid
  • Thymidylic acid (dTMP) or dexperidylic acid (dUMP) a single or randomly polymerized polynucleic acid, used as a carrier during hybridization, and a base sequence that causes an increase in signal background Had to be masked.
  • the immobilized cDNA oligo DNA is labeled with the cDNA of the RNA to be examined and hybridized (reverse northern blotting) ( Science (1999) 283,83-87; Nat Biotechnol (1996) 14, 1675-80).
  • the target nucleotide sequence is labeled instead of the probe because current labeling methods have difficulty achieving the sensitivity required for such analysis methods.
  • This method works It is excellent in that it can analyze genes.
  • RNAs are compared using different arrays, it is necessary to correct the differences between the arrays. Therefore, when there are two types of RNA to be examined, expression changes are usually observed by labeling each with a different fluorescence and observing competitive hybridization on one array. If a probe capable of realizing sufficient sensitivity is provided, the same principle as that of ordinary Northern hybridization can be used, that is, the labeled probe can react with the immobilized target base sequence. If such a method were realized, it would be possible to analyze the expression status of multiple genes based on a single array, which would greatly increase the potential of array technology.
  • inosinic acid as a substrate in a nucleic acid amplification reaction prevents formation of a secondary structure of an amplification product.
  • the formation of a secondary structure is said to lead to a decrease in resolution in, for example, gel electrophoresis, and thus, the use of inosinic acid can be expected to result in an increase in sensitivity.
  • This principle is used in MA synthesis PCR (Proc. Natl. Acad. Sci. USA., 76, 2232-2235) and an RNA synthesis system (JP-A-6-165699).
  • An object of the present invention is to provide a labeled DNA that satisfies the two conditions of high specific activity and high specificity.
  • terminal tailing is a nucleotide sequence composed of nucleotides and nucleotides added for labeling.
  • the base sequence added for labeling causes hybridization to nucleic acids having base sequences complementary to those base sequences. I will. Therefore, it was conceived that the specificity could be improved by making the nucleotides or nucleotides added for labeling have low affinity for base pairing.
  • the present invention has been completed by selecting nucleotide dinucleotides that can serve as a substrate for terminal transferase, in order to enable a 3′-terminal tailing labeling method that gives a probe with high specific activity. That is, the present invention relates to the following labeled DNA, and a method for producing the labeled DNA and its use.
  • the base sequence to be added is labeled nucleotide or nucleotide derivative
  • the hybridization probe according to (2) which is composed of unlabeled inosinic acid or a derivative thereof.
  • the nucleotide sequence added for labeling may hybridize with any nucleotide sequence alone. Can not do
  • the hybridization probe according to (1) The hybridization probe according to (1).
  • a kit for synthesizing a hybridization probe comprising the following elements.
  • nucleotide and / or nucleotide derivatives having the following characteristics a) and b):
  • the affinity of base pairing with the base constituting the target base sequence is between a / t, a / u Weaker than hydrogen bond between g and c
  • the DNA to be labeled according to the present invention is a DNA that specifically binds to a target base sequence by hybridization. Generally called a probe. This DNA is usually composed of a base sequence complementary to the target base sequence.
  • the MA to be labeled the one that is usually used can be applied as it is. That is, depending on the purpose of detection, it may be a chemically synthesized oligonucleotide or a DNA fragment obtained by cutting the plasmid chromosome or the like. It can also be a PCR product or cDNA obtained by an enzymatic synthesis of nucleic acids, or a fragment thereof.
  • the target base sequence is not particularly limited as long as it is capable of base pairing, such as DNA, RNA or DNA-MA hybrid.
  • the specificity and strength of the hybridization between the target base sequence and the probe are determined by the type of base constituting the base pairing and the reaction conditions. Hybrida The factors that affect the analysis and general conditions are summarized below (Molecular Cloning, Cold spring harbor laboratory press, 1989). Reaction solution temperature 6 8 ° C
  • a hybridization probe is prepared by adding a nucleotide sequence containing a labeled nucleotide or a nucleotide derivative to DNA to be labeled. Is configured.
  • the added base sequence contains a labeled nucleotide or nucleotide derivative and has the following features a) and b).
  • Nucleotides whose base pairing affinity is weaker than hydrogen bonds between a / t, a / u, and g / c means that the nucleotides are common to all bases such as atgc and u.
  • any of the bases constituting the target base sequence has a weaker affinity than a partner which usually should perform complementary base pairing.
  • a nucleotide derivative means a compound obtainable by introducing a functional group into a nucleotide.
  • nucleotides chemically synthesized by mimicking the structure of natural nucleotides, or even nucleotides whose base pairing has been weakened by chemically modifying the structure of natural nucleotides may be subjected to the conditions described above.
  • b) are included in the nucleotide derivative having a weak base pair bond in the present invention.
  • the present invention is characterized in that the nucleotides, nucleotide derivatives, and nucleotides can be introduced into DNA to be labeled by a nucleotide addition reaction using terminal transferase. This is a necessary condition for use in the 3'-end tailing labeling method.
  • nucleotides satisfying the above conditions include inosinic acid and xanthylic acid.
  • inosinic acid is an easily available nucleotide, and is a desirable nucleotide capable of reliably achieving the effects of the present invention even from a functional viewpoint.
  • a nucleotide sequence containing deoxyinosine acid can be added to the 3 ′ end of DNA.
  • inosinic acid was considered to form a base pair bond with a certain strength regardless of the type of base. Therefore, insertion into a sequence for labeling as in the present invention has a risk of increasing nonspecific reaction. In practice, however, inserting inosinic acid into the sequence to be added makes it possible to significantly suppress nonspecific reactions.
  • the hybridization probe or the method for producing the same according to the present invention it is essential to include the nucleotide having a weak base pair bond, and to allow the presence of other nucleotides (for example, atcg and u or a derivative thereof). be able to. These nucleotides may be labeled. However, when a nucleotide other than the nucleotide having a weak base pair bond and a nucleotide other than a nucleotide or a nucleotide derivative is contained as a constituent base, the conditions must be such that the portion added for labeling does not cause hybridization. . Desirable conditions are such that the added nucleotide sequence cannot hybridize with any nucleotide sequence by itself under the conditions of stringent hybridization of the DNA to be labeled.
  • the proportion of the nucleotide (or nucleotide derivative) having a weak base pair bond in the sequence added for labeling is increased.
  • the minimum required ratio is affected by the composition and overall length of the nucleotides mixed with the type, a general range cannot be shown, but those skilled in the art will be empirical based on the disclosure of the present invention.
  • Can be set to any nucleotide or nucleotide derivative added to the DNA to be labeled can be a target of labeling. Therefore, it is also possible to combine unlabeled nucleotides with labeled inosinic acid.
  • the spacer may be composed of only unlabeled nucleotides, or non-labeled inosinic acid as a spacer may be mixed.
  • the ratio of the latter is set to 1/10 or less, whereby the content of the present invention is reduced. Can meet the requirements.
  • the ratio of the constituent bases to the base sequence to be added is adjusted by the concentration ratio between nucleotides to be added as a substrate and nucleotides. If the ratio is specifically shown, for example, when deoxyinosine 5 'triphosphate is used in combination with digoxigenin-labeled deoxyperacyl 5' triphosphate label, the concentration of the former should be 2- to 10-fold excess. Expected to improve the specific activity of the label and reliably suppress nonspecific reactions it can.
  • labeled nucleotides and derivatives thereof tend not to be substrates for the addition reaction by the mininal transferase, so experience appropriate concentration ratios according to the type of label and the nucleotide to be combined. Make sure to set it manually. Although it is impossible to strictly control the sequence of each nucleotide only by the concentration ratio, empirical conditions based on the disclosure in the present specification are based on the conditions under which the sequence of nucleotides that can cause stochastic hybridization does not occur. It is obvious for a person skilled in the art to set.
  • a labeling sequence composed of only deoxyinosinic acid is desirable.
  • Such an embodiment can be realized by combining labeled deoxyinosinic acid as a labeled nucleotide.
  • the concentration ratio of labeled deoxyinosine 5'-phosphate to unlabeled deoxyinosine 5'-phosphate is determined based on the conditions that give the labeled probe with the highest specific activity. 'End-tailing signs may be used.
  • the 3'-end tailing labeling method is known (Molecular Cloning, Cold spring harbor laboratory press, 1989). That is, a labeled nucleotide and a spacer (unlabeled nucleotide) are added as a substrate to the DNA (or oligonucleotide) to be labeled, and terminal transferase is allowed to act. At this time, in the present invention, a nucleotide such as deoxyinosine 5′-triphosphate may be added as a supplier.
  • terminal transferase generally, an enzyme derived from puppy thymus is used, but the origin is not particularly limited.
  • the reaction solution may also contain a buffer to keep the reaction environment at the optimal pH, a protective agent for enzymes such as serum albumin, or an appropriate material such as cobalt chloride to supply metal ions necessary for the expression of enzyme activity.
  • a buffer to keep the reaction environment at the optimal pH
  • a protective agent for enzymes such as serum albumin
  • an appropriate material such as cobalt chloride to supply metal ions necessary for the expression of enzyme activity.
  • Add salt Add salt.
  • the base sequence for labeling can be obtained by reacting with the terminal transferase of OOunits for about 15 minutes at 37 ° C.
  • a reaction terminator can be used for the purpose of controlling the reaction time. For example, by adding glycogen and ethylenediaminetetraacetic acid (EDTA), the enzyme activity of terminal transferase is rapidly lost and the reaction is stopped.
  • the labeled nucleotide or nucleotide derivative that constitutes the nucleotide sequence for labeling together with the nucleotide (or nucleotide derivative) may be any nucleotide.
