WO2000061369A1 - Gas barrier film and process for producing the same - Google Patents

Gas barrier film and process for producing the same Download PDF

Info

Publication number
WO2000061369A1
WO2000061369A1 PCT/JP2000/002312 JP0002312W WO0061369A1 WO 2000061369 A1 WO2000061369 A1 WO 2000061369A1 JP 0002312 W JP0002312 W JP 0002312W WO 0061369 A1 WO0061369 A1 WO 0061369A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas barrier
mass
polymer
vinyl polymer
Prior art date
Application number
PCT/JP2000/002312
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunetoshi Matsuda
Tetsuya Miyagawa
Atsuhiro Ishikawa
Yoshihiro Umemura
Sadami Nanjo
Kiyotaka Nakanishi
Kenjin Shiba
Kazunari Nanjo
Toyoki Uyama
Shigemi Majima
Shoji Okamoto
Arihiro Anada
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10128699A external-priority patent/JP4311806B2/en
Priority claimed from JP14955099A external-priority patent/JP4689780B2/en
Priority claimed from JP11210537A external-priority patent/JP2001030349A/en
Priority claimed from JP22981999A external-priority patent/JP4463902B2/en
Priority claimed from JP28579999A external-priority patent/JP4302260B2/en
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Publication of WO2000061369A1 publication Critical patent/WO2000061369A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to a gas barrier film having a coating layer formed thereon and a method for producing the same.
  • Thermoplastic resin films such as polyamides and polyesters are used in a wide range of applications as packaging materials because of their excellent strength, transparency and moldability. However, when used for applications requiring long-term storage, such as retorted foods, higher gas barrier properties are required.
  • PVDC polyvinylidene chloride
  • polyvinyl alcohol does not generate toxic gases and has high gas barrier properties in low-humidity atmospheres.
  • PVA often cannot be used for packaging water-containing foods and the like because the gas barrier property rapidly decreases as the humidity increases.
  • JP-A-8-66991 states that a layer consisting of a 25 to 50% partially neutralized isobutylene-maleic acid copolymer and PVA has excellent water resistance. It is shown.
  • JP-A-49-16949 describes a method for making a PVA film water-resistant by mixing an alkyl vinyl ether-maleic acid copolymer with PVA.
  • water resistance ie, water insolubility
  • gas barrier properties are different properties.
  • water-soluble polymers are made water-resistant by crosslinking molecules.
  • gas barrier properties prevent the penetration and diffusion of relatively small molecules such as oxygen, and simply cross-linking a polymer does not always provide gas barrier properties.
  • three-dimensional crosslinkable polymers such as epoxy resin and phenol resin do not have gas barrier properties.
  • a liquid composition consisting of a water-soluble polymer is coated on a film.
  • an aqueous solution consisting of PVA or polysaccharide and a partially neutralized product of polyacrylic acid or polyacrylic acid is coated on a film and heat-treated.
  • a method has been proposed in which both polymers are crosslinked by an ester bond (jP—A—10—23718).
  • gas barrier properties are developed by highly advanced cross-linking by an esterification reaction.
  • this requires long-time heating at a high temperature, which causes a problem in productivity.
  • the present invention provides a gas barrier film in which a coating agent capable of exhibiting high gas barrier properties even under high humidity is applied to at least one surface of a thermoplastic resin film, and
  • the aim is to provide a method that can be industrially manufactured at low cost.
  • the present inventors have assiduously studied and, as a result, have found that the above-mentioned problems can be solved by laminating a coating agent composed of a specific resin composition on the film surface and heat-treating the same, and have reached the present invention.
  • the gist of the present invention is as follows.
  • a gas barrier film comprising a vinyl polymer (A) containing at least 40 mol% of vinyl alcohol units and a vinyl polymer (B) containing at least 10 mol% of maleic acid units co one Bok layer containing preparative provided on one side at least of a thermoplastic resin film Lum, (a) and (B) the mass ratio of 9 7 / / 3-2 0 da 8 0 Deari, Coat
  • the oxygen permeability coefficient of the layer is not more than 500 m 1 ⁇ / m 2 / day / MPa.
  • the vinyl polymer (A) is polyvinyl alcohol.
  • the crosslinking agent is contained in the range of 0.1 to 20 parts by mass relative to the total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B).
  • the cross-linking agent is a melamine compound or an isocyanate compound.
  • the water-swellable inorganic stratiform compound is contained in the range of 0.1 to 50 parts by mass with respect to a total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B). .
  • the water-swellable inorganic layered compound is fluorine mica.
  • the oxygen permeability coefficient of the coating layer is not more than 250 ml-11 m / mz / day ZMPa.
  • thermoplastic resin is nylon 6.
  • Oxygen permeability is below 180 ml Zm 2 Z day ZM Pa (15 m equivalent of nylon film).
  • thermoplastic resin is polyethylene terephthalate.
  • the film is stretched in at least one of the longitudinal and transverse directions of the film, and then heat-treated.
  • the pH force of the coating agent is in the range of 2.8 to 3.7.
  • a coating agent comprising a mixture of a polymer containing vinyl alcohol units in a predetermined ratio or more and a polymer containing maleic anhydride units in a predetermined ratio or more is coated on a film and heat-treated.
  • a thermoplastic resin film having high gas barrier properties even under humidity can be industrially manufactured at low cost.
  • thermoplastic resin film is suitable.
  • the film include polyamide resin such as Nylon 6, Nylon 66, and Nylon 46, and polyethylene ethylene.
  • Futari Polyester resin such as polyester, polyethylene naphtholate, polybutylene terephthalate, polybutylene terephthalate, polyolefin resin such as polypropylene, polyethylene, etc., or a film thereof, or a film thereof.
  • Laminate This film may be an unstretched film or a stretched film.
  • This film can be produced by heating or melting a thermoplastic resin with an extruder, extruding it through a T-die, and cooling and solidifying it with a cooling roll to obtain an unstretched film.
  • the film is stretched by a simultaneous biaxial stretching method or a sequential biaxial stretching method after winding the unstretched film once or continuously with the process of producing the unstretched film. From the viewpoint of performance such as mechanical properties and thickness uniformity of the film, a method in which a flat type film forming method using a T-die and a tensile stretching method are preferred.
  • the coating layer constituting the gas barrier film of the present invention contains a vinyl polymer (A) containing a vinyl alcohol unit and a vinyl polymer (B) containing a maleic acid unit.
  • a vinyl-based polymer (A) containing a vinyl alcohol unit (hereinafter sometimes simply referred to as “polymer (A)”) is a polymer of a vinyl ester or a vinyl ester and another vinyl-based monomer. Can be obtained by completely or partially saponifying the copolymer of
  • Vinyl esters include vinyl formate, vinyl acetate, and propion Examples thereof include vinyl acid, vinyl pivalate, and vinyl versatate. Among them, vinyl acetate is industrially preferable.
  • vinyl monomers to be copolymerized with vinyl esters include unsaturated monocarboxylic acids such as crotonic acid, acrylic acid, and methyl acrylate, and esters, salts, anhydrides, amides, and nitriles thereof. And unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof, ⁇ -olefins having 2 to 30 carbon atoms, alkyl vinyl ethers, vinyl pyrrolidone and the like.
  • unsaturated monocarboxylic acids such as crotonic acid, acrylic acid, and methyl acrylate
  • esters salts, anhydrides, amides, and nitriles thereof.
  • unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof, ⁇ -olefins having 2 to 30 carbon atoms, alkyl vinyl ethers, vinyl pyrrolidone and the like.
  • the above polymer is saponified and all or a part of the vinyl ester group becomes a vinyl alcohol unit.
  • Known methods for the alcoholic acid saponification and the acid-genation can be used as the method for the salification.
  • the method of alcoholysis using methanol in methanol is preferable, and the degree of saponification is 10. It is preferable from the viewpoint of gas barrier properties that the value is close to 0%, but when the saponification degree is close to 100%, there is a concern that the aqueous solution may gel when the temperature of the aqueous solution becomes low. Management is required. If the degree of saponification is slightly reduced to, for example, about 97%, the stability of the solution is remarkably increased, and the barrier performance is hardly reduced. However, if the degree of saponification is too low, the barrier performance decreases.
  • the preferred degree of saponification is about 80% or more.
  • the content of vinyl alcohol units in the vinyl polymer (III) must be at least 40 mol% based on all vinyl group units.
  • the content of the vinyl alcohol unit is less than 40 mol%, a film having a sufficient gas barrier property cannot be obtained.
  • the hydroxyl group of the vinyl alcohol unit acts as a reactive group that forms a crosslinked structure by reacting with the vinyl polymer ( ⁇ ⁇ ) containing the maleic acid unit.
  • the strong cohesive force of unreacted hydroxyl groups in the vinyl alcohol unit works effectively to enhance gas barrier properties.
  • the most preferred example of the vinyl-based polymer (A) is polyvinyl alcohol (hereinafter referred to as “PVA”), but copolymers of water-free maleic acid groups or other vinyl-based polymers may also be used. Good, or a partially modified vinyl alcohol unit may be used.
  • PVA polyvinyl alcohol
  • a vinyl polymer (B) containing maleic acid units (hereinafter sometimes simply referred to as “polymer (B)”) is prepared by a known method such as solution radical polymerization of maleic anhydride and another vinyl monomer. It is obtained by polymerizing with.
  • vinyl monomers include alkyl vinyl ethers having 3 to 30 carbon atoms, such as methyl vinyl ether and ethyl vinyl ether, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylyl.
  • (Meth) acrylic acid esters such as butyl acid, vinyl esters such as vinyl vinyl formate, styrene, p-styrenesulfonic acid, and C2-C30 olefins such as ethylene, propylene and isobutylene, etc. Is mentioned. These mixtures can also be used.
  • alkyl vinyl ethers and lower olefins are the most preferable in terms of improving gas barrier properties.
  • the maleic anhydride copolymer is excellent.
  • Maleic phosphate units in the polymer (B) is a this Toga ⁇ 1 is 1 0 mol% or more. If the content of maleic acid units is less than 10 mol%, poly The formation of the crosslinked structure by the reaction with the vinyl alcohol unit in the monomer (A) is insufficient, and the gas barrier property is reduced.
  • the maleic acid may be partially esterified or amidated, and a part of the carboxyl group of the maleic acid may be neutralized by an alkali compound.
  • an appropriate amount of an alcohol compound is added to the carboxyl group in the polymer (B) to stabilize the liquid. Properties and the performance of the coated film can be improved.
  • the amount of the alkali compound to be added should be appropriately selected depending on the type and blending amount of the polymer to be used. In particular, when a methyl vinyl ether-maleic anhydride copolymer is used as the polymer (B), the alkali compound is added. It is preferable to add the compound in an amount of 0.1 to 20% equivalent to the lipoxyl gas of the polymer (B) and adjust the pH of the solution to 2.8 to 3.7. By doing so, the gas barrier properties of the obtained film are remarkably improved.
  • the present invention it is necessary to coat the thus prepared coating agent on a film, dry it, and further perform a heat treatment to advance a crosslinking reaction.
  • a heat treatment to advance a crosslinking reaction.
  • Any alkali compound may be used as long as it can neutralize the carboxyl group in the polymer (B), such as hydroxides of alkali metals and alkaline earth metals, ammonium hydroxide, and organic amines. Is mentioned.
  • the maleic acid units in the polymer (B) are adjacent carbohydrates in the dry state. The xyl group is liable to become a maleic anhydride structure dehydrated and cyclized, and when wet or in an aqueous solution the ring is opened to form a maleic acid structure.
  • the composition ratio of the polymer (A) containing a vinyl alcohol unit and the polymer (B) containing a maleic acid unit is expressed by mass. It is necessary that the ratio be in the range of 97/3 to 20/80. Outside of this range, the gas barrier properties of the film will be insufficient, especially in a high humidity atmosphere.
  • the amount of the cross-linking agent is less than 0.1 part by mass, a sufficient cross-linking effect cannot be obtained. If the amount is more than 20 parts by mass, the cross-linking agent acts as an inhibitor of gas barrier properties, resulting in gas barrier properties. Will decrease.
  • Such a cross-linking agent examples include a compound containing a plurality of functional groups that react with a hydroxyl group or a carboxyl group in a molecule or a metal complex having a polyvalent coordination site.
  • a cross-linking agent include a compound containing a plurality of functional groups that react with a hydroxyl group or a carboxyl group in a molecule or a metal complex having a polyvalent coordination site.
  • an isocyanate compound a melamin compound, an epoxy compound, a carbodiimide compound, a silyl group-containing compound, a zirconium salt compound and the like.
  • inorganic layered compound refers to an inorganic compound in which unit crystal layers overlap to form a layered structure.
  • Preferred examples of the inorganic layered compound include montmorillonite, pidelite, savonite, hectolite, sauconite, vermiculite, fluoromica, muscovite, paragonite, phlogopite, biotite, levy dry , Margarite clintonite, anandite, chlorite, donpasite, suidoite, cookeite, clinocroix, shamosite, nimaito, tetrasiririkmai power, evening Rek, non-filo-light, nacryate, force-origin, eightloite, chrysotile, sodium teniolite, zansofilite, anti-golite, date kite, hide mouth talcite, etc. Swellable fluoromica or montmorillonite is particularly preferred.
  • inorganic stratiform compounds may be naturally occurring, artificially synthesized or modified, or may be those treated with an organic substance such as an onium salt. .
  • swellable fluoromica-based minerals are most preferred in terms of transparency.
  • This swellable fluoromica-based mineral is represented by the following formula and can be easily synthesized by a known production method.
  • MF ⁇ ⁇ (a M g F 2 - b M g O).
  • the compounding amount of these inorganic layered compounds is preferably from 0.1 to 50 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving gas barrier properties is insufficient. Conversely, if the amount is more than 50 parts by weight, gas barrier properties are further enhanced. When the layered silicate becomes difficult to disperse evenly in the coating liquid, the performance of the coating layer becomes uneven, and the flexibility of the obtained gas barrier film is reduced. Problems are more likely to occur in various processing steps for packaging materials such as.
  • an acrylic copolymer containing 70% by mass or more of an acrylonitrile unit is added to 200 parts by mass of the total of the polymer (A) and the polymer (B).
  • the liquid properties of the coating agent can be improved.
  • the coating agent composed of the polymer (A) and the polymer (B) has a high viscosity of the liquid and may be restricted in use depending on the production equipment. However, if the concentration of the solution is too low as a countermeasure, it takes a long time to dry the coating film after coating the coating agent on the film, which is undesirable because the productivity is lowered. Generally, a coating agent having a high concentration and a low viscosity is generally preferred.
  • a possible method is to add a water-dispersible component to the coating agent. Addition of an aqueous dispersion such as general acrylic latex or vinyl acetate-based latex will result in a gas barrier. This is not preferred because the properties are reduced.
  • Acryl-based copolymers containing 70% by mass or more of acrylonitrile units have excellent gas barrier properties and can be added to a coating agent consisting of polymer (A) and polymer (B). Thus, the viscosity of the coating agent can be reduced without lowering the gas barrier properties.
  • the acrylonitrile copolymer contains acrylonitrile in an amount of 70% by mass or less, desirably 80% by mass or more, and the rest is acrylonitrile.
  • One or more vinyl monomers copolymerizable with nitrile are 30% by mass or less, preferably 20% by mass or less. If the acrylonitrile content of the acrylonitrile copolymer is less than 70%, sufficient gas barrier properties cannot be obtained.
  • the vinyl monomer copolymerizable with acrylonitrile is not particularly limited, but is a compound having a carbon-carbon unsaturated double bond, and includes (meth) acrylates, (Meth) acrylamides, (meth) acrylates having a functional group bonded thereto, vinylidenes, urethanes having an unsaturated bond, silicons having an unsaturated bond, fluorine-based unsaturated monomers Can use body.
  • unsaturated carboxylic esters specifically, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable.
  • the acryl-based copolymer is preferably prepared by emulsion polymerization of an acrylonitrile monomer and another vinyl-based monomer in the presence of a power emulsifier which can be produced by a known method.
  • emulsifiers include fatty acid minerals, organic sulfonates, polyvinyl alcohol, methyl vinyl ether-maleic anhydride copolymers, and copolymers of olefin-maleic anhydride such as isobutylene-maleic anhydride, polyvinylpyrrole. And one or a mixture of two or more of these. .
  • the type of polymerization initiator, surfactant, etc. is not particularly limited.However, since these substances remain in the coating film formed from the latex and cause deterioration of the gas barrier property, the amount of the substances used is limited. It is preferable that the amount is as small as possible.
  • the nitrile copolymer of [polymer] 3 ⁇ 4 has poor melt fluidity, It is desirable to add a molecular weight regulator to reduce the molecular weight.
  • the high nitrile copolymer thus obtained is used as a mixture with the polymer (A) and the polymer (B).
  • the mixing ratio is within a range of 200 parts by mass or less with respect to the total 100 parts by mass of the polymer (A) and the polymer (B). If the amount of the high nitrile copolymer exceeds 200 parts by mass, the gas barrier properties decrease, and the film-forming properties deteriorate, so that a good coating film cannot be obtained.
  • the amount of the coating agent is determined in consideration of these amounts.
  • This coating agent includes heat stabilizers, antioxidants, reinforcing agents, pigments, deterioration inhibitors, weathering agents, flame retardants, plasticizers, release agents, lubricants, etc., as long as the properties are not significantly impaired. It may be added.
  • heat stabilizer examples include hindered phenols, phosphorus compounds, hindered amines, zeo compounds, copper compounds, alkali metal halides, and mixtures thereof. .
  • the coating agent can be adjusted by a known method using a dissolving pot equipped with a stirrer or the like.
  • a dissolving pot equipped with a stirrer or the like for example, polymer (A) and polymer (B)
  • the thickness of the coat layer containing the polymer (A) and the polymer (B) is desirably at least greater than 0.1 m in order to sufficiently enhance the gas barrier properties of the film.
  • the polymer concentration when the coating agent is coated on the film can be appropriately changed depending on the viscosity and reactivity of the liquid, the specifications of the equipment used, and the like. If the concentration is too low, it becomes difficult to coat a layer having a sufficient thickness necessary to exhibit gas barrier properties, and it is likely to cause a problem that a long time is required in a subsequent drying step. On the other hand, if the concentration of the solution is too high, problems may occur in the mixing operation and the storage stability. From such a viewpoint, the polymer concentration is preferably in the range of 1 to 50% by mass of the whole solution.
  • the coating method of the coating agent on the film is not particularly limited, and ordinary methods such as gravure mouth coating, reverse roll coating, meyer bar coating, and die coating are used. be able to.
  • the coating may be performed before stretching the film, or may be performed on the stretched film.
  • the surface of the film is subjected to a corona discharge treatment prior to coating, or a polyester-based resin, an acrylic-based resin,
  • a commonly known treatment such as coating a primer resin with a resin, a polyvinyl alcohol resin, a silyl group-containing resin, a melamine resin, or a mixture thereof may be applied.
  • the unstretched film is coated and dried, and then supplied to a ten-stretch type stretching machine to stretch the film simultaneously in the Ji row direction and the width direction (simultaneously).
  • a ten-stretch type stretching machine to stretch the film simultaneously in the Ji row direction and the width direction (simultaneously).
  • 2 ⁇ Nobunaka) Heat treatment After stretching in the running direction of the film using a multi-stage heat roll or the like, coating is performed, and after drying, the film may be stretched in the width direction by a ten-in-one stretching machine (sequentially) Biaxial stretching). It is also possible to combine the stretching in the running direction with the simultaneous stretching in two directions. Coating prior to stretching, followed by stretching and heat treatment, is preferred because the high temperature during stretching and heat treatment can be used for the crosslinking reaction.
  • the moisture content of the coat layer before stretching is preferably 0.1 to 50% by mass, more preferably 1 to 50% by mass, and particularly preferably 2 to 50% by mass. If the water content is less than 0.1% by mass, the coating layer is liable to peel or crack. On the other hand, if the water content exceeds 50% by mass, the drying efficiency of the coat layer is reduced and causes troubles such as film cutting during stretching.
  • the moisture content of the coat layer before stretching varies depending on the solid content of the coating agent, the thickness of the coat layer, etc., but should be controlled to the desired range by changing the temperature and drying time of the dryer. Can be.
  • the coat layer is a force formed on one or both sides of the film.
  • the temperature is 150 ° C. or higher, preferably 18 ° C. It is preferable to carry out heat treatment in an atmosphere of 0 or more.
  • the heat treatment temperature be 230 ° C or less.
  • the coated film thus obtained exhibits excellent gas barrier properties by itself, and the gas barrier properties are improved particularly as the heat treatment time is increased. However, too long a heat treatment will reduce productivity.
  • the gas barrier property can be further enhanced by irradiating the coated, dried, and heat-treated film with an electron beam.
  • the amount of the irradiated electron beam is 1 Mrad or more. 20 M rad or less is preferable, and l M rad or more and 15 M rad or less is more preferable. If the irradiation amount of the electron beam is less than 1 Mrad, sufficient cross-linking by irradiation with the electron beam cannot be introduced, and the improvement of the gas nori- bility based on the irradiation of the electron beam becomes insufficient. Conversely, if the irradiation dose is more than 20 Mrad, the gas barrier properties will decrease.
  • Oxygen permeability The oxygen permeability in an atmosphere at 20 ° C and a relative humidity of 85% was measured using a Mocon oxygen barrier measuring instrument.
  • the gas barrier properties of the film vary depending on the type and thickness of the base film and the thickness of the coating layer. Therefore, the oxygen permeability coefficient of the coating layer itself was evaluated.
  • This oxygen permeability coefficient was determined by the following equation.
  • the oxygen permeability of the coated film can be estimated from the above equation if P c and L are known.
  • the oxygen permeability of the film used in the following examples at 20 ° C. and 85% RH was as follows.
  • This film was a biaxially stretched PET film (900 ml / m 2 Z day / MP a, if the film strength biaxially stretched nylon film (thickness 1 is 4 0 0 ml Zm 2 / day ZM P a. Therefore, this value is the calculation of the oxygen permeability coefficient of the coat layer Was used.
  • the moisture content of the coat is determined after coating the film with the coating agent. Is dried, and the coat film of Nobenaka is collected. The total mass of the coat layer is a gram, and the mass of water in the coat layer is b gram. (B / a) XI 00 (mass% ). The mass of water in the coat layer was determined by subtracting the mass after completely drying the coat layer from the total mass of the coat layer.
  • the appearance of the coated film was visually evaluated. When no peeling or cracking of the coat layer was observed, the evaluation was “good”. Conversely, if peeling or cracking of the coat layer was observed, it was evaluated as “poor”.
  • polymer (A) a polyvinyl alcohol UF040G (99% saponification degree, average polymerization degree 500) manufactured by Unitika Chemical Co., Ltd. was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • polymer (A) a polyvinyl alcohol UF040G (99% saponification degree, average polymerization degree 500) manufactured by Unitika Chemical Co., Ltd. was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • polymer (A) a polyvinyl alcohol UF040G (99% saponification degree, average polymerization degree 500) manufactured by Unitika Chemical Co., Ltd. was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • polymer (A) a polyvinyl alcohol UF040G (99% saponification degree, average polymerization degree 500) manufactured by Unitika Chemical Co., Ltd. was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) with a Meyer bar coat so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 5 minutes.
  • the resulting film has an excellent oxygen permeability of 40 m 1/2 / day / MP, and the estimated oxygen permeability coefficient of the coating layer is 84 ml-m / m 2 Z day ZM Pa.
  • Example 2 The same operation as in Example 1 was performed using only the PVA aqueous solution as the coating agent.
  • the resulting film has an oxygen permeability of 410 m 1 / m 2 / day / MPa, which is insufficient for gas packaging for food packaging films.
  • the oxygen permeation coefficient was 1657 ml ⁇ m / 2 Z day ZMPa.
  • Example 1 The same operation as in Example 1 was performed by changing the types and ratios of the polymer (A) and the polymer (B), and the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer were determined.
  • the results are shown in Table 1.
  • Isoban is an isobutylene-maleic anhydride copolymer manufactured by Kuraray Co., Ltd.
  • SMA1000 and SMA2000 are styrene-monomaleic anhydride copolymers manufactured by Atochem
  • E MA is an ethylene-maleic anhydride copolymer manufactured by ALDRICH.
  • the film of the present invention is useful because it has excellent gas barrier properties, and its coating agent has much better performance than PVA, which is generally used as a gas barrier coating agent. It turns out that it is. table 1
  • Example 2 The same operation as in Example 1 was performed by changing the type and amount of the alkali, and the coating agent was adjusted.
  • the obtained coating agent was coated on a PET film in the same manner as in Example 1, dried at 100 ° C. for 2 minutes, and then heat-treated for different times.
  • Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
  • the above-mentioned UF040G was dissolved in pure water to obtain a 20% by mass aqueous solution.
  • the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 5 mol% of sodium hydroxide with respect to the carboxylic acid unit to obtain a 20% by mass solution.
  • both aqueous solutions were mixed so that the mass ratio of the polymer (A) and the polymer (B) became (A) / (B) 70Z30, to prepare a coating agent.
  • the temperature of the thin cylinder was 260 ° C, and the temperature of the T die was 2 ° C.
  • the PET resin was extruded in a sheet form, closely adhered to a cooling roll adjusted to a surface temperature of 10 ° C, and rapidly cooled to obtain an unstretched film having a thickness of 120m.
  • the unstretched film is guided through a gravure roll type coater, coated with a coating agent so that the coat thickness after drying becomes 20 m, and heated in a hot air dryer at 80 ° C. Dried for 30 seconds.
  • this film is fed to a ten-set simultaneous biaxial stretching machine, preheated at 100 ° C for 2 seconds, and then tripled in the vertical direction and 3.5 times in the horizontal direction at 95 ° C.
  • the film was stretched at twice the magnification.
  • Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
  • Nylon 6 resin was extruded in a sheet shape at a temperature of 260 ° C. for the thin cylinder and 270 ° C. for the T-die, The film was quenched by closely contacting it on a cooling roll adjusted to a surface temperature of 10 ° C. to obtain an unstretched film having a thickness of 150 Aim. Subsequently, the unstretched film was led to a gravure roll type coater overnight, and the same liquid as used in Example 13 was coated and dried under the same conditions. Next, a film was produced under the same conditions as in Example 13 except that the temperature condition during stretching was set to 170 ° C.
  • Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
  • Base film Film thickness (A) 1 (B) Alkali compound Alkali compound pH heat treatment temperature heat treatment Coat Oxygen permeability Acid in coat layer
  • Example 10 0 PET 12 90/10 NaOH 2 3.5 200 60 1.8 73 143
  • Example 1 PET 12 70/30 Ca (OH) 2 5 3.0 200 15 2.0 95 212
  • Example 1 2 PET 12 70/30 NH 3 15 3.7 200 15 2.1 170 440
  • Example 1 PET 12 70/30 NaOH 5 2.9 200 15 2.0 75 164
  • Example 14 Nylon 15 70/30 NaOH 5 2.9 200 15 2.0 65 155 00 Comparative Example 4 PET 12 80/20 NaOH 1 2.8 150 60 2.0 530 2578 ⁇
  • the above-mentioned UF040G was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution.
  • an isocyanate compound dispersion (Elastron BN11) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. was mixed with a polymer having a mass ratio of the isocyanate compound of 100 (solid) of polymer (A) and polymer (B). It was added so as to be 5 parts by mass with respect to parts by mass, and stirred to prepare a coating agent.
  • This coating agent was coated on a biaxially stretched PET film (thickness: 12 xm) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 10 seconds.
  • the oxygen permeability of the obtained film at 20 ° C. and 85% RH showed an excellent value of 70 m 1 / z / day / MPa as shown in Table 3.
  • Example 15 The same operation as in Example 15 was performed by changing the types and ratios of the polymer (A) and the polymer (B), and the type and amount of the crosslinking agent, respectively, to thereby obtain an oxygen permeability and a coat of the obtained film.
  • the oxygen permeability coefficient of the layer was determined. The results are shown in Table 3.
  • Example 14 The same stretched nylon film as that of Example 14 was led to a gravure roll type co-polymer overnight, and the composition was as shown in Table 3 and the crosslinking agent was as shown in Table 3. A film was produced under the same conditions as in Example 14 using a coating agent to which was added.
  • Table 3 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
  • Isocyanate (I): Daiichi Kogyo Seiyaku Co., Ltd .: I Laston BN11 Isocyane h (II): Daiichi Kogyo Seiyaku Co., Ltd .: I Last Q E-37 Melamine: Mitsui Cytec: Cyme 1325
  • I-honki Made by Tokyo Kasei Co., Ltd .: Fushi-tanshi-shi-Rusi-Gerishishi-ru I-Terkar-ki-shi: Imide: Nisshinbo Co., Ltd .: Calho-shi 'Ra-E-shi' ruconium salt First rare element '; / Luco' / -Lu AC-7
  • the above UFO40G was dissolved in pure water to obtain a 20% by mass aqueous solution.
  • the above-described GANTEZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 20% by mass solution.
  • This coating agent was coated on a biaxially stretched PET filem (thickness: 12 zm) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 15 seconds.
  • the oxygen permeability of the obtained film at 20 and 85% RH showed an excellent value of 26 m 1 / m 2 / day / MPa as shown in Table 4.
  • Example 26 The same operation as in Example 26 was performed after changing the kind and amount of the inorganic layered compound, the composition of the coating agent, and the base film. The results are shown in Table 4.
  • Table 4 Somasif is a swellable synthetic fluoromica manufactured by Corp Chemical.
  • Example 14 The same unstretched nylon film as that of Example 14 was led to the gravure roll type co-polymer overnight, and the same coating agent as that used in Example 26 was used. Was coated so that the coat thickness after drying was 11 m, and a film was produced under the same conditions as in Example 14.
  • Table 4 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.
  • the above-mentioned UF • 40G was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • Table 4 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.
  • the above UFO40G was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution.
  • the lonitrile copolymer emulsion (97% by mass of acrylonitrile) was added in an amount of 43 parts by mass based on 100 parts by mass of the solid content of the polymer (A) and the polymer (B). Parts, and stirred to prepare a coating agent.
  • This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 for 10 seconds. Table 5 shows the performance of the obtained gas barrier film.
  • This coating agent was coated on a biaxially stretched PET film (Emblend PET 12 manufactured by Unitika Ltd., thickness 12 m) with a Meyer bar so that the coating thickness after drying was about 2 m. After drying at 00 ° C for 2 minutes, heat treatment was performed at 200 ° C for 10 seconds. Table 5 shows the results.
  • Comparative Example 6 In Comparative Example 6, in which the content of the acrylonitrile copolymer was larger than the range of the present invention, no good coating film was obtained. In Comparative Example 7 using a copolymer having a low acrylonitrile ratio, the gas barrier property was poor.
  • Neutralization Gantrez 2% (NaOH). Iso /, ': 603 ⁇ 4 (Paint, SMA: 53 ⁇ 4 (NaOH) Heat treatment 200 ° (:, 10 seconds
  • the above-mentioned UF040G as the polymer (A) was dissolved in pure water to obtain a 10% by mass aqueous solution.
  • the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 5 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution.
  • This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 for 2 minutes. Heat treatment was performed at 200 ° C. for 10 seconds. Thereafter, the film was introduced into an electron beam irradiation apparatus (Curetron, manufactured by Nissin High Voltage), and the film was irradiated with an electron beam at an accelerating voltage of 175 kV and at a dose shown in Table 6.
  • an electron beam irradiation apparatus Carbon, manufactured by Nissin High Voltage
  • Table 6 shows that the gas barrier property can be further improved by irradiating the coated film with an electron beam according to the present invention.
  • Comparative Example 8 that is, when only PVA was coated, no improvement in gas barrier properties was observed even when electron beams were irradiated.
  • Example 37 The same coating agent as that of Example 37 was prepared, and the same non-rolled nylon film as that of Example 14 was obtained.
  • the unstretched film was guided to a gravure roll type coater overnight, and the coating agent prepared above was coated so that the coat thickness after drying became 20 m, and the temperature was adjusted to 80 ° C. Drying was performed in a hot air drier so that the moisture content of the coat layer became the value shown in Table 7.
  • Table 7 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.

Abstract

A film with gas barrier properties which comprises a thermoplastic resin film and formed on at least one side thereof a coating layer comprising a vinyl polymer (A) comprising at least 40 mol% vinyl alcohol units and a vinyl polymer (B) comprising at least 10 mol% maleic acid units. The (A)/(B) weight ratio is from 97/3 to 20/80. The coating layer has a coefficient of oxygen permeability of 500 ml. νm/m2/day/MPa or lower. This film has high gas barrier properties even under high-humidity conditions.

Description

明 細 書 ガスバリアフィルムおよびその製造方法 技術分野  Description Gas barrier film and method for manufacturing the same
本発明はコ一ティ ング層が形成されたガスバリ ァ性フィ ルムおよ びその製造方法に関するものである。 背景技術  The present invention relates to a gas barrier film having a coating layer formed thereon and a method for producing the same. Background art
ポリアミ ド、 ポリエステル等の熱可塑性樹脂フィルムは、 強度、 透明性および成形性に優れていることから、 包装材料として幅広い 用途に使用されている。 しかしながら、 レ トル ト処理食品等の長期 間の保存性が求められる用途に用いる場合には、 より高度なガスバ リ ア性が要求される。  Thermoplastic resin films such as polyamides and polyesters are used in a wide range of applications as packaging materials because of their excellent strength, transparency and moldability. However, when used for applications requiring long-term storage, such as retorted foods, higher gas barrier properties are required.
ガスバリア性を改良するために、 これらの熱可塑性樹脂フィ ルム の表面にポリ塩化ビニリデン ( P V D C ) を積層したフィルムが、 食品包装等に幅広く使用されてきた。 しかし、 P V D Cは焼却時に 酸性ガス等の有機物質を発生するため、 近年環境への関心が高まる につれて他材料への移行が強く望まれている。  In order to improve gas barrier properties, films in which polyvinylidene chloride (PVDC) is laminated on the surface of these thermoplastic resin films have been widely used for food packaging and the like. However, since PDCC generates organic substances such as acid gas when incinerated, there is a strong demand for the transfer to other materials as interest in the environment increases in recent years.
P V D Cに代わる材料と して、 ポリ ビニルアルコール ( P V A ) は、 有毒ガスの発生がなく 、 低湿度雰囲気下でのガスバリ ア性も高 い。 しかし P V Aは、 湿度が高く なるにつれて急激にガスバリ ァ性 が低下するため、 水分を含む食品等の包装には用いることができな い場合が多い。  As an alternative to PVDC, polyvinyl alcohol (PVA) does not generate toxic gases and has high gas barrier properties in low-humidity atmospheres. However, PVA often cannot be used for packaging water-containing foods and the like because the gas barrier property rapidly decreases as the humidity increases.
P V Aの高湿度下でのガスバリ ア性の低下を別の材料を用いて改 善したフィルムとして、 ビニルアルコールとエチレンの共重合体Reduced the gas barrier property of PVA under high humidity by using another material As a good film, a copolymer of vinyl alcohol and ethylene
( E V 0 H ) からなるフィルムが知られている。 しかし、 このフィ ルムは、 高湿度下でのガスバリ ァ性を実用 レベルに維持するために はエチレンの含有量をある程度高くする必要がある。 E V O Hをコ 一ティ ング材料として用いる場合には、 有機溶媒を用いるかまたは 水と有機溶媒の混合溶媒を用いて溶解させることが必要である。 こ のため環境問題の観点から望ましくなく 、 また有機溶媒の回収工程 などを必要とするためコス ト高になるという問題がある。 A film consisting of (E V 0 H) is known. However, in order to maintain the gas barrier properties under high humidity at a practical level, it is necessary to increase the ethylene content to some extent. When EVOH is used as a coating material, it is necessary to dissolve it using an organic solvent or a mixed solvent of water and an organic solvent. For this reason, it is not desirable from the viewpoint of environmental problems, and there is a problem that the cost is high because a recovery step of the organic solvent is required.
本来水溶性である P V Aを架橋剤を用いて架橋することで耐水化 する技術は従来から種々知られており、 例えばマレイ ン酸単位を含 有するポリマーが P V Aや多糖類などの水酸基と反応して耐水化さ れることは広く知られている。 例えば、 J P - A - 8— 6 6 9 9 1 には、 イソブチレン一マレイ ン酸共重合体の 2 5 〜 5 0 %部分中和 物と P V Aとからなる層が優れた耐水性を有することが示されてい る。 また、 J P— A— 4 9 — 1 6 4 9 には、 P V Aにアルキルビニ ルエーテル一マレイ ン酸共重合体を混合することにより P V Aのフ イルムを耐水化する方法が述べられている。  There have been known various techniques for achieving water resistance by cross-linking naturally water-soluble PVA using a cross-linking agent.For example, a polymer containing maleic acid units reacts with hydroxyl groups such as PVA and polysaccharides. It is widely known that it is water resistant. For example, JP-A-8-66991 states that a layer consisting of a 25 to 50% partially neutralized isobutylene-maleic acid copolymer and PVA has excellent water resistance. It is shown. JP-A-49-16949 describes a method for making a PVA film water-resistant by mixing an alkyl vinyl ether-maleic acid copolymer with PVA.
しかしながら、 耐水化 (すなわち非水溶化) とガスバリア性とは 異なる性質である。 一般的に水溶性ポリマーは分子を架橋すること により耐水化される。 しかしガスバリ ア性は酸素等の比較的小さな 分子の侵入や拡散を防ぐ性質であり、 単にポリマーを架橋してもガ スバリ ァ性が得られるとは限らない。 たとえば、 エポキシ樹脂ゃフ ェノール樹脂などの三次元架橋性ポリマーはガスバリ ァ性を有して いない。  However, water resistance (ie, water insolubility) and gas barrier properties are different properties. In general, water-soluble polymers are made water-resistant by crosslinking molecules. However, gas barrier properties prevent the penetration and diffusion of relatively small molecules such as oxygen, and simply cross-linking a polymer does not always provide gas barrier properties. For example, three-dimensional crosslinkable polymers such as epoxy resin and phenol resin do not have gas barrier properties.
水溶性のポリマーからなる液状組成物をフィ ルムにコー ト し、 高 湿度下でも高いガスバリ ア性を発現させる方法として、 P V Aもし く は多糖類とポリ アク リル酸またはポリ メ夕ク リル酸の部分中和物 とからなる水溶液をフィルムにコー 卜 し熱処理することによ り、 両 ポリマーをエステル結合によ り架橋する方法が提案されている ( j P — A— 1 0 — 2 3 7 1 8 0 ) 。 この方法では、 エステル化反応に よる架橋を高度に進行させることによりガスバリ ア性を発現させて いる。 しかし、 そのために高温で長時間の加熱が必要であり生産性 に問題がある。 A liquid composition consisting of a water-soluble polymer is coated on a film, As a method of exhibiting high gas barrier properties even under humidity, an aqueous solution consisting of PVA or polysaccharide and a partially neutralized product of polyacrylic acid or polyacrylic acid is coated on a film and heat-treated. Thus, a method has been proposed in which both polymers are crosslinked by an ester bond (jP—A—10—23718). In this method, gas barrier properties are developed by highly advanced cross-linking by an esterification reaction. However, this requires long-time heating at a high temperature, which causes a problem in productivity.
発明の開示 Disclosure of the invention
本発明は、 上記のような問題に対して、 高湿度下でも高いガスバ リ ア性を発揮することができるコーティ ング剤を熱可塑性樹脂フィ ルムの少なく とも片面に塗布したガスバリ アフィルム、 およびそれ を工業的に安価に製造できる方法を提供しょ う とするものである。 本発明者らは、 鋭意研究の結果、 特定の樹脂組成物からなるコー ト剤をフィ ルムの表面に積層し熱処理することにより上記の課題が 解決できることを見出し、 本発明に到達した。  The present invention provides a gas barrier film in which a coating agent capable of exhibiting high gas barrier properties even under high humidity is applied to at least one surface of a thermoplastic resin film, and The aim is to provide a method that can be industrially manufactured at low cost. The present inventors have assiduously studied and, as a result, have found that the above-mentioned problems can be solved by laminating a coating agent composed of a specific resin composition on the film surface and heat-treating the same, and have reached the present invention.
本発明の要旨は、 次のとおりである。  The gist of the present invention is as follows.
( 1 ) ガスバリ ア性フィ ルムであって、 ビニルアルコール単位を 4 0モル%以上含有するビニル系ポリマー (A) と、 マレイ ン酸単 位を 1 0モル%以上含有するビニル系ポリマー ( B ) とを含んだコ 一 卜層を熱可塑性樹脂フィ ルムの少なく とも片面に備え、 (A) と ( B ) との質量比が 9 7 // 3〜 2 0ダ 8 0でぁり、 コー ト層の酸素 透過係数が 5 0 0 m 1 · /m2 / d a y / M P a以下であるこ とを特徴とする。 (1) A gas barrier film comprising a vinyl polymer (A) containing at least 40 mol% of vinyl alcohol units and a vinyl polymer (B) containing at least 10 mol% of maleic acid units co one Bok layer containing preparative provided on one side at least of a thermoplastic resin film Lum, (a) and (B) the mass ratio of 9 7 / / 3-2 0 da 8 0 Deari, Coat The oxygen permeability coefficient of the layer is not more than 500 m 1 · / m 2 / day / MPa.
( 2 ) ビニル系ポリマー ( A ) がポリ ビニルアルコールである。 ( 3 ) ビニル系ポリマ一 ( B ) 力 メチルビニルエーテル一無水 マレイ ン酸共重合体と、 エチレン一無水マレイ ン酸共重合体と、 ィ ソブチレン一無水マレイ ン酸共重合体とのうちの 1極またはこれら の混合物である。 (2) The vinyl polymer (A) is polyvinyl alcohol. (3) Vinyl polymer (B) force One electrode of methyl vinyl ether-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, and isobutylene-maleic anhydride copolymer Or a mixture thereof.
( 4 ) ビニル系ポリマ一 ( A ) とビニル系ポリマー ( B ) との合 計 1 0 0質量部に対して、 架橋剤を 0. 1 〜 2 0質量部の範囲で含 有する。  (4) The crosslinking agent is contained in the range of 0.1 to 20 parts by mass relative to the total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B).
( 5 ) 架橋剤がメラミ ン化合物またはイ ソシァネー 卜化合物であ る。  (5) The cross-linking agent is a melamine compound or an isocyanate compound.
( 6 ) ビニル系ポリマー (A) とビニル系ポリマー ( B ) との合 計 1 0 0質量部に対して、 水膨潤性の無機層状化合物を 0. 1〜 5 0質量部の範囲で含有する。  (6) The water-swellable inorganic stratiform compound is contained in the range of 0.1 to 50 parts by mass with respect to a total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B). .
( 7 )· 水膨潤性の無機層状化合物がフッ素雲母である。  (7) The water-swellable inorganic layered compound is fluorine mica.
( 8 ) ビニル系ポリマ一 ( A ) とビニル系ポリマー ( B ) との合 計 1 0 0質量部に対して、 アク リ ロニ ト リル単位を 7 0質量%以上 含むアク リル系共重合体を 2 0 0質量部以下の範囲で含有する。  (8) An acrylic copolymer containing 70% by mass or more of acrylonitrile units based on a total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B). It is contained in a range of 200 parts by mass or less.
( 9 ) コー ト層の酸素透過係数が、 2 5 0 m l - 11 m/mz / d a y ZM P a以下である。 (9) The oxygen permeability coefficient of the coating layer is not more than 250 ml-11 m / mz / day ZMPa.
( 1 0 ) 熱可塑性樹脂がナイ ロン 6である。  (10) The thermoplastic resin is nylon 6.
( 1 1 ) 酸素透過度が 1 8 0 m l Zm2 Z d a y ZM P a (ナイ ロンフィルム 1 5 m換算) 以下である。 (11) Oxygen permeability is below 180 ml Zm 2 Z day ZM Pa (15 m equivalent of nylon film).
( 1 2 ) 熱可塑性樹脂がポリ エチレンテレフ夕 レー トである。  (12) The thermoplastic resin is polyethylene terephthalate.
( 1 3 ) 酸素透過度が 2 5 0 m l Zm2 / d a y / M P a (ポリ エチレンテレフタ レ一 トフイ ルム 1 2 m換算) 以下である。 (1 3) Oxygen permeability 2 5 0 ml Zm 2 / day / MP a ( poly ethylene terephthalate, single Tofui Lum 1 2 m equivalent) or less.
( 1 4 ) 上記 ( 1 ) から ( 1 3 ) までのいずれかに記載のガスバ リ ア性フィルムを製造するための方法であって、 フィ ルムの少なく とも片面にコー ト剤を塗布した後に、 1 5 0 °C以上の温度で熱処理 することを特徴とする。 (14) The gas bath described in any of (1) to (13) above A method for producing a rear film, characterized by applying a coating agent on at least one side of the film and then performing a heat treatment at a temperature of 150 ° C. or more.
( 1 5 ) フィルムにコ一 卜剤を塗布した後に、 フィルムの縦方向 と横方向との少なく とも一方向にこのフィルムを延伸し、 その後に 熱処理する。  (15) After the coating agent is applied to the film, the film is stretched in at least one of the longitudinal and transverse directions of the film, and then heat-treated.
( 1 6 ) 延伸として同時 2軸延伸を行う。  (16) Simultaneous biaxial stretching is performed as stretching.
( 1 7 ) フィルムにコー ト層を塗布した後に延伸する場合に、 延 伸直前のコー ト層の水分率を 0 . 1 〜 5 0質量%とする。  (17) When stretching after applying the coat layer to the film, the moisture content of the coat layer immediately before stretching is 0.1 to 50% by mass.
( 1 8 ) 熱処理したフィルムに電子線を照射する。  (18) Irradiate the heat-treated film with an electron beam.
( 1 9 ) コ一 卜剤を形成するビニル系ポリマー ( B ) カ^ メチル ビニルエーテル一無水マレイ ン酸共重合体であって、 このビニル系 ポリマー ( B ) 中のカルボキシル基に対して 0 . 1 〜 2 0 %当量の アルカ リ化合物を含有する。  (19) A vinyl polymer which forms a coating agent (B) a methyl vinyl ether-maleic anhydride copolymer, wherein 0.1 to a carboxyl group in the vinyl polymer (B) is used. Contains ~ 20% equivalent of alkaline compound.
( 2 0 ) コー ト剤の p H力 2. 8〜 3. 7 の範囲である。  (20) The pH force of the coating agent is in the range of 2.8 to 3.7.
したがって本発明によると、 ビニルアルコール単位を所定割合以 上含むポリマーと無水マレイ ン酸単位を所定割合以上含むポリマー との混合物からなるコー ト剤をフィルムにコー 卜 し、 熱処理するこ とで、 高湿度下でも高いガスバリ ア性を有する熱可塑性樹脂フィル ムを工業的に安価に製造することができる。  Therefore, according to the present invention, a coating agent comprising a mixture of a polymer containing vinyl alcohol units in a predetermined ratio or more and a polymer containing maleic anhydride units in a predetermined ratio or more is coated on a film and heat-treated. A thermoplastic resin film having high gas barrier properties even under humidity can be industrially manufactured at low cost.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
(フィルム)  (the film)
本発明において用いられるフィ ルムとしては熱可塑性樹脂フィル ムが適当であり、 このフィ ルムと しては、 ナイ ロン 6 、 ナイ ロン 6 6 、 ナイ ロン 4 6等のポリ アミ ド樹脂、 ポリ エチレンテレフタ レ一 卜、 ポリエチレンナフ夕 レー 卜、 ポリ ブチレンテレフ夕 レー ト、 ポ リ ブチレンナフ夕 レー 卜等のポリエステル樹脂、 ポリ プロピレン、 ポリエチレンなどのポリ オレフィ ン樹脂、 またはそれらの混合物よ りなるフィルム、 またはそれらのフィルムの積層体が挙げられる。 このフィ ルムは、 未延伸フィ ルムでも延伸フィ ルムでもよい。 As the film used in the present invention, a thermoplastic resin film is suitable. Examples of the film include polyamide resin such as Nylon 6, Nylon 66, and Nylon 46, and polyethylene ethylene. Futari Polyester resin such as polyester, polyethylene naphtholate, polybutylene terephthalate, polybutylene terephthalate, polyolefin resin such as polypropylene, polyethylene, etc., or a film thereof, or a film thereof. Laminate. This film may be an unstretched film or a stretched film.
このフィ ルムを製造する方法としては、 熱可塑性樹脂を押出機で 加熱、 溶融して Tダイよ り押し出し、 冷却ロールなどにより冷却固 化させて未延伸フィ ルムを得る方法か、 もしく は熱可塑性樹脂を円 形ダイよ り押し出して水冷あるいは空冷によ り固化させて未延伸フ イ ルムを得る方法がある。 延伸フィルムを製造する場合は、 未延伸 フィルムを一旦巻き取った後、 または未延伸フィルムの製造工程に 連続して、 同時 2軸延伸法または逐次 2軸延伸法によ り延伸するの が好ましい。 フィルムの機械的特性や厚み均一性などの性能面から は、 Tダイ によるフラッ 卜式製膜法とテン夕一延伸法とを組み合わ せる方法が好ましい。  This film can be produced by heating or melting a thermoplastic resin with an extruder, extruding it through a T-die, and cooling and solidifying it with a cooling roll to obtain an unstretched film. There is a method in which an unstretched film is obtained by extruding a plastic resin from a circular die and solidifying it by water cooling or air cooling. In the case of producing a stretched film, it is preferable that the film is stretched by a simultaneous biaxial stretching method or a sequential biaxial stretching method after winding the unstretched film once or continuously with the process of producing the unstretched film. From the viewpoint of performance such as mechanical properties and thickness uniformity of the film, a method in which a flat type film forming method using a T-die and a tensile stretching method are preferred.
(コーティ ング剤の組成)  (Composition of coating agent)
本発明のガスバリ ア性フィルムを構成するコ一 卜層は、 ビニルァ ルコール単位を含有するビニル系ポリマー (A ) と、 マレイ ン酸単 位を含有するビニル系ポリマー ( B ) とを含む。  The coating layer constituting the gas barrier film of the present invention contains a vinyl polymer (A) containing a vinyl alcohol unit and a vinyl polymer (B) containing a maleic acid unit.
このうち、 ビニルアルコール単位を含有するビニル系ポリマー ( A ) (以下、 単に 「ポリマ一 ( A ) 」 と称することがある) は、 ビニルエステルの重合体、 またはビニルエステルと他のビニル系モ ノマーとの共重合体を完全または部分ケン化する方法により得るこ とができる。  Among them, a vinyl-based polymer (A) containing a vinyl alcohol unit (hereinafter sometimes simply referred to as “polymer (A)”) is a polymer of a vinyl ester or a vinyl ester and another vinyl-based monomer. Can be obtained by completely or partially saponifying the copolymer of
ビニルエステルと しては、 ぎ酸ビニル、 酢酸ビニル、 プロ ピオン 酸ビニル、 ピバリ ン酸ビニル、 バーサチッ ク酸ビニル等が挙げられ. 中でも酢酸ビニルが工業的に好ましい。 Vinyl esters include vinyl formate, vinyl acetate, and propion Examples thereof include vinyl acid, vinyl pivalate, and vinyl versatate. Among them, vinyl acetate is industrially preferable.
ビニルエステルと共重合させる他のビニル系モノマーとしては、 クロ トン酸、 アク リル酸、 メ夕ク リル酸等の不飽和モノカルボン酸 およびそのエステル、 塩、 無水物、 アミ ド、 二 卜 リル類や、 マレイ ン酸、 ィタコン酸、 フマル酸などの不飽和ジカルボン酸およびその 塩、 炭素数 2 〜 3 0の α —ォレフイ ン類、 アルキルビニルエーテル 類、 ビニルピロ リ ドン類などが挙げられる。  Other vinyl monomers to be copolymerized with vinyl esters include unsaturated monocarboxylic acids such as crotonic acid, acrylic acid, and methyl acrylate, and esters, salts, anhydrides, amides, and nitriles thereof. And unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof, α-olefins having 2 to 30 carbon atoms, alkyl vinyl ethers, vinyl pyrrolidone and the like.
上記のポリマーはケン化されビニルエステル基の全部または一部 がビニルアルコール単位となる。 ゲン化方法としては公知のアル力 リ ケン化法や酸ゲン化法を用いることができ、 中でもメタノール中 で水酸化アルカ リ を使用 して加アルコール分解する方法が好ましい, ケン化度は 1 0 0 %に近いほどガスバリ ァ性の観点からは好まし いが、 ケン化度が 1 0 0 %に近い場合には、 水溶液の温度が低く な るとゲル化する懸念があり、 保存には温度管理が必要である。 ケン 化度を若干低下させて、 例えば 9 7 %程度にすると、 溶液の安定性 は格段に増し、 またバリ ア性能の低下もほとんどない。 しかし、 ケ ン化度が低すぎるとバリ ア性能が低下する。 好ましいケン化度は約 8 0 %以上である。  The above polymer is saponified and all or a part of the vinyl ester group becomes a vinyl alcohol unit. Known methods for the alcoholic acid saponification and the acid-genation can be used as the method for the salification. Among them, the method of alcoholysis using methanol in methanol is preferable, and the degree of saponification is 10. It is preferable from the viewpoint of gas barrier properties that the value is close to 0%, but when the saponification degree is close to 100%, there is a concern that the aqueous solution may gel when the temperature of the aqueous solution becomes low. Management is required. If the degree of saponification is slightly reduced to, for example, about 97%, the stability of the solution is remarkably increased, and the barrier performance is hardly reduced. However, if the degree of saponification is too low, the barrier performance decreases. The preferred degree of saponification is about 80% or more.
ビニル系ポリマー (Α ) 中のビニルアルコール単位の含有量は、 全ビニル基単位に対して 4 0 モル%以上であることが必要である。 ビニルアルコール単位の含有量が 4 0モル%より少ないと、 十分な ガスバリ ア性を有するフィ ルムを得ることができない。 これは、 ビ ニルアルコール単位の水酸基が、 マレイ ン酸単位を含有するビニル 系ポリマー ( Β ) と反応して架橋構造を形成する反応性基として働 くだけでなく 、 ビニルアルコール単位における未反応の水酸基の強 い凝集力がガスバリ ア性を高めるのに有効に働くからである。 The content of vinyl alcohol units in the vinyl polymer (III) must be at least 40 mol% based on all vinyl group units. When the content of the vinyl alcohol unit is less than 40 mol%, a film having a sufficient gas barrier property cannot be obtained. This is because the hydroxyl group of the vinyl alcohol unit acts as a reactive group that forms a crosslinked structure by reacting with the vinyl polymer (反 応) containing the maleic acid unit. Not only that, the strong cohesive force of unreacted hydroxyl groups in the vinyl alcohol unit works effectively to enhance gas barrier properties.
ビニル系ポリマー ( A ) の最も好適な例としては、 ポリ ビニルァ ルコール (以下 「 P V A」 と称する) を挙げることができるが、 無 水マレイ ン酸基や他のビニル系ポリマーを共重合したものでもよい, また、 ビニルアルコール単位の一部を化学的に修飾したものを用い ることもできる。  The most preferred example of the vinyl-based polymer (A) is polyvinyl alcohol (hereinafter referred to as “PVA”), but copolymers of water-free maleic acid groups or other vinyl-based polymers may also be used. Good, or a partially modified vinyl alcohol unit may be used.
マレイ ン酸単位を含有するビニル系ポリマー ( B ) (以下、 単に 「ポリマー ( B ) 」 と称することがある) は、 無水マレイ ン酸と他 のビニル系モノマーを溶液ラジカル重合などの公知の方法で重合す ることにより得られる。  A vinyl polymer (B) containing maleic acid units (hereinafter sometimes simply referred to as “polymer (B)”) is prepared by a known method such as solution radical polymerization of maleic anhydride and another vinyl monomer. It is obtained by polymerizing with.
他のビニル系モノマーとしては、 メチルビニルエーテル、 ェチル ビニルエーテルなどの炭素数 3〜 3 0 までのアルキルビニルエーテ ル類、 (メタ) アク リル酸メチル、 (メタ) アク リル酸ェチル、 (メタ) アク リル酸ブチル等の (メタ) アク リル酸エステル類、 ぎ 酸ビニル酢酸ビニルなどのビニルエステル類、 スチレン、 p —スチ レンスルホン酸、 エチレン、 プロピレン、 イソプチレンなどの炭素 数 2〜 3 0 のォレフィ ンなどが挙げられる。 これらの混合物を用い ることもできる。  Other vinyl monomers include alkyl vinyl ethers having 3 to 30 carbon atoms, such as methyl vinyl ether and ethyl vinyl ether, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylyl. (Meth) acrylic acid esters such as butyl acid, vinyl esters such as vinyl vinyl formate, styrene, p-styrenesulfonic acid, and C2-C30 olefins such as ethylene, propylene and isobutylene, etc. Is mentioned. These mixtures can also be used.
このうち、 アルキルビニルエーテル類、 低級ォレフィ ン類などが ガスバリ ァ性の向上の点で最も好ましく、 中でもメチルビニルエー テル—無水マレイ ン酸共重合体、 ィ ソブチレン一無水マレイ ン酸共 重合体、 エチレン一無水マレイ ン酸共重合体が優れている。  Of these, alkyl vinyl ethers and lower olefins are the most preferable in terms of improving gas barrier properties. Among them, methyl vinyl ether-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, ethylene The maleic anhydride copolymer is excellent.
ポリマー ( B ) 中のマレイ ン酸単位は、 1 0モル%以上である こ とが必1 である。 マレイ ン酸単位が 1 0モル%より少ないと、 ポリ マー ( A ) 中のビニルアルコール単位との反応による架橋構造の形 成が不十分となってガスバリ ァ性が低下する。 またこのマレイ ン酸 は部分的にエステル化も しく はアミ ド化されていてもよく 、 マレイ ン酸のカルボキシル基の一部がアルカ リ化合物により中和されてい ても良い。 Maleic phosphate units in the polymer (B) is a this Toga必1 is 1 0 mol% or more. If the content of maleic acid units is less than 10 mol%, poly The formation of the crosslinked structure by the reaction with the vinyl alcohol unit in the monomer (A) is insufficient, and the gas barrier property is reduced. The maleic acid may be partially esterified or amidated, and a part of the carboxyl group of the maleic acid may be neutralized by an alkali compound.
ポリマー ( A ) とポリマー ( B ) を混合して液状のコー ト剤を調 製する際には、 ポリマー ( B ) 中のカルボキシル基に対してアル力 リ化合物を適量添加して、 液の安定性の改良や、 コー トフィルムの 性能の改良を図ることができる。 アルカ リ化合物の添加量は使用す るポリマーの種類や配合量によ り適宜選択されるべきものであるが 特にポリマー ( B ) としてメチルビニルエーテル—無水マレイ ン酸 共重合体を用いるときには、 アルカ リ化合物をポリマー ( B ) の力 ルポキシル気に対して 0 . 1 〜 2 0 %当量添加し、 液の p Hを 2 . 8 〜 3 . 7 に調整することが好ましい。 こうすることで、 得られる フィルムのガスバリ ア性が格段に向上される。  When preparing a liquid coating agent by mixing the polymer (A) and the polymer (B), an appropriate amount of an alcohol compound is added to the carboxyl group in the polymer (B) to stabilize the liquid. Properties and the performance of the coated film can be improved. The amount of the alkali compound to be added should be appropriately selected depending on the type and blending amount of the polymer to be used. In particular, when a methyl vinyl ether-maleic anhydride copolymer is used as the polymer (B), the alkali compound is added. It is preferable to add the compound in an amount of 0.1 to 20% equivalent to the lipoxyl gas of the polymer (B) and adjust the pH of the solution to 2.8 to 3.7. By doing so, the gas barrier properties of the obtained film are remarkably improved.
後にも述べる力 、 本発明ではこう して調整したコー ト剤をフィ ル ムにコー ト し、 乾燥そしてさ らに熱処理を行って架橋反応を進行さ せる必要がある。 本発明者らの研究によると、 液の p Hを 2 . 8 〜 3 . 7 に調整すると、 ごく短時間の熱処理によってガスバリ ア性の 向上が見られることがわかり、 工業上非常に有利であることが判明 した。  According to the present invention, it is necessary to coat the thus prepared coating agent on a film, dry it, and further perform a heat treatment to advance a crosslinking reaction. According to the study of the present inventors, it was found that when the pH of the solution was adjusted to 2.8 to 3.7, the gas barrier property was improved by a very short heat treatment, which is extremely industrially advantageous. It has been found.
アルカ リ化合物と しては、 ポリマ一 ( B ) 中のカルボキシル基を 中和できるものであればよく 、 アルカ リ金属やアルカ リ土類金属の 水酸化物、 水酸化アンモニゥム、 有機アミ ン類等が挙げられる。 ポリマー ( B ) 中のマレイ ン酸単位は、 乾燥状態では隣接カルボ キシル基が脱水環化した無水マレイ ン酸構造となりやすく 、 湿潤時 や水溶液中では開環してマレイ ン酸構造となる。 Any alkali compound may be used as long as it can neutralize the carboxyl group in the polymer (B), such as hydroxides of alkali metals and alkaline earth metals, ammonium hydroxide, and organic amines. Is mentioned. The maleic acid units in the polymer (B) are adjacent carbohydrates in the dry state. The xyl group is liable to become a maleic anhydride structure dehydrated and cyclized, and when wet or in an aqueous solution the ring is opened to form a maleic acid structure.
コ一ティ ング剤によってフィルムの表面に形成されるコー 卜層に おいて、 ビニルアルコール単位を含有するポリマー (A ) とマレイ ン酸単位を含有するポリマー ( B ) との組成の割合は、 質量比で 9 7 / 3 〜 2 0 / 8 0 の範囲であることが必要である。 この範囲を外 れる場合には、 特に高湿度雰囲気下においてフィ ルムのガスバリ ァ 性が不十分となる。  In the coating layer formed on the surface of the film by the coating agent, the composition ratio of the polymer (A) containing a vinyl alcohol unit and the polymer (B) containing a maleic acid unit is expressed by mass. It is necessary that the ratio be in the range of 97/3 to 20/80. Outside of this range, the gas barrier properties of the film will be insufficient, especially in a high humidity atmosphere.
(架橋剤)  (Crosslinking agent)
ポリマ一 (A ) とポリマー ( B ) との合計 1 0 0質量部に対して 架橋剤を 0 . 1 〜 2 0質量部の範囲で含有させることで、 非常に短 時間の熱処理によっても高いガスバリ ア性を発現させることができ る。  By including a crosslinking agent in a range of 0.1 to 20 parts by mass with respect to a total of 100 parts by mass of the polymer (A) and the polymer (B), high gas burrs can be obtained even by a very short heat treatment. Can be expressed.
架橋剤の量が 0 . 1 質量部以下では充分な架橋効果を得ることが できず、 また、 2 0質量部よ り多い場合は、 架橋剤がガスバリ ア性 の阻害因子となって、 ガスバリア性が低下してしまう。  If the amount of the cross-linking agent is less than 0.1 part by mass, a sufficient cross-linking effect cannot be obtained.If the amount is more than 20 parts by mass, the cross-linking agent acts as an inhibitor of gas barrier properties, resulting in gas barrier properties. Will decrease.
このような架橋剤としては、 水酸基あるいはカルボキシル基と反 応する官能基を分子内に複数個含有する化合物または多価の配位座 を持つ金属錯体などが挙げられる。 このうち好ましいものはイ ソシ ァネー ト化合物、 メ ラミ ン化合物、 エポキシ化合物、 カルポジイ ミ ド化合物、 シリル基含有化合物、 ジルコニウム塩化合物等である。  Examples of such a cross-linking agent include a compound containing a plurality of functional groups that react with a hydroxyl group or a carboxyl group in a molecule or a metal complex having a polyvalent coordination site. Of these, preferred are an isocyanate compound, a melamin compound, an epoxy compound, a carbodiimide compound, a silyl group-containing compound, a zirconium salt compound and the like.
(無機層状化合物)  (Inorganic layered compound)
ポリマー ( A ) とポリマー ( B ) との混合物中に、 水膨潤性の層 状無機化合物を添加することによって、 得られるフィ ルムのガスバ リ ア性をさ らに向 _ヒさせることができる。 ここにいう無機層状化合物とは、 単位結晶層が重なって層状構造 を形成する無機化合物のことを指す。 この無機層状化合物の好まし い例としては、 モンモリ ロナイ 卜、 パイデライ 卜、 サボナイ 卜、 へ ク トライ ト、 ソーコナイ 卜、 バーミキユライ ト、 フッ素雲母、 白雲 母、 パラゴナイ ト、 金雲母、 黒雲母、 レビ ドライ ト、 マーガライ 卜 ク リ ン 卜ナイ ト、 ァナンダイ ト、 緑泥石、 ドンパサイ 卜、 ス ド一ァ イ ト、 ク ッケアイ ト、 ク リ ノ クロア、 シャモサイ ト、 二マイ ト、 テ トラシリ リ ックマイ力、 夕 レク、 ノ°イ ロフィ ライ 卜、 ナクライ 卜、 力オリナイ 卜、 八ロイサイ ト、 ク リ ソタイル、 ナ ト リ ウムテニオラ イ ト、 ザンソフイ ライ ト、 アンチゴライ 卜、 デイ ツカイ ト、 ハイ ド 口タルサイ トなどがあり、 膨潤性フッ素雲母又はモンモリ ロナイ ト が特に好ましい。 By adding a water-swellable layered inorganic compound to the mixture of the polymer (A) and the polymer (B), the gas barrier property of the obtained film can be further improved. The term “inorganic layered compound” as used herein refers to an inorganic compound in which unit crystal layers overlap to form a layered structure. Preferred examples of the inorganic layered compound include montmorillonite, pidelite, savonite, hectolite, sauconite, vermiculite, fluoromica, muscovite, paragonite, phlogopite, biotite, levy dry , Margarite clintonite, anandite, chlorite, donpasite, suidoite, cookeite, clinocroix, shamosite, nimaito, tetrasiririkmai power, evening Rek, non-filo-light, nacryate, force-origin, eightloite, chrysotile, sodium teniolite, zansofilite, anti-golite, date kite, hide mouth talcite, etc. Swellable fluoromica or montmorillonite is particularly preferred.
これらの無機層状化合物は、 天然に産するものであっても、 人工 的に合成あるいは変性されたものであってもよく、 またそれらをォ ニゥム塩などの有機物で処理したものであってもよい。  These inorganic stratiform compounds may be naturally occurring, artificially synthesized or modified, or may be those treated with an organic substance such as an onium salt. .
上記無機層状化合物の中で、 膨潤性フッ素雲母系鉱物は、 透明度 の点で最も好ましい。 この膨潤性フッ素雲母系鉱物は、 次式で示さ れるもので、 公知の製法によって容易に合成できるものである。  Among the inorganic layered compounds, swellable fluoromica-based minerals are most preferred in terms of transparency. This swellable fluoromica-based mineral is represented by the following formula and can be easily synthesized by a known production method.
( M F ) · β ( a M g F 2 - b M g O ) · r S i O z (式中、 Mはナ ト リ ウム又はリチウムを表す。 ひ 、 β ァ、 a及び bは各々係数を表し、 0 . 1 ≤ α ≤ 2 、 2 ≤ β ≤ 3 . 5 、 3 ≤ r ≤ 4 、 0 ≤ a ≤ 1 < 0 ≤ b ≤ 1 , a + b = l である。 ) (MF) · β (a M g F 2 - b M g O). During · r S i O z (wherein, M represents fire na Application Benefits um or lithium, beta §, a and b each coefficient Represents 0.1 ≤ α ≤ 2, 2 ≤ β ≤ 3.5, 3 ≤ r ≤ 4, 0 ≤ a ≤ 1 <0 ≤ b ≤ 1, a + b = l.)
これらの無機層状化合物の配合量は、 0 . 1 〜 5 0質量部が好ま しい。 0 . 1 質量部未満ではガスバリ ア性の向上効果が不十分であ る。 反対に 5 0 ¾量部よ り多いと、 ガスバリ ァ性はさ らに向 ヒする 力 層状珪酸塩がコーティ ング液中で均一分散しにく くなつて、 コ 一 卜層の性能が不均一になったり、 得られるガスバリ アフィルムの 柔軟性が低下して、 印刷ゃラミネ一 ト等の包装材料としての各種の 加工工程において問題が生じやすく なる。 The compounding amount of these inorganic layered compounds is preferably from 0.1 to 50 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving gas barrier properties is insufficient. Conversely, if the amount is more than 50 parts by weight, gas barrier properties are further enhanced. When the layered silicate becomes difficult to disperse evenly in the coating liquid, the performance of the coating layer becomes uneven, and the flexibility of the obtained gas barrier film is reduced. Problems are more likely to occur in various processing steps for packaging materials such as.
(アク リ ロニ ト リル共重合体)  (Acrylonitrile copolymer)
本発明においては、 ポリマー ( A ) とポリマ一 ( B ) の合計 1 0 0質量部に対して、 アク リ ロニ ト リル単位を 7 0質量%以上含むァ ク リル系共重合体を 2 0 0質量部以下の範囲で含有することで、 コ ー ト剤の液特性を改良することができる。  In the present invention, an acrylic copolymer containing 70% by mass or more of an acrylonitrile unit is added to 200 parts by mass of the total of the polymer (A) and the polymer (B). When contained in a range of not more than part by mass, the liquid properties of the coating agent can be improved.
ポリマー ( A ) とポリマー ( B ) からなるコー ト剤は液の粘性が 高く、 生産設備によっては使用の制約を受ける場合がある。 しかし ながら、 その対策として液の濃度を低く しすぎると、 コー ト剤をフ イルムにコー 卜 した後に塗膜を乾燥する工程に長時間を要し、 この ため生産性が低下し好ましくない。 一般にコー ト剤は高濃度でかつ 低粘性のものが汎用的には好ましい。  The coating agent composed of the polymer (A) and the polymer (B) has a high viscosity of the liquid and may be restricted in use depending on the production equipment. However, if the concentration of the solution is too low as a countermeasure, it takes a long time to dry the coating film after coating the coating agent on the film, which is undesirable because the productivity is lowered. Generally, a coating agent having a high concentration and a low viscosity is generally preferred.
これを改良するために、 コー ト剤に水分散性の成分を加える方法 が考えられる力 一般のァク リル系ラテックスや酢酸ビニル系ラテ ックスなどの水分散体を加えることは、 それによつてガスバリア性 が低下するため好ましくない。  In order to improve this, a possible method is to add a water-dispersible component to the coating agent. Addition of an aqueous dispersion such as general acrylic latex or vinyl acetate-based latex will result in a gas barrier. This is not preferred because the properties are reduced.
アク リ ロニ ト リル単位を 7 0質量%以上含むアク リル系共重合体 は、 自身のガスバリ ア性能が優れており、 これをポリマー (A ) と ポリマー ( B ) からなるコー ト剤に加えることで、 ガスバリ ア性の 低下を招かずに、 コー ト剤の粘度を低下させることができる。  Acryl-based copolymers containing 70% by mass or more of acrylonitrile units have excellent gas barrier properties and can be added to a coating agent consisting of polymer (A) and polymer (B). Thus, the viscosity of the coating agent can be reduced without lowering the gas barrier properties.
このアク リ ロニ ト リル共重合体は、 アク リ ロニ ト リルを 7 0質量 %以 卜 -、 望ま しく は 8 0質量%以上含有し、 その残部は、 ァク リ ロ 二 卜 リルと共重合可能な 1 種以上のビニル単量体 3 0質量%以下望 ましく は 2 0質量%以下である。 アク リ ロニ ト リル共重合体におい て、 アク リ ロニ ト リルが 7 0 %未満では、 充分なガスバリ ァ性が得 られない。 The acrylonitrile copolymer contains acrylonitrile in an amount of 70% by mass or less, desirably 80% by mass or more, and the rest is acrylonitrile. One or more vinyl monomers copolymerizable with nitrile are 30% by mass or less, preferably 20% by mass or less. If the acrylonitrile content of the acrylonitrile copolymer is less than 70%, sufficient gas barrier properties cannot be obtained.
アク リ ロニ ト リルと共重合可能なビニル系単量体は、 特に限定さ れないが、 炭素一炭素不飽和二重結合を有する化合物であり、 (メ 夕) ァク リ レー 卜類、 (メタ) アク リルアミ ド類、 官能基が結合し た (メタ) ァク リ レー ト類、 ビニリデン類、 不飽和結合を有する ウレタン類、 不飽和結合を有するシリ コン類、 フッ素系の不飽和単 量体を使用できる。 特に、 不飽和カルボン酸エステル類、 具体例と してはアク リル酸メチル、 アク リル酸ェチル、 アク リル酸プチル、 ァク リル酸 2 —ェチルへキシルなどが好ましい。  The vinyl monomer copolymerizable with acrylonitrile is not particularly limited, but is a compound having a carbon-carbon unsaturated double bond, and includes (meth) acrylates, (Meth) acrylamides, (meth) acrylates having a functional group bonded thereto, vinylidenes, urethanes having an unsaturated bond, silicons having an unsaturated bond, fluorine-based unsaturated monomers Can use body. In particular, unsaturated carboxylic esters, specifically, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable.
このァク リル系共重合体は、 公知の方法で製造することができる 力 乳化剤の存在下でァク リ ロニ 卜 リルモノマーと他のビニル系単 量体を乳化重合する方法が好適である。 乳化剤としては, 脂肪酸石 鹼類、 有機スルホン酸塩類、 ポリ ビニルアルコール、 メチルビニル エーテル一無水マレイ ン酸共重合体、 イソブチレン一無水マレイ ン 酸などのォレフィ ンー無水マレイ ン酸共重合体、 ポリ ビニルピロ り ドン等があげられ、 これらの内の 1 種または 2種以上の混合物を用 いることができる。 .  The acryl-based copolymer is preferably prepared by emulsion polymerization of an acrylonitrile monomer and another vinyl-based monomer in the presence of a power emulsifier which can be produced by a known method. Examples of emulsifiers include fatty acid minerals, organic sulfonates, polyvinyl alcohol, methyl vinyl ether-maleic anhydride copolymers, and copolymers of olefin-maleic anhydride such as isobutylene-maleic anhydride, polyvinylpyrrole. And one or a mixture of two or more of these. .
重合開始剤、 界面活性剤等などの種類は特に限定されないが、 こ れらの物質はラテックスから生成させた塗膜中に残存してガスバリ ァ性を劣化させる要因となり うるので、 その使用量は可能な限り少 量であることが好ましい。  The type of polymerization initiator, surfactant, etc. is not particularly limited.However, since these substances remain in the coating film formed from the latex and cause deterioration of the gas barrier property, the amount of the substances used is limited. It is preferable that the amount is as small as possible.
また、 高分子 ]¾の 二 ト リル共重合体は溶融流動性が劣るため、 分子量調節剤を添加して低分子量とすることが望ましい。 In addition, the nitrile copolymer of [polymer] ¾ has poor melt fluidity, It is desirable to add a molecular weight regulator to reduce the molecular weight.
こう して得られた高二 ト リル共重合体はポリマー ( A ) およびポ リマー ( B ) と混合して用いられる。 混合する割合は、 ポリマー ( A ) とポリマー ( B ) との合計 1 0 0質量部に対して 2 0 0質量 部以下の範囲である。 高二 ト リル共重合体の量が 2 0 0質量部を超 えるとガスバリア性が低下し、 また造膜性が悪化して良好な塗膜が 得られない。  The high nitrile copolymer thus obtained is used as a mixture with the polymer (A) and the polymer (B). The mixing ratio is within a range of 200 parts by mass or less with respect to the total 100 parts by mass of the polymer (A) and the polymer (B). If the amount of the high nitrile copolymer exceeds 200 parts by mass, the gas barrier properties decrease, and the film-forming properties deteriorate, so that a good coating film cannot be obtained.
高二 トリルラテックスの重合時にポリマ一 (A ) あるいはポリマ 一 ( B ) が乳化剤などとしての目的で混合された場合は、 これらの 量も考慮してコー ト剤の配合量が決定される。  When the polymer (A) or the polymer (B) is mixed for the purpose of emulsifier or the like at the time of polymerization of the high nitrile latex, the amount of the coating agent is determined in consideration of these amounts.
このコー ト剤には、 その特性を大きく損わない限り において、 熱 安定剤、 酸化防止剤、 強化材、 顔料、 劣化防止剤、 耐候剤、 難燃剤 可塑剤、' 離型剤、 滑剤などが添加されていてもよい。  This coating agent includes heat stabilizers, antioxidants, reinforcing agents, pigments, deterioration inhibitors, weathering agents, flame retardants, plasticizers, release agents, lubricants, etc., as long as the properties are not significantly impaired. It may be added.
熱安定剤、 酸化防止剤及び劣化防止剤としては、 たとえばヒンダ ー ドフエノール類、 リ ン化合物、 ヒンダー ドアミ ン類、 ィォゥ化合 物、 銅化合物、 アルカ リ金属のハロゲン化物あるいはこれらの混合 物が挙げられる。  Examples of the heat stabilizer, antioxidant and deterioration inhibitor include hindered phenols, phosphorus compounds, hindered amines, zeo compounds, copper compounds, alkali metal halides, and mixtures thereof. .
(コー ト剤の調整)  (Coating agent adjustment)
コー ト剤の調整は、 撹拌機を備えた溶解釜等を用いて、 公知の方 法で行う ことができる。 たとえば、 ポリマー ( A ) とポリマー The coating agent can be adjusted by a known method using a dissolving pot equipped with a stirrer or the like. For example, polymer (A) and polymer
( B ) を別々に水溶液もしく は水分散液と し、 使用前に混合して用 いる方法が好ましい。 このとき、 溶解性を高める目的や、 乾燥工程 を短縮する目的や、 溶液の安定性を改善する目的などによ り、 水に アルコールや有機溶媒を少量添加することもできる。 また、 反応の 触媒となる化合物を添加することもできる。 ポリマー (A ) とポリ マー ( B ) とを含有したコー ト層の厚みは フィルムのガスバリ ア性を十分高めるためには少なく とも 0 . 1 mより も厚いことが望ましい。 It is preferable to use (B) separately as an aqueous solution or an aqueous dispersion and to mix them before use. At this time, a small amount of an alcohol or an organic solvent can be added to water for the purpose of increasing the solubility, shortening the drying step, or improving the stability of the solution. Further, a compound serving as a catalyst for the reaction can be added. The thickness of the coat layer containing the polymer (A) and the polymer (B) is desirably at least greater than 0.1 m in order to sufficiently enhance the gas barrier properties of the film.
コー 卜剤をフィ ルムにコー 卜する際のポリマー濃度は、 液の粘度 や反応性、 用いる装置の仕様などによって適宜変更されるものであ る。 この濃度があまり に希薄であると、 ガスバリ ア性を発現するの に必要となる充分な厚みの層をコー 卜することが困難となり、 また その後の乾燥工程において長時間を要するという問題を生じやすい, 一方、 液の濃度が高すぎると、 混合操作や保存性などに問題を生じ ることがある。 このような観点から、 ポリマー濃度は、 溶液全体の 1 〜 5 0質量%の範囲にすることが好ましい。  The polymer concentration when the coating agent is coated on the film can be appropriately changed depending on the viscosity and reactivity of the liquid, the specifications of the equipment used, and the like. If the concentration is too low, it becomes difficult to coat a layer having a sufficient thickness necessary to exhibit gas barrier properties, and it is likely to cause a problem that a long time is required in a subsequent drying step. On the other hand, if the concentration of the solution is too high, problems may occur in the mixing operation and the storage stability. From such a viewpoint, the polymer concentration is preferably in the range of 1 to 50% by mass of the whole solution.
コー 卜剤をフィ ルムにコ一ティ ングする方法は、 特に限定されな い力 グラビア口一ルコ一ティ ング、 リバースロールコーティ ング メイヤーバーコ一ティ ング、 ダイ コーティ ング等の通常の方法を用 いることができる。 コーティ ングは、 フィ ルムの延伸前に行っても よく 、 また延伸後のフィルムに行ってもよい。  The coating method of the coating agent on the film is not particularly limited, and ordinary methods such as gravure mouth coating, reverse roll coating, meyer bar coating, and die coating are used. be able to. The coating may be performed before stretching the film, or may be performed on the stretched film.
この際に、 必要に応じて塗工性を改善させるために、 コ一ティ ン グに先立って、 フィルムの表面をコロナ放電処理したり、 フィルム の表面にポリエステル系樹脂、 アク リル系樹脂、 ウレタン系樹脂、 ポリ ビニルアルコール系樹脂、 シリル基含有樹脂、 メラミ ン系樹脂 も しく はこれらの混合物などをプライマー層としてコーティ ングす るなどの、 通常公知の処理を施しても良い。  At this time, the surface of the film is subjected to a corona discharge treatment prior to coating, or a polyester-based resin, an acrylic-based resin, A commonly known treatment such as coating a primer resin with a resin, a polyvinyl alcohol resin, a silyl group-containing resin, a melamine resin, or a mixture thereof may be applied.
延伸に先だってコ一ティ ングを行う ときには、 未延伸フィルムに コーティ ングを施して乾燥させた後、 テン夕一式延伸機に供給して フィ ルムを;Ji行方向と幅方向に同時に延伸し (同時 2籼延仲) 熱処. 理する力、、 あるいは、 多段熱ロール等を用いてフィルムの走行方向 に延仲を行った後にコ一ティ ングし、 乾燥後にテン夕一式延伸機に よって幅方向に延伸してもよい (逐次 2軸延伸) 。 走行方向の延伸 とテン夕—での同時 2 蚰延伸とを組み合わせることも可能である。 延伸に先だってコーティ ングし、 その後に延伸、 熱処理を行う方 法は、 延伸、 熱処理時の高い温度を架橋反応に利用できるので、 好 ましい。 When coating is performed prior to stretching, the unstretched film is coated and dried, and then supplied to a ten-stretch type stretching machine to stretch the film simultaneously in the Ji row direction and the width direction (simultaneously). 2 籼 Nobunaka) Heat treatment. After stretching in the running direction of the film using a multi-stage heat roll or the like, coating is performed, and after drying, the film may be stretched in the width direction by a ten-in-one stretching machine (sequentially) Biaxial stretching). It is also possible to combine the stretching in the running direction with the simultaneous stretching in two directions. Coating prior to stretching, followed by stretching and heat treatment, is preferred because the high temperature during stretching and heat treatment can be used for the crosslinking reaction.
延伸前のコー ト層の水分率は、 0 . 1 〜 5 0質量%であることが 好ましく 、 さ らには 1 〜 5 0質量%、 特に 2 〜 5 0質量%であるこ とが好ましい。 この水分率が 0 . 1 質量%以下の場合は、 コー ト層 の剥離やひび割れが生じ易くなる。 一方、 この水分率が 5 0質量% を越えると、 コー ト層の乾燥効率が低下するとともに、 延伸時のフ イルム切断等の トラブルの原因にもなる。  The moisture content of the coat layer before stretching is preferably 0.1 to 50% by mass, more preferably 1 to 50% by mass, and particularly preferably 2 to 50% by mass. If the water content is less than 0.1% by mass, the coating layer is liable to peel or crack. On the other hand, if the water content exceeds 50% by mass, the drying efficiency of the coat layer is reduced and causes troubles such as film cutting during stretching.
延伸前のコー ト層の水分率は、 コー 卜剤の固形分濃度及びコー 卜 層の厚み等により異なるが、 乾燥機の温度および乾燥時間を変える ことによ り、 目的の範囲に制御することができる。  The moisture content of the coat layer before stretching varies depending on the solid content of the coating agent, the thickness of the coat layer, etc., but should be controlled to the desired range by changing the temperature and drying time of the dryer. Can be.
コー 卜層はフィ ルムの片面あるいは両面に形成される力^ このコ — 卜層においてポリマー (A ) とポリマー ( B ) を架橋反応させる ために、 温度 1 5 0 °C以上、 好ましく は 1 8 0で以上の雰囲気で熱 処理することが好ましい。  The coat layer is a force formed on one or both sides of the film. In order to cause a cross-linking reaction between the polymer (A) and the polymer (B) in the coat layer, the temperature is 150 ° C. or higher, preferably 18 ° C. It is preferable to carry out heat treatment in an atmosphere of 0 or more.
熱処理温度が低いと架橋反応を充分に進行させることができず、 充分なガスバリ ア性を有するフィ ルムを得ることが困難になる。  If the heat treatment temperature is low, the crosslinking reaction cannot proceed sufficiently, making it difficult to obtain a film having sufficient gas barrier properties.
反対に熱処理温度が高すぎると、 コー ト層ゃ基材フィルムの熱分 解のためにフィ ルムの性能や外観が悪化する。 このため熱処理温度 は 2 3 0 °C以下にすることが望ま しい。 (電子線) Conversely, if the heat treatment temperature is too high, the performance and appearance of the film deteriorate due to thermal decomposition of the coat layer and the base film. Therefore, it is desirable that the heat treatment temperature be 230 ° C or less. (Electron beam)
こう して得られた塗工フィルムは、 これだけでも優れたガスバリ ァ性を示し、 特に熱処理時間を増していく につれガスバリ ァ性が向 上する。 しかし、 あまり長時間の熱処理は生産性を低下させること になる。  The coated film thus obtained exhibits excellent gas barrier properties by itself, and the gas barrier properties are improved particularly as the heat treatment time is increased. However, too long a heat treatment will reduce productivity.
本発明においては、 コー ト、 乾燥、 熱処理を施したフィ ルムに電 子線を照射することで、 ガスバリ ア性をさ らに高めることができる < 照射される電子線の量は 1 M r a d以上 2 0 M r a d以下が好ま しく、 l M r a d以上 1 5 M r a d以下がさ らに望ましい。 電子線 の照射量が 1 M r a dよ り少ないと、 電子線を照射することによる 十分な架橋を導入することができず、 電子線の照射にもとづく ガス ノ リア性の改善が十分でなくなる。 逆に、 照射量が 2 0 M r a dよ り も多すぎてもガスバリ ア性が低下してしまう。 これは過度な照射 により分子鎖が切断するなどの悪影響が出ているためと思われる。 電子線をフィルムに照射することでガスバリ ア性が向上する原因 は明確ではない力^ コー ト層の主成分である P V Aとォレフィ ンー マレイ ン酸共重合体は非常に親和性が高く 、 両者は完全に混合して いるかそうでなくても各成分の ドメイ ンは非常に小さいため、 P V Aはほとんど結晶化しておらず、 そのため分子鎖の拘束が少なく電 子線によって容易に架橋構造が形成されるためと考えられる。 実施例  In the present invention, the gas barrier property can be further enhanced by irradiating the coated, dried, and heat-treated film with an electron beam. <The amount of the irradiated electron beam is 1 Mrad or more. 20 M rad or less is preferable, and l M rad or more and 15 M rad or less is more preferable. If the irradiation amount of the electron beam is less than 1 Mrad, sufficient cross-linking by irradiation with the electron beam cannot be introduced, and the improvement of the gas nori- bility based on the irradiation of the electron beam becomes insufficient. Conversely, if the irradiation dose is more than 20 Mrad, the gas barrier properties will decrease. This is thought to be due to adverse effects such as breakage of molecular chains due to excessive irradiation. It is not clear why the gas barrier property is improved by irradiating the film with an electron beam.The main components of the coating layer, PVA and the copolymer of maleic and maleic acid, have a very high affinity. PVA is hardly crystallized because the domain of each component is very small, even if it is not completely mixed or not.Therefore, there is little restriction of molecular chains, and a crosslinked structure is easily formed by electron beams. It is thought to be. Example
以下に、 本発明の実施例について説明する。 なお、 各種物性値は 下記のよう にして求められた。  Hereinafter, examples of the present invention will be described. In addition, various physical property values were obtained as follows.
酸素透過度 モコン社製酸素バリ ア測定器を用いて、 2 0 °C、 相対湿度 8 5 % の雰囲気における酸素透過度が測定された。 Oxygen permeability The oxygen permeability in an atmosphere at 20 ° C and a relative humidity of 85% was measured using a Mocon oxygen barrier measuring instrument.
コ一 卜層の酸素透過係数 Oxygen permeability coefficient of coating layer
フィルムのガスバリ ア性は、 基材フィルムの種類や厚み、 および コー ト層の厚みによ り変化する。 このため、 コー ト層自体の酸素透 過係数が評価された。  The gas barrier properties of the film vary depending on the type and thickness of the base film and the thickness of the coating layer. Therefore, the oxygen permeability coefficient of the coating layer itself was evaluated.
この酸素透過係数は、 下記式より求められた。  This oxygen permeability coefficient was determined by the following equation.
1 / Q F 二 1 Z Q b + L / P C 1 / QF 2 1 ZQ b + L / PC
ただし、 Q F : コー トフィ ルムの酸素透過度 (m l Zm2 / d a y ZM P a ) Where Q F : oxygen permeability of the coat film (ml Zm 2 / day ZM Pa)
Q B : 熱可塑性樹脂フィルムの酸素透過度 (m l / m 2 / d a y /M P a ) QB: oxygen permeability of the thermoplastic resin film (ml / m 2 / day / MP a)
P c : コー ト層の酸素透過係数 (m l - m/m2 Z d a y ZM P a ) P c: Oxygen permeability coefficient of the coating layer (ml-m / m 2 Z day ZM P a)
L : コー ト層厚み ( m)  L: Coating layer thickness (m)
したがって、 コ一 卜フィ ルムの酸素透過度は、 P c および Lが分 かれば、 上式よ り見積もることができる。  Therefore, the oxygen permeability of the coated film can be estimated from the above equation if P c and L are known.
なお、 以下に示す実施例において使用 したフィ ルムの 2 0 °C、 8 5 % R Hにおける酸素透過度は、 このフイリレムが 2軸延伸 P E Tフ イルム (厚み の場合は 9 0 0 m l /m2 Z d a y /M P a、 このフィルム力 2軸延伸ナイ ロンフィルム (厚み 1 の 場合は 4 0 0 m l Zm2 / d a y ZM P aである。 このため、 コー ト層の酸素透過係数の算出にはこの値が用いられた。 The oxygen permeability of the film used in the following examples at 20 ° C. and 85% RH was as follows. This film was a biaxially stretched PET film (900 ml / m 2 Z day / MP a, if the film strength biaxially stretched nylon film (thickness 1 is 4 0 0 ml Zm 2 / day ZM P a. Therefore, this value is the calculation of the oxygen permeability coefficient of the coat layer Was used.
□一 卜層の水分率 □ Moisture percentage of single layer
コー ト の水分率は、 フィ ルムにコー ト剤をコー 卜 した後、 これ を乾燥して、 延仲前のコー トフィ ルムを採取し、 コー ト層の全質量 を aグラム、 コー ト層中の水の質量を bグラムとして、 ( b / a ) X I 0 0 (質量% ) で定義される。 なお、 コー ト層中の水の質量は コー ト層の全質量から、 コー ト層を完全に乾燥した後の質量を差し 引く ことで求められた。 The moisture content of the coat is determined after coating the film with the coating agent. Is dried, and the coat film of Nobenaka is collected. The total mass of the coat layer is a gram, and the mass of water in the coat layer is b gram. (B / a) XI 00 (mass% ). The mass of water in the coat layer was determined by subtracting the mass after completely drying the coat layer from the total mass of the coat layer.
コー トフイルムの外観 Appearance of coat film
コー トフィルムの外観は、. 目視によ り評価された。 コー ト層の剥 離やひび割れが確認されなかった場合は、 「良好」 と評価された。 反対にコー 卜層の剥離やひび割れが確認された場合は、 「不良」 と 評価された。  The appearance of the coated film was visually evaluated. When no peeling or cracking of the coat layer was observed, the evaluation was “good”. Conversely, if peeling or cracking of the coat layer was observed, it was evaluated as “poor”.
(実施例 1 ) (Example 1)
ポリマー (A) として、 ュニチカケミカル株式会社製ポリ ビニル アルコール U F 0 4 0 G (ケン化度 9 9 %、 平均重合度 5 0 0 ) を純水に溶解し、 1 0質量%の水溶液を得た。 他方、 ポリマー As the polymer (A), a polyvinyl alcohol UF040G (99% saponification degree, average polymerization degree 500) manufactured by Unitika Chemical Co., Ltd. was dissolved in pure water to obtain a 10% by mass aqueous solution. On the other hand, polymer
( B ) として、 International Specialty P roduc t s社製メチルビ二 ルエーテル一マレイ ン酸等モル共重合体 GAN T R E Z AN 1 1 9を G AN T R E Zのカルボンキシル基に対して 5モル%の水酸 化ナ ト リ ウムを含む水溶液に溶解し、 1 0質量%溶液を得た。 次い でポリマー (A) とポリマー ( B ) の質量比が (A) / ( B ) = 7 4 / 2 6 となるよう に両水溶液を混合し、 室温で撹拌して液状のコ 一 ト剤を調製した。 As (B), a methyl vinyl ether-maleic acid equimolar copolymer GAN TREZ AN119 manufactured by International Specialty Products, Inc. was converted to 5 mol% of hydroxylated hydroxyl group based on the carboxyl group of G AN TREZ. It was dissolved in an aqueous solution containing lithium to obtain a 10% by mass solution. Next, the two aqueous solutions are mixed so that the mass ratio of the polymer (A) and the polymer (B) becomes (A) / (B) = 74/26, and the mixture is stirred at room temperature to obtain a liquid coating agent. Was prepared.
このコー ト剤を 2軸延伸 P E Tフィルム (厚み 1 2 m ) 上に乾 燥後の塗膜厚みが約 2 mになるようにメイヤーバー コー 卜 し、 まず 1 0 0 °Cで 2分間乾燥した後、 2 0 0 °Cで 5分間熱処现した。 得られたフィルムの酸素透過度は 4 0 m 1 / 2 / d a y /M P と優れた値を示し、 それから見積も られるコー ト層の酸素透過係 数は 8 4 m l - m/m2 Z d a y ZM P aであった。 This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) with a Meyer bar coat so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 5 minutes. The resulting film has an excellent oxygen permeability of 40 m 1/2 / day / MP, and the estimated oxygen permeability coefficient of the coating layer is 84 ml-m / m 2 Z day ZM Pa.
(比較例 1 )  (Comparative Example 1)
コー ト剤として P V A水溶液だけを用いて、 実施例 1 と同様の操 作を行った。 得られたフィ ルムの酸素透過度は 4 1 0 m 1 / m 2 / d a y / M P aで、 食品包装フィ ルムに供するものとしてはガスバ リ ア性が不足であり、 これから見積もられるコー 卜層の酸素透過係 数は 1 6 5 7 m l · m/ 2 Z d a y ZM P aであった。 The same operation as in Example 1 was performed using only the PVA aqueous solution as the coating agent. The resulting film has an oxygen permeability of 410 m 1 / m 2 / day / MPa, which is insufficient for gas packaging for food packaging films. The oxygen permeation coefficient was 1657 ml · m / 2 Z day ZMPa.
(実施例 2〜 7、 比較例 2 〜 3 )  (Examples 2 to 7, Comparative Examples 2 and 3)
ポリマー (A) 、 ポリマー ( B ) の種類と比率を変えて実施例 1 と同様の操作を行い、 得られたフィ ルムの酸素透過度及びコー ト層 の酸素透過係数を求めた。 その結果を表 1 に示す。 こ こでイ ソバン はクラレ株式会社製イ ソブチレン一無水マレイ ン酸共重合体、 S M A 1 0 0 0および S MA 2 0 0 0 はア トケム社製スチレン一無水マ レイ ン酸共重合体、 E MAは A L D R I C H社製エチレン一無水マ レイ ン酸共重合体である。  The same operation as in Example 1 was performed by changing the types and ratios of the polymer (A) and the polymer (B), and the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer were determined. The results are shown in Table 1. Here, Isoban is an isobutylene-maleic anhydride copolymer manufactured by Kuraray Co., Ltd., SMA1000 and SMA2000 are styrene-monomaleic anhydride copolymers manufactured by Atochem, and E MA is an ethylene-maleic anhydride copolymer manufactured by ALDRICH.
この表 1 に示された結果から、 本発明のフィルムはガスバリ ア性 に優れる有用なものであり、 そのコー ト剤は一般にガスバリ アコ一 卜剤として用いられる P V Aよ り も格段に優れた性能のものである ことがわかる。 表 1 From the results shown in Table 1, the film of the present invention is useful because it has excellent gas barrier properties, and its coating agent has much better performance than PVA, which is generally used as a gas barrier coating agent. It turns out that it is. table 1
フイルム: PET12/i m  Film: PET12 / i m
熱処理: 200°C、 5分  Heat treatment: 200 ° C, 5 minutes
ビニルァ ビニルアル マレイン マレイン酸 ( A) の ( B ) の アルカリ化 アルカリ化合物 コー卜 酸素透過度 コー卜層の酸 ルコール コール単位 酸単位含 単位含有率 質量分率 質量分率 合物 添加量 厚み 素透過係数 含有ポリ 含有率 有ポリ  Vinyla Vinylalmalein Maleic acid (A) Alkalinized (B) Alkali compound Coat Oxygen permeability Acid in the coat layer Coal unit Acid unit content Unit content Mass fraction Mass fraction Compound addition amount Thickness Permeability coefficient Poly content Poly content
マー マー  Ma mar
(A) (モル%) ( B ) (モル%) 質量部 質量部 B中のカルネ'キシ IX m ml/m /d/MPa ml · m ル基に対して /mVd/ Pa (モル%)  (A) (mol%) (B) (mol%) Parts by mass Parts / mVd / Pa (mol%) based on carnetoxy IX in ml B / ml / m / d / MPa ml · m
実施例 1 UF040G 99 Gantrez 50 74 26 NaOH 5 2 40 84 実施例 2 UF040G 99 Gantrez 50 24 76 NaOH 5 2 120 277 実施例 3 UF040G 99 SMA1000 50 47 53 NaOH 5 2 140 332 実施例 4 UF040G 99 S A2000 50 37 63 NaOH 20 1. 9 190 458 実施例 5 EVOH 73 Gantrez 50 47 53 NaOH 5 2. 1 110 263 実施例 6 UF040G 99 イソ'、'ン 04 50 55 45 NaOH 50 2 90 200 実施例 7 UF040G 99 EMA 50 60 40 NaOH 5 2 55 117 比較例 1 UF040G 99 100 0 2. 2 410 1657 比較例 2 UF040G 99 Gantrez 50 7 93 NaOH 5 2. 1 630 4410 比較例 3 UF040G 99 SMA1000 50 7 93 NaOH 5 2 850 30600 Example 1 UF040G 99 Gantrez 50 74 26 NaOH 5 2 40 84 Example 2 UF040G 99 Gantrez 50 24 76 NaOH 5 2 120 277 Example 3 UF040G 99 SMA1000 50 47 53 NaOH 5 2 140 332 Example 4 UF040G 99 S A2000 50 37 63 NaOH 20 1.9 190 458 Example 5 EVOH 73 Gantrez 50 47 53 NaOH 5 2.1 110 263 Example 6 UF040G 99 iso ', ン 04 50 55 45 NaOH 50 2 90 200 Example 7 UF040G 99 EMA 50 60 40 NaOH 5 2 55 117 Comparative Example 1 UF040G 99 100 0 2.2 410 1657 Comparative Example 2 UF040G 99 Gantrez 50 7 93 NaOH 5 2.1 630 4410 Comparative Example 3 UF040G 99 SMA1000 50 7 93 NaOH 5 2 850 30600
(実施例 8〜 1 2 、 比較例 4 ) (Examples 8 to 12, Comparative Example 4)
アルカ リの種類と量を変えて実施例 1 と同様の操作を行い、 コー ト剤を調整した。 得られたコー ト剤を実施例 1 と同様に P E Tフィ ルムにコー ト し、 1 0 0 °Cで 2分間乾燥した後、 時間を変えて熱処 理を行った。 得られたフ ィ ルムの酸素透過度及びコー ト層の酸素透 過係数を表 2 に示す。  The same operation as in Example 1 was performed by changing the type and amount of the alkali, and the coating agent was adjusted. The obtained coating agent was coated on a PET film in the same manner as in Example 1, dried at 100 ° C. for 2 minutes, and then heat-treated for different times. Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
(実施例 1 3 )  (Example 13)
ポリマー (A) として、 上述の U F 0 4 0 Gを純水に溶解し、 2 0質量%の水溶液を得た。 ポリマー ( B ) として、 上述の G A N T R E Z AN 1 1 9 をカルボン酸単位に対して 5モル%の水酸化ナ ト リ ウムを含む水溶液に溶解し、 2 0質量%溶液を得た。  As the polymer (A), the above-mentioned UF040G was dissolved in pure water to obtain a 20% by mass aqueous solution. As a polymer (B), the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 5 mol% of sodium hydroxide with respect to the carboxylic acid unit to obtain a 20% by mass solution.
次いで、 ポリマー (A) とポリマー ( B ) の質量比が (A) / ( B ) 7 0 Z 3 0 となるよう に両水溶液を混合し、 コー ト剤を調 製した。  Next, both aqueous solutions were mixed so that the mass ratio of the polymer (A) and the polymer (B) became (A) / (B) 70Z30, to prepare a coating agent.
次に、 Tダイを備えた押出機 ( 7 5 m m径、 L Z Dが 4 5 の緩圧 縮タイ プ単軸スク リ ュー) を用いて、 シンリ ンダ一温度 2 6 0 °C、 Tダイ温度 2 8 0 °Cで P E T樹脂をシー ト状に押し出し、 表面温度 1 0 °Cに調節された冷却ロール上に密着させて急冷し、 厚み 1 2 0 mの未延伸フィルムと した。 続いて、 この未延伸フィルムをグラ ビアロール式コ一夕一に導き、 乾燥後のコー ト厚みが 2 0 mにな るよう にコー 卜剤をコーティ ングし、 8 0 °Cの熱風ドライヤー中で 3 0秒間乾燥した。 次に、 このフィ ルムをテン夕一式同時 2 軸延伸 機に供給し、 温度 1 0 0 °Cで 2秒間予熱した後、 9 5 °Cで、 縦方向 に 3倍、 横方向に 3 . 5倍の倍率で延伸した。  Next, using an extruder equipped with a T die (slow compression type single screw screw with a diameter of 75 mm and an LZD of 45), the temperature of the thin cylinder was 260 ° C, and the temperature of the T die was 2 ° C. At 80 ° C, the PET resin was extruded in a sheet form, closely adhered to a cooling roll adjusted to a surface temperature of 10 ° C, and rapidly cooled to obtain an unstretched film having a thickness of 120m. Subsequently, the unstretched film is guided through a gravure roll type coater, coated with a coating agent so that the coat thickness after drying becomes 20 m, and heated in a hot air dryer at 80 ° C. Dried for 30 seconds. Next, this film is fed to a ten-set simultaneous biaxial stretching machine, preheated at 100 ° C for 2 seconds, and then tripled in the vertical direction and 3.5 times in the horizontal direction at 95 ° C. The film was stretched at twice the magnification.
延仲されたフィルムに、 橫方向弛緩率 5 %で、 2 0 0 °Cで 1 5秒 間の熱処理を行い、 室温まで冷却後、 このフィ ルムを巻き取った。 得られたフ ィ ルムの酸素透過度及びコー ト層の酸素透過係数を表 2 に示す。 15 seconds at 200 ° C with 5% relaxation in the 橫 direction The film was rolled up after a heat treatment for a period of time and cooling to room temperature. Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
(実施例 1 4 )  (Example 14)
実施例 1 3で用いたのと同一の押出機を用いて、 シンリ ンダ一温 度 2 6 0 °C 、 Tダイ温度 2 7 0 °Cでナイ ロン 6樹脂をシー 卜状に押 し出し、 表面温度 1 0 °Cに調節された冷却ロール上に密着させて急 冷し、 厚み 1 5 0 Ai mの未延伸フィルムとした。 続いて、 この未延 伸フィルムをグラビアロール式コ一夕一に導き、 実施例 1 3 で用い たのと同じ液を同じ条件でコーティ ングおよび乾燥した。 次に、 延 伸時の温度条件を 1 7 0 °Cとしたこと以外は実施例 1 3 と同じ条件 としてフィルムを製造した。  Using the same extruder as used in Example 13, Nylon 6 resin was extruded in a sheet shape at a temperature of 260 ° C. for the thin cylinder and 270 ° C. for the T-die, The film was quenched by closely contacting it on a cooling roll adjusted to a surface temperature of 10 ° C. to obtain an unstretched film having a thickness of 150 Aim. Subsequently, the unstretched film was led to a gravure roll type coater overnight, and the same liquid as used in Example 13 was coated and dried under the same conditions. Next, a film was produced under the same conditions as in Example 13 except that the temperature condition during stretching was set to 170 ° C.
得られたフィ ルムの酸素透過度及びコー ト層の酸素透過係数を表 2 に示す。  Table 2 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
表 2 の結果から、 コー ト剤の中和度および p Hを適切に調整する ことで、 比較的短時間の熱処理でも優れたガスバリ ァ性のフィ ルム を得ることが可能なことがわかる。 From the results in Table 2, it can be seen that by appropriately adjusting the degree of neutralization and pH of the coating agent, a film having excellent gas barrier properties can be obtained even with a relatively short heat treatment.
表 2 Table 2
(A)ポリビニルアルコール: UF040G  (A) Polyvinyl alcohol: UF040G
(B)無水マレイン酸ポリマー : Gantrez ΑΝΠ9  (B) Maleic anhydride polymer: Gantrez ΑΝΠ9
基材フィルム フィルム厚み (A) 1 (B) アルカリ化合物 アルカリ化合 液の pH 熱処理温度熱処理 コー卜 酸素透過度 コー卜層の酸  Base film Film thickness (A) 1 (B) Alkali compound Alkali compound pH heat treatment temperature heat treatment Coat Oxygen permeability Acid in coat layer
物添加暈 時間 )1み Addition halo time) 1
m 質量比 B中のカル本' °C sec β m ml/m2/d/ Pa ml · m m Cal ratio in mass ratio B '° C sec β m ml / m 2 / d / Pa ml
キシル基に対 /m2/d/ Pa / M 2 / d / Pa
して (モ  Then (mo
ル? 0)  0?)
実施例 8 P ET 12 60/40 NaOH 5 3.0 200 60 2.0 45 95 Example 8 PET 12 60/40 NaOH 5 3.0 200 60 2.0 45 95
実施例 9 P ET 12 80/20 NaOH 1 2.8 200 60 1.9 55 111 Example 9 PET 12 80/20 NaOH 1 2.8 200 60 1.9 55 111
実施例 1 0 P ET 12 90/10 NaOH 2 3.5 200 60 1.8 73 143 Example 10 0 PET 12 90/10 NaOH 2 3.5 200 60 1.8 73 143
実施例 1 1 P ET 12 70/30 Ca (OH) 2 5 3.0 200 15 2.0 95 212 Example 1 1 PET 12 70/30 Ca (OH) 2 5 3.0 200 15 2.0 95 212
実施例 1 2 P ET 12 70/30 NH3 15 3.7 200 15 2.1 170 440 Example 1 2 PET 12 70/30 NH 3 15 3.7 200 15 2.1 170 440
実施例 1 3 P ET 12 70/30 NaOH 5 2.9 200 15 2.0 75 164 Example 1 3 PET 12 70/30 NaOH 5 2.9 200 15 2.0 75 164
実施例 1 4 ナイロン 15 70/30 NaOH 5 2.9 200 15 2.0 65 155 00 比較例 4 P ET 12 80/20 NaOH 1 2.8 150 60 2.0 530 2578 ^ Example 14 Nylon 15 70/30 NaOH 5 2.9 200 15 2.0 65 155 00 Comparative Example 4 PET 12 80/20 NaOH 1 2.8 150 60 2.0 530 2578 ^
(実施例 1 5 ) (Example 15)
ポリマー ( A ) として、 上述の U F 0 4 0 Gを純水に溶解し、 1 0質量%の水溶液を得た。 ポリマー ( B ) として、 上述の G A N T R E Z A N 1 1 9 をカルボキシル基に対して 2モル%の水酸化ナ ト リ ウムを含む水溶液に溶解し、 1 0質量%溶液を得た。 '  As the polymer (A), the above-mentioned UF040G was dissolved in pure water to obtain a 10% by mass aqueous solution. As a polymer (B), the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution. '
そしてポリマー (A) とポリマー ( B ) の質量比が (A) / ( B ) = 8 0 Z 2 0 となるように両水溶液を混合した。 続いて、 第 一工業製薬社製のイ ソシァネー ト化合物分散液 (エラス トロン B N 1 1 ) をイ ソシァネー 卜化合物の質量比がポリマー ( A ) とポリマ - ( B ) との固形分合計 1 0 0質量部に対して 5質量部になるよう に添加し、 攪拌して、 コー ト剤を調製した。  Then, both aqueous solutions were mixed such that the mass ratio of the polymer (A) and the polymer (B) was (A) / (B) = 80Z20. Subsequently, an isocyanate compound dispersion (Elastron BN11) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. was mixed with a polymer having a mass ratio of the isocyanate compound of 100 (solid) of polymer (A) and polymer (B). It was added so as to be 5 parts by mass with respect to parts by mass, and stirred to prepare a coating agent.
このコー ト剤を 2軸延伸 P E Tフィルム (厚み 1 2 x m) 上に乾 燥後の塗膜厚みが約 2 mになるよう にメイヤーバーでコー 卜 し、 1 0 0 °Cで 2分間乾燥した後、 2 0 0 °Cで 1 0秒間熱処理した。 得られたフィ ルムの 2 0 °C、 8 5 % R Hにおける酸素透過度は、 表 3 に示すように 7 0 m 1 / z / d a y / M P a と優れた値を示 した。 This coating agent was coated on a biaxially stretched PET film (thickness: 12 xm) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 10 seconds. The oxygen permeability of the obtained film at 20 ° C. and 85% RH showed an excellent value of 70 m 1 / z / day / MPa as shown in Table 3.
(実施例 1 6〜 2 2 、 比較例 5 )  (Examples 16 to 22 and Comparative Example 5)
ポリマー (A) 、 ポリマー ( B ) の種類と比率、 架橋剤の種類と 添加量をそれぞれ変えて、 実施例 1 5 と同様の操作を行い、 得られ たフ ィ ルムの酸素透過度及びコー 卜層の酸素透過係数を求めた。 そ の結果を表 3 に示す。  The same operation as in Example 15 was performed by changing the types and ratios of the polymer (A) and the polymer (B), and the type and amount of the crosslinking agent, respectively, to thereby obtain an oxygen permeability and a coat of the obtained film. The oxygen permeability coefficient of the layer was determined. The results are shown in Table 3.
(実施例 2 3〜 2 5 )  (Examples 23 to 25)
¾施例 1 4のものと同じ来延伸ナイ ロンフィルムをグラビアロー ル式コ一夕一に導き、 表 3 に示す組成とされかつ表 3 に示す架橋剤 が添加されたコー 卜剤を用いて、 実施例 1 4 と同じ条件でフィ ルム を製造した。 来 The same stretched nylon film as that of Example 14 was led to a gravure roll type co-polymer overnight, and the composition was as shown in Table 3 and the crosslinking agent was as shown in Table 3. A film was produced under the same conditions as in Example 14 using a coating agent to which was added.
得られたフィ ルムの酸素透過度及びコー ト層の酸素透過係数を表 3 に示す。 Table 3 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coating layer.
表 3 Table 3
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0001
Figure imgf000029_0002
イソシァネ ト ( I ) : 第一工業製薬社製: Iラストロン BN11 イソシァネ h ( II ) : 第一工業製薬社製 : Iラスト Qン E - 37 メラミン:三井サイテック社製: Cyme 1325 Isocyanate (I): Daiichi Kogyo Seiyaku Co., Ltd .: I Laston BN11 Isocyane h (II): Daiichi Kogyo Seiyaku Co., Ltd .: I Last Q E-37 Melamine: Mitsui Cytec: Cyme 1325
I本'キシ : 東京化成社製 : フ'タンシ'才-ルシ'ゲリシシ'ル I-テル カル木'シ' イミド : 日清紡社製: カルホ'シ 'ラ仆 E シ'ルコニゥム塩 第一希元素製';/ルコ' / -ル AC-7 I-honki: Made by Tokyo Kasei Co., Ltd .: Fushi-tanshi-shi-Rusi-Gerishishi-ru I-Terkar-ki-shi: Imide: Nisshinbo Co., Ltd .: Calho-shi 'Ra-E-shi' ruconium salt First rare element '; / Luco' / -Lu AC-7
(実施例 2 6 ) (Example 26)
ポリマー (A) として、 上述の U F O 4 0 Gを純水に溶解し、 2 0質量%の水溶液を得た。 ポリマー ( B ) と して、 上述の G A N T E Z A N 1 1 9 をカルボキシル基に対して 2モル%の水酸化ナ ト リ ウムを含む水溶液に溶解し、 2 0質量%溶液を得た。  As the polymer (A), the above UFO40G was dissolved in pure water to obtain a 20% by mass aqueous solution. As a polymer (B), the above-described GANTEZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 20% by mass solution.
次いで、 ポリマー (A) とポリマー ( B ) の質量比が (A) Z ( B ) = 7 0 Z 3 0 となるよう に両水溶液を混合した。 続いて、 り 二ミネ工業社製のモンモリ ロナイ 卜であるクニピア Fを、 無機層状 化合物と して、 その質量比が、 ポリマー ( A ) とポリマー ( B ) の 固形分合計質量部に対して 1 0質量部になるように添加し、 攪拌し て、 コー ト剤を調製した。  Next, both aqueous solutions were mixed such that the mass ratio of the polymer (A) and the polymer (B) became (A) Z (B) = 70Z30. Subsequently, Kunipia F, a montmorillonite manufactured by Rinmine Industrial Co., was used as an inorganic layered compound, and the mass ratio thereof was 1 to the total solid parts by mass of the polymer (A) and the polymer (B). It was added so as to be 0 parts by mass and stirred to prepare a coating agent.
このコー ト剤を 2軸延伸 P E Tフイリレム (厚み 1 2 z m) 上に乾 燥後の塗膜厚みが約 2 mになるようにメイヤーバーでコー ト し、 1 0 0 °Cで 2分間乾燥した後、 2 0 0 °Cで 1 5秒間熱処理した。 得られたフィルムの 2 0で、 8 5 % R Hにおける酸素透過度は、 表 4 に示すように 2 6 m 1 /m2 / d a y / M P a と優れた値を示 した。 This coating agent was coated on a biaxially stretched PET filem (thickness: 12 zm) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 ° C. for 15 seconds. The oxygen permeability of the obtained film at 20 and 85% RH showed an excellent value of 26 m 1 / m 2 / day / MPa as shown in Table 4.
(実施例 2 7〜 3 2 )  (Examples 27 to 32)
無機層状化合物の種類および添加量と、 コー ト剤の組成と、 基材 フィルムとを変えたうえで、 実施例 2 6 と同様な操作を行った。 そ の結果を表 4 に示す。 なお、 表 4 において、 ソマシフはコープケミ カル社製の膨潤性合成フッ素雲母である。  The same operation as in Example 26 was performed after changing the kind and amount of the inorganic layered compound, the composition of the coating agent, and the base film. The results are shown in Table 4. In Table 4, Somasif is a swellable synthetic fluoromica manufactured by Corp Chemical.
(実施例 3 3 )  (Example 33)
実施例 1 4のものと同じ未延伸ナイ ロンフィ ルムをグラビアロー ル式コ一夕一に導いて、 ¾施例 2 6で用いたものと同様のコー ト剤 を、 乾燥後のコー ト厚みが 1 1 mになるようにコーティ ングした そして実施例 1 4 と同じ条件でフィルムを製造した。 The same unstretched nylon film as that of Example 14 was led to the gravure roll type co-polymer overnight, and the same coating agent as that used in Example 26 was used. Was coated so that the coat thickness after drying was 11 m, and a film was produced under the same conditions as in Example 14.
得られたフィルムの酸素透過度及びコー ト層の酸素透過係数を表 4 に示す。  Table 4 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.
(実施例 3 4 )  (Example 34)
ポリマー ( A ) として、 上述の U F ◦ 4 0 Gを純水に溶解し、 1 0質量%の水溶液を得た。 ポリマ一 ( B ) として、 上述のイソバン 0 4 をカルボキシル基に対して 6 0モル%の水酸化アンモニゥムを 含む水溶液に溶解し、 1 0質量%溶液を得た。 そして、 ポリマ一 ( A ) とポリマー ( B ) の質量比が (A ) Z ( B ) = 7 0 Z 3 0 と なるように両水溶液を混合し、 コー ト剤とした。 このコー ト剤を用 いて実施例 3 3 と同様の操作を行った。  As the polymer (A), the above-mentioned UF • 40G was dissolved in pure water to obtain a 10% by mass aqueous solution. As a polymer (B), the above-mentioned isoban 04 was dissolved in an aqueous solution containing 60 mol% of ammonium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution. Then, both aqueous solutions were mixed so that the mass ratio of the polymer (A) and the polymer (B) became (A) Z (B) = 70Z30 to obtain a coating agent. The same operation as in Example 33 was performed using this coating agent.
得られたフィルムの酸素透過度及びコー ト層の酸素透過係数を表 4 に示す。 Table 4 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.
表 4 Table 4
コ一卜厚み 2 zm  Coat thickness 2 zm
Figure imgf000032_0001
o
Figure imgf000032_0001
o
(実施例 3 5 ) (Example 35)
ポリマー (A ) として、 上述の U F O 4 0 Gを純水に溶解し、 1 0質量%の水溶液を得た。 ポリマー ( B ) と して、 上述の G A N T R E Z A N 1 1 9 をカルボキシル基に対して 2 モル%の水酸化ナ ト リ ウムを含む水溶液に溶解し、 1 0質量%溶液を得た。  As the polymer (A), the above UFO40G was dissolved in pure water to obtain a 10% by mass aqueous solution. As a polymer (B), the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 2 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution.
次いで、 ポリマー (A ) とポリマー ( B ) の質量比が (A) / ( B ) = 7 1 Z 2 9 となるよう に両水溶液を混合し、 さ らに日本ェ クスラン社製のァク リ ロニ 卜 リル共重合体ェマルジョ ン (ァク リ 口 二 卜 リル分率 9 7質量% ) を、 ポリマー (A ) とポリ マー ( B ) の 固形分合計 1 0 0質量部に対して 4 3質量部になるように添加し、 攪拌してコー ト剤を調製した。  Next, both aqueous solutions were mixed so that the mass ratio of the polymer (A) and the polymer (B) would be (A) / (B) = 71 Z29, and the Nippon Xlan Co., Ltd. The lonitrile copolymer emulsion (97% by mass of acrylonitrile) was added in an amount of 43 parts by mass based on 100 parts by mass of the solid content of the polymer (A) and the polymer (B). Parts, and stirred to prepare a coating agent.
このコー ト剤を 2軸延伸 P E Tフィルム (厚み 1 2 m) 上に乾 燥後の塗膜厚みが約 2 mになるようにメイヤーバーでコー ト し、 1 0 0 °Cで 2分間乾燥した後、 2 0 0でで 1 0秒間熱処理した。 ί られたガスバリ ア性フィ ルムの性能を表 5 に示す。  This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 ° C for 2 minutes. Thereafter, heat treatment was performed at 200 for 10 seconds. Table 5 shows the performance of the obtained gas barrier film.
(実施例 3 6、 比較例 6 7 )  (Example 36, Comparative Example 67)
ガラスライニングを施した耐圧反応器中に水 2 2 0 部、 過硫酸ソ ーダ 0 . 0 4部を仕込み、 脱気した後、 内容物の温度を 8 0 °Cに保 つた。 これとは別の容器にアク リ ロニ ト リル 8 0部、 アク リル酸メ チル 1 8部、 メ夕ク リル酸メチル 2部を計量混合してモノマー混合 物を作成した。 前記耐圧反応器中に単量体混合物を 5時間にわたつ て連続的に定量添加した。 並行して、 過硫酸ソーダ 0 . 6部 (ただ し濃度 1 . 4 8 %水溶液と して添加した) 及びスルホメ夕ク リ レー 卜 ( H本乳化剤社製 : 商品名 A n t o X M S - 2 N ) 2部 (ただ し濃度、 4 . 7 6 %水溶液と して添加した) を 5時間にわたって迚 続的に定量添加した。 この間内容物を 8 0 °Cに保ち、 内圧が充分に 降下するまで反応を進行させた。 220 parts of water and 0.04 parts of persulfuric acid soda were charged into a pressure-resistant reactor lined with glass, and after degassing, the temperature of the contents was kept at 80 ° C. In a separate container, 80 parts of acrylonitrile, 18 parts of methyl acrylate, and 2 parts of methyl methacrylate were weighed and mixed to prepare a monomer mixture. The monomer mixture was continuously metered into the pressure-resistant reactor over 5 hours. At the same time, 0.6 parts of sodium persulfate (added as a 1.48% aqueous solution) and sulfometrichlorate (H-Emulsifier: brand name Anto XMS-2N) 2 parts (but added as a 4.76% aqueous solution) over 5 hours It was continuously added quantitatively. During this time, the content was maintained at 80 ° C, and the reaction was allowed to proceed until the internal pressure was sufficiently reduced.
これを実施例 3 5 と同様に調整したポリマー ( A ) およびポリマ 一 ( B ) の水溶液と混合し、 ( A ) と ( B ) の合計固形分 1 0 0質 量部に対してアク リ ロニ ト リル共重合体の量が表 5 に示す値となる ようにコー ト剤を調整した。  This was mixed with an aqueous solution of the polymer (A) and the polymer (B) prepared in the same manner as in Example 35, and the total solid content of (A) and (B) was 100 parts by mass. The coating agent was adjusted so that the amount of the tril copolymer was as shown in Table 5.
このコー ト剤を 2軸延伸 P E Tフィルム (ュニチカ社製ェンブレ ッ 卜 P E T 1 2、 厚み 1 2 m ) 上に乾燥後の塗膜厚みが約 2 m になるようにメイヤーバーでコー ト し、 1 0 0 °Cで 2分間乾燥した 後、 2 0 0 °Cで 1 0秒間熱処理した。 その結果を表 5 に示す。  This coating agent was coated on a biaxially stretched PET film (Emblend PET 12 manufactured by Unitika Ltd., thickness 12 m) with a Meyer bar so that the coating thickness after drying was about 2 m. After drying at 00 ° C for 2 minutes, heat treatment was performed at 200 ° C for 10 seconds. Table 5 shows the results.
アク リ ロニ ト リル共重合体の含有量が本発明の範囲よ り多い比較 例 6では、 良好な塗膜が得られなかった。 また、 ァク リ ロ二 卜 リル 比率の低い共重合体を用いた比較例 7ではガスバリ ァ性が劣ってい た。 In Comparative Example 6, in which the content of the acrylonitrile copolymer was larger than the range of the present invention, no good coating film was obtained. In Comparative Example 7 using a copolymer having a low acrylonitrile ratio, the gas barrier property was poor.
表 5 Table 5
コー卜厚み 2 Attn  Coat thickness 2 Attn
中和度 Gantrez:2% (NaOH) . イソ/、'ン: 60¾ (画、 SMA:5¾ (NaOH) 熱処理 200° (:、 10秒  Neutralization Gantrez: 2% (NaOH). Iso /, ': 60¾ (Paint, SMA: 5¾ (NaOH) Heat treatment 200 ° (:, 10 seconds
基材フィルム フィルム厚み ビニルァ ビニルアル マレイン マレイン酸 (A) 1 (B) ァクリロ:トリ Λ 7クリ。二トリル コー卜 コー卜 フィル 酸素透過 コー卜層の ルコール コール単位 酸単位含 単位含有率 含有率 共重合体 剤濃度 剤粘度 ム外観 度 酸素透過係 含有ポリ 含有率 有ポリ 数  Base film Film thickness Vinyla Vinylalmalein Maleic acid (A) 1 (B) Acrylo: triΛ7. Nitrile Coat Coat fill Oxygen permeable Coal layer alcohol Coal unit Acid unit content Unit content Content Copolymer agent concentration Viscosity viscosity Appearance Oxygen permeation content Poly content Poly content
マー マー  Ma mar
m (A) (モル%) (B) (モル%) 質曼比 質量% 質量部 mPas ml/m2/d ml · m (A) (mol%) (B) (mol%) Mass ratio mass% mass parts mPas ml / m 2 / d ml ·
/MPa /m2/d/MPa 実施例 35 PET 12 UF040G 99 Gantrez 50 71/29 97 43 10 200 良好 110 251  / MPa / m2 / d / MPa Example 35 PET 12 UF040G 99 Gantrez 50 71/29 97 43 10 200 Good 110 251
実施例 36 PET 12 UF040G 99 Gantrez 50 80/20 80 100 10 160 良好 140 332 Example 36 PET 12 UF040G 99 Gantrez 50 80/20 80 100 10 160 Good 140 332
比铰例 6 PET 12 UF040G 99 Gantrez 50 80/20 80 900 10 30 不良 900 Comparative example 6 PET 12 UF040G 99 Gantrez 50 80/20 80 900 10 30 defective 900
比較例 7 PET 12 UF040G 99 Gantrez 50 80/20 60 100 10 140 良好 680 5564Comparative Example 7 PET 12 UF040G 99 Gantrez 50 80/20 60 100 10 140 Good 680 5564
O CO O CO
(実施例 3 7 、 3 8 ) (Examples 37 and 38)
ポリマー ( A ) と して、 上述の U F 0 4 0 Gを純水に溶解し、 1 0質量%の水溶液を得た。 ポリマ一 ( B ) として、 上述の G AN T R E Z A N 1 1 9 をカルボキシル基に対して 5モル%の水酸化ナ ト リ ウムを含む水溶液に溶解し、 1 0質量%溶液を得た。  The above-mentioned UF040G as the polymer (A) was dissolved in pure water to obtain a 10% by mass aqueous solution. As a polymer (B), the above-mentioned GANTREZAN 119 was dissolved in an aqueous solution containing 5 mol% of sodium hydroxide with respect to the carboxyl group to obtain a 10% by mass solution.
次いでポリマー (A) とポリマー ( B ) の質量比が (A) / ( B ) = 7 0 / 3 0 となるように両水溶液を混合し、 室温で攪拌し てコー ト剤を調製した。  Next, both aqueous solutions were mixed such that the mass ratio of the polymer (A) and the polymer (B) became (A) / (B) = 70/30, and the mixture was stirred at room temperature to prepare a coating agent.
このコー ト剤を 2軸延伸 P E Tフィルム (厚み 1 2 m) 上に乾 燥後の塗膜厚みが約 2 mになるようにメイヤーバーでコー 卜 し、 1 0 0でで 2分間乾燥した後、 2 0 0でで 1 0秒間熱処理した。 その後、 このフィルムを電子線照射装置 (キュア 卜ロン、 日新ハ ィボルテージ製) に導入して、 このフィルムに、 加速電圧 1 7 5 k Vで表 6 に示す線量の電子線を照射した。  This coating agent was coated on a biaxially stretched PET film (thickness: 12 m) using a Meyer bar so that the coating thickness after drying was about 2 m, and dried at 100 for 2 minutes. Heat treatment was performed at 200 ° C. for 10 seconds. Thereafter, the film was introduced into an electron beam irradiation apparatus (Curetron, manufactured by Nissin High Voltage), and the film was irradiated with an electron beam at an accelerating voltage of 175 kV and at a dose shown in Table 6.
その結果を表 6 に示す。  Table 6 shows the results.
なお、 実施例 3 7 、 3 8 において、 電子線を照射する前のフィル ムの酸素透過度は 1 5 0 m l Zm2 Z d a yノ M P aであった。 (比較例 8 ) In Examples 37 and 38, the oxygen permeability of the film before irradiation with an electron beam was 150 ml Zm 2 Z day. (Comparative Example 8)
コー ト剤としてポリマ一 (A) のみを含む液を用いて、 実施例 3 7 、 3 8 と同様の操作を行った。 その結果を表 6 に示す。  The same operation as in Examples 37 and 38 was performed using a liquid containing only the polymer (A) as the coating agent. Table 6 shows the results.
表 6から、 本発明にもとづきコーティ ッ ドフィ ルムに電子線を照 射することで、 ガスバリ ア性の更なる改良が可能であることがわか る。 また、 比較例 8すなわち P V Aのみをコー ト した場合には、 電 子線を照射してもガスバリ ア性の改善が全く見られなかった。 表 6 Table 6 shows that the gas barrier property can be further improved by irradiating the coated film with an electron beam according to the present invention. In Comparative Example 8, that is, when only PVA was coated, no improvement in gas barrier properties was observed even when electron beams were irradiated. Table 6
卜厚み 2  Thickness 2
Figure imgf000037_0001
Figure imgf000037_0001
(実施例 3 9 、 4 0、 比較例 9 、 1 0 ) (Examples 39 and 40, Comparative Examples 9 and 10)
実施例 3 7 のものと同じコー ト剤を調製するとともに、 実施例 1 4のものと同じ未延仲ナイ ロンフィ ルムを得た。  The same coating agent as that of Example 37 was prepared, and the same non-rolled nylon film as that of Example 14 was obtained.
続いて、 この未延伸フィルムをグラビアロール式コ一夕一に導き 先に調整したコー ト剤を、 乾燥後のコー ト厚みが 2 0 mになるよ うにコ一ティ ングし、 8 0 °Cの熱風 ドライヤー中でコー 卜層の水分 率が表 7 に示す値となるように乾燥を行った。  Subsequently, the unstretched film was guided to a gravure roll type coater overnight, and the coating agent prepared above was coated so that the coat thickness after drying became 20 m, and the temperature was adjusted to 80 ° C. Drying was performed in a hot air drier so that the moisture content of the coat layer became the value shown in Table 7.
次に、 実施例 1 4 と同じ条件でフ ィ ルムを製造した。  Next, a film was produced under the same conditions as in Example 14.
得られたフィルムの酸素透過度及びコー ト層の酸素透過係数を表 7 に示す。  Table 7 shows the oxygen permeability of the obtained film and the oxygen permeability coefficient of the coat layer.
表 7から明らかなように、 コー 卜層の水分率が本発明の範囲内で ある実施例 3 9 、 4 0では、 フィルム延伸性およびコー ト層外観と も良好であった。 これに対し、 コー ト層が完全に乾燥していた比較 例 9ではコー 卜層にひび割れが発生し、 良好な皮膜が得られなかつ た。 また、 コー ト層の水分率が 2 0 0 %と高かった比較例 1 0の場 合は、 延伸工程で基材フ ィ ルムの温度が上がらず、 延伸することが できなかった。 As is clear from Table 7, in Examples 39 and 40 in which the moisture content of the coat layer was within the range of the present invention, the film stretchability and the appearance of the coat layer were also good. On the other hand, in Comparative Example 9 in which the coat layer was completely dried, cracks occurred in the coat layer, and a good film could not be obtained. In the case of Comparative Example 10 in which the moisture content of the coat layer was as high as 200%, the temperature of the base film was not increased in the stretching step, and the film could not be stretched.
コート剤組成: PVA/Gantrez (5%中和) =70/30 Coating composition: PVA / Gantrez (5% neutralized) = 70/30
Figure imgf000039_0001
Figure imgf000039_0001

Claims

請 求 の 範 囲 The scope of the claims
1 . ガスバリ ァ性フィ ルムであって、 ビニルアルコール単位を 4 0 モル%以上含有するビニル系ポリマー (A) と、 マレイ ン酸単位を 1 0モル%以上含有するビニル系ポリマー ( B ) とを含んだコー ト δ 層を熱可塑性樹脂フ ィ ルムの少なく とも片面に備え、 (Α) と  1. A gas barrier film comprising a vinyl polymer (A) containing at least 40 mol% of vinyl alcohol units and a vinyl polymer (B) containing at least 10 mol% of maleic acid units. The coated δ layer is provided on at least one side of the thermoplastic resin film.
( Β ) との質量比が 9 7 Ζ 3〜 2 0 / 8 0であり、 コー ト層の酸素 透過係数が 5 0 0 m l - ^ m m2 Z d a y ZM P a以下であるこ とを特徴とする。 The mass ratio to (Β) is 97 Ζ 3 to 20/80, and the oxygen permeability coefficient of the coating layer is 500 ml-^ mm 2 Z day ZM Pa or less. .
2 . 請求項 1 記載のガスバリ ア性フィルムであって、 ビニル系ポリ 0 マー ( A ) がポリ ビニルアルコールである。  2. The gas barrier film according to claim 1, wherein the vinyl polymer (A) is polyvinyl alcohol.
3. 請求項 1 または 2記載のガスバリア性フィ ルムであって、 ビニ ル系ポリマー ( B ) 力 、 メチルビニルエーテル一無水マレイ ン酸共 重合体と、 エチレン一無水マレイ ン酸共重合体と、 イソブチレン一 無水マレイ ン酸共重合体とのうちの 1 種またはこれらの混合物であ 5 る。  3. The gas barrier film according to claim 1, wherein the vinyl polymer (B) power, methyl vinyl ether / maleic anhydride copolymer, ethylene / maleic anhydride copolymer, and isobutylene One of a maleic anhydride copolymer and a mixture thereof.
4. 請求項 1 から 3 までのいずれか 1 項記載のガスバリ ア性フィル ムであって、 ビニル系ポリマー (A) とビニル系ポリマー ( B ) と の合計 1 0 0質量部に対して、 架橋剤を 0 . 1 〜 2 0質量部の範囲 で含有する。 4. The gas barrier film according to any one of claims 1 to 3, wherein a total of 100 parts by mass of the vinyl polymer (A) and the vinyl polymer (B) is crosslinked. The agent is contained in the range of 0.1 to 20 parts by mass.
0 5. 請求項 4記載のガスバリ ア性フィ ルムであって、 架橋剤がメラ ミ ン化合物またはィ ソシァネー ト化合物である。  0 5. The gas barrier film according to claim 4, wherein the crosslinking agent is a melamine compound or an isocyanate compound.
6. 請求項 1 から 5 までのいずれか 1 項記載のガスノ リ ァ性フィル ムであって、 ビニル系ポリマー (A) とビニル系ポリマー ( B ) と の合 卜 1 0 0 質量部に対して、 水膨潤性の無機 状化合物を 0. 1 5 〜 5 0 ¾ li 部の範 H で含苻する。 6. The gas-free film according to any one of claims 1 to 5, wherein the total amount of the vinyl polymer (A) and the vinyl polymer (B) is 100 parts by mass. It contains water-swellable inorganic compounds in the range H of 0.15 to 50 5li.
7. 請求項 6記載のガスバリ ア性フィ ルムであって、 水膨潤性の無 機層状化合物がフッ素雲母である。 7. The gas barrier film according to claim 6, wherein the water-swellable inorganic layered compound is fluorine mica.
8. 請求項 1から 7 までのいずれか 1 項記載のガス ) リ ァ性フィ ル ムであって、 ビニル系ポリマー (A) とビニル系ポリマー ( B ) と の合計 1 0 0質量部に対して、 アク リ ロニ ト リル単位を 7 0質量% 以上含むアク リル系共重合体を 2 0 0質量部以下の範囲で含有する, 8. The gas according to any one of claims 1 to 7, which is a lyophilizable film, wherein the total amount of the vinyl polymer (A) and the vinyl polymer (B) is 100 parts by mass. Containing an acrylic copolymer containing at least 70 mass% of acrylonitrile units in a range of 200 mass% or less,
9. 請求項 1 から 8 までのいずれか 1項記載のガスバリ ァ性フィ ル ムであって、 コー ト層の酸素透過係数が、 2 5 0 m l - m/m2 / d a y ZM P a以下である。 9. The gas barrier film according to any one of claims 1 to 8, wherein the oxygen permeability coefficient of the coating layer is 250 ml-m / m 2 / day ZM Pa or less. is there.
1 0. 請求項 1から 9 までのいずれか 1項記載のガスバリ ア性フィ ルムであって、 熱可塑性樹脂がナイ ロン 6である。  10. The gas barrier film according to any one of claims 1 to 9, wherein the thermoplastic resin is nylon 6.
1 1. 請求項 1 0記載のガスバリ ア性フィ ルムであって、 酸素透過 度力 1 8 0 m m d a y / M P a (ナイ ロンフィ ルム 1 5 m換算) 以下である。 1 1. The gas barrier film according to claim 10, wherein the oxygen permeability is not more than 180 mm md ay / M Pa (converted to a nylon film of 15 m).
1 2. 請求項 1から 9 までのいずれか 1項記載のガスバリ ア性フィ ルムであって、 熱可塑性樹脂がポリエチレンテレフ夕 レー 卜である 1 2. The gas barrier film according to any one of claims 1 to 9, wherein the thermoplastic resin is polyethylene terephthalate.
1 3. 請求項 1 2記載のガスバリ ア性フィ ルムであって、 酸素透過 度力 2 5 0 m l Zm2 / d a y /M P a (ポリエチレンテレフタ レ — 卜フィルム 1 2 換算) 以下である。 1 3. The gas barrier film according to claim 12, wherein the oxygen permeability is not more than 250 ml Zm 2 / day / MPa (polyethylene terephthalate film 12 equivalent).
1 4. 請求項 1から 1 3 までのいずれか 1項に記載のガスバリ ア性 フィルムを製造するための方法であって、 フィ ルムの少なく とも片 面にコー ト剤を塗布した後に、 1 5 0 °C以上の温度で熱処理するこ とを特徴とする。  1 4. A method for producing a gas barrier film according to any one of claims 1 to 13, wherein the method comprises applying a coating agent on at least one side of the film. The heat treatment is performed at a temperature of 0 ° C or more.
1 5. 請求項 1 4記載の製造方法であって、 フィ ルムにコー ト剤を 塗布した後に、 フ ィ ルムの縦方向と横方向との少なく とも一方向に このフィルムを延伸し、 その後に熱処理する。 15. The manufacturing method according to claim 14, wherein after applying the coating agent to the film, the film is applied in at least one of the longitudinal direction and the lateral direction of the film. The film is stretched and then heat treated.
1 6. 請求項 1 5記載の製造方法であって、 同時 2籼延仲を行う。 1 6. The manufacturing method according to claim 15, wherein the two processes are performed simultaneously.
1 7. 請求項 1 5または 1 6記載の製造方法であって、 フィルムに コー ト層を塗布した後に延仲する場合に、 延伸直前のコー 卜層の水 分率を 0. 1 〜 5 0質量%とする。 17. The production method according to claim 15 or 16, wherein when the coating layer is applied after the coating layer is applied, the water content of the coating layer immediately before stretching is 0.1 to 50. % By mass.
1 8. 請求項 1 4から 1 7 までのいずれか 1項記載の製造方法であ つて、 熱処理したフィ ルムに電子線を照射する。  1 8. The manufacturing method according to any one of claims 14 to 17, wherein the heat-treated film is irradiated with an electron beam.
1 9. 請求項 1 4から 1 8 までのいずれか 1項記載の製造方法であ つて、 コ一 卜剤を形成するビニル系ポリマー ( B ) f) 、 メチルビ二 ルエーテル一無水マレイ ン酸共重合体であって、 このビニル系ポリ マ一 ( B ) 中のカルボキシル基に対して 0. 1 〜 2 0 %当量のアル カ リ化合物を含有する。  1 9. The process according to any one of claims 14 to 18, wherein the vinyl polymer (B) f) forming the coating agent is methyl vinyl ether monomaleic anhydride copolymer. The vinyl polymer (B) contains 0.1 to 20% equivalent of the alkali compound with respect to the carboxyl group in the vinyl polymer (B).
2 0. 請求項 1 4から 1 8 までのいずれか 1項記載の製造方法であ つて、 コー ト剤の p H力 2. 8〜 3. 7の範囲である。  20. The method according to any one of claims 14 to 18, wherein the pH of the coating agent is in the range of 2.8 to 3.7.
PCT/JP2000/002312 1999-04-08 2000-04-07 Gas barrier film and process for producing the same WO2000061369A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP10128699A JP4311806B2 (en) 1999-04-08 1999-04-08 Gas barrier film and method for producing the same
JP11/101286 1999-04-08
JP11/149550 1999-05-28
JP14955099A JP4689780B2 (en) 1999-05-28 1999-05-28 Gas barrier film and method for producing the same
JP11210537A JP2001030349A (en) 1999-07-26 1999-07-26 Manufacture of gas barrier film
JP11/210537 1999-07-26
JP22981999A JP4463902B2 (en) 1999-08-16 1999-08-16 Method for producing gas barrier film
JP11/229819 1999-08-16
JP28579999A JP4302260B2 (en) 1999-10-06 1999-10-06 Gas barrier film
JP11/285799 1999-10-06

Publications (1)

Publication Number Publication Date
WO2000061369A1 true WO2000061369A1 (en) 2000-10-19

Family

ID=27526043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002312 WO2000061369A1 (en) 1999-04-08 2000-04-07 Gas barrier film and process for producing the same

Country Status (1)

Country Link
WO (1) WO2000061369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048265A1 (en) * 2000-12-12 2002-06-20 Unitika Ltd. Gas-barrier resin composition, gas-barrier coating material, and gas-barrier molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193070A (en) * 1991-06-14 1993-08-03 Imperial Chem Ind Plc <Ici> Macromolecular film
JPH05310976A (en) * 1992-05-11 1993-11-22 Unitika Ltd Readily bondable polyester film and its production
JPH0841218A (en) * 1994-07-27 1996-02-13 Kureha Chem Ind Co Ltd Gas-barrier film and production thereof
JPH09151264A (en) * 1995-11-30 1997-06-10 Toray Ind Inc Gas barrier film
JPH09151263A (en) * 1995-11-30 1997-06-10 Toray Ind Inc Gas barrier film and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193070A (en) * 1991-06-14 1993-08-03 Imperial Chem Ind Plc <Ici> Macromolecular film
JPH05310976A (en) * 1992-05-11 1993-11-22 Unitika Ltd Readily bondable polyester film and its production
JPH0841218A (en) * 1994-07-27 1996-02-13 Kureha Chem Ind Co Ltd Gas-barrier film and production thereof
JPH09151264A (en) * 1995-11-30 1997-06-10 Toray Ind Inc Gas barrier film
JPH09151263A (en) * 1995-11-30 1997-06-10 Toray Ind Inc Gas barrier film and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048265A1 (en) * 2000-12-12 2002-06-20 Unitika Ltd. Gas-barrier resin composition, gas-barrier coating material, and gas-barrier molding
US6783857B2 (en) 2000-12-12 2004-08-31 Unitika Ltd. Gas barrier resin composition, gas barrier coating material, and gas-barrier molding

Similar Documents

Publication Publication Date Title
JP3590498B2 (en) Saponified ethylene-vinyl ester copolymer composition and co-extruded multilayer molded article using the same
KR101409954B1 (en) Coating material for forming gas-barrier layer and gas-barrier multilayer body
JP2006219518A (en) Gas barrier coating and gas barrier laminate using the same coating
JP4225158B2 (en) Method for producing gas barrier laminate
JP4845272B2 (en) Gas barrier coating agent, gas barrier coating, gas barrier film and method for producing the same
JP4511685B2 (en) Gas barrier coating agent and film
JP4114585B2 (en) Method for producing gas barrier laminate
JP4146169B2 (en) Gas barrier composition, coating agent and film
JP3137930B2 (en) Saponified ethylene-vinyl acetate copolymer composition and multilayer structure using the same
JP4689780B2 (en) Gas barrier film and method for producing the same
JP4836322B2 (en) Gas barrier coating agent, composition and laminated film
JP4302260B2 (en) Gas barrier film
JP4708529B2 (en) Method for producing gas barrier film
WO2000061369A1 (en) Gas barrier film and process for producing the same
JP4388840B2 (en) Method for producing gas barrier laminate
JP2001164174A (en) Gas-barrier coating agent and gas-barrier film
JP4621435B2 (en) Gas barrier paint and gas barrier laminate using the paint
JP4633341B2 (en) Gas barrier composition precursor, coating agent and film
JP2005270907A (en) Production method of gas-barrier laminate
JP4651783B2 (en) Method for producing gas barrier film
JP4364413B2 (en) Water-based gas barrier coating agent, film coated with the same, and method for producing the same
JP4463902B2 (en) Method for producing gas barrier film
JP4849722B2 (en) Gas barrier coating agent and gas barrier film
JP2001088250A (en) Gas-barrier film
JP2005139325A (en) Gas-barrier coating and gas-barrier laminate obtained using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase