WO2000062054A2 - Portable gas chromatograph mass spectrometer for on-site chemical analyses - Google Patents

Portable gas chromatograph mass spectrometer for on-site chemical analyses Download PDF

Info

Publication number
WO2000062054A2
WO2000062054A2 PCT/US2000/009624 US0009624W WO0062054A2 WO 2000062054 A2 WO2000062054 A2 WO 2000062054A2 US 0009624 W US0009624 W US 0009624W WO 0062054 A2 WO0062054 A2 WO 0062054A2
Authority
WO
WIPO (PCT)
Prior art keywords
recited
vacuum
mass spectrometer
carrier gas
less
Prior art date
Application number
PCT/US2000/009624
Other languages
English (en)
French (fr)
Other versions
WO2000062054A3 (en
Inventor
Jeffrey S. Haas
John F. Bushman
Douglas E. Howard
James L. Wong
Joel D. Eckels
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Priority to AU42291/00A priority Critical patent/AU4229100A/en
Priority to KR1020017012918A priority patent/KR20010108487A/ko
Priority to JP2000611067A priority patent/JP2003527563A/ja
Publication of WO2000062054A2 publication Critical patent/WO2000062054A2/en
Publication of WO2000062054A3 publication Critical patent/WO2000062054A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0022Portable spectrometers, e.g. devices comprising independent power supply, constructional details relating to portability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/0095Separation specially adapted for use outside laboratory, e.g. field sampling, portable equipments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8881Modular construction, specially adapted therefor

Definitions

  • This invention relates to a portable gas chromatograph mass spectrometer particularly suited for chemical analyses in the field. Description of Related Art
  • GC/MS gas chromatograph mass spectrometer
  • GC/MS systems are non-portable, laboratory-based systems, or are only transportable when the necessary external support equipment (gas supply, vacuum system, computer, etc.) is also transported. In addition, most of the commercial systems are for analysis of volatile samples. Examples of GC/MS systems can be found in U.S. Patent Nos. 5,686,655, 5,837,883, 5,313,061, and 5,083,450.
  • the '655 patent to Itoi shows a system in which the GC unit and the MS unit are mounted such that the system occupies less table-top or floor space.
  • the '061 patent describes a GC/MS system that has an internal volume of less than a cubic yard.
  • a portable GC/MS system was designed and developed at Lawrence Livermore National Laboratory and is described in U.S. Patent No. 5,525,799 to Andresen et al., which is hereby incorporated by reference. This system has been further improved to provide a portable, lighter, more compact, field reliable /serviceable GC/MS system for rapid on-site analysis of chemical unknowns.
  • the present invention is an improved portable gas chromatograph mass spectrometer (GC/MS).
  • the object of this invention is to provide a relatively light-weight (approximately 55 lbs. or 25 kg) GC/MS unit, including the vacuum pumping system, that can perform qualitative and quantitative analyses of all sample types, including volatiles, liquids, and complex samples such as semi- volatiles, sludges, charred organics, and hazardous organics.
  • the hand portable GC/MS system integrates a gas chromatograph, a mass spectrometer with a mass selective detector, several vacuum pumps, and an electronic control system with dedicated software.
  • the entire GC/MS system is conveniently housed and configured in one enclosure, where the various components are modular and accessible for maintenance and serviceability.
  • a variety of hardware features have been incorporated into this portable GC/MS system, including a fail safe electronic system for automatic shutdown of the MS in the event of vacuum loss or runaway heaters; self-contained carrier gas supply for extending sample analyses, handling larger capillary GC columns, and prolonging the purge times; an auxiliary carrier gas line in the manifold system for optional hook-up to an external gas source; pump-out capability of the carrier gas line to conserve the use of carrier gas for sample analyses; and a GC injector with a small sample reservoir to enhance chromatography and compound detection limits.
  • One embodiment of the invention includes a "stand-by mode" capability, in which vacuum pumps and heaters maintain the MS at operating or near-operating pressure and temperature conditions during transport of the GC/MS unit to the site of sample analyses.
  • This innovative feature permits the GC/MS system to be transported under operating or near-operating conditions so as to eliminate or reduce the downtime (or ramp-up time) before samples can be analyzed on-site.
  • the unit's low power consumption enables the GC/MS to operate from a vehicle's cigarette lighter jack via an inverter.
  • This portable GC/MS can be applied in many fields, including forensics and law enforcement, chemical weapons monitoring, hazardous materials monitoring and clean-up, environmental protection, military (i.e., high explosive and propellant analysis), food and drug analyses, international treaty verification work, and scientific field research.
  • This GC/MS technology will be used by industry and the U.S. Government for field analyses and identification of known and unknown chemicals.
  • Figure 1A shows schematically a top view of the gas chromatograph mass spectrometer system according to the present invention.
  • Figure IB shows schematically a side view of the gas chromatograph mass spectrometer system according to the present invention.
  • Figure 2 shows the gas chromatography injector according to the present invention.
  • the present invention is a hand portable gas chromatograph mass spectrometer (GC/MS).
  • GC/MS gas chromatograph mass spectrometer
  • the instrument is compact, weighs less than about 55 pounds (25 kg), and permits rapid on-site chemical analyses of known and unknown chemicals. All necessary components, including the gas chromatograph and carrier gas system, the mass spectrometer, associated vacuum systems, heaters, electronics and control system, are integrated in one housing.
  • the only auxiliary item is a portable (laptop) control computer. If the unit includes a stand-by mode capability, a temporary power source (i.e., battery) is also needed.
  • Figures 1A-1B illustrate schematically in top and side views the basic components of the present GC/MS system. These components can be arranged in different ways to occupy the unit's volume; Figures 1A-1B show one possible configuration.
  • the internal volume of the system is less than four cubic feet or one-tenth of a cubic meter.
  • the dimensions of a system that has been built are about 24 in. length x 15 in. width x 16 in. height (60 cm x 38 cm x 40 cm), or an internal volume of about 3.3 ft 3 (about 0.09 m 3 ). The dimensions can be reduced even further ( ⁇ 3 ft 3 ) by a more compact layout of the various components.
  • the gas chromatograph (GC) is generally indicated at 10
  • the mass spectrometer (MS) is generally indicated at 12.
  • the MS 12 includes an ionization source 14, a mass analyzer 16, and a detector 18 housed in a vacuum chamber 20.
  • the GC/MS is a mass selective detector quadrupole and is equivalent in performance, reliability and serviceability to laboratory-based quadrupole GC/MS systems.
  • a commercially available quadrupole mass spectrometer is made by Hewlett-Packard (HP 5973 MSD), which has mainframe specifications that include a GC interface, electron impact ion source, gold plated monolithic quartz hyperbolic quadrupole mass filter, electron multiplier detector, power supply, drive electronics, and analyzer vacuum system.
  • the resolution of the MS is at least 0J AMU, and the mass range is at least 800 AMU.
  • the MS chamber 20 has at least seven ports for various connections: a full range Pirani/cold cathode pressure gauge (i.e., dynamic range from 760 to 10 9 Torr); a calibration valve; a connection or transfer line 22 to the GC; a vent valve 24 to bring the chamber 20 to atmosphere when needed; a pump-out line 26 for the carrier gas line 28; and two connections to turbomolecular drag pumps 30.
  • the dimensions of the vacuum chamber 20 have been reduced to approximately 15 * ⁇ in. x 3 in. x 3 in. (40 cm x 10 cm x 8 cm; less than 3200 cm 3 ) to reduce the weight and volume of the overall system.
  • the MS 12 is operated with a variable heater and two turbomolecular drag pumps 30 backed by an oil-free, shock-mounted diaphragm (roughing) pump 32 (about 3 lbs.).
  • the diaphragm pump 32 may also be connected directly to the MS chamber 20 (as an eighth port).
  • the MS 12 is connected to associated electronics 34 and power supply, which are contained in a housing 36 made with graphite composite material (to decrease unit weight) and EMI shielded on the inside using a copper coating.
  • each turbomolecular drag pump 30 has a controller, power supply (1.5 lbs.), a fan, and heat dissipation louvers to achieve ventilation.
  • Each turbomolecular pump may also be mounted in aluminum housing to aid in heat dissipation. The entire vacuum pumping system (about 12 lbs.) is thus integrated into the GC/MS system.
  • the MS vacuum chamber 20 is also connected to an ion pump 38.
  • one of the advantages of this embodiment is that the operating vacuum and heating requirements for the system are not compromised in the standby mode during transportation to another site.
  • This feature eliminates (or at least reduces) the down time (4+ hours) needed to bring the system up to temperature and pump down the vacuum chamber, particularly if a larger vacuum chamber is used.
  • the system has an evacuated and heated mass filter and ion source during transit, maintaining a constant ready state.
  • the heater maintains the MS at the desired operating temperature, and the ion pump maintains a vacuum of about 1 x 10 "7 Torr).
  • a temporary power source such as a deep discharge/rechargeable 12V gel cell battery pack, is used to meet the power requirements of the MS source, quadrupole heater, and the ion pump. If the GC/MS instrument is off-loaded to a vehicle on-site, that vehicle's power supply can be used to maintain the standby mode during transport to the final sampling destination. For additional energy conservation and lower peak power requirements, the power for the heaters and ion pump may be controlled by computer to allow power time sharing.
  • a main control board 40 with associated electronics is connected to the GC 10 and MS 12, as well as to a computer 42 with dedicated hardware and software.
  • the two turbopumps 30 and associated controllers are connected to and operated by the computer 42.
  • the operating system is Hewlett- Packard MS ChemStation and customized software operating under Microsoft Windows NT.
  • the integrated software package provides a complete set of controls for all GC/MS subsystem components such as tuning, heaters, pumps, fans, pressure readings, data acquisition and retrieval, reporting, and library searches.
  • the GC/MS includes a failsafe electronic system for automatic shutdown in the event of a vacuum loss or runaway heaters.
  • a conveniently located control and LED display panel 44 has indicator lights and switches which show the operator the on/off status of various components, e.g., vacuum pumps, heaters, valves, etc.
  • the panel 44 provides a visual check for system operations, diagnostics, and permits rapid shutdown.
  • the power sources for the GC/MS system which does not include the laptop computer or printer, are provided below. 110VAC:
  • the GC 10 includes an injector 46 with programmable heating up to 325°C, a commercial capillary GC column 48 that can be programmably heated within the GC 10 up to 325°C, and a transfer line 22 with programmable heating up to 325°C (to prevent condensation).
  • the sample is introduced into the injector 46 through an injector port 50, and then is swept into the capillary GC column 48.
  • the GC column 48 is heated via heated air circulation, with a louvered vent and fan system to dissipate the heat.
  • the column 48 is connected to a heated (and/or insulated) transfer line 22, and the sample passes out of the column 48, through the transfer line 22, and into ionization source 14 of the mass analyzer 16.
  • the injector 46 can be vertically mounted for potential auto-sampler use.
  • the injector 46 is connected to a self-contained, internal carrier gas supply 52 via a carrier gas line 28 with a valve 54. Pressure transducers monitor the gas pressure in the carrier gas line 28 and the injector 46, and this information is sent to the control board 40.
  • the carrier gas is typically hydrogen (H 2 ) stored in hydride gas cylinders, and a regulator regulates the gas flow.
  • the gas cylinders extend the number of sample analyses and the purges between samples, as well as permit larger capillary GC columns if needed. Two cylinders (20 std. liters each) can provide at least three weeks of continuous sample analysis operations (e.g., 150 samples, calculated at 1 mL/min flow rate and 50 mL/min purge for 15 minutes).
  • An auxiliary carrier gas line 56 in the manifold system may be included for optional hook-up to an external gas supply (e.g., He or H 2 ).
  • Another feature of the present system is the unique pump-out capability of the carrier gas line 28 between the injector 46 and the carrier gas supply 52. This pump-out capability conserves carrier gas for analysis and eliminates the time necessary to run gas through the GC column.
  • the carrier gas line 28 may be connected via a pump-out line 26 and valve 70 to the vacuum chamber 20 for purging the injector 46 and capillary GC column 48.
  • FIG. 2 shows an embodiment of a specially designed injector 46.
  • the sample may be introduced by a microsyringe through a rubber septum 60 into a small quartz injection sleeve 62 or liner or tube (e.g., 0.075 inch inner diameter, 3 in. length, 0.013 in 3 or 0.22 cm 3 ).
  • the sleeve 62 contains the sample and is surrounded by a variable heater 64 with an insulated jacket, which heats the sleeve 62 to a temperature above the boiling points of all possible components in the sample (e.g., >300°C).
  • a liquid sample instantly vaporizes and is swept through the sleeve 62 by the flow of carrier gas.
  • the carrier gas is introduced into the injector 46 through a gas- in port 66 at the top of the sleeve 62.
  • the gas flow carries the vaporized sample through the injector 46 to the GC column 48.
  • the injector 46 has a gas-out port 68 at the bottom (or other end) of the sleeve 62, which leads to a solenoid valve 72 that is computer control activated when purging the injector 46 between samples with the carrier gas or to split flow operations with the carrier gas.
  • the flow of the carrier gas may also be run in the reverse direction with the same analytical results, i.e., the gas-in port is 68 and the gas-out port is 66 at the top of the injector 46, leading to a solenoid valve.
  • Another design feature of the injector 46 is a sight glass 74 to permit visual inspection of the sleeve 62 and glass wool plug in the sleeve to determine when replacement is needed.
  • the vaporized sample is contained inside a small inner diameter quartz sleeve 62, which provides at least two advantages. This design yields a lower dead volume, which effectively concentrates the sample. Small, concentrated samples are preferred to improve peak shape. In addition, the small tube requires less gas to purge between samples.
  • the injection port is thus designed to facilitate and enhance superior chromatography and compound detection limits. Nevertheless, if injector 46 is not used, the design of the GC in the present system will also accommodate commercial injection ports.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
PCT/US2000/009624 1999-04-12 2000-04-11 Portable gas chromatograph mass spectrometer for on-site chemical analyses WO2000062054A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU42291/00A AU4229100A (en) 1999-04-12 2000-04-11 Portable gas chromatograph mass spectrometer for on-site chemical analyses
KR1020017012918A KR20010108487A (ko) 1999-04-12 2000-04-11 현장에서의 화학 분석을 위한 휴대용 가스 크로마토그래프질량 분석계
JP2000611067A JP2003527563A (ja) 1999-04-12 2000-04-11 現場における化学分析のための携帯可能なガスクロマトグラフ質量分析計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/289,755 US6351983B1 (en) 1999-04-12 1999-04-12 Portable gas chromatograph mass spectrometer for on-site chemical analyses
US09/289,755 1999-04-12

Publications (2)

Publication Number Publication Date
WO2000062054A2 true WO2000062054A2 (en) 2000-10-19
WO2000062054A3 WO2000062054A3 (en) 2001-02-01

Family

ID=23112943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/009624 WO2000062054A2 (en) 1999-04-12 2000-04-11 Portable gas chromatograph mass spectrometer for on-site chemical analyses

Country Status (6)

Country Link
US (1) US6351983B1 (en22)
JP (1) JP2003527563A (en22)
KR (2) KR20010108487A (en22)
CN (1) CN1242265C (en22)
AU (1) AU4229100A (en22)
WO (1) WO2000062054A2 (en22)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023622A1 (en) * 2007-08-15 2009-02-19 Varian, Inc. Sample ionization at above-vacuum pressures
WO2012065099A3 (en) * 2010-11-12 2012-08-30 Meadoworks, Inc. Portable vacuum gas chromatograph
US8664588B2 (en) 2011-03-31 2014-03-04 Hitachi High-Technologies Corporation Mass spectrometer
GB2574725A (en) * 2018-06-01 2019-12-18 Micromass Ltd A GC/MS arrangement and mass spectrometer

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671462B2 (ja) * 2000-02-22 2011-04-20 パナソニック株式会社 ニッケル水素二次電池の気密検査方法
DE10013561A1 (de) * 2000-03-20 2001-09-27 Abb Research Ltd Meß- und Auswerteeinrichtung
US6744045B2 (en) * 2000-10-04 2004-06-01 University Of South Florida Portable underwater mass spectrometer
FR2815074B1 (fr) * 2000-10-10 2002-12-06 Inst Francais Du Petrole Methode d'analyse et de mesures chimique et isotopique sur des constituants transportes par un fluide de forage
US7210342B1 (en) * 2001-06-02 2007-05-01 Fluid Inclusion Technologies, Inc. Method and apparatus for determining gas content of subsurface fluids for oil and gas exploration
JP2003254285A (ja) * 2002-02-28 2003-09-10 Boc Edwards Technologies Ltd ポンプ装置
JP3537425B2 (ja) * 2002-03-29 2004-06-14 日本パステック株式会社 複合分析装置
US6837096B2 (en) * 2003-01-23 2005-01-04 Midwest Research Institute, Inc. Low-power gas chromatograph
DE10319130B3 (de) * 2003-04-28 2004-09-09 Siemens Ag Gaschromatograph mit nachgeordnetem Massenspektrometer und Verfahren zur gaschromatographisch-massenspektrometrischen Analyse eines Stoffgemischs
WO2006002027A2 (en) * 2004-06-15 2006-01-05 Griffin Analytical Technologies, Inc. Portable mass spectrometer configured to perform multidimensional mass analysis
GB2439261B (en) 2005-04-25 2011-02-23 Griffin Analytical Technologies Llc Analytical apparatuses and methods
US7524363B2 (en) * 2006-05-16 2009-04-28 Alliant Techsystems Inc. Gas chromatograph column assembly
US7485176B2 (en) * 2006-05-16 2009-02-03 Alliant Techsystems Inc. Compact thermal conductivity detector
US7735352B2 (en) * 2006-05-16 2010-06-15 Alliant Techsystems Inc. Multi-dimensional portable gas chromatograph system
US7635005B2 (en) * 2006-05-16 2009-12-22 Alliant Techsystems Inc. Very small high pressure regulator
US20070274841A1 (en) * 2006-05-24 2007-11-29 Ghantasala Muralidhar K Passive adsorption microvacuum pump and microsystem containing the same
DE112007001812T5 (de) * 2006-07-31 2009-06-04 Applied Materials, Inc., Santa Clara Verfahren und Vorrichtungen zur in-situ-Analyse von Gasen in Elektronikvorrichtungsfabrikationssystemen
US7992424B1 (en) 2006-09-14 2011-08-09 Griffin Analytical Technologies, L.L.C. Analytical instrumentation and sample analysis methods
US8288719B1 (en) 2006-12-29 2012-10-16 Griffin Analytical Technologies, Llc Analytical instruments, assemblies, and methods
EP2120255B1 (en) * 2007-02-16 2018-07-18 National Institute of Information and Communications Technology Ion pump device
US20080296491A1 (en) * 2007-02-26 2008-12-04 Arkansas State University Research And Development Institute Method and apparatus to detect chemical vapors
JP5221903B2 (ja) * 2007-06-27 2013-06-26 株式会社島津製作所 質量分析装置
JP4915623B2 (ja) * 2008-08-19 2012-04-11 西川計測株式会社 化学剤検出・定量方法
US20100096544A1 (en) * 2008-10-16 2010-04-22 Battelle Memorial Institute Surface Sampling Probe for Field Portable Surface Sampling Mass Spectrometer
KR101345759B1 (ko) * 2009-10-28 2014-01-03 (주)바이오니아 실시간 휘발성 유기 화합물 모니터링을 위한 휴대형 gcms
KR101193988B1 (ko) 2010-11-11 2012-10-24 한국수력원자력 주식회사 복합 환경에서의 재료 기상 반응 분석 장치
JP2013011556A (ja) * 2011-06-30 2013-01-17 Md Innovations Kk 隔膜気圧計
JP5682506B2 (ja) * 2011-08-24 2015-03-11 株式会社島津製作所 ガスクロマトグラフ装置
KR101168199B1 (ko) 2011-11-04 2012-07-25 국방과학연구소 특정화학물질의 신속 현장 검증 방법 및 그 장치
CN104797932B (zh) * 2012-06-04 2016-12-28 分析中心 一种用于含有易燃物质的流体的分析仪和相应的方法
US10229824B2 (en) 2013-03-11 2019-03-12 1St Detect Corporation Chemical analysis instrument with multi-purpose pump
US9373492B2 (en) 2013-03-14 2016-06-21 The University Of North Carolina At Chapel Hill Microscale mass spectrometry systems, devices and related methods
JP6781708B2 (ja) 2014-11-24 2020-11-04 チステルニ, マルコCISTERNI, Marco 水素の存在下での質量分析の変化を軽減するための装置及び方法
US10088464B2 (en) * 2015-06-16 2018-10-02 Lunatech, Llc Systems and methods for analyzing pharmaceuticals
US20160370337A1 (en) * 2015-06-16 2016-12-22 Lunatech, Llc Analysis System For Biological Compounds, And Method Of Operation
US9874546B2 (en) * 2015-07-24 2018-01-23 Thermo Finnigan Llc Systems and methods for conserving carrier gas
US20170067863A1 (en) * 2015-09-03 2017-03-09 Ranjith Kunnath Narayanan Portable spectroscopic analysis tool
US10849600B2 (en) 2016-03-08 2020-12-01 Entech Instruments Inc. Breath condensate and saliva analysis using oral rinse
US10502664B2 (en) 2016-03-08 2019-12-10 Entech Instruments Inc. Vacuum-assisted sample extraction device and method
USD834433S1 (en) 2017-06-13 2018-11-27 Flir Detection, Inc. Trace analysis instrument
JP6753366B2 (ja) * 2017-06-23 2020-09-09 株式会社島津製作所 分析装置
KR102444774B1 (ko) * 2017-12-27 2022-09-19 오씨아이 주식회사 카본 블랙의 표면 관능기의 정량 및 정성 분석 시스템 및 방법
WO2019173501A1 (en) 2018-03-06 2019-09-12 Entech Instruments Inc. Ventilator-coupled sampling device and method
CA3094495A1 (en) * 2018-03-23 2019-09-26 Adaptas Solutions Pty Ltd Particle detector having improved performance and service life
EP3814767B1 (en) 2018-07-31 2024-12-18 Entech Instruments Inc. Hybrid capillary/packed trap and method of use
GB2576169B (en) * 2018-08-07 2022-03-09 Applied Science & Tech Solutions Ltd Mass spectrometry system
CN112816436B (zh) * 2019-11-15 2022-05-17 武汉米字能源科技有限公司 一种光谱-质谱联用装置及检测方法
EP4115440B1 (en) * 2020-03-05 2024-02-28 Smart Sensors Holdings B.V. Instrument comprising a vacuum chamber
US11867682B2 (en) 2020-09-21 2024-01-09 Baker Hughes Oilfield Operations Llc System and method for determining natural hydrocarbon concentration utilizing isotope data

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313061A (en) * 1989-06-06 1994-05-17 Viking Instrument Miniaturized mass spectrometer system
US5051557A (en) * 1989-06-07 1991-09-24 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Microwave induced plasma torch with tantalum injector probe
US5083450A (en) * 1990-05-18 1992-01-28 Martin Marietta Energy Systems, Inc. Gas chromatograph-mass spectrometer (gc/ms) system for quantitative analysis of reactive chemical compounds
US5155357A (en) * 1990-07-23 1992-10-13 Massachusetts Institute Of Technology Portable mass spectrometer
US5360976A (en) * 1992-08-25 1994-11-01 Southwest Research Institute Time of flight mass spectrometer, ion source, and methods of preparing a sample for mass analysis and of mass analyzing a sample
US5472670A (en) * 1993-03-05 1995-12-05 Ohio University Gas chromatography sample injector and apparatus using same
US5426300A (en) * 1993-09-17 1995-06-20 Leybold Inficon, Inc. Portable GCMS system using getter pump
US5611846A (en) * 1994-01-14 1997-03-18 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Portable gas chromatograph
US5525799A (en) * 1994-04-08 1996-06-11 The United States Of America As Represented By The United States Department Of Energy Portable gas chromatograph-mass spectrometer
US5451781A (en) 1994-10-28 1995-09-19 Regents Of The University Of California Mini ion trap mass spectrometer
US5521381A (en) * 1994-12-12 1996-05-28 The Regents Of The University Of California Contamination analysis unit
JP3128053B2 (ja) * 1995-05-30 2001-01-29 株式会社島津製作所 ガスクロマトグラフ質量分析装置
JP3473280B2 (ja) * 1996-06-27 2003-12-02 株式会社島津製作所 ガスクロマトグラフ質量分析装置
CA2267897C (en) * 1996-10-09 2005-12-06 Symyx Technologies Infrared spectroscopy and imaging of libraries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023622A1 (en) * 2007-08-15 2009-02-19 Varian, Inc. Sample ionization at above-vacuum pressures
US7564029B2 (en) 2007-08-15 2009-07-21 Varian, Inc. Sample ionization at above-vacuum pressures
WO2012065099A3 (en) * 2010-11-12 2012-08-30 Meadoworks, Inc. Portable vacuum gas chromatograph
US8664588B2 (en) 2011-03-31 2014-03-04 Hitachi High-Technologies Corporation Mass spectrometer
GB2574725A (en) * 2018-06-01 2019-12-18 Micromass Ltd A GC/MS arrangement and mass spectrometer

Also Published As

Publication number Publication date
AU4229100A (en) 2000-11-14
KR20070009743A (ko) 2007-01-18
CN1242265C (zh) 2006-02-15
US6351983B1 (en) 2002-03-05
WO2000062054A3 (en) 2001-02-01
KR20010108487A (ko) 2001-12-07
KR100821954B1 (ko) 2008-04-15
JP2003527563A (ja) 2003-09-16
CN1367874A (zh) 2002-09-04

Similar Documents

Publication Publication Date Title
US6351983B1 (en) Portable gas chromatograph mass spectrometer for on-site chemical analyses
US5525799A (en) Portable gas chromatograph-mass spectrometer
US5313061A (en) Miniaturized mass spectrometer system
US5856616A (en) Hand-held temperature programmable modular gas chromatograph
US7735352B2 (en) Multi-dimensional portable gas chromatograph system
US6837096B2 (en) Low-power gas chromatograph
US5687575A (en) Miniature thermo-electric cooled cryogenic pump
KR101345759B1 (ko) 실시간 휘발성 유기 화합물 모니터링을 위한 휴대형 gcms
EP2863218B1 (en) System and method for measuring hydrogen content in a sample
CA2058763C (en) Miniaturized mass spectrometer system
EP1668253B1 (en) Detection of contaminants within fluid pumped by a vacuum pump
Shortt et al. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer
Olson et al. Radiofrequency glow discharge mass spectrometry for gas chromatographic detection: a new departure for elemental speciation studies
Matz et al. Fast on‐site GC/MS analysis of hazardous compound emissions from fires and chemical accidents
US20210225629A1 (en) Cooling devices and instruments including them
US8043565B1 (en) Analytical instrumentation and processes
Chutjian et al. Overview of the vehicle cabin atmosphere monitor, a miniature gas chromatograph/mass spectrometer for trace contamination monitoring on the ISS and CEV
US20080069178A1 (en) Compact thermal conductivity detector
US20070266856A1 (en) Very small high pressure regulator
Brittain et al. Instrumentation for analyzing volatile organic compounds in inhabited enclosed environments
JP7626162B2 (ja) 質量分析装置及びその真空系の形成方法
Darrach et al. On-orbit measurements of the ISS atmosphere by the vehicle cabin atmosphere monitor
Lammert et al. Detection of chemical agents, precursors and by-products using ion trap technology
Nikolic et al. SWIM: Progress Report on the Organics Detection from Water
Hunter et al. The Mars analytical chemistry experiment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807325.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020017012918

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 611067

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 1020067026791

Country of ref document: KR