  • nucleotides for labeling are scattered in the nucleotide sequence for labeling, even if they are bases capable of normal base pairing, they are arranged in a dispersed manner, so that it is difficult to hybridize. . Therefore, general nucleotides such as atcg or u may be combined, or as described above, nucleotides having low base pairing affinity such as inosinic acid may be used even for labeled nucleotides.
  • the labeled nucleotide constituting the base sequence for labeling include nucleotides substituted with a radioactive isotope 32 P.
  • nucleotide derivative for labeling examples include a nucleotide in which a fluorescent compound or a binding ligand is introduced into a functional group of the nucleotide.
  • Specific examples of the compound that induces nucleotides include the following. Fluorescent compounds: fluorescein, rhodamine, aminomethylcoumarin
  • Binding ligands digoxigenin, biotin
  • kits for synthesizing a probe for hybridization essentially includes nucleotides and / or nucleotide derivatives, nucleotides, and terminal transferase, and further includes a buffer suitable for the reaction, a reaction terminator, and a reagent for recovering DNA after the reaction. Can be combined.
  • the hybridization probe according to the present invention can be used for detecting various nucleic acids. That is, it can be used for a wide range of applications, such as screening for cDNA, detecting genes of pathogenic microorganisms and viruses, or analyzing mutations in oncogenes. Can be. Further, the hybridization probe according to the present invention can be applied to various assay formats. Well-known assay formats, such as a dot hybridization assay for observing the reaction with the target DNA fixed at the same time, and an in situ hybridization assay for observing the localization of the nucleic acid in the fixed tissue. It can be applied to a robot. 3.
  • the assay using a hybridization probe which can be obtained by the terminal tailing labeling method, is known (Molecular Cloning, Cold spring harbor laboratory press, 1989). However, since hybridization due to the base sequence added for labeling has been significantly reduced, masking with a polynucleic acid is unnecessary.
  • the target of hybridization is not limited to DNA, but may be RNA. Alternatively, it can be used for colony and plaque screening.
  • gene expression profiling using array technology will be described as one application example based on the sensitivity and specificity of the hybridization probe according to the present invention.
  • the use of the highly sensitive and highly specific hybridization probe according to the present invention enables accurate expression profiling of many types of RNA without correcting the array.
  • the hybridization probe of the present invention can also be used for detecting single nucleotide polymorphisms (SNPs).
  • the RNA to be examined for expression or its cDNA is arrayed in a mixture on one support without labeling.
  • samples cMA from various tissues and cDNA of cells over time after drug administration can be used.
  • An excessive amount of the probe (first probe) according to the present invention specific to the gene to be examined is hybridized in this array, a signal from the probe is detected, and the expression state is analyzed.
  • the duplex is exposed to denaturing conditions based on the Tm value of the probe, and the probe is released from the target base sequence fixed on the array. Denaturation conditions may be temperature control or hybridization control by electrical control. Techniques for controlling proteins are also known (Nat Biotechnol (1999) 17, 365-370).
  • the expression state is analyzed in the same manner.
  • a series of operations is repeated for the number of genes that need to be examined.
  • the expression profile of a large number of genes can be analyzed with high accuracy. Since a series of operations can be easily automated, it can be understood that the hybridization probe of the present invention realizes a drastic increase in efficiency of gene expression profiling.
  • the hybridization probe of the present invention brings about the same efficiency in the analysis of SNP.
  • FIG. 1 is a photograph showing the results of a hybridization process of 3, tail-labeled oligonucleotides using deoxyinosinic acid as a probe according to the present invention.
  • dIMP indicates deoxyinosinic acid
  • dAMP indicates deoxyadenylic acid.
  • FIG. 2 is a photograph showing the results of Northern hybridization using a 3′-tering-labeled oligonucleotide as a probe according to the present invention using deoxyinosinic acid as a spacer. In the figure, one band indicates that the probe specifically detected the target mRNA.
  • a reaction solution containing 3 phosphoric acid 2.5 units // zL of overnight transfer was allowed to act, and the mixture was incubated at 37 ° C for 15 minutes.
  • Immobilization of plasmid DNA on a nylon membrane was performed as follows. About 0.1 ng / 0.1L of target DNA was heated at 96 ° C for 10 minutes. This was rapidly cooled on ice, and a 1 L / dot amount was spotted on a nylon membrane for nucleic acid blot (manufactured by Behringer). 2xSSC (0.3 M sodium chloride, 0.03 M sodium citrate, pH 7), and then irradiate the target with a UV crosslinker (Stratagene) using a UV crosslinker according to the attached protocol. Immobilized. As target DNAs, in addition to the access code X75861, eight types of cDNAs having base sequences unrelated to this DNA were prepared. All of these cDNAs have a poly A tail at the 3 'end.
  • Hybridization was performed as follows. First, a pre-hybridization of the membrane was performed. Hybridization solution with or without lmg / ml poly A (6xSSC, l% (w / v) blocking solution (Boehringer), 0.1% (w / v) N The nylon membrane was incubated in lauroyl sarcosine, 0.02% (w / v) sodium dodecyl sulfate) at 68 ° C for 3 hours.
  • hybridization was carried out between the Niopen membrane and the labeled oligonucleotide. 5 pmol / ml of labeled oligo DNA was added to the hybridization solution, and the mixture was incubated at 60 ° C. for 12 hours. The nylon membrane was immersed in a washing solution (6 ⁇ SS 0.1% sodium dodecyl sulfate) and washed four times at 60 ° C. for 15 minutes.
  • the luminescence detection method was used for detection of the labeled oligonucleotides hybridized. The measurement was carried out using a luminescence detection kit manufactured by Boehringer according to the instruction manual. Briefly, a labeled oligo-MA on a nylon membrane was bound with an alkaline phosphatase-labeled anti-labeled digoxigenin antibody, and luminescence was added to the luminescent substrate of Alfa rifosiferase. Luminescence was detected by exposing to X-ray film.
  • Oligonucleotides labeled with 3'-tering using deoxyinosine 5, 3-phosphate as a probe specifically hybridize to a plasmid having as its insert a cDNA having the same DNA base sequence. However, it does not hybridize to cDNA of an unrelated DNA sequence.
  • 3 'tailing labeled orifices using deoxyadenine 5,3 phosphate as a donor Golnucleotides are non-specific hybridizations that are not based on the sequence of MA that should also be labeled with plasmids that have cDNA as an insert unrelated to their DNA base sequence. This non-specific hybridization was not suppressed even if the plasmid was previously masked with a polyA oligonucleotide.
  • Example 4 Northern hybridization using oligo DNA tailed and labeled with inosinic acid as a probe
  • RNA was prepared as follows. That is, an RNA extraction buffer (0.14 M NaCl, 1.5 mM MgCl 2 , 10 mM TrisCl (pH 8.6), 0.5% Nonidet) was added to animal culture cell line NT2 (purchased from Stratagene, and cell culture was performed according to the attached manual). After adding P-40 and 10 mM vanadyl-ribonucleoside complex), the mixture was allowed to stand on ice for 10 minutes, and then centrifuged at 10,000 xg, 4 ° C for 15 minutes to extract the upper layer.
  • an RNA extraction buffer (0.14 M NaCl, 1.5 mM MgCl 2 , 10 mM TrisCl (pH 8.6), 0.5% Nonidet
  • NT2 purchased from Stratagene, and cell culture was performed according to the attached manual. After adding P-40 and 10 mM vanadyl-ribonucleoside complex), the mixture was allowed to stand on ice for 10 minutes, and then centrifuged at
  • a proteinase cleavage buffer (0.2 TrisCl (pH 7.8), 25 mM EDTA (pH 8.0), 0.3 M NaCl, 2% SDS) was added to obtain a cell solution.
  • Proteinase K was added at a final concentration of 400 zl / ml and incubated at 37 ° C for 90 minutes.
  • the aqueous phase was extracted by adding a phenol-chloroform solution. Further, a phenol-chloroform solution was added once more to extract an aqueous phase, and 2.5 volumes of ethanol was added thereto.
  • RNA The precipitate formed by centrifugation at 5000 X g at 4 ° C for 10 minutes was washed with 70% ethanol, and air-dried to obtain total RNA. Dissolve the total RNA in 0, incubate at 65 ° C for 5 minutes, and add 2x column loading buffer (lx column loading buffer: 20 mM TrisCl (pH7.6), 0.5 M NaCl ⁇ 1 mM EDTA (pH 8.0), 0.1% sodium lauroyl sarcosinate) was added to the same volume. This was added to a column of oligo dT cellulose (manufactured by Col laborative Biomedical Products) swollen with a column loading buffer to obtain an eluate.
  • 2x column loading buffer 20 mM TrisCl (pH7.6), 0.5 M NaCl ⁇ 1 mM EDTA (pH 8.0), 0.1% sodium lauroyl sarcosinate
  • the eluate was added to the column again, and this operation was repeated three times. After washing the column with 5 volumes of lx column loading buffer, add 2 volumes of column elution buffer (10 mM TrisCl (pH7.6), 1 mM EDTA (pH 8.0), 0.05% SDS). The eluate was collected. 0.1 volume of 3M sodium acetate and 2.5 volumes of ethanol were added. Centrifuge at 12,000 X g at 4 ° C for 10 minutes The precipitate formed was washed with 70% ethanol and air-dried to obtain mRNA. The electrophoresis of mA was performed as follows. That is, the mRNA was converted to a sample solution for electrophoresis (4 jl formamid 2 ⁇ .
  • the specific oligodoxynucleotide (gtcacagaattttgagaccca; SEQ ID NO: 2) for EF1 was from GIBC0. Labeling of the oligonucleotide with terminal transferase was carried out in the same manner as described above. Hybridization of a filter with immobilized RNA from EF1 and labeled oligodoxynucleotides, and detection of hybridization by chemiluminescence were performed in the same manner as described above. The results are shown in FIG. A single band is detected at the expected size (l. Okb). As is evident from FIG. 2, the hybridization probe according to the present invention has sufficient sensitivity and specificity necessary for detecting the plotted mENA. Therefore, it supports that gene expression profiling ⁇ SNP can be detected based on this principle. Industrial applicability
  • the nucleotide used in the present invention serves as a substrate for terminal transfer Xase, the label can be easily bound only by adding it as a substrate for the 3′-terminal tailing labeling method.
  • the nucleotide (or nucleotide derivative) having a weak base pairing affinity used in the present invention functions as a nucleotide for labeling itself or as a spacer, so that efficient introduction of labeled nucleotides can be achieved. To give a high-titer labeling oligonucleotide.
  • the present invention it is possible to achieve both of the two problems of suppressing non-specific reactions and providing a high-titer labeled oligonucleotide.
  • the improvement of the S / N ratio in the hybridization can be easily realized based on the present invention.

Abstract

By using as a spacer nucleotide a nucleotide having an affinity with a base pair bond weaker than that of a/c or g/c, hybridization caused by a base sequence which has been added for labeling can be effectively inhibited.

Description

ハイプリダイゼ一シヨンプローブ 技術分野  Technical field
本発明は、 標識 DNA、 ならびに標識 DNAによる遺伝子の検出方法に関する <  The present invention relates to a labeled DNA and a method for detecting a gene using the labeled DNA.
標識 DNAは、 相補的な塩基配列を持つ DNA間の特異的な結合に基づく幅広い分 析方法に利用されている。 DNA を標識するためには、 次のような方法が公知であ る。 Labeled DNA is used in a wide range of analysis methods based on the specific binding between DNAs with complementary base sequences. The following methods are known for labeling DNA.
( 1 )合成 DNAの 5,末端に T 4ポリヌクレオチドキナーゼを用いてラジオァイソト —プ標識したリン酸を導入する  (1) Introduce radioisotope-labeled phosphate to the 5, 5 end of synthetic DNA using T4 polynucleotide kinase
(2)化学法によりオリゴ DNAの末端にピオチンゃジゴキシゲニンなどを直接付加 して標識する、 または  (2) Labeling by direct addition of biotin-digoxigenin, etc. to the end of oligo DNA by chemical method, or
(3)合成したオリゴ MA に後から夕一ミナルトランスフェラ一ゼなどを用いて標 識ヌクレオチドを付加する  (3) A labeling nucleotide is added to the synthesized oligo MA later using Yuichi Minar Transferase, etc.
しかしこれらの方法のうち、 (1 )や(2)では比活性の高いプローブを作製するこ とは困難であった。 これらの方法では、 末端への結合に基づいているために DNA 1分子当たり標識分子 1つしか導入できない。 したがって高い比活性は望みにく い。  However, among these methods, it was difficult to produce a probe with high specific activity in (1) and (2). In these methods, only one labeling molecule per DNA molecule can be introduced because it is based on terminal binding. Therefore, high specific activity is not desirable.
一方 3,末端テ一リング標識法とも呼ばれる(3)の方法は、 複数のヌクレオチド を連結する反応である。 多数の標識ヌクレオチドやヌクレオチド誘導体 (以下、 両者を同時に意味する用語として 「ヌクレオチド類」 を用いることがある) の導 入が可能で、 高い比活性を達成できる。 この方法では、 導入するヌクレオチド誘 導体の立体障害が問題となって複数のヌクレオチド誘導体の導入が困難となるこ とがあるが、 立体障害はスぺーサ一としてデォキシアデニル酸 (dAMP)、 デォキシ シチジル酸(dCMP )、 デォキシグァニル酸(dGMP)、 チミジル酸 (dTMP)、 あるいはデ ォキシゥリジル酸 (dUMP)ヌクレオチド等の立体障害の無いヌクレオチドを混在さ せることによって解消される。 しかし他方では、 導入したヌクレオチド類ゃスぺ —ザ一としたヌクレオチドのために、 反応生成物全体としてはもとの DNAとは異 なった塩基配列を持つことになる。 その結果として、 この付加されたヌクレオチ ド類の塩基配列に起因するハイプリダイゼ一シヨンが生じるという問題点があつ た。このようなハイブリダィゼ一シヨンを生じる塩基配列の一つに cDNAのポリ A テールに代表される 1種類のみの塩基の連続配列を挙げることができる。 標識化 のために新たに付加したヌクレオチド類の塩基配列によるハイプリダイゼーショ ンのためにシグナル/ノイズ比(以下 S/N比と記載する)が低下してしまっては、 たとえプローブの比活性が高くとも感度アップにはつながらない。 On the other hand, the method of (3), also called the terminal tailing labeling method, is a reaction that links multiple nucleotides. A large number of labeled nucleotides and nucleotide derivatives (hereinafter sometimes referred to as “nucleotides” as a term meaning both at the same time) can be introduced, and high specific activity can be achieved. In this method, steric hindrance of the nucleotide derivative to be introduced becomes a problem, and it becomes difficult to introduce a plurality of nucleotide derivatives. The steric hindrance is steric hindrance such as dexadenylic acid (dAMP), deoxycytidylic acid (dCMP), deoxyguanylic acid (dGMP), thymidylate (dTMP), or dexidyridylate (dUMP) nucleotides as spacers. The problem can be solved by mixing nucleotides without. However, on the other hand, due to the introduced nucleotides, the reaction product as a whole has a different nucleotide sequence from the original DNA. As a result, there is a problem that hybridization occurs due to the nucleotide sequence of the added nucleotides. One of the base sequences that produce such a hybridization is a continuous sequence of only one type of base represented by the poly A tail of cDNA. If the signal / noise ratio (hereinafter referred to as the S / N ratio) decreases due to hybridization due to the nucleotide sequence of nucleotides newly added for labeling, even if the specific activity of the probe is low. Even if it is high, it does not lead to an increase in sensitivity.
標識のために付加した塩基配列に起因する、 標識すべき MAに依存しないハイ ブリダィゼーシヨンを抑制するためには、 デォキシアデニル酸 (dAMP)、 デォキシ シチジル酸(dCMP )、 デォキシグァニル酸(dGMP)、 チミジル酸 (dTMP)、 あるいはデ ォキシゥリジル酸 ( dUMP )をそれぞれ単一あるいはランダムに重合したポリ核酸を ハイブリダィゼ一シヨンの際のキャリア一として用いて、 シグナルのバックグラ ゥンドを上昇させる原因となる塩基配列をマスクする必要があった。 しかしこの ような方法を用いても、 標識のために付加した塩基配列に起因するハイブリダィ ゼ一シヨンを完全に取り除くことは困難であった。  To suppress hybridization independent of MA to be labeled due to the base sequence added for labeling, use deoxyadenylic acid (dAMP), deoxycytidylic acid (dCMP), or deoxyguanylic acid (dGMP). Thymidylic acid (dTMP) or dexperidylic acid (dUMP), a single or randomly polymerized polynucleic acid, used as a carrier during hybridization, and a base sequence that causes an increase in signal background Had to be masked. However, even with such a method, it has been difficult to completely remove the hybridization caused by the nucleotide sequence added for labeling.
さて、 現在の array技術を用いた遺伝子発現プロフアイリングでは、 固定化し た cDNAゃォリゴ DNAに対して、 検討すベき RNAの cDNAを標識してハイブリダイ ズ (逆ノーザンブロッテイング) させている (Science ( 1999 ) 283,83-87; Nat Biotechnol ( 1996 ) 14, 1675-80)。 通常のノーザンプロヅテイングと異なり、 プ 口一ブではなく標的塩基配列を標識するのは、 現在の標識方法ではこのような解 析方法に必要な感度を達成するのが困難なためである。 この方法は一度に大量の 遺伝子の解析ができる点で優れている。 しかし異なる array間のシグナルの比較 によって発現の変動を検討するためには、 比較に使用する arrayが全く同じであ ることが要求される。 ところが現実には、 複数の array間で均一性を保証するこ とは容易ではない。 そのためもしも 2つ以上の RNAを異なる arrayによって比較 するのであれば、 array の違いを補正する必要がある。 そこで、 検討すべき RNA が 2種類の場合は、 通常はそれぞれ異なる蛍光でラベルして、 1つの array上で の競争的なハイブリダィゼ一シヨンを観察することによって、 発現変化を観察し ている。 十分な感度を実現できるプローブが提供されれば、 通常のノーザンハイ プリダイゼーシヨンと同様の原理、 すなわち固定化した標的塩基配列に対して標 識プローブを反応させることが可能となる。 このような方法が実現すれば、 単一 の arrayに基づいて複数の遺伝子の発現状態を解析できるようになり、 array技 術の可能性を飛躍的に高めることになろう。 Now, in gene expression profiling using the current array technology, the immobilized cDNA oligo DNA is labeled with the cDNA of the RNA to be examined and hybridized (reverse northern blotting) ( Science (1999) 283,83-87; Nat Biotechnol (1996) 14, 1675-80). Unlike normal Northern labeling, the target nucleotide sequence is labeled instead of the probe because current labeling methods have difficulty achieving the sensitivity required for such analysis methods. This method works It is excellent in that it can analyze genes. However, in order to examine the variation in expression by comparing signals between different arrays, it is required that the arrays used for the comparison be exactly the same. However, in reality, it is not easy to guarantee uniformity among multiple arrays. Therefore, if two or more RNAs are compared using different arrays, it is necessary to correct the differences between the arrays. Therefore, when there are two types of RNA to be examined, expression changes are usually observed by labeling each with a different fluorescence and observing competitive hybridization on one array. If a probe capable of realizing sufficient sensitivity is provided, the same principle as that of ordinary Northern hybridization can be used, that is, the labeled probe can react with the immobilized target base sequence. If such a method were realized, it would be possible to analyze the expression status of multiple genes based on a single array, which would greatly increase the potential of array technology.
ところで、 核酸の増幅反応においてイノシン酸を基質として用いることによつ て、 増幅生成物の 2次構造の形成が妨げられることが知られている。 2次構造の 形成は、 たとえばゲル電気泳動などにおいては解像度の低下につながるとされて おり、 したがってイノシン酸の利用によつて結果的に感度の向上が期待できる。 この原理は、 MA合成である PCR(Proc. Natl . Acad. Sci . USA.,76, 2232-2235)や、 RNA 合成システム (特開平 6-165699号公報) において利用されている。 また 7-デァ ザ- 2,-デォキシグアノシン- 5,-トリホスフェート(c7dGTP)を用いて PCRを行うと、 やはり複雑な 2次構造の形成を抑制できることが報告されている(W090/03443)。 しかし、 これらの報告は、 いずれも核酸の増幅生成物における 2次構造の形成阻 害を目的としており、 ハイブリダィゼーシヨンアツセィにおける非特異的な塩基 対結合の防止について示唆を与えるものではない。 また構造的に見ても、 これら の方法が標的核酸の塩基配列の一部をィノシンに変換している点において本発明 とは異なっている。 発明の開示 By the way, it is known that the use of inosinic acid as a substrate in a nucleic acid amplification reaction prevents formation of a secondary structure of an amplification product. The formation of a secondary structure is said to lead to a decrease in resolution in, for example, gel electrophoresis, and thus, the use of inosinic acid can be expected to result in an increase in sensitivity. This principle is used in MA synthesis PCR (Proc. Natl. Acad. Sci. USA., 76, 2232-2235) and an RNA synthesis system (JP-A-6-165699). In addition, it has been reported that PCR using 7-deza-2, -deoxyguanosine-5, -triphosphate (c7dGTP) can also suppress the formation of complex secondary structures (W090 / 03443). However, all of these reports are aimed at preventing the formation of secondary structures in nucleic acid amplification products, and do not suggest the prevention of non-specific base pairing in hybridization assays. Absent. In terms of structure, these methods differ from the present invention in that a part of the base sequence of the target nucleic acid is converted to inosine. Disclosure of the invention
本発明は、比活性の高いこと、そして高い特異性を維持することができること、 という 2つの条件を満たす標識 DNAの提供を課題とする。  An object of the present invention is to provide a labeled DNA that satisfies the two conditions of high specific activity and high specificity.
本発明者らは、 3,末端テ一リング標識した DNAのハイブリダイゼ一ションの特 異性を損なっている原因の一つが、 標識のために付加したヌクレオチドゃヌクレ ォチド類で構成された塩基配列に由来していることに着目した。その構成塩基が、 a、 c、 t、 g、 あるいは uであるかぎり、 標識のために付加した塩基配列はそれら 塩基配列に相補的な塩基配列を持つ核酸に対するハイプリダイゼーシヨンの原因 となってしまう。 そこで、 標識のために付加するヌクレオチドやヌクレオチド類 を塩基対結合の親和性が弱いものとすることで、 特異性の改善が可能となるので はないかと考えた。更に、 比活性の高いプローブを与える 3'末端テ一リング標識 法を可能とするために、 ターミナルトランスフェラーゼの基質となりうるヌクレ ォチドゃヌクレオチド類を選択することによって本発明を完成した。 すなわち本 発明は、 以下の標識 DNA、 ならびにこの標識 DNAの製造方法と用途に関する。 The present inventors believe that one of the causes of impairing the specificity of the hybridization of DNA labeled with 3, terminal tailing is a nucleotide sequence composed of nucleotides and nucleotides added for labeling. I noticed that As long as its constituent bases are a, c, t, g, or u, the base sequence added for labeling causes hybridization to nucleic acids having base sequences complementary to those base sequences. I will. Therefore, it was conceived that the specificity could be improved by making the nucleotides or nucleotides added for labeling have low affinity for base pairing. Furthermore, the present invention has been completed by selecting nucleotide dinucleotides that can serve as a substrate for terminal transferase, in order to enable a 3′-terminal tailing labeling method that gives a probe with high specific activity. That is, the present invention relates to the following labeled DNA, and a method for producing the labeled DNA and its use.
( 1 ) 標識すべき DNAに、 標識ヌクレオチドまたはヌクレオチド誘導体を含む 塩基配列を付加したハイプリダイゼーシヨンプローブであって、 この付 加された塩基配列が次の特徴 a ) および b ) を備えたものであるハイブ リダイゼーシヨンプローブ。 (1) A hybridization probe obtained by adding a nucleotide sequence containing a labeled nucleotide or nucleotide derivative to DNA to be labeled, wherein the added nucleotide sequence has the following characteristics a) and b) Hybridization probe.
a )標的塩基配列を構成する塩基との塩基対結合の親和性が a/t間、 a/u 間および g/c間の水素結合よりも弱いヌクレオチドおよび/またはヌク レオチド誘導体を含む  a) Nucleotide and / or nucleotide derivatives whose base pairing affinity with bases constituting the target base sequence is weaker than hydrogen bonding between a / t, a / u and g / c
b ) ターミナルトランスフェラ一ゼによるヌクレオチド付加反応によつ て標識すベき MAに導入することができる  b) Can be introduced into labeled MA by nucleotide addition reaction with terminal transferase
( 2 ) a ) のヌクレオチドが、 イノシン酸である ( 1 ) に記載のハイブリダィ ゼ一シヨンプローブ。  (2) The hybridization probe according to (1), wherein the nucleotide of a) is inosinic acid.
( 3 ) 付加される塩基配列が、標識ヌクレオチドまたはヌクレオチド誘導体と、 標識されていないィノシン酸またはその誘導体で構成されている ( 2 ) に記載のハイプリダイゼーシヨンプローブ。 (3) the base sequence to be added is labeled nucleotide or nucleotide derivative, The hybridization probe according to (2), which is composed of unlabeled inosinic acid or a derivative thereof.
(4) 標識ヌクレオチドまたはヌクレオチド誘導体が、 標識されたイノシン酸 またはイノシン酸誘導体である (3) に記載のハイブリダィゼ一シヨン プローブ。  (4) The hybridization probe according to (3), wherein the labeled nucleotide or nucleotide derivative is labeled inosinic acid or an inosinic acid derivative.
(5) 標識すべき DNAのためのストリンジェン卜なハイブリダィゼーシヨンの 条件下で、 標識のために付加される塩基配列がこの配列単独ではいかな る塩基配列ともハイブリダィゼ一シヨンすることができないものである (5) Under stringent hybridization conditions for the DNA to be labeled, the nucleotide sequence added for labeling may hybridize with any nucleotide sequence alone. Can not do
( 1 ) に記載のハイブリダィゼーシヨンプローブ。 The hybridization probe according to (1).
(6) 請求項 1— 5のいずれかのハイブリダイゼーシヨンプローブを用いる、 標識すべき DNAと相補的な塩基配列を持つ核酸の検出方法。  (6) A method for detecting a nucleic acid having a base sequence complementary to DNA to be labeled, using the hybridization probe according to any one of claims 1 to 5.
( 7 ) 検出対象が MAまたは cDNAライブラリーである( 6 )に記載の検出方法。 (7) The detection method according to (6), wherein the detection target is an MA or cDNA library.
(8) ターミナルトランスフェラ一ゼによる DNAの 3,末端テーリング標識法に おいて、 塩基対結合の親和性が a/t間、 a/u間、 および g/c間の水素結 合よりも弱く、 かつ夕一ミナルトランスフェラ一ゼによるヌクレオチド の付加反応の基質となりうるヌクレオチドおよび/またはヌクレオチド 誘導体を基質として用いる MAの標識法。 (8) In terminal 3, tailing labeling of DNA using terminal transferase, the affinity of base pairing is weaker than the hydrogen bonding between a / t, a / u, and g / c. A method for labeling MA using a nucleotide and / or a nucleotide derivative that can be a substrate for a nucleotide addition reaction by evening minal transferase as a substrate.
(9) ヌクレオチドがデォキシデォキシイノシン 5, 3リン酸である(8)に記 載の DNAの標識法。  (9) The method for labeling DNA according to (8), wherein the nucleotide is deoxydeoxyinosine 5,3-phosphate.
( 10) 塩基対結合が弱いヌクレオチドおよび Zまたはヌクレオチド誘導体と標 識ヌクレオチドまたはヌクレオチド誘導体とを混合し基質とする (8) に 記載の DNAの標識法。  (10) The method for labeling DNA according to (8), wherein a nucleotide and a Z or nucleotide derivative having a weak base pair bond are mixed with a labeled nucleotide or nucleotide derivative to form a substrate.
( 1 1) 以下の要素を含むハイブリダィゼ一シヨンプローブの合成用キット。  (11) A kit for synthesizing a hybridization probe comprising the following elements.
i)次の特徴 a) および b) を備えたヌクレオチドおよび/またはヌクレオ チド誘導体  i) nucleotide and / or nucleotide derivatives having the following characteristics a) and b):
a) 標的塩基配列を構成する塩基との塩基対結合の親和性が a/t間、 a/u 間および g/c間の水素結合よりも弱い a) The affinity of base pairing with the base constituting the target base sequence is between a / t, a / u Weaker than hydrogen bond between g and c
b ) 夕一ミナルトランスフェラ一ゼによるヌクレオチド付加反応によって 標識すべき DNAに導入しうる  b) It can be introduced into DNA to be labeled by nucleotide addition reaction by evening minal transferase
ii )標識ヌクレオチドまたはヌクレオチド誘導体  ii) Labeled nucleotide or nucleotide derivative
iii )夕一ミナルトランスフェラ一ゼ  iii) Yuichi Minoru Transferase
( 1 2 ) DNA に標識ヌクレオチドを含む塩基配列を付加したハイブリダィゼーシ ヨンプローブの標識すべき DNAの配列に基づかないハイブリダィゼ一ショ ンを防止する方法であって、 付加する塩基配列に塩基対結合の親和性が a/t間、 a/u間、および g/c間の水素結合よりも弱いヌクレオチドおよび/ またはヌクレオチド誘導体を挿入する方法。 本発明の標識すべき DNAとは、 ハイブリダィゼ一シヨンによって標的塩基配列 と特異的に結合する DNAである。 一般的にはプローブと呼ばれる。 この DNAは、 通常は標的塩基配列に相補的な塩基配列で構成される。 あるいはある程度の変異 があってもハイブリダィゼ一シヨンが可能なように、 設計することもできる。 そ してストリンジェン卜な条件下で標的塩基配列に対してハイブリダィゼーシヨン が可能で、 しかも通常の条件で洗浄しても溶出することのない安定な 2本鎖を維 持しうる鎖長を持つ。 本発明においては、 この標識すべき MAについては、 通常 用いられていたものをそのまま応用することができる。 すなわち、 検出の目的に 応じて、 化学的に合成されたオリゴヌクレオチドであったり、 あるいはプラスミ ドゃ染色体等を切断することによって得ることができる DNAの断片であっても良 い。 また、 核酸の酵素的な合成法によって得られる PCR生成物や cDNA、 あるいは それらの断片であることもできる。 一方、 標的塩基配列としては、 DNA、 RNA あ るいは DNA-MAハイブリッ ド等、 塩基対結合が可能なものであれば特に限定され ない。標的塩基配列と、 プローブとのハイブリダィゼーシヨンの特異性と強さは、 塩基対結合を構成する塩基の種類と反応条件とによって決定される。 ハイブリダ ィゼ一シヨンに影響を与える因子と、 一般的な条件を以下にまとめた(Molecular Cloning, Cold spring harbor laboratory press, 1989)。 反応溶液の温度 6 8 °C (12) A method for preventing hybridization that is not based on the sequence of DNA to be labeled by a hybridization probe in which a base sequence containing a labeled nucleotide is added to DNA, wherein the base sequence is added to the base sequence to be added. A method of inserting a nucleotide and / or a nucleotide derivative whose affinity of pair binding is weaker than hydrogen bonding between a / t, a / u, and g / c. The DNA to be labeled according to the present invention is a DNA that specifically binds to a target base sequence by hybridization. Generally called a probe. This DNA is usually composed of a base sequence complementary to the target base sequence. Alternatively, it can be designed so that hybridization can be performed even with a certain degree of mutation. A strand capable of hybridizing to the target base sequence under stringent conditions and capable of maintaining a stable double strand that does not elute even under washing under normal conditions Have a length. In the present invention, as the MA to be labeled, the one that is usually used can be applied as it is. That is, depending on the purpose of detection, it may be a chemically synthesized oligonucleotide or a DNA fragment obtained by cutting the plasmid chromosome or the like. It can also be a PCR product or cDNA obtained by an enzymatic synthesis of nucleic acids, or a fragment thereof. On the other hand, the target base sequence is not particularly limited as long as it is capable of base pairing, such as DNA, RNA or DNA-MA hybrid. The specificity and strength of the hybridization between the target base sequence and the probe are determined by the type of base constituting the base pairing and the reaction conditions. Hybrida The factors that affect the analysis and general conditions are summarized below (Molecular Cloning, Cold spring harbor laboratory press, 1989). Reaction solution temperature 6 8 ° C
塩濃度 6 x S S C Salt concentration 6 x S S C
( 2 0 x S S C : 3 M NaCK 0 . 3 Mクェン酸ナトリウム)  (20 x SSC: 3 M NaCK 0.3 M sodium citrate)
pH 7 . 0 pH 7.0
ドデシル硫酸ナトリウム 0 . 5 %  Sodium dodecyl sulfate 0.5%
5 Denhardt' s reagent  5 Denhardt's reagent
( 5 0 x Denhardt' s reagentの組成:  (Composition of 50 x Denhardt's reagent:
O. Olg/mL Ficoll type 400; Pharmacia製  O. Olg / mL Ficoll type 400; manufactured by Pharmacia
O.Olg/mL ポリビニルビ口リ ドン  O.Olg / mL polyvinyl alcohol
O. Olg/mL ゥシ血清アルブミン ファクター V;Shigma製) 本発明においては、 標識すべき DNAに対して標識ヌクレオチドまたはヌクレオ チド誘導体を含む塩基配列を付加することによってハイブリダィゼーシヨンプロ ーブを構成する。 付加される塩基配列は標識ヌクレオチドまたはヌクレオチド誘 導体を含むとともに、 次の特徴 a ) および b ) を備える。  O. Olg / mL (serum albumin factor V; manufactured by Shigma) In the present invention, a hybridization probe is prepared by adding a nucleotide sequence containing a labeled nucleotide or a nucleotide derivative to DNA to be labeled. Is configured. The added base sequence contains a labeled nucleotide or nucleotide derivative and has the following features a) and b).
a )標的塩基配列を構成する塩基との塩基対結合の親和性が、 a/t間、 a/u間、 そ して g/c間の水素結合よりも弱いヌクレオチドおよび/またはヌクレオチド誘導 体を含む a) Nucleotides and / or nucleotide derivatives whose affinity for base pairing with bases constituting the target base sequence is weaker than hydrogen bonds between a / t, a / u, and g / c Including
b ) 夕一ミナルトランスフェラ一ゼによるヌクレオチド付加反応によつて標識す べき DNAに導入することができる b) It can be introduced into DNA to be labeled by nucleotide addition reaction by evening minal transferase
塩基対結合の親和性が a/t間、 a/u間、 および g/c間の水素結合よりも弱いヌ クレオチドとは、そのヌクレオチドが atgcおよび uといった塩基のすべてに対し て、一般的な相補的塩基である tacgおよび aとの間の親和力よりも弱い親和性を 持っていることを意味する。 あるいは、 標的塩基配列を構成している塩基のいず れに対しても、 それらが通常相補的な塩基対結合を行うべきパートナーに比べて 弱い親和性しか持ちえないと表現することもできる。 更にヌクレオチドの誘導体 とは、 ヌクレオチドに対して官能基を導入することによって得ることができる化 合物を意味する。 あるいは天然のヌクレオチドの構造を模倣して化学的に合成さ れたヌクレオチドや、 更には天然のヌクレオチドの構造を化学修飾することによ つて塩基対結合を弱めたヌクレオチドも、 先に述べた条件 a ) および b ) を満た すものであれば本発明における塩基対結合の弱いヌクレオチド誘導体に含まれる。 更に本発明においては、 このヌクレオチド、 ヌクレオチド誘導体、 そしてヌク レオチド類が、 ターミナルトランスフェラ一ゼによるヌクレオチド付加反応によ つて標識すべき DNAに導入しうるものであることを特徴とする。 これは、 3'末端 テーリング標識法に利用するために必要な条件である。 前記条件を満たすヌクレ ォチドとして、 イノシン酸ゃキサンチル酸を示すことができる。 中でもイノシン 酸は、 入手の容易なヌクレオチドであり、 機能的に見ても本発明による効果を確 実に達成することができる望ましいヌクレオチドである。 たとえばデォキシィノ シン 5 ' 3 リン酸を基質としてターミナルトランスフェラーゼを作用させれば、 DNAの 3'末端にデォキシィノシン酸を含む塩基配列を付加することができる。 一般的に、 イノシン酸は塩基の種類を問わずある程度の強さで塩基対結合を形 成するものと考えられていた。 したがって、 本発明のように標識のための配列に 挿入することは、 かえって非特異反応を大きくする心配があった。 ところが実際 には、 付加すべき配列にイノシン酸を挿入すると、 非特異反応を大幅に抑制する ことが可能となる。 Nucleotides whose base pairing affinity is weaker than hydrogen bonds between a / t, a / u, and g / c means that the nucleotides are common to all bases such as atgc and u. A weaker affinity than that between the complementary bases tacg and a Means to have. Alternatively, it can be described that any of the bases constituting the target base sequence has a weaker affinity than a partner which usually should perform complementary base pairing. Further, a nucleotide derivative means a compound obtainable by introducing a functional group into a nucleotide. Alternatively, nucleotides chemically synthesized by mimicking the structure of natural nucleotides, or even nucleotides whose base pairing has been weakened by chemically modifying the structure of natural nucleotides, may be subjected to the conditions described above. ) And b) are included in the nucleotide derivative having a weak base pair bond in the present invention. Further, the present invention is characterized in that the nucleotides, nucleotide derivatives, and nucleotides can be introduced into DNA to be labeled by a nucleotide addition reaction using terminal transferase. This is a necessary condition for use in the 3'-end tailing labeling method. Examples of nucleotides satisfying the above conditions include inosinic acid and xanthylic acid. Above all, inosinic acid is an easily available nucleotide, and is a desirable nucleotide capable of reliably achieving the effects of the present invention even from a functional viewpoint. For example, when a terminal transferase is allowed to act using deoxyinosine 5′-phosphate as a substrate, a nucleotide sequence containing deoxyinosine acid can be added to the 3 ′ end of DNA. In general, inosinic acid was considered to form a base pair bond with a certain strength regardless of the type of base. Therefore, insertion into a sequence for labeling as in the present invention has a risk of increasing nonspecific reaction. In practice, however, inserting inosinic acid into the sequence to be added makes it possible to significantly suppress nonspecific reactions.
本発明に基づくハイブリダイゼ一ションプローブ、 あるいはその製造方法にお いては、 前記塩基対結合の弱いヌクレオチドを含むことを必須として、 その他の ヌクレオチド (たとえば atcgおよび u、 あるいはその誘導体) の存在を許容する ことができる。 これらのヌクレオチドは、 標識されたものであっても良い。 ただ し、 前記塩基対結合の弱いヌクレオチドおよびノまたはヌクレオチド誘導体以外 のヌクレオチドを構成塩基として含む場合には、 標識のために付加した部分がハ イブリダィゼーシヨンを起こさないような条件としなければならない。 望ましい 条件は、 標識すベき DNAのストリンジェン卜なハイプリダイゼーションの条件下 で、 付加される塩基配列がその配列単独ではいかなる塩基配列ともハイブリダィ ゼ一シヨンすることができないものである。 In the hybridization probe or the method for producing the same according to the present invention, it is essential to include the nucleotide having a weak base pair bond, and to allow the presence of other nucleotides (for example, atcg and u or a derivative thereof). be able to. These nucleotides may be labeled. However However, when a nucleotide other than the nucleotide having a weak base pair bond and a nucleotide other than a nucleotide or a nucleotide derivative is contained as a constituent base, the conditions must be such that the portion added for labeling does not cause hybridization. . Desirable conditions are such that the added nucleotide sequence cannot hybridize with any nucleotide sequence by itself under the conditions of stringent hybridization of the DNA to be labeled.
このような条件を達成するためには、 標識のために付加する配列に占める前記 塩基対結合の弱いヌクレオチド (あるいはヌクレオチド誘導体) の割合を大きく する。 最低限必要となる割合は、 その種類と混在するヌクレオチドの構成や全体 の長さの影響を受けるので一般的な範囲を示すことはできないが、 当業者は本発 明の開示に基づいて経験的に設定することができる。 なお、 標識すべき DNAに付 加されるヌクレオチド、 あるいはヌクレオチド誘導体は、 いずれも標識の対象と することができる。 したがって、 標識イノシン酸に対して、 非標識ヌクレオチド を組み合わせることも可能である。 この場合には非標識ヌクレオチドのみでスぺ —サーを構成してもよいし、 あるいはスぺ一サ一としての非標識イノシン酸を混 在させることもできる。 たとえばデォキシイノシン 5 ' 3リン酸 (親和性の弱い ヌクレオチド) とジゴキシゲニン標識化デォキシゥラシル 5, 3リン酸でテーリ ング標識する場合には、 後者の割合を 1 / 1 0以下とすることにより本発明の条 件を満たすことができる。  In order to achieve such conditions, the proportion of the nucleotide (or nucleotide derivative) having a weak base pair bond in the sequence added for labeling is increased. Although the minimum required ratio is affected by the composition and overall length of the nucleotides mixed with the type, a general range cannot be shown, but those skilled in the art will be empirical based on the disclosure of the present invention. Can be set to In addition, any nucleotide or nucleotide derivative added to the DNA to be labeled can be a target of labeling. Therefore, it is also possible to combine unlabeled nucleotides with labeled inosinic acid. In this case, the spacer may be composed of only unlabeled nucleotides, or non-labeled inosinic acid as a spacer may be mixed. For example, in the case of tailing labeling with deoxyinosine 5'-triphosphate (a nucleotide having a low affinity) and digoxigenin-labeled deoxyduracil 5,3-phosphate, the ratio of the latter is set to 1/10 or less, whereby the content of the present invention is reduced. Can meet the requirements.
3,末端テーリング標識法に用いる夕一ミナルトランスフェラ一ゼは、 塩基の種 類を識別することなく、 DNAの 3'末端にヌクレオチドをランダムに付加する。 し たがって、 付加される塩基配列に占める構成塩基の割合は、 基質として添加する ヌクレオチドとヌクレオチドの濃度比によって調整する。 その割合を具体的に示 せば、たとえばデォキシイノシン 5 ' 3リン酸をジゴキシゲニン標識化デォキシゥ ラシル 5 ' 3リン酸標識と混合して用いる場合、 前者の濃度を 2〜1 0倍過剰と しておくことによって、 標識の比活性向上と確実な非特異反応の抑制効果を期待 できる。 一般に、 標識を付したヌクレオチドやその誘導体は夕一ミナルトランス フェラ一ゼによる付加反応の基質となりにくなる傾向があるので、標識の種類と、 組み合わせるべきヌクレオチドに合わせて、 適切な濃度比を経験的に設定するよ うにする。 濃度比のみで各ヌクレオチドの配列を厳密に制御することは不可能で あるが、 確率的にハイプリダイゼーシヨンを起こしうるヌクレオチドの連続が生 じない条件を本明細書の開示に基づいて経験的に設定することは当業者にとって 自明である。 3. Even-minal transferase, which is used for end-tailing labeling, randomly adds nucleotides to the 3 'end of DNA without discriminating the type of base. Therefore, the ratio of the constituent bases to the base sequence to be added is adjusted by the concentration ratio between nucleotides to be added as a substrate and nucleotides. If the ratio is specifically shown, for example, when deoxyinosine 5 'triphosphate is used in combination with digoxigenin-labeled deoxyperacyl 5' triphosphate label, the concentration of the former should be 2- to 10-fold excess. Expected to improve the specific activity of the label and reliably suppress nonspecific reactions it can. In general, labeled nucleotides and derivatives thereof tend not to be substrates for the addition reaction by the mininal transferase, so experience appropriate concentration ratios according to the type of label and the nucleotide to be combined. Make sure to set it manually. Although it is impossible to strictly control the sequence of each nucleotide only by the concentration ratio, empirical conditions based on the disclosure in the present specification are based on the conditions under which the sequence of nucleotides that can cause stochastic hybridization does not occur. It is obvious for a person skilled in the art to set.
ところで、 塩基対結合の弱いヌクレオチドの構成比率を高めるという点では、 たとえばデォキシィノシン酸のみで構成された標識用の配列が望ましい。 このよ うな態様は、 標識ヌクレオチドとして、 標識化したデォキシイノシン酸を組み合 わせることによって実現することができる。 構成塩基がデォキシイノシン酸のみ の場合には、標識化デォキシイノシン 5 ' 3リン酸と非標識化デォキシイノシン 5 ' 3リン酸との濃度比によって、最も比活性の高い標識プローブを与える条件に基 づいて 3'末端テ一リング標識を行えば良い。  By the way, in order to increase the composition ratio of nucleotides having a weak base pair bond, for example, a labeling sequence composed of only deoxyinosinic acid is desirable. Such an embodiment can be realized by combining labeled deoxyinosinic acid as a labeled nucleotide. When the constituent base is only deoxyinosine acid, the concentration ratio of labeled deoxyinosine 5'-phosphate to unlabeled deoxyinosine 5'-phosphate is determined based on the conditions that give the labeled probe with the highest specific activity. 'End-tailing signs may be used.
3'末端テーリング標識法は公知(Molecular Cloning, Cold spring harbor laboratory press, 1989)である。 すなわち、 標識すべき DNA (あるいはオリゴヌ クレオチド) に対して、 標識ヌクレオチドとスぺ一サー (標識していないヌクレ ォチド) を基質として加え、 ターミナルトランスフェラ一ゼを作用させる。 この とき本発明においては、スぺ一サ一としてデォキシイノシン 5 ' 3リン酸のような ヌクレオチドを加えればよい。 ターミナルトランスフェラ一ゼには、 一般に仔ゥ シ胸腺由来の酵素が使用されるが、 由来は特に限定されない。 また反応液には、 反応環境を至適 pHに保つ緩衝剤、 ゥシ血清アルブミン等の酵素の保護剤、あるい は酵素活性の発現に必要な金属イオンを供給するために適宜塩化コバルト等の塩 類を添加しておく。卜 lOunitsのターミナルトランスフェラ一ゼを作用させ、 37°C で 15分間程度反応させれば、 標識のための塩基配列の付加が達成される。  The 3'-end tailing labeling method is known (Molecular Cloning, Cold spring harbor laboratory press, 1989). That is, a labeled nucleotide and a spacer (unlabeled nucleotide) are added as a substrate to the DNA (or oligonucleotide) to be labeled, and terminal transferase is allowed to act. At this time, in the present invention, a nucleotide such as deoxyinosine 5′-triphosphate may be added as a supplier. For terminal transferase, generally, an enzyme derived from puppy thymus is used, but the origin is not particularly limited. The reaction solution may also contain a buffer to keep the reaction environment at the optimal pH, a protective agent for enzymes such as serum albumin, or an appropriate material such as cobalt chloride to supply metal ions necessary for the expression of enzyme activity. Add salt. The base sequence for labeling can be obtained by reacting with the terminal transferase of OOunits for about 15 minutes at 37 ° C.
バッチ間の比活性の変動を小さくするには、反応条件を統一するのが望ましい。 そのためには、反応時間の制御を目的として反応停止剤を利用することができる。 たとえば、 グリコーゲンとエチレンジアミンテトラ酢酸 (EDTA)を添加することに より、ターミナルトランスフヱラーゼの酵素活性は急速に失われ反応が停止する。 本発明において、 ヌクレオチド (あるいはヌクレオチド誘導体) とともに標識 用の塩基配列を構成する標識ヌクレオチドあるいはヌクレオチド誘導体は、 任意 のヌクレオチドであって良い。 標識用の塩基配列の中に散在する標識用のヌクレ ォチドは、 たとえ通常の塩基対結合が可能な塩基であっても、 分散して配置され るためハイブリダィゼーシヨンすることは困難である。 したがって、 atcg、 ある いは uといった一般的なヌクレオチドを組み合わせても良いし、 あるいは前記の ように標識ヌクレオチドまでもイノシン酸のような塩基対結合の親和性の弱いヌ クレオチドとすることもできる。 標識用の塩基配列を構成する標識ヌクレオチド としては、 放射性同位体 32P で置換したヌクレオチドを例示することができる。 標識用のヌクレオチド誘導体としては、 ヌクレオチドの官能基に蛍光化合物や結 合性リガンドを導入したヌクレオチドを例示することができる。 ヌクレオチドを 誘導化する化合物を具体的に示せば、 次のようなものを例示することができる。 蛍光化合物: フルォレセイン、 ローダミン、 アミノメチルクーマリン In order to reduce the variation in specific activity between batches, it is desirable to unify the reaction conditions. For that purpose, a reaction terminator can be used for the purpose of controlling the reaction time. For example, by adding glycogen and ethylenediaminetetraacetic acid (EDTA), the enzyme activity of terminal transferase is rapidly lost and the reaction is stopped. In the present invention, the labeled nucleotide or nucleotide derivative that constitutes the nucleotide sequence for labeling together with the nucleotide (or nucleotide derivative) may be any nucleotide. Even if the nucleotides for labeling are scattered in the nucleotide sequence for labeling, even if they are bases capable of normal base pairing, they are arranged in a dispersed manner, so that it is difficult to hybridize. . Therefore, general nucleotides such as atcg or u may be combined, or as described above, nucleotides having low base pairing affinity such as inosinic acid may be used even for labeled nucleotides. Examples of the labeled nucleotide constituting the base sequence for labeling include nucleotides substituted with a radioactive isotope 32 P. Examples of the nucleotide derivative for labeling include a nucleotide in which a fluorescent compound or a binding ligand is introduced into a functional group of the nucleotide. Specific examples of the compound that induces nucleotides include the following. Fluorescent compounds: fluorescein, rhodamine, aminomethylcoumarin
結合性リガンド :ジゴキシゲニン、 ピオチン Binding ligands: digoxigenin, biotin
ここに述べた本発明に基づく 3'末端テーリング標識法を実施するために必要 な要素を予め組み合わせてハイブリダィゼーシヨン用プロ一ブの合成用キットと することができる。 本発明によるキッ トには、 ヌクレオチドおよび/またはヌク レオチド誘導体、 ヌクレオチド類、 ターミナルトランスフェラーゼを必須として、 更に反応に好適な緩衝液、 反応停止剤、 反応後の DNAの回収を行うための試薬な どを組み合わせることができる。  Elements necessary for carrying out the 3′-end tailing labeling method according to the present invention described herein can be combined in advance to prepare a kit for synthesizing a probe for hybridization. The kit according to the present invention essentially includes nucleotides and / or nucleotide derivatives, nucleotides, and terminal transferase, and further includes a buffer suitable for the reaction, a reaction terminator, and a reagent for recovering DNA after the reaction. Can be combined.
本発明に基づくハイプリダイゼーションプローブは、 各種の核酸検出に利用す ることができる。 すなわち、 cDNAのスクリーニング、 病原微生物やウィルスの遺 伝子検出、 あるいはがん遺伝子の変異の分析といった、 幅広い用途に利用するこ とができる。 また本発明によるハイブリダィゼ一シヨンプローブは、 様々なアツ セィフォーマットに適用することができる。 すなわち、 フィル夕一に固定した標 的 DNAとの反応を観察するドットハイブリダィゼ一シヨンアツセィ、 固定組織中 で核酸の局在を観察するためのィンサイチュ ·ハイブリダィゼ一シヨンァヅセィ 等、 公知のアツセィフォーマヅ 卜への適用が可能である。 3,末端テ一リング標識 法によって得ることができるハイプリダイゼーシヨンプローブを用いたアツセィ 法は公知 (Molecular Cloning, Cold spring harbor laboratory press, 1989)であ る。 ただし標識のために付加した塩基配列に起因するハイブリダィゼ一シヨンが 著しく減じているため、 ポリ核酸によるマスク処理は不要である。 またハイプリ ダイゼーシヨンの対象も DNAには限定されず、 RNAを対象とすることもできる。 あるいは、 コロニーやプラークのスクリーニングに使用することもできる。 以下に本発明によるハイプリダイゼーシヨンプローブの感度と特異性に基づく 応用例の一つとして、 array技術を利用した遺伝子発現プロフアイリングについ て述べる。 本発明による高感度 ·高特異的なハイブリダィゼ一シヨンプローブを 用いれば、 多種類の RNAに対して、 arrayの補正をすることなく、 正確な発現プ ロフアイリングが可能となる。 あるいは本発明のハイブリダィゼ一シヨンプロ一 ブは、 single nucleotide polymorphisms ( SNPs)の検出にも利用することができ o The hybridization probe according to the present invention can be used for detecting various nucleic acids. That is, it can be used for a wide range of applications, such as screening for cDNA, detecting genes of pathogenic microorganisms and viruses, or analyzing mutations in oncogenes. Can be. Further, the hybridization probe according to the present invention can be applied to various assay formats. Well-known assay formats, such as a dot hybridization assay for observing the reaction with the target DNA fixed at the same time, and an in situ hybridization assay for observing the localization of the nucleic acid in the fixed tissue. It can be applied to a robot. 3. The assay using a hybridization probe, which can be obtained by the terminal tailing labeling method, is known (Molecular Cloning, Cold spring harbor laboratory press, 1989). However, since hybridization due to the base sequence added for labeling has been significantly reduced, masking with a polynucleic acid is unnecessary. The target of hybridization is not limited to DNA, but may be RNA. Alternatively, it can be used for colony and plaque screening. Hereinafter, gene expression profiling using array technology will be described as one application example based on the sensitivity and specificity of the hybridization probe according to the present invention. The use of the highly sensitive and highly specific hybridization probe according to the present invention enables accurate expression profiling of many types of RNA without correcting the array. Alternatively, the hybridization probe of the present invention can also be used for detecting single nucleotide polymorphisms (SNPs).
すなわち、 発現を検討すべき RNA、 またはその cDNAを標識しないまま 1つの支 持体に混合物の状態で arrayする。サンプルとしては種々の組織由来 cMAや、薬 物投与後の経時的な細胞の cDNAを用いることができる。この arrayに、検討すベ き遺伝子に特異的な本発明によるプロ一ブ (第 1のプローブ) を、 過剰量ハイブ リダィゼーシヨンさせて、 そのプローブでのシグナルを検出し、 発現状態を解析 する。次にそのプローブの Tm値に基づいて 2本鎖を変性条件に曝し、 プローブを array 上に固定されている標的塩基配列から遊離させる。 変性条件は温度コント ロールであっても良いし、 電気的なコントロールによってハイブリダイゼ一ショ ンを制御する技術も公知である (Nat Biotechnol ( 1999) 17, 365-370)。 続いて 次の遺伝子のためのプローブ (第 2のプローブ) に代えて、 同様に発現状態を解 析する。一連の操作を検討が必要な遺伝子の数だけ繰り返し行う。この方法では、 単一の arrayを繰り返し用いていることから、 大量遺伝子の発現プロフィールも 精度良く解析することができる。 一連の操作は容易に自動化することができるの で、 本発明のハイブリダィゼ一シヨンプローブは遺伝子発現プロフアイリングの 飛躍的な効率化を実現することが理解できる。 もちろん、 本発明のハイプリダイ ゼ一シヨンプロ一ブが SNPの解析においても同様の効率化をもたらすことは言う までも無い。 That is, the RNA to be examined for expression or its cDNA is arrayed in a mixture on one support without labeling. As samples, cMA from various tissues and cDNA of cells over time after drug administration can be used. An excessive amount of the probe (first probe) according to the present invention specific to the gene to be examined is hybridized in this array, a signal from the probe is detected, and the expression state is analyzed. Next, the duplex is exposed to denaturing conditions based on the Tm value of the probe, and the probe is released from the target base sequence fixed on the array. Denaturation conditions may be temperature control or hybridization control by electrical control. Techniques for controlling proteins are also known (Nat Biotechnol (1999) 17, 365-370). Subsequently, instead of the probe for the next gene (second probe), the expression state is analyzed in the same manner. A series of operations is repeated for the number of genes that need to be examined. In this method, since a single array is used repeatedly, the expression profile of a large number of genes can be analyzed with high accuracy. Since a series of operations can be easily automated, it can be understood that the hybridization probe of the present invention realizes a drastic increase in efficiency of gene expression profiling. Of course, it goes without saying that the hybridization probe of the present invention brings about the same efficiency in the analysis of SNP.
ここに述べた利用方法の原理は、いわゆる cDNAあるいは MAのドットブロッ ト アツセィである。 しかし高感度 ·高特異的なオリゴ DNAをプローブとして用いる こと、 および多種類のプローブのハイブリダィゼ一シヨンを、 同じ arrayを用い てシ一ケンシャルに行う点が大きな特徴である。 cDNAや RNAを固定した arrayの 代えて、 組織切片を試料として (Nature Med. ( 1998) 4, 844-847) この特徴を生 かした解析方法を実施することもできる。 図面の簡単な説明  The principle of the method of use described here is the so-called dot-blot of cDNA or MA. However, the major features are that highly sensitive and highly specific oligo DNA is used as a probe, and hybridization of various types of probes is performed sequentially using the same array. Instead of an array with immobilized cDNA or RNA, tissue sections can be used as samples (Nature Med. (1998) 4, 844-847). BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明によってデォキシィノシン酸をスぺ一サ一として用いて 3,テ一 リング標識したオリゴヌクレオチドのハイブリダィゼ一シヨンァヅセィの結果を 示す写真である。図中、 dIMPはデォキシイノシン酸を、 dAMPはデォキシアデニル 酸を示す。  FIG. 1 is a photograph showing the results of a hybridization process of 3, tail-labeled oligonucleotides using deoxyinosinic acid as a probe according to the present invention. In the figure, dIMP indicates deoxyinosinic acid, and dAMP indicates deoxyadenylic acid.
図 2は、 本発明によってデォキシイノシン酸をスぺ一サ一として用いて 3 ' テ 一リング標識したオリゴヌクレオチドをプローブとしたノーザンハイブリダィゼ —シヨンの結果を示す写真である。 図中、 1つのバンドはプローブが特異的に標 的 mRNAを検出したことを示す。 発明を実施するための最良の形態 FIG. 2 is a photograph showing the results of Northern hybridization using a 3′-tering-labeled oligonucleotide as a probe according to the present invention using deoxyinosinic acid as a spacer. In the figure, one band indicates that the probe specifically detected the target mRNA. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例に基づいて本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
[実施例 1 ] オリゴヌクレオチドの標識化  [Example 1] Labeling of oligonucleotide
( 1 ) National center for biotechnology information (National institutes of health, USA) が運営管理する GenBankシーケンスデ一夕ベースに登録され ている、 アクセスコード X75861 の遺伝子に対する特異的オリゴヌクレオチド(c cctacaaagaaaatggagagcct; 配列番号: 1 ) を合成法によって作製し (GIBC0社 が作製)、 その lOOpmolを用いて、 ターミナルトランスフェラ一ゼによるオリゴヌ クレオチド 3'末端の標識化を行った。 標識には 0.5mMデォキシイノシン 5 ' 3リ ン酸(親和性の弱いヌクレオチド) と 0.05mMジゴキシゲニン標識化デォキシゥラ シノレ 5, 3リン酸 (標識ヌクレオチド) を含む反応液(0.2M力コジル酸力リウム、 25mM トリスヒドロキシァミノメタン、 0.25mg/mlゥシ血清アルブミン、 5mM塩化 コノヽ'ルト、 pH6.6) 中で、 あるいは比較対照のために 0.5mMデォキシアデニン 5, 3リン酸と 0.05mM標識化デォキシゥラシル 5 ' 3リン酸を含む反応液中で、 2.5 units//zLの夕一ミナルトランスフェラ一ゼを作用させ、 37°Cで 15分間インキュ ベ一トした。  (1) Specific oligonucleotides for the gene with access code X75861 (c cctacaaagaaaatggagagcct; SEQ ID NO: 1) registered on the GenBank Sequence Data Base managed and operated by the National Center for Biotechnology Information (National Institutes of Health, USA) ) Was prepared by a synthetic method (manufactured by GIBCO), and the lOOpmol was used to label the oligonucleotide 3 'end with terminal transferase. For the labeling, a reaction solution containing 0.5 mM deoxyinosine 5'3 phosphoric acid (weak nucleotide) and 0.05 mM digoxigenin-labeled deoxyduracinole 5,3 phosphate (labeled nucleotide) (0.2 M dipotassium codylate, 25 mM Trishydroxyaminomethane, 0.25 mg / ml serum albumin, 5 mM conodium chloride, pH 6.6) or 0.5 mM deoxyadenine 5,3 phosphate and 0.05 mM labeled deoxydilacil 5 for comparison. 'In a reaction solution containing 3 phosphoric acid, 2.5 units // zL of overnight transfer was allowed to act, and the mixture was incubated at 37 ° C for 15 minutes.
( 2 ) 氷上に移し、 停止溶液 (終濃度 10〃g/ml グリコーゲン、 0.2mMエチレンジ アミンテトラ酢酸) を添加した。 さらに塩化リチウムを終濃度 0.4mMと 3倍容量 のエタノールを添加して、 -30°Cで 2時間おいた。  (2) The mixture was transferred on ice, and a stop solution (final concentration: 10 μg / ml glycogen, 0.2 mM ethylenediaminetetraacetic acid) was added. Further, lithium chloride was added thereto at a final concentration of 0.4 mM and three volumes of ethanol, and the mixture was kept at -30 ° C for 2 hours.
( 3 ) 12,000gで遠心し、 MAを沈殿させ、 沈殿した DNAを 70%エタノールで洗浄 後、 乾燥させた。 乾燥した標識化 DNAを 100〃Lの水に溶かした。  (3) The mixture was centrifuged at 12,000 g to precipitate MA, and the precipitated DNA was washed with 70% ethanol and dried. The dried labeled DNA was dissolved in 100 L of water.
[実施例 2 ] 標的遺伝子の固定化 [Example 2] Immobilization of target gene
プラスミ ド DNAのナイロン膜への固定化は以下のように行った。 約 0.1ng/〃L の標的 DNAを 96°Cで、 10分加熱した。 これを急速氷冷し、核酸ブロット用のナイ ロン膜 (ベ一リンガー社製) に 1 L/ドッ 卜の量をスポッティングした。 2xSSC (0.3M塩化ナトリウム、 0.03Mクェン酸ナトリウム、 pH7) で湿らせて、 次に UV Cross l inker ( Stratagene社) を用い、 その付属のプロトコルにしたがって紫外 線を照射してナイロン膜に標的遺伝子を固定化した。 標的 DNAとしては、 前記ァ クセスコード X75861の他、 この DNAとは無関係な塩基配列で構成される 8種類 の cDNAを用意した。これらの cDNAはすべて 3'末端にポリ Aテールを持っている。 Immobilization of plasmid DNA on a nylon membrane was performed as follows. About 0.1 ng / 0.1L of target DNA was heated at 96 ° C for 10 minutes. This was rapidly cooled on ice, and a 1 L / dot amount was spotted on a nylon membrane for nucleic acid blot (manufactured by Behringer). 2xSSC (0.3 M sodium chloride, 0.03 M sodium citrate, pH 7), and then irradiate the target with a UV crosslinker (Stratagene) using a UV crosslinker according to the attached protocol. Immobilized. As target DNAs, in addition to the access code X75861, eight types of cDNAs having base sequences unrelated to this DNA were prepared. All of these cDNAs have a poly A tail at the 3 'end.
[実施例 3 ] 標識化オリゴヌクレオチドとのハイブリダィゼ一シヨン  [Example 3] Hybridization with labeled oligonucleotide
ハイプリダイゼ一ションは以下のように行った。 はじめにナイ口ン膜のプレハ イブリダイゼーシヨンを行った。 0. lmg/mlのポリ Aを添加した、 または添加しな いハイブリダィゼ一シヨン溶液(6xSSC、 l % (w/v)ブロッキング溶液(ベーリンガ —社製)、 0. 1 % (w/v) Nラウロイルザルコシン、 0.02% (w/v )ドデシル硫酸ナトリ ゥム) 中で、 ナイロン膜を 68°Cで 3時間インキュベートした。  Hybridization was performed as follows. First, a pre-hybridization of the membrane was performed. Hybridization solution with or without lmg / ml poly A (6xSSC, l% (w / v) blocking solution (Boehringer), 0.1% (w / v) N The nylon membrane was incubated in lauroyl sarcosine, 0.02% (w / v) sodium dodecyl sulfate) at 68 ° C for 3 hours.
次にナイ口ン膜と標識化ォリゴヌクレオチドとのハイプリダイゼーションを行 つた。ハイブリダィゼ一シヨン液中に 5pmol/mlの標識化ォリゴ DNAを添加し、 60°C で 12時間インキュベーションした。 ナイロン膜は洗浄液 (6xSS 0. 1%ドデシル 硫酸ナトリウム)中に浸して、 60°Cで 15分を 4回洗浄した。  Next, hybridization was carried out between the Niopen membrane and the labeled oligonucleotide. 5 pmol / ml of labeled oligo DNA was added to the hybridization solution, and the mixture was incubated at 60 ° C. for 12 hours. The nylon membrane was immersed in a washing solution (6 × SS 0.1% sodium dodecyl sulfate) and washed four times at 60 ° C. for 15 minutes.
ハイプリダイゼーシヨンした標識化ォリゴヌクレオチドの検出は、 発光検出法 を用いた。 ベ一リンガー社製の発光検出キットを用いて、 その使用方法書に従つ て行った。 簡単に説明すると、 アルカリホスファターゼ標識した抗標識化ジゴキ シゲニン抗体でナイロン膜上の標識化オリゴ MAを結合し、 アル力リフォスファ 夕一ゼの発光其質を添加して発光させた。 発光の検出は X線フィルムに感光させ て行った。  The luminescence detection method was used for detection of the labeled oligonucleotides hybridized. The measurement was carried out using a luminescence detection kit manufactured by Boehringer according to the instruction manual. Briefly, a labeled oligo-MA on a nylon membrane was bound with an alkaline phosphatase-labeled anti-labeled digoxigenin antibody, and luminescence was added to the luminescent substrate of Alfa rifosiferase. Luminescence was detected by exposing to X-ray film.
結果を図 1に示した。デォキシイノシン 5, 3リン酸をスぺ一サ一として用いて 3'テ一リング標識したオリゴヌクレオチドは、 その同じ DNA塩基配列を持つ cDNA をインサートとして持つプラスミ ドに特異的にハイブリダィゼーシヨンし、 関係 のない DNA塩基配列の cDNAにはハイブリダィゼ一シヨンしない。対照的に、デォ キシアデニン 5, 3リン酸をスぺ一サ一として用いて 3'テーリング標識したオリ ゴヌクレオチドは、その DNA塩基配列と関係のない cDNAをィンサ一トとして持つ プラスミ ドにも標識すべき MAの配列に基づかない非特異的なハイプリダイゼ一 シヨンをしている。 この非特異的なハイブリダィゼーシヨンは、 あらかじめポリ Aオリゴヌクレオチドでプラスミ ドをマスクしても抑制されていない。 The results are shown in FIG. Oligonucleotides labeled with 3'-tering using deoxyinosine 5, 3-phosphate as a probe specifically hybridize to a plasmid having as its insert a cDNA having the same DNA base sequence. However, it does not hybridize to cDNA of an unrelated DNA sequence. In contrast, 3 'tailing labeled orifices using deoxyadenine 5,3 phosphate as a donor Golnucleotides are non-specific hybridizations that are not based on the sequence of MA that should also be labeled with plasmids that have cDNA as an insert unrelated to their DNA base sequence. This non-specific hybridization was not suppressed even if the plasmid was previously masked with a polyA oligonucleotide.
[実施例 4 ] イノシン酸を用いてテーリング標識したオリゴ DNAをプローブとし たノ一ザンハイブリダイゼ一ション  [Example 4] Northern hybridization using oligo DNA tailed and labeled with inosinic acid as a probe
RNAは次のように調製した。 すなわち、 動物培養細胞株 NT2 (Stratagene社よ り購入し、 細胞培養は添付マニュアルに従った) に RNA抽出緩衝液 (0.14 M NaCl、 1.5 mM MgCl2、 10 mM TrisCl (pH 8.6 )、 0.5% Nonidet P - 40、 10 mM vanadyl- ribonucleoside complexs) を添加し氷上で 10分間静置後、 10,000 x g、 4度、 15 分間遠心して上層を抽出した。 更に等量のプロティネース切断緩衝液 (0.2 TrisCl (pH 7.8)、 25 mM EDTA (pH 8.0)、 0.3 M NaCl、 2% SDS) を添加して細胞 溶液にした。 プロティナ一ゼ Kを終濃度 400 z l/mlで添加して、 37度で 90分間 ィンキュベ一トした。 フヱノール ·クロロフオルム溶液を添加して水相を抽出し た。 更にもう一度フエノール · クロロフオルム溶液を添加して水相を抽出し、 こ れに 2.5倍容量のエタノールを添加した。 5000 X g、 4°C、 10分間遠心して形成 した沈殿物を 70%エタノールで洗浄後、 風乾して total RNAとした。 total RNA を 0に溶解し、 65°C、 5分間インキュベートし、 2x column loading緩衝液 (lx column loading緩衝液: 20 mM TrisCl (pH7.6 )、 0.5 M NaClヽ 1 mM EDTA (pH 8.0)、 0.1% sodium lauroyl sarcosinate) を等容量添カロした。 これを column loading 緩衝液で膨潤しているオリゴ dTセルロース(Col laborative Biomedical Products 社製) のカラムに添加して溶出液を取得した。 溶出液は再度カラムに添加し、 こ の操作を 3回繰り返した。 5倍容量の lx column loading緩衝液でカラムを洗浄 後、 2倍容量の column elution緩衝液 ( lO mM TrisCl (pH7.6)、 1 mM EDTA (pH 8.0)、 0.05% SDS) を添加して、 溶出液を回収した。 0. 1倍容量の 3M sodium acetate, および 2.5倍容量のエタノールを添加した。 12, 000 X g、 4°C、 10分間遠心して 形成した沈殿物を 70 %エタノールで洗浄後、 風乾して mRNAとした。 m Aの電気 泳動は以下のように行った。 すなわち、 mRNA を電気泳動用サンプル液 (4 j l formamid 2 μ. \ formaldehydeヽ 1 JUL \ 1 Ox MOPSヽ \ μ \ H20 ) ( ΙΟχ MOPS : 14. 9 g/1 MOPS, 6. 8 g/1 sodium acetate^ 3. 7 g/ 1 EDTA、 pH7.0) に溶解して、 65°Cで 10 分間加熱し、 直ちに氷冷した。 この RNAをァガロースゲル(l g agarose、 10x MOPS, 73.3 ml H20s 16.7 ml formaldehyde) をもちいて電気泳動した。 ァガロースゲル からナイロンフィル夕一 (ぺーリンガー社) への RNAのブロヅティングは、 定法 に従った Molecular Cloning. A laboratory manual /2nd edition ( 1989 ) p7.46-7. 50, Cold Spring Harbor Laboratory Press)。 次にこのナイロン膜に紫 外線を照射して RNAを固定化した。 RNA was prepared as follows. That is, an RNA extraction buffer (0.14 M NaCl, 1.5 mM MgCl 2 , 10 mM TrisCl (pH 8.6), 0.5% Nonidet) was added to animal culture cell line NT2 (purchased from Stratagene, and cell culture was performed according to the attached manual). After adding P-40 and 10 mM vanadyl-ribonucleoside complex), the mixture was allowed to stand on ice for 10 minutes, and then centrifuged at 10,000 xg, 4 ° C for 15 minutes to extract the upper layer. Further, an equal volume of a proteinase cleavage buffer (0.2 TrisCl (pH 7.8), 25 mM EDTA (pH 8.0), 0.3 M NaCl, 2% SDS) was added to obtain a cell solution. Proteinase K was added at a final concentration of 400 zl / ml and incubated at 37 ° C for 90 minutes. The aqueous phase was extracted by adding a phenol-chloroform solution. Further, a phenol-chloroform solution was added once more to extract an aqueous phase, and 2.5 volumes of ethanol was added thereto. The precipitate formed by centrifugation at 5000 X g at 4 ° C for 10 minutes was washed with 70% ethanol, and air-dried to obtain total RNA. Dissolve the total RNA in 0, incubate at 65 ° C for 5 minutes, and add 2x column loading buffer (lx column loading buffer: 20 mM TrisCl (pH7.6), 0.5 M NaCl ヽ 1 mM EDTA (pH 8.0), 0.1% sodium lauroyl sarcosinate) was added to the same volume. This was added to a column of oligo dT cellulose (manufactured by Col laborative Biomedical Products) swollen with a column loading buffer to obtain an eluate. The eluate was added to the column again, and this operation was repeated three times. After washing the column with 5 volumes of lx column loading buffer, add 2 volumes of column elution buffer (10 mM TrisCl (pH7.6), 1 mM EDTA (pH 8.0), 0.05% SDS). The eluate was collected. 0.1 volume of 3M sodium acetate and 2.5 volumes of ethanol were added. Centrifuge at 12,000 X g at 4 ° C for 10 minutes The precipitate formed was washed with 70% ethanol and air-dried to obtain mRNA. The electrophoresis of mA was performed as follows. That is, the mRNA was converted to a sample solution for electrophoresis (4 jl formamid 2 μ. \ Formaldehyde ヽ 1 JUL \ 1 Ox MOPS ヽ \ μ \ H 20 ) (ΙΟχ MOPS: 14.9 g / 1 MOPS, 6.8 g / Dissolved in 1 sodium acetate ^ 3.7 g / 1 EDTA, pH 7.0), heated at 65 ° C for 10 minutes, and immediately cooled with ice. The RNA Agarosugeru was electrophoresed using a (lg agarose, 10x MOPS, 73.3 ml H 2 0 s 16.7 ml formaldehyde). Blotting of RNA from agarose gel to Nylon Fil Yuichi (Perlinger) was performed according to a standard method. Molecular Cloning. A laboratory manual / 2nd edition (1989) p7.46-7.50, Cold Spring Harbor Laboratory Press). Next, the nylon membrane was irradiated with ultraviolet light to immobilize RNA.
EF1ひに対する特異的ォリゴデォキシヌクレオチド (gtcacagaattttgagaccca; 配列番号: 2 ) は GIBC0社製を用いた。 ターミナル卜ランスフェラーゼによるそ のォリゴヌクレオチドの標識化は、 前述の方法と同様にして行つた。 EF1ひの RNA を固定化したフィルターと標識ォリゴデォキシヌクレオチドのハイプリダイゼー シヨン、 および化学発光法によるハイブリダィゼーシヨンの検出も、 前述と同様 な方法で行った。結果を図 2に示した。予想されるサイズ(l . Okb )に単一のバンド が検出されている。 図 2から明らかなように、 本発明によるハイブリダィゼ一シ ヨンプローブは、プロッティングした mENAの検出に必要な十分な感度と特異性を 持っている。したがって、この原理に基づいて遺伝子発現プロフアイリングゃ SNP の検出が可能であることを裏付けている。 産業上の利用の可能性  The specific oligodoxynucleotide (gtcacagaattttgagaccca; SEQ ID NO: 2) for EF1 was from GIBC0. Labeling of the oligonucleotide with terminal transferase was carried out in the same manner as described above. Hybridization of a filter with immobilized RNA from EF1 and labeled oligodoxynucleotides, and detection of hybridization by chemiluminescence were performed in the same manner as described above. The results are shown in FIG. A single band is detected at the expected size (l. Okb). As is evident from FIG. 2, the hybridization probe according to the present invention has sufficient sensitivity and specificity necessary for detecting the plotted mENA. Therefore, it supports that gene expression profiling ゃ SNP can be detected based on this principle. Industrial applicability
本発明によれば、 標識のために付加した塩基配列に起因するハイブリダィゼー シヨンが効果的に抑制される。 また本発明において利用されるヌクレオチドは、 ターミナルトランスフ Xラーゼの基質となるため、 3'末端テ一リング標識法のた めの基質として添加するだけで、 容易に標識を結合させることができる。 本発明で利用される塩基対結合親和性の弱いヌクレオチド (あるいはヌクレオ チド誘導体) は、 標識用のヌクレオチドそのものとして、 あるいはスぺ一サ一と して機能するために、 効率的な標識ヌクレオチドの導入をもたらし、 高力価な標 識オリゴヌクレオチドを与える。 このように、 本発明によれば、 非特異反応の抑 制と、 高力価な標識オリゴヌクレオチドの提供という 2つの課題をともに達成す ることができる。 言いかえれば、 本発明に基づいてハイブリダィゼ一シヨンにお ける S/N比の向上が容易に実現できるのである。 According to the present invention, hybridization caused by a base sequence added for labeling is effectively suppressed. In addition, since the nucleotide used in the present invention serves as a substrate for terminal transfer Xase, the label can be easily bound only by adding it as a substrate for the 3′-terminal tailing labeling method. The nucleotide (or nucleotide derivative) having a weak base pairing affinity used in the present invention functions as a nucleotide for labeling itself or as a spacer, so that efficient introduction of labeled nucleotides can be achieved. To give a high-titer labeling oligonucleotide. Thus, according to the present invention, it is possible to achieve both of the two problems of suppressing non-specific reactions and providing a high-titer labeled oligonucleotide. In other words, the improvement of the S / N ratio in the hybridization can be easily realized based on the present invention.

Claims

請求の範囲 標識すべき DNAに、 標識ヌクレオチドまたはヌクレオチド誘導体を含む塩 基配列を付加したハイブリダィゼーシヨンプロ一ブであって、 この付加さ れた塩基配列が次の特徴 a ) および b ) を備えたものであるハイブリダィ ゼ一シヨンプローブ。 Claims A hybridization probe comprising a DNA to be labeled and a base sequence containing a labeled nucleotide or a nucleotide derivative, wherein the added base sequence has the following characteristics a) and b) A hybridization probe comprising:
a ) 標的塩基配列を構成する塩基との塩基対結合の親和性が a/t 間、 a/u 間および g/c間の水素結合よりも弱いヌクレオチドおよび/またはヌクレ ォチド誘導体を含む  a) Nucleotide and / or nucleotide derivatives whose base pairing affinity with the base constituting the target base sequence is weaker than the hydrogen bond between a / t, a / u and g / c
b ) 夕一ミナルトランスフェラ一ゼによるヌクレオチド付加反応によって 標識すべき DNAに導入することができる  b) Can be introduced into DNA to be labeled by nucleotide addition reaction with Yuminaru transferase
a ) のヌクレオチドが、 イノシン酸である請求項 1に記載のハイブリダィ ゼーシヨンプローブ。  2. The hybridization probe according to claim 1, wherein the nucleotide of a) is inosinic acid.
付加される塩基配列が、 標識ヌクレオチドまたはヌクレオチド誘導体と、 標識されていないイノシン酸またはその誘導体で構成されている請求項 2 に記載のハイプリダイゼーシヨンプローブ。 3. The hybridization probe according to claim 2, wherein the base sequence to be added is composed of a labeled nucleotide or a nucleotide derivative, and an unlabeled inosinic acid or a derivative thereof.
標識ヌクレオチドまたはヌクレオチド誘導体が、 標識されたイノシン酸ま たはイノシン酸誘導体である請求項 3に記載のハイブリダイゼ一シヨンプ ローブ。 4. The hybridization probe according to claim 3, wherein the labeled nucleotide or nucleotide derivative is labeled inosinic acid or an inosinic acid derivative.
標識すべき DNAのためのストリンジェン卜なハイプリダイゼ一シヨンの条 件下で、 標識のために付加される塩基配列がこの配列単独ではいかなる塩 基配列ともハイブリダィゼ一シヨンすることができないものである請求項 1に記載のハイブリダィゼ一シヨンプローブ。 Under the conditions of stringent hybridization for the DNA to be labeled, the nucleotide sequence added for labeling is such that this sequence alone cannot hybridize with any base sequence. Item 2. The hybridization probe according to Item 1.
請求項 1— 5のいずれかのハイブリダィゼーシヨンプローブを用いる、 標 識すべき DNAと相補的な塩基配列を持つ核酸の検出方法。 A method for detecting a nucleic acid having a base sequence complementary to DNA to be labeled, using the hybridization probe according to any one of claims 1 to 5.
検出対象が RNAまたは cDNAライブラリーである請求項 6に記載の検出方法。 7. The detection method according to claim 6, wherein the detection target is an RNA or cDNA library.
8 . 夕一ミナルトランスフェラ一ゼによる DNAの 3,末端テ一リング標識法にお いて、 塩基対結合の親和性が a/t間、 a/u間、 および g/c間の水素結合よ りも弱く、 かつターミナルトランスフェラ一ゼによるヌクレオチドの付加 反応の基質となりうるヌクレオチドおよび/またはヌクレオチド誘導体を 基質として用いる DNAの標識法。 8. In the end-tailing labeling method of DNA with evening minal transferase, the affinity of base pairing is higher than that of hydrogen bonding between a / t, a / u, and g / c. A method for labeling DNA using a nucleotide and / or nucleotide derivative as a substrate, which is weak and can serve as a substrate for nucleotide addition reaction by terminal transferase.
9 . ヌクレオチドがデォキシデォキシィノシン 5 ' 3リン酸である請求項 8に 記載の DNAの標識法。  9. The method for labeling DNA according to claim 8, wherein the nucleotide is deoxydeoxyinosine 5 ′ triphosphate.
1 0 . 塩基対結合が弱いヌクレオチドおよび Zまたはヌクレオチド誘導体と標 識ヌクレオチドまたはヌクレオチド誘導体とを混合し基質とする請求項 8 に記載の DNAの標識法。  10. The method of labeling DNA according to claim 8, wherein a substrate is obtained by mixing a nucleotide or a Z derivative having a weak base pair bond with a labeled nucleotide or a nucleotide derivative to form a substrate.
1 1 . 以下の要素を含むハイブリダィゼーシヨンプローブの合成用キヅト。 i)次の特徴 a )および b ) を備えたヌクレオチドおよび/またはヌクレオチド誘 導体  1 1. A kit for synthesizing a hybridization probe containing the following elements. i) nucleotides and / or nucleotide derivatives with the following features a) and b):
a ) 標的塩基配列を構成する塩基との塩基対結合の親和性が a/t間、 a/u間お よび g/c間の水素結合よりも弱い  a) The affinity of base pairing with the base constituting the target base sequence is weaker than the hydrogen bonding between a / t, a / u and g / c
b )ターミナルトランスフェラ一ゼによるヌクレオチド付加反応によって標識 すべき DNAに導入しうる  b) Can be introduced into DNA to be labeled by nucleotide addition reaction with terminal transferase
ii) 標識ヌクレオチドまたはヌクレオチド誘導体 ii) labeled nucleotide or nucleotide derivative
iii) ターミナルトランスフェラ一ゼ iii) Terminal transfer
1 2 . DNA に標識ヌクレオチドを含む塩基配列を付加したハイブリダィゼ一シ ヨンプローブの標識すべき DNAの配列に基づかないハイブリダイゼーショ ンを防止する方法であって、 付加する塩基配列に塩基対結合の親和性が a/t間、 a/u間、および g/c間の水素結合よりも弱いヌクレオチドおよび/ またはヌクレオチド誘導体を挿入する方法。  12. A method for preventing hybridization that is not based on the sequence of the DNA to be labeled by a hybridization probe in which a base sequence containing a labeled nucleotide is added to DNA, wherein the base sequence has an affinity for base pairing. A method of inserting a nucleotide and / or nucleotide derivative whose sex is weaker than a hydrogen bond between a / t, a / u, and g / c.
PCT/JP1999/004520 1998-11-13 1999-08-23 Hybridization probe WO2000029568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU53044/99A AU5304499A (en) 1998-11-13 1999-08-23 Hybridization probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/324201 1998-11-13
JP32420198 1998-11-13

Publications (1)

Publication Number Publication Date
WO2000029568A1 true WO2000029568A1 (en) 2000-05-25

Family

ID=18163198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004520 WO2000029568A1 (en) 1998-11-13 1999-08-23 Hybridization probe

Country Status (2)

Country Link
AU (1) AU5304499A (en)
WO (1) WO2000029568A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936541B2 (en) * 2010-07-16 2016-06-22 日本碍子株式会社 Retainer of identification information for identifying identification object and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870900A (en) * 1994-02-22 1996-03-19 Mitsubishi Chem Corp Analysis of base sequence of oligonucleotide and nucleic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870900A (en) * 1994-02-22 1996-03-19 Mitsubishi Chem Corp Analysis of base sequence of oligonucleotide and nucleic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936541B2 (en) * 2010-07-16 2016-06-22 日本碍子株式会社 Retainer of identification information for identifying identification object and use thereof

Also Published As

Publication number Publication date
AU5304499A (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US6165714A (en) Devices and methods for detecting nucleic acid analytes in samples
JP3415150B2 (en) How to use branched nucleic acid probes
US4752566A (en) Displacement polynucleotide method and reagent complex employing labeled probe polynucleotide
EP1778867B1 (en) Methods and compositions to detect nucleic acids in a biological sample
EP0379559B1 (en) Method and reagents for detecting nucleic acid sequences
EP0365627B1 (en) Catalytic hybridization systems for the detection of nucleic acid sequences based on their activity as cofactors in catalytic reactions in which a complementary labeled nucleic acid probe is cleaved
JP4050789B2 (en) Nucleic acid detection method using nucleotide probe capable of specific capture and detection
US5403711A (en) Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved
JP4498657B2 (en) Method for simultaneous detection of cytosine-methylation and SNP or mutation in a DNA sample
JPH08504081A (en) Method for detecting mammalian nucleic acid isolated from fecal sample, and reagent for detecting the same
WO1998002582A2 (en) Methods for detecting and amplifying nucleic acid sequences using modified oligonucleotides having increased target specific t¿m?
JP2002536981A (en) Method for measuring the presence of a nucleic acid target sequence and its application
WO2004042057A1 (en) Method of detecting gene mutation
EP1988178A2 (en) Nucleotide primer set and nucleotide probe for detecting genotype of serum amyloid A1(SAA1)
JP3088287B2 (en) Quantitative detection of nucleic acids
JPH0743376B2 (en) Nucleic acid sequence assay method and molecular gene probe
CA2194696A1 (en) Method, reagents and kit for diagnosis and targeted screening for retinoblastoma
EP3947674A1 (en) Methods, systems, and aparatus for nucleic acid detection
GB2225112A (en) Hybridisation probes
WO2000029568A1 (en) Hybridization probe
EP1135525A2 (en) Methods and compositions for detection of nucleic acid sequences and signal amplification
JP2012161319A (en) β2 ADRENERGIC POLYMORPHISM DETECTION
JP2982304B2 (en) Method for identifying nucleic acid and test set for identifying nucleic acid
WO1998002574A1 (en) Method for examining nucleic acids and examination kits
AU774182B2 (en) Automatable rapid test for detecting cancers, on the basis of telomerase(hTC) mRNA and specific primers and probes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 582552

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09831591

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase