WO2000059012A1 - Exposure method and apparatus - Google Patents

Exposure method and apparatus Download PDF

Info

Publication number
WO2000059012A1
WO2000059012A1 PCT/JP2000/001540 JP0001540W WO0059012A1 WO 2000059012 A1 WO2000059012 A1 WO 2000059012A1 JP 0001540 W JP0001540 W JP 0001540W WO 0059012 A1 WO0059012 A1 WO 0059012A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
exposure
mask
characteristic
substrate
Prior art date
Application number
PCT/JP2000/001540
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Kondo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU29445/00A priority Critical patent/AU2944500A/en
Priority to KR1020017010813A priority patent/KR20010112286A/en
Publication of WO2000059012A1 publication Critical patent/WO2000059012A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus

Definitions

  • the present invention relates to an exposure method and an exposure apparatus used in a lithographic process for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, or a thin-film magnetic head.
  • a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, or a thin-film magnetic head.
  • This method is suitable for use when exposing a large pattern by transferring (connecting exposure) while performing the patterning.
  • Conventional semiconductor integrated circuits are generally manufactured by repeating a process of transferring a pattern of one reticle as a mask to each shot area on a wafer as a substrate.
  • the original pattern of one circuit pattern to be transferred is divided into a plurality of reticle patterns, and the reticle pattern
  • An exposure method is used in which a pattern is transferred to one shot area on a wafer while screen joining is performed, that is, continuous exposure is performed.
  • Bridge exposure is also called “angle of view synthesis”.
  • the pattern may be cut at the joint (boundary) of the image of the reticle pattern.
  • a method of performing exposure by overlapping a joint portion of an image of an adjacent pattern by a minute width has conventionally been developed. Has been issued.
  • the exposure light is applied to a region corresponding to the joint.
  • a projection exposure apparatus provided with a dimming unit that linearly reduces the amount of transmitted light outward.
  • the distribution of the exposure amount in the case of double exposure is a distribution symmetrically inclined with respect to each other.
  • the exposure amount coincides with the integrated exposure amount of the other parts.
  • the extinction characteristic of the superimposed part at that time is defined by a one-dimensional function.
  • the integrated exposure amount in a portion where the four patterns are adjacent is different from the integrated exposure amount in other portions ( Exposure method) Its primary purpose is to provide law.
  • Another object of the present invention is to provide a method of manufacturing a device or a mask using such an exposure method. Disclosure of the invention
  • the first exposure method according to the present invention is directed to an exposure method for exposing a pattern larger than each of the patterns onto the substrate by splicing and exposing a plurality of patterns on the substrate.
  • 0 A to 30 D) are exposed in the first direction (X direction) and the second direction (Y direction), which intersect each other, so that some areas are overlapped.
  • the corners of the four patterns are exposed while overlapping each other, and when exposing each of the four patterns, the exposure amount of the corners of the pattern is reduced. This is set based on a characteristic obtained by multiplying a first characteristic that gradually decreases outward along the first direction and a second characteristic that gradually decreases outward along the second direction.
  • the dimming characteristics of the exposure amount at the corners of the four patterns are set to two-dimensional characteristics, respectively. It becomes almost the same as the integrated exposure amount in the portion.
  • the two-dimensional characteristics are obtained by multiplying the one-dimensional characteristics that intersect each other, for example, a neutral density filter having such neutral density characteristics can be easily manufactured. .
  • a second exposure method is directed to an exposure method for exposing a pattern larger than each pattern onto the substrate by exposing a plurality of patterns onto the substrate.
  • a plurality of patterns (32A to 32D) are spliced and exposed in a first direction (X direction) and a second direction (Y direction) crossing each other so that a part of each region overlaps.
  • the first pair of patterns (32A, 32D) are obliquely opposed.
  • the corners of the rectangle are superimposed on each other and exposed, and for the second pair of patterns (32B, 32C), the corners (33, 34) of each triangle are replaced by the corners of the rectangle. Exposure is performed adjacent to the inside of the device.
  • the corners of the three adjacent patterns are formed in one triangular area (33) of the four adjacent patterns.
  • the corners of three adjacent patterns are overlapped and exposed. Since the exposure amount of each of the corners decreases outward with a predetermined characteristic, the integrated exposure amount becomes substantially equal to the other regions.
  • a first exposure apparatus of the present invention is an exposure apparatus for transferring a pattern of a mask (R) onto a substrate (W).
  • System (1-3, 6-8) and a field stop (4) arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask.
  • a substrate stage (25) for positioning the substrate, and a surface near the pattern surface of the mask, or a surface near a conjugate surface with respect to the pattern surface, intersecting the pattern surface.
  • the transmittance of at least one area corresponding to at least one corner of the pattern area having an outer shape substantially parallel to the first direction and the second direction to the illumination light for exposure to the outside along the first direction.
  • a dimming filter (55) set based on a characteristic obtained by multiplying a first characteristic that gradually decreases and a second characteristic that gradually decreases outward along the second direction.
  • the second exposure apparatus is provided with a dimming filter (56) having the following characteristics instead of the dimming filter of the first exposure apparatus.
  • the neutral density filter includes a pair of first and second diagonally opposed corners of a pattern area having an outer shape substantially parallel to the first and second directions intersecting with each other on the pattern surface.
  • the above-described second exposure method can be used.
  • the peripheral portion partially overlaps on the substrate.
  • the amount of illumination light applied to the pattern on the substrate is gradually reduced at least where the two regions overlap.
  • at least one mark pattern provided in the dimming filter is detected.
  • the amount of illumination light, which is applied to the pattern by the dimming filter, on the substrate is gradually reduced at a portion where the at least two regions overlap, and thus the light is reduced at that portion. Is approximately equal to the other parts.
  • a mark pattern provided in the darkening filter is detected, and at least one of the position information and the rotation information of the darkening filter is obtained. Thereby, based on the obtained information, the relative positioning accuracy between the dimming filter and the pattern can be improved, and the line width accuracy of the device after the bridge exposure can be improved. .
  • the third exposure apparatus is an exposure apparatus that transfers a pattern to at least two regions where peripheral portions partially overlap each other on a substrate, wherein the substrate receives illumination light applied to the pattern.
  • a dimming filter that gradually reduces the amount of light above at least where the two regions overlap, and a dimming filter that obtains at least one of positional information and rotation information of the dimming filter.
  • a detection device for detecting at least one mark pattern provided in the evening.
  • the third exposure method of the present invention can be used.
  • the detection device detects at least one of relative position information and relative rotation information between the darkening filter and a mask on which the pattern is formed.
  • the dimming filter is arranged so as to be deviated from the pattern plane of the mask on which the pattern is formed or the conjugate plane thereof.
  • the device manufacturing method according to the present invention includes a step of transferring a device pattern onto a photosensitive substrate using the exposure method of the present invention or using the exposure apparatus of the present invention.
  • a method of manufacturing a mask according to the present invention is a method of manufacturing a mask using the exposure method of the present invention, wherein a step of transferring a plurality of mask patterns onto a mask substrate using the exposure method while performing screen splicing. Including. At this time, by transferring a plurality of mask patterns in a reduced scale, masks can be mass-produced with higher precision and higher throughput than a method in which a mask pattern is drawn directly on the mask substrate by using an electron beam drawing apparatus or the like. . Further, the mask according to the present invention uses a device pattern transferred while performing screen joining by the exposure method or exposure apparatus of the present invention as a mask pattern.
  • a first method for manufacturing an exposure apparatus is a method for manufacturing an exposure apparatus for transferring a pattern of a mask onto a substrate, comprising: an illumination optical system for illuminating the mask; A field stop arranged at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask, a substrate stage for positioning the substrate, Plane, or its conjugate plane or its pattern plane Illumination light for exposure of an area corresponding to at least one corner of a pattern area having an outer shape substantially parallel to the first direction and the second direction intersecting the pattern surface and arranged on a surface near the pattern surface Is set based on a characteristic obtained by multiplying the first characteristic, which gradually decreases outward along the first direction, with the second characteristic, which gradually decreases outward along the second direction.
  • This is to assemble a file with a file in a predetermined positional relationship.
  • a second method for manufacturing an exposure apparatus is a method for manufacturing an exposure apparatus for transferring a pattern of a mask onto a substrate, comprising: an illumination optical system for illuminating the mask; and the mask within the illumination optical system.
  • a field stop which is arranged at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask, a substrate stage for positioning the substrate, a surface near the pattern surface of the mask, Or, it is disposed on a conjugate plane with respect to the pattern plane or a plane in the vicinity of the conjugate plane, and opposes each other at a pattern area having an outer shape substantially parallel to the first direction and the second direction crossing each other on the pattern plane.
  • the transmittance of the region corresponding to the first pair of corners to the illumination light for exposure gradually decreases outward along the first direction.
  • the first characteristic gradually decreasing outward along the first direction and the outer characteristic along the second direction.
  • a dimming filter set based on the characteristic obtained by adding the gradually decreasing second characteristic to the second characteristic.
  • the third method of manufacturing an exposure apparatus is a method of manufacturing an exposure apparatus for transferring a pattern to at least two regions where peripheral portions partially overlap each other on a substrate. That base of light A dimming filter that gradually reduces the amount of light on the plate at the portion where the at least two areas overlap, and a dimming filter to obtain at least one of the position information and rotation information of the dimming filter. A detection device for detecting at least one mark pattern provided in the optical filter is assembled in a predetermined positional relationship.
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a configuration example of the reticle blind 4 in FIG.
  • FIG. 3 is an enlarged perspective view showing the configuration of the movable stage of the positioning device 5 in FIG.
  • FIG. 4 is a diagram showing a transmittance distribution of the density filter 55 in FIG.
  • FIG. 5 is a view showing a projected image obtained by performing transfer while performing image splicing using the density filter 55 of FIG.
  • FIG. 6 is an explanatory diagram of a method of removing an incomplete portion by using a reticle blind.
  • FIG. 7 is a diagram showing a transmittance distribution of a density filter 56 according to another example of the embodiment of the present invention.
  • FIG. 8 is a diagram showing a projection image obtained by performing transfer while performing screen splicing using the density filter 56 of FIG.
  • FIG. 9 is a partially cut-away view showing a main part of an embodiment in which a dust-proof thin film is provided on the concentration filter 55.
  • FIG. 1 shows a schematic configuration of the projection exposure apparatus of this example.
  • the illumination light (exposure light) IL for exposure emitted from the light source 1 at the time of exposure passes through a shutter (not shown).
  • Input lens after being reflected by the mirror M1 Then, the light enters the illuminance uniforming optical system 2 including the optical integrator (fly-eye lens or rod lens) and the illuminance distribution is uniformed.
  • An aperture stop (not shown) that determines the numerical aperture of the illumination light and, consequently, the coherence factor ( ⁇ value) is provided on the Fourier transform surface with respect to the pattern surface of the reticle R to be transferred in the illumination uniforming optical system 2.
  • ⁇ value coherence factor
  • the illumination light IL that has passed through the illumination uniforming optical system 2 passes through a relay lens 3 and enters a reticle blind 4 as a variable field stop.
  • the reticle blind 4 has four movable L-shaped light-shielding plates 4 1, 4 2 at four edges 4 1 ⁇ , 4 1 ⁇ , 4 2 A, 4 2.
  • the illumination area (exposure angle of view) on the reticle R is determined by the variable aperture (hatched area) S surrounded by B.
  • the illuminating light IL that has passed through the reticle blind 4 passes through the density filter 55 and is provided with an illuminance distribution suitable for performing exposure (joint exposure) while connecting screens as described below.
  • the density filter 55 as the darkening filter has a transmittance distribution for making the integrated exposure amount of the joint portion at the time of the joint exposure equal to the integrated exposure amount of the other portions. (See below for details).
  • the illumination light passing through the density filter 55 passes through a relay lens 6, a mirror 7 for bending the optical path, and a condenser lens 8, and illuminates the pattern surface (lower surface) of the reticle R on which the original pattern for transfer is formed. I do.
  • the arrangement surface of the reticle blind 4 is close to the surface P1
  • the filter forming surface of the density filter 55 is the surface P1. It is set at a position slightly deviated from 1 to the reticle R side. Due to the action of the density filter 55, the illumination light IL has an illuminance distribution that gradually decreases around the pattern area of the reticle R, and the pattern in the illumination area of the reticle R passes through the projection optical system PL. With a projection magnification of 3 (3 is 1 Z 4, 1 Z 5 etc.) The photoresist is projected onto the wafer W to which the photoresist has been applied.
  • the illumination optical system consists of a light source 1, a mirror Ml, an illuminance uniforming optical system 2, a relay lens 3, a reticle blind 4, a density filter 55, a relay lens 6, a mirror 7, a condenser lens 8, etc. I have.
  • the i-line (wavelength 365 nm) of a mercury lamp is used as the illumination light IL.
  • KrF wavelength 248 ⁇ m is used as the illumination light IL.
  • the Z axis is taken parallel to the optical axis of the projection optical system PL
  • the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis
  • the Y axis is taken perpendicular to the plane of Fig. 1. .
  • the reticle R is held on the reticle stage 21, and the reticle stage 21 finely moves on the reticle base 22 in the X, Y, and rotation directions to position the reticle R.
  • the position of the reticle stage 22 is measured by a laser interferometer incorporated in the reticle stage drive system 23, and the measured values and the control from the main control system 24 that supervise and control the operation of the entire apparatus
  • the reticle stage drive system 23 controls the operation of the reticle stage 21 based on the information.
  • the wafer W is held on a wafer stage 25 via a wafer holder (not shown), and the wafer stage 25 steps on the wafer base 26 in the X and Y directions.
  • the position of the wafer stage 25 in the XY plane is measured by the laser interferometer 27, and based on the measured values and the control information from the main control system 24, the wafer stage drive system 28 Control the operation of 25.
  • the wafer stage 25 adjusts the surface of the wafer W to the image plane of the projection optical system PL by an auto-force force method.
  • the illuminance sensor 63 for photoelectrically converting the light is fixed, and the detection signal of the illuminance sensor 63, which also functions as a mark detection system, is supplied to the main control system 24.
  • a reticle loader (not shown) for exchanging reticles on reticle stage 21 and a reticle library containing a plurality of reticles used for screen splicing are installed near reticle stage 21.
  • the reticle R on the reticle stage 21 can be replaced with another reticle at high speed.
  • the next shot on the wafer W is performed by the step movement of the wafer stage 25.
  • the operation of moving the corresponding part of the area to the exposure area of the projection optical system PL and performing exposure is repeated in a step-and-repeat manner.
  • the reticle R is replaced with another reticle, and a reduced image of the pattern of the replaced reticle is exposed while screen shot is performed on each shot area on the wafer W, and thereafter, the reticle is replaced and connected. Exposure is repeated.
  • a large reticle is used as the reticle R, and a plurality of patterns sequentially selected by the reticle blind 4 from the pattern surface of this reticle are screen-connected while the screen is being screen-connected. May be transferred to each shot area.
  • the density filter 55 is arranged so as to be movable with six degrees of freedom on a base (not shown) (base 51 in FIG. 3) via the movable table 53 and the movable table 52.
  • the system 24 is configured to be able to control the position and the inclination angle of the density filter 55 via the drive system 29.
  • the movable table 52, 53, etc. constitutes a positioning device 5 for the density filter 55.
  • the shape of the opening of the reticle blind 4 can be set by the main control system 24 via a drive system (not shown).
  • the reduced images of the patterns of a plurality of reticles are exposed (joint exposure) while the screens are connected as described above.
  • a joint portion (connecting portion) of a predetermined width is overlapped and exposed, and in the area where the reduced images of the four patterns are adjacent, the four images are used.
  • the overlapping portions of the corners of each corner of the reduced image are overlapped and exposed. This prevents the circuit pattern finally formed at the joint from being cut.
  • a reduced image of each reticle pattern is exposed using the density filter 55.
  • the illuminance (and, consequently, the amount of exposure) at the periphery is reduced.
  • a joint portion thereof for example, the first portion in one shot area exposed by the illumination light IL at the time of transfer of the first pattern, and the second pattern
  • the circuit pattern for the device does not necessarily exist in the one shot area exposed to the illumination light IL during transfer, and the connection part exists even if the circuit pattern exists. It may not be.
  • the density fill 55 is effective for adjusting the integrated exposure amount to other areas.
  • the illuminance distribution on the reticle R pattern surface is set by the transmittance distribution on the filter surface of the density filter 55, so that the filter surface is theoretically conjugate with the reticle R pattern surface.
  • the filter surface of density filter Is located slightly away from the plane P1 toward the reticle side or the light source side (defocused position).
  • the fill surface of the concentration fill 55 may be placed on the surface P1.
  • a positioning device 5 including movable tables 52 and 53 is used.
  • FIG. 3 shows an example of the configuration of a positioning device 5 for the density filter 55.
  • a concentration filter 55 is provided so as to cover the opening 61 of the movable table 53
  • a movable table 53 is provided so as to cover the opening of the movable table 52.
  • the movable table 52 has three freedoms of translational movement in the X and Y directions with respect to the base 51 and rotation about the Z axis with respect to the base 51 by means of a three-axis drive motor 52A to 52C.
  • the movable table 53 is moved in the Z direction with respect to the movable table 52 by three drive motors 53D, and is moved around the X axis and the Y axis. Fine adjustment of three degrees of freedom with rotation around It is arranged to be able to.
  • the 6-axis drive motors 52A to 52C and 53D are provided with encoders for detecting the amount of movement or the rotation angle, respectively, and the detection results of these encoders are supplied to the drive system 29 in Fig. 1. ing.
  • the main control system 24 moves the illuminance sensor 63 to the exposure area of the projection optical system PL to start the irradiation of the illumination light IL for exposure, and then drives the wafer stage 25.
  • the illuminance sensor 63 crosses the exposure area, and the detection signal of the illuminance sensor 63 is taken in accordance with the coordinates of the wafer stage 25, so that the position and rotation angle of the density filter 55 can be monitored. I do.
  • alignment marks are provided so as to correspond to both the density filter 55 and the reticle R, and the positions of the images of the alignment marks are also detected, whereby the density filter 55 is formed.
  • the positional relationship (at least one of the positional relationship in the X direction, the positional relationship in the Y direction, and the relative rotation around the Z axis) between the projected image on the reticle R and the reticle R can be detected with high accuracy.
  • the main control system 24 controls the operation of the drive motors 52 A to 52 C and 53 D via the drive system 29 so that the detected positional relationship becomes a predetermined relationship. In this way, the position of the density filter 55 is determined.
  • the defocus amount at the corresponding position is obtained from the contrast of the images of the two alignment marks around the density filter 55, and the light of the density filter 55 is adjusted so that the defocus amount becomes equal.
  • the position in the direction along the axis may be controlled. This makes it possible to adjust the position (defocus amount) and the one-dimensional tilt amount (rotation angle) of the density filter 55 in the Z direction.
  • the illuminance sensor 63 may detect only the image of one alignment mark of the density fill 55 and adjust the defocus amount of the density fill 55, or the density fill 55 may be used.
  • the illuminance sensor 63 detects the images of the alignment marks provided in at least three locations of In addition to the defocus amount of the fill 5 55, a two-dimensional tilt amount (rotation angle) may be adjusted.
  • a two-dimensional tilt amount may be adjusted.
  • the density filter is used without using the alignment mark on the reticle R. Only the alignment mark 5 5 may be detected by the illuminance sensor 63 or the like. Further, a reference mark provided on reticle stage 21 may be used instead of the alignment mark on the reticle.
  • a manual drive micrometer head is used in place of the drive motors 52 A to 52 C and 53 D. The position may be adjusted.
  • the density filter 55 may be replaced with a density filter having another transmittance distribution.
  • the movable table 53 may be pulled out of the movable table 52 using the handle 62 provided on the movable table 53.
  • Fig. 4 (a) is a diagram showing the transmittance distribution of the fill area of the density fill area 55.
  • the directions corresponding to the X direction and Y direction in Fig. 1 are the X direction and the X direction, respectively.
  • the grid pattern formed in the fill area of the density fill 55 is a pattern drawn virtually to indicate the coordinates, and the transmittance in the fill area is actually 1 (100) %) And 0 (0%). That is, a large number of extremely fine dot patterns are formed in the filter portion so as to obtain a desired transmittance distribution by changing the size and density of each dot pattern depending on the position.
  • the transmittance of 1 means the transmittance of the transparent substrate for the density filter 55 itself. Also generated from the dot pattern In consideration of the diffracted light and the optical characteristics of the illumination optical system (distortion, etc.), the size and density of the dot pattern are adjusted so that the desired illumination light distribution can be obtained on the reticle or wafer, and the light is transmitted. It is desirable to set a rate distribution.
  • a concentration filter In such a concentration filter, a light-shielding film such as chromium is formed on a transparent substrate, an electron beam resist is applied thereon, and a corresponding pattern is drawn thereon by an electron beam drawing apparatus. , Development, etching, resist stripping, and the like. Even if defects or continuous edges are formed in some regions during this manufacturing process, the defects are transferred to the wafer because the filter surface is defocused from the conjugate surface with the reticle R. It will not be done. Therefore, the defocus amount of the density filter 55 is determined by the drawing accuracy of the electron beam lithography apparatus at the time of manufacturing the density filter 55 and the tolerance for the error of the exposure dose on the wafer. Is also taken into account.
  • the transmittance TA of the area (A 1) which is the lower left corner of the fill area, is one-dimensionally decreasing outward in the X direction (xZa) and linearly decreasing outward in the y direction. Multiplied by the original distribution (yZa) It is cloth. Also, the transmittances TA 3 , TA? And TA 9 in the lower right, upper left, and upper right corners of the fill area are one-dimensionally reduced outward in the X direction and the y direction, respectively. Is multiplied by the one-dimensionally decreasing distribution to the outside. In addition, the transmittance T in the region along the line BB in Fig.
  • the pattern of the reticle R of FIG. 1 is illuminated through the density filter 55 having the transmittance distribution of FIG. Expose a part of the area.
  • the reticle on the reticle stage 21 is sequentially replaced with another reticle, and the wafer W is moved by a predetermined amount through the wafer stage 25, and then the pattern of the replaced reticle is filtered by the density filter 55.
  • the reduced image of the pattern is exposed to another portion of the shot area on the wafer W, and the joint 55a of FIG.
  • a region corresponding to ⁇ 55d also referred to as a "joint" is overlaid and exposed.
  • the reduced images of a plurality of reticle patterns are transferred onto the relevant shot area on the wafer W while the screens are connected in the X and Y directions. An almost uniform product exposure amount is provided over the entire area.
  • FIG. 5 shows a large projected image that is exposed to one shot area on the wafer W in FIG. 1 by the exposure for performing the screen splicing of the present example.
  • the projected images 30 A, 30 B, 30 C, and 30 D of the rectangles become the joints 30 AB, 3 at the boundary in the X direction. 0 CD and the joint 30 AC, 30 BD at the boundary in the Y direction are exposed in a double overlapping manner.
  • the corners of the rectangles of the four projected images 30A to 30D are superimposed four-fold. Exposed.
  • reticle stage 21 may be rotated, and the coordinate system of wafer stage 25 may be corrected by the rotation error, and wafer W may be obliquely moved stepwise based on the corrected coordinate system. As a result, it is possible to reduce the exposure error (dose error) at the joint.
  • the transmittance of the density filter 55 is 10. Since it is 0%, the exposure amount is 100%.
  • the integrated exposure amount of the joints 30 AB, 30 BD, 30 CD, 30 AC, and 31 becomes 100%.
  • the projection magnification from the density filter 55 in Fig. 4 (a) to wafer W in Fig. 5 is 1, the width in the X direction of the joints 30 AB, 30 CD is a, The width of the part 30 BD, 30 AC in the Y direction is b. If the point P 3 in FIG.
  • AB (A) and AB (B) be the exposure amounts of the projected images 3OA and 30B at the joint 30AB, and let the integrated exposure amount obtained by adding these exposure amounts be AB. From Eqs. (6) and (4), they are as follows. However, the exposure amount in the areas denoted by the reference signs A to D is 100%.
  • the exposure amounts CD (C) and CD (D) of the projected images 30C and 30D in the joint 30CD and the integrated exposure amount CD thereof are as follows.
  • CD (C) TA 6 (C)
  • CD CD (C) + CD (D)
  • the exposure amounts A C (A) and AC (C) of the projected images 3 OA and 30 C at the joint 30 AC and the integrated exposure amount AC are as follows.
  • a C A C (A) + A C (C)
  • the exposure amounts of the four projected images 3OA, 30B, 30C and 30D at the joint 31 are ABCD (A), ABCD (B), ABCD (C) and ABCD (D). Assuming that the integrated exposure amount is ABCD, these are as follows from Eqs. (3), (1), (9), and (7).
  • AB CD AB CD (A) + AB CD (B) + AB CD (C) + A B CD (D)
  • the peripheral area 11 is not subjected to the overlay exposure, so that the exposure amount gradually decreases outward as it is. Therefore, a region in the joint portion where multiple exposure is not performed is a region outside the pattern region, and the region may be shielded from light by the reticle blind 4 in FIG.
  • Figure 6 shows such a case where light is blocked by the reticle blind 6.
  • the outermost area 11 lacks the other projected image to be superimposed.
  • the amount of exposure is insufficient and the result is incomplete.
  • the main control system 24 drives the reticle blind 4 via a drive unit (not shown) so that the shadow (image) of B, 42A, 42B (see Fig. 2) falls within the range of the light-shielding band. I do.
  • the illumination light of the above-mentioned incomplete portion is shielded, so that the exposure amount on the wafer does not become uneven.
  • the reticle blind 4 since the fill surface of the density filter 55 exists near the plane P 1 conjugate with the pattern surface of the reticle R, the reticle blind 4 does not mechanically interfere with the density filter 55. Then, it is retracted from the plane P1 to a position shifted in the optical axis direction of the illumination optical system. However, in order to prevent the reticle blind 4 from deviating from the plane P1, which is conjugate with the pattern plane, a relay optical system that relays the plane P1 to another conjugate plane is arranged, and the conjugate plane is placed on the relay optics. Reticle blind 4 may be arranged.
  • the width of the light-shielding band provided on the reticle R depends on the amount of blur of the edge of the light-shielding plate of the reticle blind 4 due to this defocus, the control error of the light-shielding plate, and However, it is necessary to comprehensively consider the mechanical accuracy of the light shielding plate, the aberration of the optical system from the reticle blind 4 to the reticle R, and the distortion amount of the optical system.
  • the reticle blind 4 may be replaced with the reticle R pattern surface, for example. (Lower surface).
  • the density filter 55 may be arranged on the bottom surface of the pattern surface of the reticle R, and the reticle blind 4 may be arranged on a plane P1 conjugate with the pattern plane.
  • the reticle blind 4 or the density filter 55 may be arranged on the opposite side of the reticle R from the pattern surface (illumination optical system side).
  • the projection optical system PL re-images the intermediate image of the reticle pattern on the wafer
  • the reticle blind 4 or the density filter 55 is formed from the predetermined surface where the intermediate image is formed in the projection optical system PL.
  • the light amount distribution may be shifted, in short, as long as the light amount distribution in which the illumination light amount on the top gradually decreases outward.
  • the filter surface of the density filter 55 is defocused by an appropriate amount with respect to the surface P1 as described above, if the cleanness of the surrounding environment is low, the filter surface Foreign matter, such as dust, having a size exceeding the allowable range may adhere to the wafer, and the foreign matter may be transferred onto the wafer W through the reticle R.
  • a thin film pellicle as a dust-proof film
  • cellulose which does not affect optically, so as to protect the filler surface.
  • FIG. 9 shows an embodiment in which a dust-proof thin film 58 is installed via a rectangular metal frame (pellicle frame) 57 on the fill surface P2 of the concentration fill 55 in this way.
  • the filter surface P 2 of the density filter 55 and the thin film 58 are arranged so as to sandwich the plane P 1 conjugate with the pattern surface of the reticle.
  • the reticle blind 4 is arranged close to the thin film 58.
  • no foreign matter adheres to the fill surface P2 and the image of the foreign matter adhered to the thin film 58 is defocused and projected on the reticle, and has no adverse effect.
  • prepare a foreign substance inspection machine separately and adjust the allowable range for the fill surface P2 or thin film 58 as necessary. It is desirable to replace the density filter 55 with a density filter that does not have any other foreign matter if such foreign matter is found.
  • a glass plate that is permeable to the illumination light IL having a thickness about the distance between the thin film 58 and the fill surface P2 may be arranged.
  • the glass plate may be fixed in close contact with the filling surface P2.
  • reticle blind 4 When reticle blind 4 is placed on a conjugate plane with a reticle different from that on plane P1, contrary to the arrangement in FIG. It may be arranged facing.
  • a hole communicating with the outside air is formed in a part of the frame 57 so that the thin film 58 is not deformed by a pressure change.
  • a chemical filter as well as a HEPA filter is provided in the hole to prevent ions and silicon-based organic substances from entering the fill surface P2.
  • FIGS. 7A a projection exposure apparatus having the same configuration as the projection exposure apparatus of FIG. 1 is used to expose a projection image of a pattern of a plurality of reticles onto a wafer while performing screen joining.
  • this example is different from the first embodiment in that the density filter 55 shown in FIG. 7A is used instead of the density filter 55 shown in FIG. 1 (FIG. 4A).
  • FIGS. 4 and 5 in FIGS. 7 and 8 are denoted by the same reference numerals, and are obtained by performing exposure while performing the transmittance distribution of the density filter 56 and screen jointing. The exposure distribution will be described.
  • Fig. 7 (a) shows the fill area of the density fill 56 of this example.
  • the joints 56 a , 5 6b the width of a
  • the joints at both ends in the y direction 5 6c, 5 Let b be the width of 6 d, and let a be the width in the x direction of the internal area surrounded by the joints 56 a to 56 d.
  • the range of the fill area in the X and y directions is as follows.
  • TB 2 100 (y / b) [%] (2 2) area (B 3): a + a. X ⁇ 2a + a. , 0 ⁇ y ⁇ b and bx + ay ⁇ b (2 a + ao)
  • T B 4 1 0 0 [1- ⁇ x-(a + a.) ⁇ A] [%] (24)
  • the transmittance TB of the area (B 1), which is the corner of the lower left triangle of the filter area, has a distribution (x / a) that decreases one-dimensionally outward in the X direction, And the distribution (yZa) that decreases one-dimensionally.
  • the transmittance T of this region (B1) along the DD line decreases linearly outward along the oblique position y ', as shown in Fig. 7 (d).
  • the transmittance TB ⁇ of the upper right corner of the filter region (B11) is set symmetrically with the transmittance TB !.
  • the corner of the upper left rectangle of the filter area is also divided into adjacent triangular areas (B 8) and (B 9), and the corresponding transmittance TB 8 and TB 9 are set symmetrically with the transmittances TB 4 and TB 3 .
  • the transmittance T in the region along the line BB in Fig. 7 (a) changes linearly from 0 to 1 (100%) with respect to the position X as shown in Fig. 7 (b).
  • the transmittance T in the region along the CC line in FIG. 7 (a) changes linearly from 0 to 1 (100%) with respect to the position y as shown in FIG. 7 (c).
  • the reticle on the reticle stage 21 shown in Fig. 1 is illuminated through the density filter 56 having the transmittance distribution shown in Fig. 7 (a), and a reduced image of the reticle pattern is formed while screen joining is performed. Is exposed to the shot area on the wafer W.
  • FIG. 8 shows a large projection image exposed to one shot area on the wafer W in FIG. 1 by the exposure for performing the screen splicing in this example.
  • 3 A, 3 2 B, 32 C, 32 D force Joints at the boundary in the X direction 3 2 AB, 32 CD, and joints at the boundary in the Y direction 3 2 AC, Exposure is performed so that 32 BDs are superimposed twice.
  • the rectangular joint where the four projected images 32A to 32D are adjacent to each other is divided into triangular joints 33 and 34 across the oblique boundary line 35, and the joint 33 projects at A part of the image 32A, 32B, 32D is exposed in a triple overlapped manner, and the projected image 32A, 3
  • a part of 2C and 32D is exposed in triple overlap.
  • the transmittance of the density filter 56 is 10. Since it is 0%, the exposure amount is 100%.
  • the joint 3 2 AB is
  • the integrated exposure amount of 32 BD, 32 CD, and 32 AC is 100% as in the embodiment of FIG.
  • the integrated exposure amount of the joints 33 and 34 is also 100%.
  • the point P 3 in FIG. 8 is set as the origin of the coordinates (X, Y), and the coordinates of the point P when the point P 3 is set as the origin is (X, Y).
  • Y the coordinates ( ⁇ , ⁇ ), ( ⁇ , ⁇ ) (X Yc), with the lower left point of the projected images 32A, 32B, 32C, 32D as the origin.
  • ( ⁇ , ⁇ ) are as follows.
  • the integrated exposure amount ABCDl at the joint portion 34 is as follows.
  • ABCDl ABCD1 (A) + ABCDl (0 + ABCDl (D)
  • ABCD2 ABCD2 (A) + ABCD2 (B) + ABCD2 (D)
  • the same amount of exposure light as that of the other areas can be obtained in the rectangular areas (joints 33, 34) where the four projected images 32A to 32D are adjacent. Therefore, the uniformity of the exposure amount is maintained over the entire projected image.
  • the present invention is applied to the case of manufacturing a semiconductor device, a liquid crystal display, a plasma display, and the like by the bridge exposure method, but the present invention uses a peak reticle as a mask in the bridge exposure method. It can be applied to the case of manufacturing.
  • the original pattern obtained by enlarging the reticle pattern is divided into a plurality of parts, and the divided original patterns are drawn on a plurality of master reticles.
  • the reduced images of the patterns of the master reticle are glass-connected by the density exposure method 55, 56 as in the above-described embodiment. Transfer onto a mask substrate such as a substrate.
  • a light-shielding film such as chromium is formed on the mask substrate in advance, and a photoresist is applied thereon. Therefore, by performing development, etching, resist stripping, and the like after the bridge exposure, a single reticle is manufactured with high accuracy and high line width uniformity.
  • a silicon wafer or the like is used as a mask substrate of a working reticle. Particularly in EUV exposure equipment, a reflective working reticle is used.
  • the optical path of the illumination optical system is Gases with high transmittance, such as nitrogen gas (N 2 ) and helium gas (H e), are purged.
  • N 2 nitrogen gas
  • H e helium gas
  • the space surrounded by the thin film 58, the frame 57, and the concentration filter 55 is filled with a gas having a high transmittance, or through an opening provided in the frame 57. It is desirable to flow the gas.
  • a reticle blind 4 is arranged close to the exit surface, and a density filter 5 ⁇ is close to the reticle blind 4.
  • a fill surface of the density fill 55 may be arranged on a surface conjugate with the exit surface between the rod / integre and the reticle, or on a surface slightly shifted from this surface.
  • the density filter 55 can be changed according to the size and shape of the pattern area on the reticle. At this time, in order to automatically perform the exchange, it is preferable that a plurality of density filters having different sizes be fixed to an evening lett plate on the positioning device 5 or the like.
  • the device for detecting the alignment mark of the density filter 55 (or 56) is not limited to the illuminance sensor 63.
  • An optical system having at least a light receiving unit may be provided and used on the wafer stage 25 separately from 3, or a dedicated optical system may be incorporated in the illumination optical system.
  • the above-mentioned illumination light IL may be used as the detection light of the alignment mark, or a light source different from the light source 1 may be prepared so that light having substantially the same wavelength as the illumination light IL is used. You may.
  • the present invention is applied to a batch exposure type projection exposure apparatus.
  • the present invention can be similarly applied to a case where a connection exposure is performed by a proximity type exposure apparatus. it can.
  • the present invention can be applied to a case where a connecting exposure is performed by a scanning exposure type projection exposure apparatus such as a step-and-scan method.
  • the present invention is also applicable to a case where a bridge exposure is performed by an EUV exposure apparatus that uses extreme ultraviolet light (EUV light) such as soft X-ray or X-ray having a wavelength of about 5 nm to 15 nm as an exposure beam. be able to.
  • EUV light extreme ultraviolet light
  • a concentration film (dimming filter) is used as a reflection film (for example, a multilayer of molybdenum and silicon) with a predetermined reflectance distribution on a reflective substrate.
  • a reflective filter formed with a film or a multilayer film of molybdenum and beryllium may be used.
  • a single-wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser as illumination light for exposure may be used, for example, by using Erbium (Er) (or both Erbium and Ytterbium (Yb)).
  • Er Erbium
  • Yb Ytterbium
  • a single-wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser as illumination light for exposure may be used, for example, by using Erbium (Er) (or both Erbium and Ytterbium (Yb)).
  • Er Er
  • Yb Ytterbium
  • the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 m
  • the 8th harmonic in the range of 193 to 194 nm, that is, almost the same as the ArF excimer laser Assuming that ultraviolet light having the same wavelength is obtained and the oscillation wavelength is in the range of 1.57 to 1.58 m, the 10th harmonic in the range of 157 to 158 nm, that is, F 2 Ultraviolet light having substantially the same wavelength as that of one laser is obtained.
  • an illumination optical system composed of an exposure light source and an illuminance uniforming optical system, and a projection optical system are incorporated in the main body of the exposure apparatus for optical adjustment, and a reticle stage and a wafer stage composed of many mechanical parts are mounted on the exposure apparatus.
  • the projection exposure apparatus of the above-described embodiment can be mounted by attaching it to the main body, connecting wiring and piping, attaching the density filter 55 of the above-described embodiment, and performing overall adjustment (electrical adjustment, operation confirmation, etc.). Can be manufactured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
  • the integrated exposure amount in a portion where the four patterns are adjacent is substantially equal to the integrated exposure amount in other portions.
  • a large-sized mask can be manufactured with high accuracy and high throughput without causing a defect even when a large-sized mask is formed by screen joining.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An exposing method in which the total exposure of the portion where four patterns are adjacent to one another is almost equal to that of the other portions when patterns are transferred two-dimensionally by image stitching. Projected images (30A to 30D) of the pattern of a reticle are so stitched as to overlap with one another in both X and Y directions on a wafer to expose the wafer. The distribution of exposure of the rectangular corner parts, i.e., the areas (stitching portions (31)) where four projected images (30A to 30D) are adjacent to one another is determined according to the characteristic which is the product of a first characteristic gradually decreasing in the X direction and a second characteristic gradually decreasing in the Y direction.

Description

露光方法及び装置 Exposure method and apparatus
技術分野 Technical field
本発明は、 半導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 又は 薄膜磁気へッ ド等のデバイスを明製造するためのリソグラフイエ程で使用 される露光方法及び露光装置に関し、 特に複数個のパターンを画面継ぎ 田  The present invention relates to an exposure method and an exposure apparatus used in a lithographic process for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, or a thin-film magnetic head. Screen pattern
を行いながら転写 (つなぎ露光) して大きなパターンを露光する場合に 使用して好適なものである。 This method is suitable for use when exposing a large pattern by transferring (connecting exposure) while performing the patterning.
背景技術 Background art
従来の半導体集積回路は、 一般にマスクとしての一枚のレチクルのパ 夕一ンを基板としてのウェハ上の各ショッ ト領域に転写する工程を繰り 返すことによって製造されていた。 これに対して最近、 大型化した半導 体集積回路デバイスの製造を行うために、 転写すべき一つの回路パター ンの原版パターンを複数枚のレチクルのパターンに分割し、 この複数枚 のレチクルのパターンをウェハ上の一つのショッ ト領域に画面継ぎを行 いながら転写する、 即ちつなぎ露光する露光方法が用いられている。 つ なぎ露光は、 「画角合成」 とも呼ばれている。  Conventional semiconductor integrated circuits are generally manufactured by repeating a process of transferring a pattern of one reticle as a mask to each shot area on a wafer as a substrate. On the other hand, recently, in order to manufacture a large-sized semiconductor integrated circuit device, the original pattern of one circuit pattern to be transferred is divided into a plurality of reticle patterns, and the reticle pattern An exposure method is used in which a pattern is transferred to one shot area on a wafer while screen joining is performed, that is, continuous exposure is performed. Bridge exposure is also called “angle of view synthesis”.
ステッパー等の投影露光装置を用いてつなぎ露光を行う際には、 レチ クルパターンの描画誤差、 投影光学系の収差、 及びレチクルやウェハを 位置決めするためのステージの位置決め誤差等に起因して、 複数のレチ クルのパターンの像の継ぎ部 (境界部) でパターンの切断が生じる恐れ がある。 このようなパターンの切断を防止するため、 従来より隣接する パターンの像の継ぎ部を微少な幅だけ重ね合わせて露光を行う方法が開 発されている。 When performing bridge exposure using a projection exposure apparatus such as a stepper, multiple exposures may occur due to drawing errors of the reticle pattern, aberrations of the projection optical system, and positioning errors of the stage for positioning the reticle or wafer. The pattern may be cut at the joint (boundary) of the image of the reticle pattern. In order to prevent such cutting of a pattern, a method of performing exposure by overlapping a joint portion of an image of an adjacent pattern by a minute width has conventionally been developed. Has been issued.
上記の如く画面継ぎを行いながら露光を行う際には、 継ぎ部としての 重ね合わせ部で二重露光を行っていた。 しかしながら、 単に二重露光を 行うと、 その部分の積算露光量が 2倍になり、 ウェハに塗布された感光 剤 (レジスト) の特性によっては、 現像及びエッチング等を行った後の パターンの継ぎ部の線幅が変化するという不都合がある。  When performing exposure while performing screen splicing as described above, double exposure was performed at the overlapped portion as a spliced portion. However, simply performing double exposure doubles the integrated exposure amount in that area, and depending on the characteristics of the photosensitive agent (resist) applied to the wafer, the joint of the pattern after development and etching, etc. Has a disadvantage that the line width of the image changes.
そのような継ぎ部でのパターンの線幅の変化を回避するために、 例え ばレチクルに対して共役となる面に配置された光学フィル夕中で、 その 継ぎ部に相当する領域に露光光の透過光量を外側に向けて線形に減少さ せる減光部を設けた投影露光装置が提案されている。 この場合、 例えば 一次元方向に隣接する 2つのパターンの像の重ね合わせ部では、 二重露 光の際の露光量の分布が互いに対称に傾斜した分布となるため、 重ね合 わせ部での積算露光量は他の部分の積算露光量と一致する。 言い換える と、 その際の重ね合わせ部の減光特性は 1次元の関数で規定されていた ことになる。  In order to avoid a change in the line width of the pattern at such a joint, for example, in an optical filter arranged on a surface conjugate to the reticle, the exposure light is applied to a region corresponding to the joint. There has been proposed a projection exposure apparatus provided with a dimming unit that linearly reduces the amount of transmitted light outward. In this case, for example, in the overlapping portion of the images of two patterns that are adjacent to each other in the one-dimensional direction, the distribution of the exposure amount in the case of double exposure is a distribution symmetrically inclined with respect to each other. The exposure amount coincides with the integrated exposure amount of the other parts. In other words, the extinction characteristic of the superimposed part at that time is defined by a one-dimensional function.
これに関して、 最近は半導体集積回路が更に大型化しているため、 複 数枚のレチクルのパターンの像を 2次元的に高精度に継ぎ合わせて露光 する必要性が高まっている。 しかしながら、 重ね合わせ部の減光特性が 所定方向に一次元的に減少している状態で、 そのように 2次元的に画面 継ぎを行う場合、 隣接する 4枚のパターンの像の角部が重なる領域では、 4重露光後の積算露光量がその他の部分での積算露光量と異なるように なって、 その角部に形成される回路パターンの線幅が変化するといぅ不 都合がある。  In this regard, as semiconductor integrated circuits have become larger in recent years, there has been an increasing need to expose two-dimensionally high-precision images of reticle patterns. However, in the state where the dimming characteristic of the superimposed portion is one-dimensionally reduced in a predetermined direction, when such two-dimensional screen splicing is performed, the corners of the images of four adjacent patterns overlap. In the region, the integrated exposure amount after the quadruple exposure is different from the integrated exposure amount in other portions, and there is a disadvantage that the line width of the circuit pattern formed at the corner changes.
本発明は斯かる点に鑑み、 複数枚のパターンを 2次元的に画面継ぎを 行いながら露光する場合、 4枚のパターンが隣接する部分での積算露光 量が他の部分での積算露光量 (露光量) とほぼ同じになるような露光方 法を提供することを第 1の目的とする。 In view of the above, in the present invention, when exposing a plurality of patterns while performing two-dimensional screen splicing, the integrated exposure amount in a portion where the four patterns are adjacent is different from the integrated exposure amount in other portions ( Exposure method) Its primary purpose is to provide law.
更に本発明は、 そのような露光方法を実施できる露光装置、 及びその ような露光装置の製造方法を提供することを第 2の目的とする。  It is a second object of the present invention to provide an exposure apparatus capable of performing such an exposure method, and a method of manufacturing such an exposure apparatus.
更に本発明は、 そのような露光方法を使用するデバイス又はマスクの 製造方法を提供することをも目的とする。 発明の開示  Another object of the present invention is to provide a method of manufacturing a device or a mask using such an exposure method. Disclosure of the invention
本発明による第 1の露光方法は、 基板上に複数のパターンを継ぎ合わ せて露光することによって、 その各パターンよりも大きいパターンをそ の基板上に露光する露光方法において、 複数のパターン (3 0 A〜 3 0 D ) を互いに交差する第 1方向 (X方向) 及び第 2方向 (Y方向) にそ れぞれ一部の領域が重なり合うように継ぎ合わせて露光し、 4個のパ夕 ーンが隣接する領域 (3 1 ) ではこの 4個のパターンの角部を互いに重 ね合わせて露光すると共に、 その 4個のパターンをそれぞれ露光する際 に、 このパターンの角部の露光量をその第 1方向に沿って外側に次第に 減少する第 1特性と、 その第 2方向に沿つて外側に次第に減少する第 2 特性とを掛け合わせた特性に基づいて設定するものである。  The first exposure method according to the present invention is directed to an exposure method for exposing a pattern larger than each of the patterns onto the substrate by splicing and exposing a plurality of patterns on the substrate. 0 A to 30 D) are exposed in the first direction (X direction) and the second direction (Y direction), which intersect each other, so that some areas are overlapped. In the area (31) where the patterns are adjacent to each other, the corners of the four patterns are exposed while overlapping each other, and when exposing each of the four patterns, the exposure amount of the corners of the pattern is reduced. This is set based on a characteristic obtained by multiplying a first characteristic that gradually decreases outward along the first direction and a second characteristic that gradually decreases outward along the second direction.
斯かる本発明によれば、 その 4個のパターンの角部での露光量の減光 特性がそれぞれ 2次元的な特性に設定されているため、 4重露光後の積 算露光量は他の部分での積算露光量とほぼ同じになる。 また、 その 2次 元的な特性は、 互いに交差する一次元的な特性を掛け合わせたものであ るため、 例えばそのような減光特性を有する減光フィル夕を容易に製造 することができる。  According to the present invention, the dimming characteristics of the exposure amount at the corners of the four patterns are set to two-dimensional characteristics, respectively. It becomes almost the same as the integrated exposure amount in the portion. In addition, since the two-dimensional characteristics are obtained by multiplying the one-dimensional characteristics that intersect each other, for example, a neutral density filter having such neutral density characteristics can be easily manufactured. .
この場合、 その隣接する 4個のパターンの内の一つのパターンのその 角部を露光する際に、 例えば図 4に示すように、 その角部のその第 1方 向及び第 2方向の幅をそれぞれ a及び bとして、 その角部の頂点を原点 としてその第 1方向及び第 2方向に沿ってその角部の内側に増加する座 標をそれぞれ X及び yとすると、 その角部での露光量を (xZa) · (y/b) に比例する値に設定することが望ましい。 他の 3個の角部で もそれぞれその特性を次第に回転した特性に設定することによって、 4 重露光後の角部の積算露光量は他の部分での積算露光量と正確に一致す る。 In this case, when exposing the corner of one of the four adjacent patterns, for example, as shown in FIG. 4, the width of the corner in the first and second directions is reduced. Let a and b be the vertices of the corners, respectively Let X and y be the coordinates that increase inside the corner along the first and second directions, respectively, and let the exposure at that corner be proportional to (xZa) · (y / b) It is desirable to set it to a value. By setting the characteristics of each of the other three corners to gradually rotate, the integrated exposure of the corner after the quadruple exposure exactly matches the integrated exposure of the other portions.
次に、 本発明による第 2の露光方法は、 基板上に複数のパターンを継 ぎ合わせて露光することによって、 その各パターンよりも大きいパ夕一 ンをその基板上に露光する露光方法において、 複数のパターン ( 3 2 A 〜3 2 D) を互いに交差する第 1方向 (X方向) 及び第 2方向 (Y方向) にそれぞれ一部の領域が重なり合うように継ぎ合わせて露光し、 4個の パターンが隣接する領域 (3 3, 34) ではそれぞれ斜めに対向する第 1及び第 2の一対のパターンの内で、 その第 1の一対のパターン (3 2 A, 3 2 D) についてはそれぞれの矩形の角部を互いに重ね合わせて露 光すると共に、 その第 2の一対のパターン (3 2 B, 3 2 C) について はそれぞれの三角形の角部 ( 3 3 , 34) をその矩形の角部の内部で隣 接させて露光するものである。  Next, a second exposure method according to the present invention is directed to an exposure method for exposing a pattern larger than each pattern onto the substrate by exposing a plurality of patterns onto the substrate. A plurality of patterns (32A to 32D) are spliced and exposed in a first direction (X direction) and a second direction (Y direction) crossing each other so that a part of each region overlaps. In the regions (33, 34) where the patterns are adjacent to each other, of the first pair of patterns (32A, 32D), the first pair of patterns (32A, 32D) are obliquely opposed. The corners of the rectangle are superimposed on each other and exposed, and for the second pair of patterns (32B, 32C), the corners (33, 34) of each triangle are replaced by the corners of the rectangle. Exposure is performed adjacent to the inside of the device.
斯かる本発明によれば、 その 4個のパターンが隣接する領域の一方の 三角形の領域 ( 3 3) では、 隣接する 3個のパターン (3 2 A, 3 2 B, 3 2 D) の角部が重ね合わせて露光され、 他方の三角形の領域 (34) では、 隣接する 3個のパターン ( 3 2 A, 3 2 C, 3 2 D) の角部が重 ね合わせて露光される。 そして、 それらの角部はそれぞれ外側に向けて 所定の特性で露光量が減少しているため、 積算露光量は他の領域とほぼ 等しくなる。  According to the present invention, the corners of the three adjacent patterns (32A, 32B, 32D) are formed in one triangular area (33) of the four adjacent patterns. In the other triangular area (34), the corners of three adjacent patterns (32A, 32C, 32D) are overlapped and exposed. Since the exposure amount of each of the corners decreases outward with a predetermined characteristic, the integrated exposure amount becomes substantially equal to the other regions.
次に、 本発明の第 1の露光装置は、 マスク (R) のパターンを基板 (W) 上に転写する露光装置において、 そのマスクを照明する照明光学 系 ( 1〜 3, 6〜8 ) と、 その照明光学系内でそのマスクのパターン面 に対して実質的に共役な位置に配置されて、 そのマスク上の照明領域を 設定する視野絞り (4 ) と、 その基板の位置決めを行う基板ステージ ( 2 5 ) と、 そのマスクのパターン面の近傍の面、 又はそのパターン面 に対する共役面の近傍の面上に配置されて、 そのパターン面の交差する 第 1方向及び第 2方向に実質的に平行な外形を有するパターン領域の少 なくとも一つの角部に対応する領域の露光用の照明光に対する透過率を、 その第 1方向に沿って外側に次第に減少する第 1特性と、 その第 2方向 に沿って外側に次第に減少する第 2特性とを掛け合わせた特性に基づい て設定する減光フィル夕 ( 5 5 ) と、 を有するものである。 この露光装 置によって、 本発明の第 1の露光方法が使用できる。 Next, a first exposure apparatus of the present invention is an exposure apparatus for transferring a pattern of a mask (R) onto a substrate (W). System (1-3, 6-8) and a field stop (4) arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask. ), A substrate stage (25) for positioning the substrate, and a surface near the pattern surface of the mask, or a surface near a conjugate surface with respect to the pattern surface, intersecting the pattern surface. The transmittance of at least one area corresponding to at least one corner of the pattern area having an outer shape substantially parallel to the first direction and the second direction to the illumination light for exposure to the outside along the first direction. And a dimming filter (55) set based on a characteristic obtained by multiplying a first characteristic that gradually decreases and a second characteristic that gradually decreases outward along the second direction. With this exposure apparatus, the first exposure method of the present invention can be used.
また、 本発明による第 2の露光装置は、 その第 1の露光装置の減光フ ィル夕の代わりに、 次のような特性を持つ減光フィル夕 (5 6 ) を設け たものである。 即ち、 この減光フィルタは、 このパターン面の互いに交 差する第 1方向及び第 2方向に実質的に平行な外形を有するパターン領 域のそれぞれ斜めに対向する第 1及び第 2の一対の角部の内で、 その第 1の一対の角部に対応する領域での露光用の照明光に対する透過率をそ の第 1方向に沿って外側に次第に減少する第 1特性、 又はその第 2方向 に沿って外側に次第に減少する第 2特性に基づいて設定し、 その第 2の 一対の角部に対応する領域での露光用の照明光に対する透過率を、 この 一対の角部の対向する方向に沿って外側に広がった三角形状の領域内で、 その第 1方向に沿って外側に次第に減少する第 1特性とその第 2方向に 沿って外側に次第に減少する第 2特性とを加算した特性に基づいて設定 するものである。 この第 2の露光装置によって、 上記の第 2の露光方法 が使用できる。  The second exposure apparatus according to the present invention is provided with a dimming filter (56) having the following characteristics instead of the dimming filter of the first exposure apparatus. . That is, the neutral density filter includes a pair of first and second diagonally opposed corners of a pattern area having an outer shape substantially parallel to the first and second directions intersecting with each other on the pattern surface. A first characteristic in which the transmittance for the illumination light for exposure in a region corresponding to the first pair of corners in the portion gradually decreases outward in the first direction, or in the second direction. Is set based on the second characteristic that gradually decreases outward along the distance, and the transmittance for the illumination light for exposure in the region corresponding to the second pair of corners is set in a direction opposite to the pair of corners. A characteristic obtained by adding a first characteristic that gradually decreases outward along the first direction and a second characteristic that gradually decreases outward along the second direction within a triangular area that extends outward along. This is set based on. With this second exposure apparatus, the above-described second exposure method can be used.
次に、 本発明による第 3の露光方法は、 基板上で周辺部が部分的に重 なる少なくとも 2つの領域にそれぞれパターンを転写する露光方法にお いて、 そのパターンに照射される照明光のその基板上での光量をその少 なくとも 2つの領域が重なる部分で徐々に減少させる減光フィル夕の位 置情報と回転情報との少なくとも一方を得るために、 その減光フィル夕 に設けられる少なくとも 1つのマークパターンを検出するものである。 斯かる本発明によれば、 その減光フィル夕によりそのパターンに照射 される照明光のその基板上での光量をその少なくとも 2つの領域が重な る部分で徐々に減少させるため、 その部分での積算露光量は他の部分と ほぼ等しくなる。 また本発明では、 その減光フィル夕に設けられるマ一 クパターンを検出し、 その減光フィル夕の位置情報と回転情報との少な くとも一方を得る。 これにより、 その得られた情報に基づいて、 その減 光フィル夕とそのパターンとの相対的な位置決め精度を高めることがで き、 つなぎ露光後のデバイスの線幅精度等を向上させることができる。 Next, in the third exposure method according to the present invention, the peripheral portion partially overlaps on the substrate. In an exposure method in which a pattern is transferred to at least two regions, the amount of illumination light applied to the pattern on the substrate is gradually reduced at least where the two regions overlap. In order to obtain at least one of the position information and the rotation information of the filter, at least one mark pattern provided in the dimming filter is detected. According to the present invention, the amount of illumination light, which is applied to the pattern by the dimming filter, on the substrate is gradually reduced at a portion where the at least two regions overlap, and thus the light is reduced at that portion. Is approximately equal to the other parts. Further, in the present invention, a mark pattern provided in the darkening filter is detected, and at least one of the position information and the rotation information of the darkening filter is obtained. Thereby, based on the obtained information, the relative positioning accuracy between the dimming filter and the pattern can be improved, and the line width accuracy of the device after the bridge exposure can be improved. .
この場合、 その得られた情報に基づいて、 そのパターンが形成される マスクとその減光フィル夕との相対関係を調整することが望ましい。  In this case, it is desirable to adjust the relative relationship between the mask on which the pattern is formed and the dimming filter based on the obtained information.
また、 その得られた情報に基づいて、 その減光フィル夕が配置される 光学系内での光軸方向に関するその減光フィル夕の位置と傾斜との少な くとも一方を調整することが望ましい。  In addition, it is desirable to adjust at least one of the position and the inclination of the extinction filter with respect to the optical axis direction in the optical system in which the extinction filter is arranged based on the obtained information. .
また、 本発明による第 3の露光装置は、 基板上で周辺部が部分的に重 なる少なくとも 2つの領域にそれぞれパターンを転写する露光装置にお いて、 そのパターンに照射される照明光のその基板上での光量をその少 なくとも 2つの領域が重なる部分で徐々に減少させる減光フィル夕と、 その減光フィル夕の位置情報と回転情報との少なくとも一方を得るため に、 その減光フィル夕に設けられる少なくとも 1つのマークパターンを 検出する検出装置とを備えたものである。 この第 3の露光装置によって. 本発明の第 3の露光方法が使用できる。 この場合、 その減光フィル夕の位置と回転との少なくとも一方を調整 するために、 その減光フィルタを駆動するァクチユエ一夕を更に備える ことが望ましい。 Further, the third exposure apparatus according to the present invention is an exposure apparatus that transfers a pattern to at least two regions where peripheral portions partially overlap each other on a substrate, wherein the substrate receives illumination light applied to the pattern. A dimming filter that gradually reduces the amount of light above at least where the two regions overlap, and a dimming filter that obtains at least one of positional information and rotation information of the dimming filter. And a detection device for detecting at least one mark pattern provided in the evening. With this third exposure apparatus, the third exposure method of the present invention can be used. In this case, it is desirable to further include an actuator for driving the neutral density filter in order to adjust at least one of the position and the rotation of the neutral density filter.
また、 その検出装置は、 その減光フィル夕とそのパターンが形成され るマスクとの相対位置情報と相対回転情報との少なくとも一方を検出す ることが望ましい。  In addition, it is desirable that the detection device detects at least one of relative position information and relative rotation information between the darkening filter and a mask on which the pattern is formed.
また、 その減光フィル夕は、 そのパターンが形成されるマスクのパ夕 —ン面、 又はその共役面からずれて配置されることが望ましい。  Further, it is desirable that the dimming filter is arranged so as to be deviated from the pattern plane of the mask on which the pattern is formed or the conjugate plane thereof.
次に、 本発明によるデバイス製造方法は、 本発明の露光方法を用いる か、 又は本発明の露光装置を用いて、 デバイスパターンを感光基板上に 転写する工程を含むものである。  Next, the device manufacturing method according to the present invention includes a step of transferring a device pattern onto a photosensitive substrate using the exposure method of the present invention or using the exposure apparatus of the present invention.
また、 本発明によるマスクの製造方法は、 本発明の露光方法を用いた マスクの製造方法であって、 その露光方法を用いてマスク基板上に複数 のマスクパターンを画面継ぎを行いながら転写する工程を含むものであ る。 この際に複数のマスクパターンを縮小転写することによって、 その マスク基板上に直接電子線描画装置等を用いてマスクパターンを描画す る方式に比べて、 高精度かつ高スループッ卜にマスクを量産できる。 また、 本発明によるマスクは、 本発明の露光方法又は露光装置によつ て画面継ぎを行いながら転写されたデバイスパターンをマスクパターン とするものである。  Also, a method of manufacturing a mask according to the present invention is a method of manufacturing a mask using the exposure method of the present invention, wherein a step of transferring a plurality of mask patterns onto a mask substrate using the exposure method while performing screen splicing. Including. At this time, by transferring a plurality of mask patterns in a reduced scale, masks can be mass-produced with higher precision and higher throughput than a method in which a mask pattern is drawn directly on the mask substrate by using an electron beam drawing apparatus or the like. . Further, the mask according to the present invention uses a device pattern transferred while performing screen joining by the exposure method or exposure apparatus of the present invention as a mask pattern.
次に、 本発明による第 1の露光装置の製造方法は、 マスクのパターン を基板上に転写する露光装置の製造方法において、 そのマスクを照明す る照明光学系と、 その照明光学系内でそのマスクのパターン面に対して 実質的に共役な位置に配置されて、 そのマスク上の照明領域を設定する 視野絞りと、 その基板の位置決めを行う基板ステージと、 · そのマスクの パターン面の近傍の面、 又はそのパターン面に対する共役面若しくはそ の近傍の面上に配置されて、 そのパターン面の交差する第 1方向及び第 2方向に実質的に平行な外形を有するパターン領域の少なくとも一つの 角部に対応する領域の露光用の照明光に対する透過率を、 その第 1方向 に沿つて外側に次第に減少する第 1特性と、 その第 2方向に沿って外側 に次第に減少する第 2特性とを掛け合わせた特性に基づいて設定する減 光フィル夕とを所定の位置関係で組み上げるものである。 Next, a first method for manufacturing an exposure apparatus according to the present invention is a method for manufacturing an exposure apparatus for transferring a pattern of a mask onto a substrate, comprising: an illumination optical system for illuminating the mask; A field stop arranged at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask, a substrate stage for positioning the substrate, Plane, or its conjugate plane or its pattern plane Illumination light for exposure of an area corresponding to at least one corner of a pattern area having an outer shape substantially parallel to the first direction and the second direction intersecting the pattern surface and arranged on a surface near the pattern surface Is set based on a characteristic obtained by multiplying the first characteristic, which gradually decreases outward along the first direction, with the second characteristic, which gradually decreases outward along the second direction. This is to assemble a file with a file in a predetermined positional relationship.
また、 本発明による第 2の露光装置の製造方法は、 マスクのパターン を基板上に転写する露光装置の製造方法において、 そのマスクを照明す る照明光学系と、 その照明光学系内でそのマスクのパターン面に対して 実質的に共役な位置に配置されて、 そのマスク上の照明領域を設定する 視野絞りと、 その基板の位置決めを行う基板ステージと、 そのマスクの パターン面の近傍の面、 又はそのパターン面に対する共役面若しくはそ の近傍の面上に配置されて、 そのパターン面の互いに交差する第 1方向 及び第 2方向に実質的に平行な外形を有するパターン領域のそれぞれ斜 めに対向する第 1及び第 2の一対の角部の内で、 その第 1の一対の角部 に対応する領域での露光用の照明光に対する透過率をその第 1方向に沿 つて外側に次第に減少する第 1特性、 又はその第 2方向に沿って外側に 次第に減少する第 2特性に基づいて設定し、 その第 2の一対の角部に対 応する領域での露光用の照明光に対する透過率を、 この一対の角部の対 向する方向に沿って外側に広がった三角形状の領域内で、 その第 1方向 に沿つて外側に次第に減少する第 1特性とその第 2方向に沿つて外側に 次第に減少する第 2特性とを加算した特性に基づいて設定する減光フィ ル夕とを所定の位置関係で組み上げるものである。  Further, a second method for manufacturing an exposure apparatus according to the present invention is a method for manufacturing an exposure apparatus for transferring a pattern of a mask onto a substrate, comprising: an illumination optical system for illuminating the mask; and the mask within the illumination optical system. A field stop which is arranged at a position substantially conjugate to the pattern surface of the mask to set an illumination area on the mask, a substrate stage for positioning the substrate, a surface near the pattern surface of the mask, Or, it is disposed on a conjugate plane with respect to the pattern plane or a plane in the vicinity of the conjugate plane, and opposes each other at a pattern area having an outer shape substantially parallel to the first direction and the second direction crossing each other on the pattern plane. Of the first and second pair of corners, the transmittance of the region corresponding to the first pair of corners to the illumination light for exposure gradually decreases outward along the first direction. Is set based on the first characteristic, or the second characteristic that gradually decreases outward along the second direction, and the transmittance for the illumination light for exposure in the area corresponding to the second pair of corners. Within the triangular area extending outward along the opposite direction of the pair of corners, the first characteristic gradually decreasing outward along the first direction and the outer characteristic along the second direction. And a dimming filter set based on the characteristic obtained by adding the gradually decreasing second characteristic to the second characteristic.
また、 本発明による第 3の露光装置の製造方法は、 基板上で周辺部が 部分的に重なる少なくとも 2つの領域にそれぞれパターンを転写する露 光装置の製造方法において、 そのパターンに照射される照明光のその基 板上での光量をその少なくとも 2つの領域が重なる部分で徐々に減少さ せる減光フィル夕と、 その減光フィル夕の位置情報と回転情報との少な くとも一方を得るために、 その減光フィル夕に設けられる少なくとも 1 つのマ一クパターンを検出する検出装置とを所定の位置関係で組み上げ るものである。 図面の簡単な説明 Further, the third method of manufacturing an exposure apparatus according to the present invention is a method of manufacturing an exposure apparatus for transferring a pattern to at least two regions where peripheral portions partially overlap each other on a substrate. That base of light A dimming filter that gradually reduces the amount of light on the plate at the portion where the at least two areas overlap, and a dimming filter to obtain at least one of the position information and rotation information of the dimming filter. A detection device for detecting at least one mark pattern provided in the optical filter is assembled in a predetermined positional relationship. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例で使用される投影露光装置を示す 概略構成図である。 図 2は、 図 1中のレチクルブラインド 4の構成例を 示す拡大図である。 図 3は、 図 1中の位置決め装置 5の可動ステージの 構成を示す拡大斜視図である。 図 4は、 図 1中の濃度フィル夕 5 5の透 過率分布を示す図である。 図 5は、 図 4の濃度フィル夕 5 5を用いて画 面継ぎを行いながら転写を行って得られる投影像を示す図である。 図 6 は、 レチクルブラインドによって不完全部を除く方法の説明図である。 図 7は、 本発明の実施の形態の他の例の濃度フィル夕 5 6の透過率分布 を示す図である。 図 8は、 図 7の濃度フィル夕 5 6を用いて画面継ぎを 行いながら転写を行って得られる投影像を示す図である。 図 9は、 濃度 フィル夕 5 5に防塵用の薄膜を設けた実施の形態の要部を示す一部を切 り欠いた図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention. FIG. 2 is an enlarged view showing a configuration example of the reticle blind 4 in FIG. FIG. 3 is an enlarged perspective view showing the configuration of the movable stage of the positioning device 5 in FIG. FIG. 4 is a diagram showing a transmittance distribution of the density filter 55 in FIG. FIG. 5 is a view showing a projected image obtained by performing transfer while performing image splicing using the density filter 55 of FIG. FIG. 6 is an explanatory diagram of a method of removing an incomplete portion by using a reticle blind. FIG. 7 is a diagram showing a transmittance distribution of a density filter 56 according to another example of the embodiment of the present invention. FIG. 8 is a diagram showing a projection image obtained by performing transfer while performing screen splicing using the density filter 56 of FIG. FIG. 9 is a partially cut-away view showing a main part of an embodiment in which a dust-proof thin film is provided on the concentration filter 55. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な第 1の実施の形態につき図面を参照して説明す る。  Hereinafter, a first preferred embodiment of the present invention will be described with reference to the drawings.
図 1は、 本例の投影露光装置の概略構成を示し、 この図 1において、 露光時に光源 1から射出された露光用の照明光 (露光光) I Lは、 不図 示のシャッ夕を通過してミラー M 1で反射された後、 インプッ トレンズ 及びォプティカル ·インテグレー夕 (フライアイレンズ又はロッドレン ズ) 等を含む照度均一化光学系 2に入射して、 照度分布が均一化される。 照度均一化光学系 2中で転写対象のレチクル Rのパターン面に対するフ —リエ変換面には、 照明光の開口数、 ひいてはコヒ一レンスファクタ ( σ値) を決定する開口絞り (不図示) が配置されている。 FIG. 1 shows a schematic configuration of the projection exposure apparatus of this example. In FIG. 1, the illumination light (exposure light) IL for exposure emitted from the light source 1 at the time of exposure passes through a shutter (not shown). Input lens after being reflected by the mirror M1 Then, the light enters the illuminance uniforming optical system 2 including the optical integrator (fly-eye lens or rod lens) and the illuminance distribution is uniformed. An aperture stop (not shown) that determines the numerical aperture of the illumination light and, consequently, the coherence factor (σ value) is provided on the Fourier transform surface with respect to the pattern surface of the reticle R to be transferred in the illumination uniforming optical system 2. Are located.
照度均一化光学系 2を通過した照明光 I Lは、 リレ一レンズ 3を経て 可変視野絞りとしてのレチクルブラインド 4に入射する。 レチクルブラ インド 4は、 一例として図 2に示すように、 2枚の移動自在の L字型の 遮光板 4 1 , 4 2の 4箇所のエッジ 4 1 Α, 4 1 Β , 4 2 A , 4 2 Bで 囲まれる可変開口 (斜線を施した領域) Sによって、 レチクル R上の照 明領域 (露光画角) を決定する。  The illumination light IL that has passed through the illumination uniforming optical system 2 passes through a relay lens 3 and enters a reticle blind 4 as a variable field stop. As an example, as shown in FIG. 2, the reticle blind 4 has four movable L-shaped light-shielding plates 4 1, 4 2 at four edges 4 1 Α, 4 1 Β, 4 2 A, 4 2. The illumination area (exposure angle of view) on the reticle R is determined by the variable aperture (hatched area) S surrounded by B.
図 1において、 レチクルブラインド 4を通過した照明光 I Lは、 濃度 フィル夕 5 5を通過して後述のように画面継ぎを行いながら露光 (つな ぎ露光) する際に適した照度分布を与えられる。 即ち、 減光フィル夕と しての濃度フィル夕 5 5は、 つなぎ露光する際の継ぎ部の積算露光量を 他の部分の積算露光量と同一にするための透過率分布を有している (詳 細後述) 。 濃度フィルタ 5 5を通過した照明光は、 リレ一レンズ 6、 光 路折り曲げ用のミラ一 7及びコンデンサレンズ 8を経て、 転写用の原版 パターンの形成されたレチクル Rのパターン面 (下面) を照明する。 リ レーレンズ 6及びコンデンサレンズ 8に関してレチクル Rのパターン面 に共役な面を面 P 1とすると、 レチクルブラインド 4の配置面は面 P 1 に近接し、 濃度フィル夕 5 5のフィルタ形成面は面 P 1から僅かにレチ クル R側にずれた位置に設定されている。 濃度フィル夕 5 5の作用によ つて、 照明光 I Lはレチクル Rのパターン領域の周辺部で次第に小さく なる照度分布を有し、 レチクル Rの照明領域内のパターンは、 投影光学 系 P Lを介して投影倍率 3 ( 3は 1 Z 4 , 1 Z 5等) で、 基板としての フォ トレジス卜が塗布されたウェハ (waf er) W上に投影される。 In FIG. 1, the illuminating light IL that has passed through the reticle blind 4 passes through the density filter 55 and is provided with an illuminance distribution suitable for performing exposure (joint exposure) while connecting screens as described below. . In other words, the density filter 55 as the darkening filter has a transmittance distribution for making the integrated exposure amount of the joint portion at the time of the joint exposure equal to the integrated exposure amount of the other portions. (See below for details). The illumination light passing through the density filter 55 passes through a relay lens 6, a mirror 7 for bending the optical path, and a condenser lens 8, and illuminates the pattern surface (lower surface) of the reticle R on which the original pattern for transfer is formed. I do. Assuming that the surface conjugate to the pattern surface of the reticle R with respect to the relay lens 6 and the condenser lens 8 is a surface P1, the arrangement surface of the reticle blind 4 is close to the surface P1, and the filter forming surface of the density filter 55 is the surface P1. It is set at a position slightly deviated from 1 to the reticle R side. Due to the action of the density filter 55, the illumination light IL has an illuminance distribution that gradually decreases around the pattern area of the reticle R, and the pattern in the illumination area of the reticle R passes through the projection optical system PL. With a projection magnification of 3 (3 is 1 Z 4, 1 Z 5 etc.) The photoresist is projected onto the wafer W to which the photoresist has been applied.
光源 1、 ミラ一 M l、 照度均一化光学系 2、 リレーレンズ 3、 レチク ルブラインド 4、 濃度フィル夕 5 5、 リレーレンズ 6、 ミラー 7、 及び コンデンサレンズ 8等から照明光学系が構成されている。 照明光 I Lと して、 本例では水銀ランプの i線 (波長 3 6 5 n m) が使用されている 力 解像度を高めるためには、 照明光 I Lとして K r F (波長 2 4 8 η m) や A r F (波長 1 9 3 n m) 等のエキシマレ一ザ光、 F 2 レーザ光 (波長 1 5 7 n m) 、 A r 2 レーザ光又は Y A Gレーザの高調波等のよ り短波長の紫外光を使用することが望ましい。 以下、 投影光学系 P Lの 光軸に平行に Z軸を取り、 Z軸に垂直な平面内で図 1の紙面に平行に X 軸を、 図 1の紙面に垂直に Y軸を取って説明する。 The illumination optical system consists of a light source 1, a mirror Ml, an illuminance uniforming optical system 2, a relay lens 3, a reticle blind 4, a density filter 55, a relay lens 6, a mirror 7, a condenser lens 8, etc. I have. In this example, the i-line (wavelength 365 nm) of a mercury lamp is used as the illumination light IL. To increase the resolution, KrF (wavelength 248 ηm) is used as the illumination light IL. and a r F (wavelength 1 9 3 nm) excimer one laser light such as, F 2 laser beam (wavelength 1 5 7 nm), ultraviolet light yo Ri short wavelength such as harmonics of a r 2 laser or YAG laser It is desirable to use In the following, the Z axis is taken parallel to the optical axis of the projection optical system PL, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Fig. 1. .
このときレチクル Rはレチクルステ一ジ 2 1上に保持され、 レチクル ステージ 2 1はレチクルベース 2 2上を X方向、 Y方向、 回転方向に微 動して、 レチクル Rの位置決めを行う。 レチクルステージ 2 2の位置は、 レチクルステージ駆動系 2 3内に組み込まれたレ一ザ干渉計によって計 測され、 この計測値及び装置全体の動作を統轄制御する主制御系 2 4か らの制御情報に基づいて、 レチクルステージ駆動系 2 3はレチクルステ —ジ 2 1の動作を制御する。  At this time, the reticle R is held on the reticle stage 21, and the reticle stage 21 finely moves on the reticle base 22 in the X, Y, and rotation directions to position the reticle R. The position of the reticle stage 22 is measured by a laser interferometer incorporated in the reticle stage drive system 23, and the measured values and the control from the main control system 24 that supervise and control the operation of the entire apparatus The reticle stage drive system 23 controls the operation of the reticle stage 21 based on the information.
一方、 ウェハ Wは、 不図示のウェハホルダを介してウェハステージ 2 5上に保持され、 ウェハステージ 2 5はウェハベース 2 6上で X方向、 Y方向にステップ移動する。 ゥェ八ステージ 2 5の X Y平面内での位置 はレーザ干渉計 2 7によって計測され、 この計測値及び主制御系 2 4か らの制御情報に基づいて、 ウェハステージ駆動系 2 8はウェハステージ 2 5の動作を制御する。 更に、 ウェハステージ 2 5は、 オートフォー力 ス方式でウェハ Wの表面を投影光学系 P Lの像面に合わせ込む。 ウェハ ステージ 2 5上のウェハ Wの近傍には、 ピンホールを通過した光を集光 して光電変換する照度センサ 6 3が固定され、 マーク検出系としても機 能する照度センサ 6 3の検出信号が主制御系 2 4に供給されている。 On the other hand, the wafer W is held on a wafer stage 25 via a wafer holder (not shown), and the wafer stage 25 steps on the wafer base 26 in the X and Y directions. The position of the wafer stage 25 in the XY plane is measured by the laser interferometer 27, and based on the measured values and the control information from the main control system 24, the wafer stage drive system 28 Control the operation of 25. Further, the wafer stage 25 adjusts the surface of the wafer W to the image plane of the projection optical system PL by an auto-force force method. Focus the light passing through the pinhole near wafer W on wafer stage 25 The illuminance sensor 63 for photoelectrically converting the light is fixed, and the detection signal of the illuminance sensor 63, which also functions as a mark detection system, is supplied to the main control system 24.
また、 レチクルステージ 2 1の近傍には、 不図示であるがレチクルス テ一ジ 2 1上のレチクルを交換するレチクルローダ、 及び画面継ぎに使 用される複数のレチクルが収納されたレチクルライブラリが設置され、 レチクルステージ 2 1上のレチクル Rを別のレチクルと高速に交換でき るように構成されている。  In addition, a reticle loader (not shown) for exchanging reticles on reticle stage 21 and a reticle library containing a plurality of reticles used for screen splicing are installed near reticle stage 21. The reticle R on the reticle stage 21 can be replaced with another reticle at high speed.
そして、 露光時には、 ウェハ W上の一つのショッ ト領域中の所定の部 分へのレチクル Rのパターンの縮小像の露光が終わると、 ウェハステー ジ 2 5のステツプ移動によってウェハ W上の次のショット領域の対応す る部分が投影光学系 P Lの露光領域に移動して露光を行うという動作が、 ステップ · アンド , リピート方式で繰り返される。 その後、 レチクル R が別のレチクルと交換され、 交換されたレチクルのパターンの縮小像が そのウェハ W上の各ショッ ト領域に対して画面継ぎを行いながら露光さ れ、 以下レチクルの交換と、 つなぎ露光とが繰り返される。  Then, at the time of exposure, when exposure of a reduced image of the pattern of the reticle R to a predetermined portion in one shot area on the wafer W is completed, the next shot on the wafer W is performed by the step movement of the wafer stage 25. The operation of moving the corresponding part of the area to the exposure area of the projection optical system PL and performing exposure is repeated in a step-and-repeat manner. After that, the reticle R is replaced with another reticle, and a reduced image of the pattern of the replaced reticle is exposed while screen shot is performed on each shot area on the wafer W, and thereafter, the reticle is replaced and connected. Exposure is repeated.
なお、 複数枚のレチクルを使用する代わりに、 レチクル Rとして大型 のレチクルを使用し、 このレチクルのパターン面からレチクルブライン ド 4によって順次選択された複数のパターンを画面継ぎを行いながらゥ ェハ上の各ショッ ト領域に転写するようにしてもよい。  Instead of using a plurality of reticles, a large reticle is used as the reticle R, and a plurality of patterns sequentially selected by the reticle blind 4 from the pattern surface of this reticle are screen-connected while the screen is being screen-connected. May be transferred to each shot area.
また、 濃度フィルタ 5 5は、 可動テーブル 5 3及び可動テーブル 5 2 を介して不図示のベース (図 3のベース 5 1 ) 上に 6自由度で移動でき るように配置されており、 主制御系 2 4が駆動系 2 9を介して濃度フィ ル夕 5 5の位置及び傾斜角を制御できるように構成されている。 可動テ 一ブル 5 2, 5 3等から濃度フィルタ 5 5の位置決め装置 5が構成され ている。 同様にレチクルブラインド 4の開口の形状も不図示の駆動系を 介して主制御系 2 4が設定することができる。 さて、 本例の投影露光装置では、 ウェハ W上の各ショッ ト領域への露 光に際して、 上記のように複数のレチクルのパターンの縮小像を画面継 ぎを行いながら露光 (つなぎ露光) する。 この際に、 隣接する 2つのパ ターンの縮小像の境界部では所定幅の継ぎ部 (つなぎ部) を重ね合わせ て露光すると共に、 4個のパターンの縮小像が隣接する領域では、 その 4個の縮小像のそれぞれの隅の継ぎ部としての角部を重ね合わせて露光 する。 これによつて、 最終的にその継ぎ部に形成される回路パターンの 切断を防止している。 The density filter 55 is arranged so as to be movable with six degrees of freedom on a base (not shown) (base 51 in FIG. 3) via the movable table 53 and the movable table 52. The system 24 is configured to be able to control the position and the inclination angle of the density filter 55 via the drive system 29. The movable table 52, 53, etc. constitutes a positioning device 5 for the density filter 55. Similarly, the shape of the opening of the reticle blind 4 can be set by the main control system 24 via a drive system (not shown). In the projection exposure apparatus of the present embodiment, when exposing to each shot area on the wafer W, the reduced images of the patterns of a plurality of reticles are exposed (joint exposure) while the screens are connected as described above. At this time, at the boundary between the reduced images of two adjacent patterns, a joint portion (connecting portion) of a predetermined width is overlapped and exposed, and in the area where the reduced images of the four patterns are adjacent, the four images are used. The overlapping portions of the corners of each corner of the reduced image are overlapped and exposed. This prevents the circuit pattern finally formed at the joint from being cut.
ところが、 単に複数の縮小像を重ね合わせて露光すると、 積算露光量 が他の部分よりも増加してしまうため、 本例では濃度フィル夕 5 5を用 いて各レチクルのパターンの縮小像を露光する際に、 その周辺部の照度 (ひいては露光量) を低くしている。 なお、 そのようにつなぎ露光する 際に、 レチクルパターンによってはその継ぎ部 (例えば、 第 1パターン の転写時に照明光 I Lで露光される 1つのショッ 卜領域内の第 1部分と、 第 2パターンの転写時に照明光 I Lで露光されるその 1つのショッ ト領 域内の第 2部分との重畳部) に必ずしもデバイス用の回路パターンが存 在しない、 あるいは回路パターンが存在してもその接続部が存在しない こともあり得る。 この場合でも積算露光量をその他の領域に合わせるた めに、 濃度フィル夕 5 5が有効である。 以下、 濃度フィル夕 5 5の支持 方法、 フィル夕の構成及び使用方法にっき説明する。  However, simply exposing a plurality of reduced images in a superimposed manner results in an increase in the integrated exposure amount compared to other portions. In this example, a reduced image of each reticle pattern is exposed using the density filter 55. At that time, the illuminance (and, consequently, the amount of exposure) at the periphery is reduced. Note that, at the time of such a joint exposure, depending on the reticle pattern, a joint portion thereof (for example, the first portion in one shot area exposed by the illumination light IL at the time of transfer of the first pattern, and the second pattern) The circuit pattern for the device does not necessarily exist in the one shot area exposed to the illumination light IL during transfer, and the connection part exists even if the circuit pattern exists. It may not be. Even in this case, the density fill 55 is effective for adjusting the integrated exposure amount to other areas. The following describes the method of supporting the concentration filter, the composition of the filter, and the method of use.
まず、 図 1において、 本例では濃度フィルタ 5 5のフィルタ面の透過 率分布によってレチクル Rのパターン面での照度分布を設定するため、 理論的にはそのフィルタ面はレチクル Rのパターン面と共役な面 P 1上 にあるのが望ましいが、 この際にそのフィル夕面に欠陥部や塵等の異物 が存在すると、 その欠陥部や異物もレチクル Rのパターンと共にウェハ W上に転写される恐れがある。 そこで、 濃度フィル夕 5 5のフィルタ面 は、 面 P 1から僅かにレチクル側もしくは光源側に離れた位置 (デフォ —カスされた位置) に配置されている。 但し、 そのフィル夕面の異物を 少なくできる環境下では、 その濃度フィル夕 5 5のフィル夕面を面 P 1 上に設置してもよい。 First, in Fig. 1, in this example, the illuminance distribution on the reticle R pattern surface is set by the transmittance distribution on the filter surface of the density filter 55, so that the filter surface is theoretically conjugate with the reticle R pattern surface. However, if there is a defect or foreign matter such as dust on the fill surface at this time, the defect or foreign matter may be transferred onto the wafer W together with the pattern of the reticle R. There is. Therefore, the filter surface of density filter Is located slightly away from the plane P1 toward the reticle side or the light source side (defocused position). However, in an environment where foreign matter on the fill surface can be reduced, the fill surface of the concentration fill 55 may be placed on the surface P1.
この場合、 つなぎ露光後のデバイスの線幅精度等を向上させようとす ると、 継ぎ部での照明光 I Lの照度分布を高精度に制御する必要がある と共に、 レチクル Rと濃度フィル夕 5 5との相対的な位置決め精度を高 める必要がある。 例えば、 図 5において、 X方向に隣接する投影像 3 0 Aと投影像 3 0 Bとを継ぎ部 3 0 A Bで重ね合わせて露光する場合、 継 ぎ部 3 0 A Bの X方向の幅は一定に値に維持する必要があり、 照度分布 の均一性から図 1の濃度フィルタ 5 5の面 P 1に対するデフォーカス量 は、 周辺でほぼ等しくする必要がある。  In this case, in order to improve the line width accuracy and the like of the device after the joint exposure, it is necessary to control the illuminance distribution of the illumination light IL at the joint with high accuracy, as well as the reticle R and the density filter. It is necessary to increase the positioning accuracy relative to 5. For example, in FIG. 5, when the projected image 30A and the projected image 30B adjacent in the X direction are overlapped and exposed at the joint 30AB, the width of the joint 30AB in the X direction is constant. The defocus amount for the surface P1 of the density filter 55 in FIG. 1 needs to be substantially equal in the periphery from the uniformity of the illuminance distribution.
そこで、 レチクル Rと濃度フィルタ 5 5との相対的な位置関係を所定 の状態に設定するために、 可動テーブル 5 2, 5 3を含む位置決め装置 5が使用される。  Therefore, in order to set the relative positional relationship between the reticle R and the density filter 55 in a predetermined state, a positioning device 5 including movable tables 52 and 53 is used.
図 3は、 濃度フィル夕 5 5用の位置決め装置 5の構成例を示し、 この 図 3において、 図 1のウェハステージ 2 5上での X方向、 Y方向、 Z方 向に対応する方向をそれぞれ X方向、 Y方向、 Z方向としている。 そし て、 可動テーブル 5 3の開口部 6 1を覆うように濃度フィル夕 5 5が設 置され、 可動テーブル 5 2の開口部を覆うように可動テーブル 5 3が設 置され、 可動テーブル 5 2はべ一ス 5 1上に取り付けられている。 この 場合、 可動テーブル 5 2は、 3軸の駆動モー夕 5 2 A〜5 2 Cによって ベース 5 1に対して X方向、 Y方向への並進移動と、 Z軸の回りの回転 との 3自由度の微調整ができるように配置され、 可動テーブル 5 3は、 3個の駆動モー夕 5 3 Dによって可動テーブル 5 2に対して Z方向への 並進移動と、 X軸の回り及び Y軸の回りの回転との 3自由度の微調整が できるように配置される。 6軸の駆動モー夕 5 2 A〜 5 2 C , 5 3 Dに はそれぞれ移動量又は回転角を検出するエンコーダが備えられ、 これら のエンコーダの検出結果が図 1の駆動系 2 9に供給されている。 FIG. 3 shows an example of the configuration of a positioning device 5 for the density filter 55. In FIG. 3, the directions corresponding to the X, Y, and Z directions on the wafer stage 25 in FIG. X direction, Y direction, and Z direction. Then, a concentration filter 55 is provided so as to cover the opening 61 of the movable table 53, and a movable table 53 is provided so as to cover the opening of the movable table 52. Mounted on a base 51. In this case, the movable table 52 has three freedoms of translational movement in the X and Y directions with respect to the base 51 and rotation about the Z axis with respect to the base 51 by means of a three-axis drive motor 52A to 52C. The movable table 53 is moved in the Z direction with respect to the movable table 52 by three drive motors 53D, and is moved around the X axis and the Y axis. Fine adjustment of three degrees of freedom with rotation around It is arranged to be able to. The 6-axis drive motors 52A to 52C and 53D are provided with encoders for detecting the amount of movement or the rotation angle, respectively, and the detection results of these encoders are supplied to the drive system 29 in Fig. 1. ing.
また、 図 1において主制御系 2 4力 投影光学系 P Lの露光領域に照 度センサ 6 3を移動させて、 露光用の照明光 I Lの照射を開始させた後、 ウェハステージ 2 5を駆動して照度センサ 6 3でその露光領域を横切ら せて、 ウェハステージ 2 5の座標に対応させて照度センサ 6 3の検出信 号を取り込むことによって、 濃度フィル夕 5 5の位置及び回転角をモニ 夕する。 この際に、 例えば濃度フィルタ 5 5及びレチクル Rの双方に対 応するように位置合わせ用マークを設けておき、 これらの位置合わせ用 マークの像の位置も検出することによって、 濃度フィルタ 5 5のレチク ル R上での投影像と、 レチクル Rとの位置関係 (X方向の位置関係、 Y 方向の位置関係、 及び Z軸回りの相対回転の少なくとも 1つ) を高精度 に検出することができる。 主制御系 2 4は、 このように検出される位置 関係が所定の関係になるように、 駆動系 2 9を介して駆動モー夕 5 2 A 〜 5 2 C, 5 3 Dの動作を制御することによって、 濃度フィル夕 5 5の 位置決めを行う。  In FIG. 1, the main control system 24 moves the illuminance sensor 63 to the exposure area of the projection optical system PL to start the irradiation of the illumination light IL for exposure, and then drives the wafer stage 25. The illuminance sensor 63 crosses the exposure area, and the detection signal of the illuminance sensor 63 is taken in accordance with the coordinates of the wafer stage 25, so that the position and rotation angle of the density filter 55 can be monitored. I do. At this time, for example, alignment marks are provided so as to correspond to both the density filter 55 and the reticle R, and the positions of the images of the alignment marks are also detected, whereby the density filter 55 is formed. The positional relationship (at least one of the positional relationship in the X direction, the positional relationship in the Y direction, and the relative rotation around the Z axis) between the projected image on the reticle R and the reticle R can be detected with high accuracy. . The main control system 24 controls the operation of the drive motors 52 A to 52 C and 53 D via the drive system 29 so that the detected positional relationship becomes a predetermined relationship. In this way, the position of the density filter 55 is determined.
この際に、 濃度フィル夕 5 5の周辺の 2箇所の位置合わせ用マークの 像のコントラストより対応する位置のデフォーカス量を求め、 このデフ オーカス量が等しくなるように濃度フィル夕 5 5の光軸に沿った方向の 位置を制御してもよい。 これにより、 濃度フィル夕 5 5の Z方向の位置 (デフォーカス量) と一次元の傾斜量 (回転角) とを調整することがで きる。 なお、 濃度フィル夕 5 5の 1つの位置合わせ用マークの像のみを 照度センサ 6 3で検出して、 濃度フィル夕 5 5のデフォーカス量を調整 するだけでもよいし、 あるいは濃度フィル夕 5 5の少なくとも 3箇所に 設けられる位置合わせ用マークの像を照度センサ 6 3で検出して、 濃度 フィル夕 5 5のデフォーカス量に加えて二次元の傾斜量 (回転角) を調 整してもよい。 また、 濃度フィルタ 5 5の位置及び回転角のうち、 少な くとも Z方向の位置 (デフォーカス量) 及び回転角を検出するときには、 レチクル R上の位置合わせ用マークを用いずに、 濃度フィル夕 5 5の位 置合わせ用マークのみを照度センサ 6 3などで検出するだけでもよい。 さらに、 レチクル上の位置合わせ用マークの代わりにレチクルステージ 2 1に設けられる基準マークを用いてもよい。 At this time, the defocus amount at the corresponding position is obtained from the contrast of the images of the two alignment marks around the density filter 55, and the light of the density filter 55 is adjusted so that the defocus amount becomes equal. The position in the direction along the axis may be controlled. This makes it possible to adjust the position (defocus amount) and the one-dimensional tilt amount (rotation angle) of the density filter 55 in the Z direction. The illuminance sensor 63 may detect only the image of one alignment mark of the density fill 55 and adjust the defocus amount of the density fill 55, or the density fill 55 may be used. The illuminance sensor 63 detects the images of the alignment marks provided in at least three locations of In addition to the defocus amount of the fill 5 55, a two-dimensional tilt amount (rotation angle) may be adjusted. When detecting at least the position (defocus amount) and rotation angle in the Z direction of the position and rotation angle of the density filter 55, the density filter is used without using the alignment mark on the reticle R. Only the alignment mark 5 5 may be detected by the illuminance sensor 63 or the like. Further, a reference mark provided on reticle stage 21 may be used instead of the alignment mark on the reticle.
なお、 図 3において、 駆動モータ 5 2 A〜 5 2 C , 5 3 Dの代わりに マニュアル駆動のマイクロメータヘッドを使用して、 例えば露光中断中 にォペレ一夕が手動で濃度フィル夕 5 5の位置を調整するようにしても よい。  In FIG. 3, a manual drive micrometer head is used in place of the drive motors 52 A to 52 C and 53 D. The position may be adjusted.
また、 濃度フィル夕 5 5を他の透過率分布を有する濃度フィル夕と交 換するようにしてもよい。 このように濃度フィル夕を交換する際には、 可動テーブル 5 3に設けられた取っ手 6 2を用いて、 可動テーブル 5 2 から可動テーブル 5 3を引き抜けばよい。  Further, the density filter 55 may be replaced with a density filter having another transmittance distribution. When the density filter is exchanged in this manner, the movable table 53 may be pulled out of the movable table 52 using the handle 62 provided on the movable table 53.
次に、 濃度フィル夕 5 5のフィル夕の透過率分布につき説明する。 図 4 ( a ) は、 濃度フィル夕 5 5のフィル夕部の透過率分布を示す図 であり、 図 4 ( a ) において、 図 1の X方向、 Y方向に対応する方向を それぞれ X方向、 y方向としてある。 また、 濃度フィル夕 5 5のフィル 夕部に形成されている格子パターンは、 座標を示すために仮想的に描い たパターンであり、 実際にはそのフィル夕部内の透過率は 1 ( 1 0 0 % ) と 0 ( 0 % ) との間で実質的に連続的に変化している。 即ち、 そのフィ ル夕部内には極めて微細な多数のドットパターンが、 位置によって各ド ッ トパターンの大きさと密度とを変えて所望の透過率分布が得られるよ うに形成されている。 なお、 透過率が 1であるとは、 濃度フィルタ 5 5 用の透過性の基板自体の透過率をいう。 また、 ドッ トパターンから発生 する回折光及び照明光学系の光学特性 (ディストーションなど) をも考 慮して、 レチクル又はウェハ上で所望の照明光量分布が得られるように ドッ トパターンの大きさと密度とを調整してその透過率分布を設定する ことが望ましい。 Next, the transmittance distribution of the density filter 55 will be described. Fig. 4 (a) is a diagram showing the transmittance distribution of the fill area of the density fill area 55. In Fig. 4 (a), the directions corresponding to the X direction and Y direction in Fig. 1 are the X direction and the X direction, respectively. In the y direction. Also, the grid pattern formed in the fill area of the density fill 55 is a pattern drawn virtually to indicate the coordinates, and the transmittance in the fill area is actually 1 (100) %) And 0 (0%). That is, a large number of extremely fine dot patterns are formed in the filter portion so as to obtain a desired transmittance distribution by changing the size and density of each dot pattern depending on the position. The transmittance of 1 means the transmittance of the transparent substrate for the density filter 55 itself. Also generated from the dot pattern In consideration of the diffracted light and the optical characteristics of the illumination optical system (distortion, etc.), the size and density of the dot pattern are adjusted so that the desired illumination light distribution can be obtained on the reticle or wafer, and the light is transmitted. It is desirable to set a rate distribution.
そのような濃度フィル夕 5 5は、 透過性の基板上にクロム等の遮光膜 を形成し、 その上に電子線レジストを塗布し、 その上に電子線描画装置 によって対応するパターンを描画した後、 現像、 エッチング及びレジス ト剥離等の工程を経ることによって製造することができる。 この製造ェ 程で一部の領域に欠陥又は連続するエッジ等が形成された場合でも、 そ のフィルタ面はレチクル Rとの共役面からデフォーカスしているため、 その欠陥等がウェハ上に転写されることはない。 そこで、 その濃度フィ ル夕 5 5のデフォ一カス量は、 濃度フィルタ 5 5の製造時の電子線描画 装置の描画精度、 及びウェハ上での露光量 (ドーズ) の誤差に対する許 容度等をも考慮して設定される。  In such a concentration filter, a light-shielding film such as chromium is formed on a transparent substrate, an electron beam resist is applied thereon, and a corresponding pattern is drawn thereon by an electron beam drawing apparatus. , Development, etching, resist stripping, and the like. Even if defects or continuous edges are formed in some regions during this manufacturing process, the defects are transferred to the wafer because the filter surface is defocused from the conjugate surface with the reticle R. It will not be done. Therefore, the defocus amount of the density filter 55 is determined by the drawing accuracy of the electron beam lithography apparatus at the time of manufacturing the density filter 55 and the tolerance for the error of the exposure dose on the wafer. Is also taken into account.
図 4 ( a) の濃度フィル夕 5 5の矩形のフィル夕部において、 つなぎ 露光する際に重ね合わせて露光する X方向の両端の継ぎ部 (重ね合わせ 部) 5 5 a , 5 5 bの幅を a、 y方向の両端の継ぎ部 (重ね合わせ部) 5 5 c , 5 5 dの幅を bとして、 継ぎ部 5 5 a〜 5 5 dで囲まれた内部 の領域の X方向の幅を a。 、 y方向の幅を b o とする。 また、 その矩形 のフィル夕部の左下の頂点を位置 X及び位置 yの原点とすると、 そのフ ィル夕部の X方向及び y方向の範囲は次のようになる。  In the rectangular fill area of the density fill area 55 shown in Fig. 4 (a), overlapping exposure is performed during the splicing exposure. Joints at both ends in the X direction (overlapping area) 55a, 55b width Let a be the width of 55c and 55d at the joints (overlapping parts) at both ends in the a and y directions, and let b be the width in the X direction of the internal region surrounded by the joints 55a to 55d. a. , And the width in the y direction is b o. Also, assuming that the lower left vertex of the fill area of the rectangle is the origin of position X and position y, the range of the fill area in the X and y directions is as follows.
0≤x≤ 2 a + a o , 0≤ y≤ 2 b + b o  0≤x≤ 2 a + a o, 0≤ y≤ 2 b + b o
そして、 フィル夕部内の座標 (X , y) の点 Pでの透過率を T (x, y) とすると、 透過率 T (x,y) は次のように領域 (A i ) ( i = l〜9) 別 に ΤΑ! に設定されている。 なお、 透過率 TAi に比例してウェハ上で の露光量 Q i が決定されるため、 透過率 TAi を露光量 Qi で置き換え ることも可能である。 この場合には、 1 0 0 %とは最大露光量を意味す ることになる。 Then, assuming that the transmittance at the point P at the coordinates (X, y) in the filter area is T (x, y), the transmittance T (x, y) becomes the area (A i) (i = l ~ 9) Separately set to ΤΑ! Since the exposure Qi on the wafer is determined in proportion to the transmittance TAi, the transmittance TAi is replaced by the exposure Qi. It is also possible. In this case, 100% means the maximum exposure.
領域 (A 1 ) : 0≤x< a, 0≤y<b  Area (A 1): 0≤x <a, 0≤y <b
T A! = 1 0 0 (x/a) · (y/b) [%] ( 1 )  T A! = 1 0 0 (x / a) · (y / b) [%] (1)
領域 (A 2) : a≤x≤ a + a。 , 0≤y<b  Area (A2): a≤x≤a + a. , 0≤y <b
TA2 = 1 0 0 (y/b) [%] ( 2 ) TA 2 = 1 0 0 (y / b) [%] (2)
領域 (A 3) : a + a。 く x≤ 2 a + a。 , 0≤yく b  Area (A3): a + a. X≤2a + a. , 0≤y
T A3 = 1 0 0 [ 1— { x - ( a + a。 )IZa] · (y /b) [% ] ( 3 ) 領域 (A4) : 0≤ x< a , b≤y≤ b + b o TA 3 = 1 0 0 [1— {x-(a + a.) IZa] · (y / b) [%] (3) Area (A4): 0≤ x <a, b≤y≤ b + bo
TA4 = 1 0 0 (x/a) [%] (4) TA 4 = 1 0 0 (x / a) [%] (4)
領域 (A 5) : a≤x≤ a + a。 , b≤y≤b + b。 Area (A5): a≤x≤a + a. , B≤y≤b + b.
Figure imgf000020_0001
Figure imgf000020_0001
領域 (A 6) : a + a。 く x≤ 2 a + a。 , b≤y≤b + b。  Area (A6): a + a. X≤2a + a. , B≤y≤b + b.
TA6 = 1 0 0 [ 1 - {x— (a + a。 ) } Za] [%] ( 6 ) 領域 (A 7) : 0≤x< a, b + b。 く y^ 2 b + b。 TA 6 = 1 0 0 [1-{x— (a + a.)} Za] [%] (6) Area (A 7): 0≤x <a, b + b. Y ^ 2b + b.
T AT = 1 0 0 (x/a) - [ 1 — {y - (b + b。 )j/b] [%] ( 7 ) 領域 (A 8) : a≤x≤ a + a o , b + b。 く y≤ 2 b + b。  T AT = 1 0 0 (x / a)-[1 — {y-(b + b.) J / b] [%] (7) Area (A8): a≤x≤a + ao, b + b. Y≤2b + b.
TA8 = 1 0 0 [ l— {y— (b + b。 ) } Zb] [%] (8 ) 領域 (A 9 ) : a + a o<x≤ 2 a + a o, b + b o<y≤ 2 b + b o TA9 = 1 0 0 [ 1 — { x - ( a + a。 ) } / a] · [ 1 — { y -TA8 = 1 0 0 [l— {y— (b + b.)} Zb] [%] (8) Area (A 9): a + ao <x≤ 2 a + ao, b + bo <y≤ 2 b + bo TA 9 = 1 0 0 [1 — {x-(a + a.)} / a] · [1 — {y-
(b + b。 ) } Zb] [%] ( 9 ) (b + b.)} Zb] [%] (9)
そのフィル夕部の外部の領域では、 以下のようになる。  In the area outside of the phil evening, it is as follows.
T (x, y) = 0 [ ] ( 1 0 )  T (x, y) = 0 [] (1 0)
この場合、 フィル夕領域の左下の矩形の角部である領域 (A 1 ) の透 過率 TA は、 X方向に外側に一次元的に低下する分布 (xZa) と、 y方向に外側に一次元的に低下する分布 (yZa) とを掛け合わせた分 布である。 また、 フィル夕領域の右下、 左上、 及び右上の矩形の角部の 領域の透過率 TA3 , TA? 及び TA9 も、 それぞれ X方向に外側に一 次元的に低下する分布と、 y方向に外側に一次元的に低下する分布とを 掛け合わせた分布である。 また、 図 4 (a) の B B線に沿う領域での透 過率 Tは、 図 4 ( b ) に示すように位置 Xが 0から aに変化するのに応 じて、 位置 Xに関して線形に 0から 1 ( 1 0 0 %) まで変化しており、 同様に図 4 (a) の C C線に沿う領域での透過率 Tは、 図 4 (c ) に示 すように位置 yが 0から bに変化するのに応じて、 位置 yに関して線形 に 0から 1 ( 1 0 0 %) まで変化している。 In this case, the transmittance TA of the area (A 1), which is the lower left corner of the fill area, is one-dimensionally decreasing outward in the X direction (xZa) and linearly decreasing outward in the y direction. Multiplied by the original distribution (yZa) It is cloth. Also, the transmittances TA 3 , TA? And TA 9 in the lower right, upper left, and upper right corners of the fill area are one-dimensionally reduced outward in the X direction and the y direction, respectively. Is multiplied by the one-dimensionally decreasing distribution to the outside. In addition, the transmittance T in the region along the line BB in Fig. 4 (a) is linear with respect to the position X as the position X changes from 0 to a as shown in Fig. 4 (b). From 0 to 1 (100%), similarly, the transmittance T in the region along the CC line in Fig. 4 (a) changes from 0 at position y as shown in Fig. 4 (c). As it changes to b, it changes linearly from 0 to 1 (100%) with respect to position y.
本例では、 図 4 (a) の透過率分布を持つ濃度フィル夕 5 5を介して 図 1のレチクル Rのパターンを照明して、 そのパターンの縮小像をゥェ ハ W上の一つのショット領域内の一部に露光する。 その後、 順次レチク ルステージ 2 1上のレチクルを別のレチクルに交換し、 ウェハステージ 2 5を介してウェハ Wを所定量だけステップ移動させた後、 交換された レチクルのパターンを濃度フィルタ 5 5を介して照明して、 そのパター ンの縮小像をウェハ W上の当該ショッ 卜領域の別の部分に露光すること によって、 隣接する縮小像の内で、 図 4 (a) の継ぎ部 5 5 a〜 5 5 d に対応する領域 (これも 「継ぎ部」 という) を重ね合わせて露光する。 このように X方向、 及び Y方向に画面継ぎを行いつつウェハ W上の当該 ショッ ト領域上に複数のレチクルのパターンの縮小像を転写するが、 濃 度フィル夕 5 5の使用によってそのショッ ト領域の全域でほぼ均一な積 算露光量が与えられる。  In this example, the pattern of the reticle R of FIG. 1 is illuminated through the density filter 55 having the transmittance distribution of FIG. Expose a part of the area. After that, the reticle on the reticle stage 21 is sequentially replaced with another reticle, and the wafer W is moved by a predetermined amount through the wafer stage 25, and then the pattern of the replaced reticle is filtered by the density filter 55. 4A, the reduced image of the pattern is exposed to another portion of the shot area on the wafer W, and the joint 55a of FIG. A region corresponding to ~ 55d (also referred to as a "joint") is overlaid and exposed. As described above, the reduced images of a plurality of reticle patterns are transferred onto the relevant shot area on the wafer W while the screens are connected in the X and Y directions. An almost uniform product exposure amount is provided over the entire area.
図 5は、 本例の画面継ぎを行う露光によって図 1のウェハ W上の一つ のショッ ト領域に露光される大きい投影像を示し、 この図 5において、 それぞれ異なるレチクルのパターンの縮小像よりなる矩形の投影像 3 0 A, 3 0 B, 3 0 C, 3 0 Dが、 X方向の境界部の継ぎ部 3 0 A B , 3 0 CD、 及び Y方向の境界部の継ぎ部 3 0 AC, 3 0 BDが二重に重ね 合わせて露光される。 更に、 4個の投影像 3 0 A〜 3 0 Dが隣接する矩 形の継ぎ部 3 1では、 それら 4個の投影像 3 0 A〜 3 0 Dの矩形の角部 が 4重に重ね合わせて露光される。 この際に、 仮に図 4 (a) の濃度フ ィル夕 5 5と図 1のレチクルステージ 2 1上のレチクルとの回転誤差が 位置決め装置 5によっては取りきれないときには、 その回転誤差を相殺 するようにレチクルステージ 2 1を回転し、 かつウェハステージ 2 5の 座標系をその回転誤差分だけ補正し、 補正後の座標系に基づいてウェハ Wを斜めにステップ移動させるようにすればよい。 これによつて、 継ぎ 部の露光量の誤差 (ドーズ誤差) を低減できる。 FIG. 5 shows a large projected image that is exposed to one shot area on the wafer W in FIG. 1 by the exposure for performing the screen splicing of the present example. The projected images 30 A, 30 B, 30 C, and 30 D of the rectangles become the joints 30 AB, 3 at the boundary in the X direction. 0 CD and the joint 30 AC, 30 BD at the boundary in the Y direction are exposed in a double overlapping manner. Furthermore, at the rectangular joint 31 where the four projected images 30A to 30D are adjacent, the corners of the rectangles of the four projected images 30A to 30D are superimposed four-fold. Exposed. At this time, if the rotation error between the density file 55 in FIG. 4A and the reticle on the reticle stage 21 in FIG. 1 cannot be removed by the positioning device 5, the rotation error is canceled. Thus, reticle stage 21 may be rotated, and the coordinate system of wafer stage 25 may be corrected by the rotation error, and wafer W may be obliquely moved stepwise based on the corrected coordinate system. As a result, it is possible to reduce the exposure error (dose error) at the joint.
図 5の投影像の各部の露光量を評価すると、 まず投影像 3 0 A〜3 0 Dの中央部の符号 A〜Dが付された領域は、 濃度フィル夕 5 5の透過率 が 1 0 0 %であるため 1 0 0 %の露光量となる。  When the exposure amount of each part of the projected image of FIG. 5 is evaluated, first, in the central region of the projected images 30 A to 30 D, which is denoted by reference signs A to D, the transmittance of the density filter 55 is 10. Since it is 0%, the exposure amount is 100%.
以下に、 継ぎ部 3 0 AB, 3 0 BD, 3 0 CD, 3 0 AC及び 3 1の 積算露光量が 1 0 0 %になることを説明する。 説明の簡単のため、 図 4 ( a) の濃度フィル夕 5 5から図 5のウェハ Wまでの投影倍率を 1とし て、 継ぎ部 3 0 AB, 3 0 CDの X方向の幅を a、 継ぎ部 3 0 BD, 3 0 ACの Y方向の幅を bとする。 また、 図 5における点 P 3を座標 (X, Y) の原点に取り、 点 P 3を原点としたときの点 Pの座標を (X, Y) とすると、 投影像 3 0 A, 3 0 B, 3 0 C, 3 0 Dの左下の点を原点と したときの座標 (Χ.Λ , ΥΛ ) , (ΧΒ , ΥΒ ) , (Xc , Yc ) , (Χη , Yu ) はそれぞれ以下の通りである。  Hereinafter, it will be described that the integrated exposure amount of the joints 30 AB, 30 BD, 30 CD, 30 AC, and 31 becomes 100%. For simplicity of explanation, assume that the projection magnification from the density filter 55 in Fig. 4 (a) to wafer W in Fig. 5 is 1, the width in the X direction of the joints 30 AB, 30 CD is a, The width of the part 30 BD, 30 AC in the Y direction is b. If the point P 3 in FIG. 5 is taken as the origin of the coordinates (X, Y) and the coordinate of the point P is (X, Y) when the point P 3 is the origin, the projected images 30 A, 30 The coordinates (Χ.Λ, ΥΛ), (ΧΒ, ΥΒ), (Xc, Yc), (Χη, Yu) when the lower left point of B, 30C, 30D is the origin are as follows. It is.
Λ , ΥΛ ) = (X+ (a + a。 ) , Y) ( 1 1 )
Figure imgf000022_0001
Λ , Υ Λ ) = (X + (a + a.), Y) (1 1)
Figure imgf000022_0001
(Xc , Yc ) = (X+ (a + a。 ) , Y+ (b + b。 ) ) ( 1 3)( Xc , Yc) = (X + (a + a.), Y + (b + b.)) (13)
υ , Υ" ) = (Χ, Υ+ ^ + ΐ3。 ) ) ( 1 4) 上記の透過率 T A i を座標 (ΧΛ , ΥΛ ) , (Χ , ΥΒ ) , (Xc , Yc ) 及び (XD , YD ) 上で表した値をそれぞれ TAi (A) , ΤΑ; (B) , T A i (C) , T A i (D) とする。 υ , Υ ") = (Χ, Υ + ^ + ΐ3.)) (1 4) TAi (A), ΤΑ; (B), the values expressing the transmittance TA i on the coordinates (Χ Λ , ΥΛ), (Χ, ΥΒ), (Xc, Yc) and (XD, YD), respectively. TA i (C) and TA i (D).
このとき、 継ぎ部 30 ABにおける投影像 3 OA及び 30 Bの露光量 をそれぞれ AB (A) 及び AB (B) として、 これらの露光量を加算し て得られる積算露光量を ABとすると、 (6) 式及び (4) 式よりこれ らは以下のようになる。 但し、 符号 A〜Dが付された領域の露光量を 1 00 %としている。  At this time, let AB (A) and AB (B) be the exposure amounts of the projected images 3OA and 30B at the joint 30AB, and let the integrated exposure amount obtained by adding these exposure amounts be AB. From Eqs. (6) and (4), they are as follows. However, the exposure amount in the areas denoted by the reference signs A to D is 100%.
AB (A) =T Ae (A)  AB (A) = T Ae (A)
= 100 [ 1 {X + ( a十 a。 ) 一 ( a + a。 ) } / a ] = 100 [1 {X + (a ten a.) One (a + a.)} / A]
= 1 00 (1 X/a) [%] = 1 00 (1 X / a) [%]
AB (B) =T A4 (B) 1 00 (X/a) [%] AB (B) = TA 4 (B) 100 (X / a) [%]
AB=AB (A) + AB (B)  AB = AB (A) + AB (B)
= 1 00 [%] ( 1 5)  = 1 00 [%] (1 5)
同様に、 継ぎ部 30 BDにおける投影像 30 B及び 30 Dの露光: B Similarly, exposure of the projected images 30B and 30D at the joint 30BD: B
D (B) 及び BD (D) と、 これらの積算露光量 BDとは以下のように なる。 D (B) and BD (D) and their integrated exposure amount BD are as follows.
BD (B) =TA2(D) = 1 00 (Y/b) [%] BD (B) = TA 2 (D) = 100 (Y / b) [%]
BD (D) =T As (B)  BD (D) = T As (B)
= 1 00 [1 - {Y+ (b + b。 ;) 一 (b + b。 ) } Zb] = 1 00 [1-{Y + (b + b.;) One (b + b.)} Zb]
= 1 00 ( 1 - Y/b) [■%] = 1 00 (1-Y / b) [■%]
BD二 BD (B) +BD (D)  BD two BD (B) + BD (D)
= 1 00 [ ] (1 6)  = 1 00 [] (1 6)
同様に、 継ぎ部 30 CDにおける投影像 30 C及び 30 Dの露光量 C D (C) 及び CD (D) と、 これらの積算露光量 CDとは以下のように なる。 CD (C) =T A6 (C) Similarly, the exposure amounts CD (C) and CD (D) of the projected images 30C and 30D in the joint 30CD and the integrated exposure amount CD thereof are as follows. CD (C) = TA 6 (C)
= 1 00 [ 1 - {X+ (a + a。 ) 一 + a。 ) a] = 1 00 (1一 XZ a ) [%]  = 1 00 [1-{X + (a + a.) One + a. ) A] = 1 00 (1 XZ a) [%]
CD (D) =T A4 (D) = 1 00 (X/ a) [%] CD (D) = TA 4 (D) = 100 (X / a) [%]
CD = CD (C) + CD (D)  CD = CD (C) + CD (D)
= 1 00 [%] ( 1 7)  = 1 00 [%] (1 7)
同様に、 継ぎ部 30 ACにおける投影像 3 OA及び 30 Cの露光量 A C (A) 及び AC (C) と、 これらの積算露光量 ACとは以下のように なる。  Similarly, the exposure amounts A C (A) and AC (C) of the projected images 3 OA and 30 C at the joint 30 AC and the integrated exposure amount AC are as follows.
AC (A) =T A2 (A) = 1 00 (Y/b) [%]AC (A) = TA 2 (A) = 100 (Y / b) [%]
Figure imgf000024_0001
Figure imgf000024_0001
= 1 00 [1— { Y+ (b + b。 ) 一 (b + b。 ) } Zb] = 1 00 ( 1 - Y b) [%]  = 1 00 [1— {Y + (b + b.) One (b + b.)} Zb] = 100 (1-Y b) [%]
A C = A C (A) + A C (C)  A C = A C (A) + A C (C)
= 1 00 [%] ( 1 8)  = 1 00 [%] (1 8)
また、 継ぎ部 3 1における 4個の投影像 3 OA, 30 B, 30 C, 3 0Dの露光量を ABCD (A) , ABCD (B) , ABCD (C) , A B CD (D) として、 これらの積算露光量を AB CDとすると、 (3) 式、 (1) 式、 (9) 式、 (7) 式よりこれらは次のようになる。  The exposure amounts of the four projected images 3OA, 30B, 30C and 30D at the joint 31 are ABCD (A), ABCD (B), ABCD (C) and ABCD (D). Assuming that the integrated exposure amount is ABCD, these are as follows from Eqs. (3), (1), (9), and (7).
ABCD (A) =T A3 (A) ABCD (A) = TA 3 (A)
= 1 00 [1— {X + (a + a。 ) ― (a + a。 ) } = 1 00 [1— {X + (a + a.)-(A + a.)}
Za] · (Y/b) Za] · (Y / b)
= 1 00 ( 1 -X/ a) = 1 00 (1 -X / a)
Figure imgf000024_0002
Figure imgf000024_0002
= 1 00 (X/a) ·  = 1 00 (X / a)
ABCD (C) =TA9 (C) = 1 0 0 [ 1 一 {X + (a + a。 ) 一 (a + a。 ) } /a] · [ 1 — {Y+ (b + b。 ) — (b + b。 ) } Zb] ABCD (C) = TA 9 (C) = 1 0 0 [1 1 {X + (a + a.) 1 (a + a.)} / A] · [1 — {Y + (b + b.) — (B + b.)} Zb]
= 1 0 0 ( 1 -X/a) · ( 1 一 Y/b) = 1 0 0 (1 -X / a)
Figure imgf000025_0001
Figure imgf000025_0001
= 1 0 0 (XZ a) ' [ l — {Y+ (b + b。 ) — = 1 0 0 (XZ a) '[l — {Y + (b + b.) —
(b + b。 ) } Zb] (b + b.)} Zb]
= 1 0 0 (X/ a) · ( 1 - Y/b)  = 1 0 0 (X / a) · (1-Y / b)
AB CD = AB CD (A) + AB CD (B) +AB CD (C) + A B CD (D)  AB CD = AB CD (A) + AB CD (B) + AB CD (C) + A B CD (D)
= 1 0 0 { ( 1 -X/a) (Y/b) + (X/a) (Y/ b) + ( 1 -X/a) ( 1 - Y/b) + (X/a) ( 1 - Y/b) }  = 1 0 0 {(1 -X / a) (Y / b) + (X / a) (Y / b) + (1 -X / a) (1-Y / b) + (X / a) ( 1-Y / b)}
= 1 0 0 [ ] ( 1 9)  = 1 0 0 [] (1 9)
( 1 5) 式〜 ( 1 9) 式より、 図 4 ( a) の濃度フィル夕 5 5を用い ることによって、 4個の投影像 3 0 A〜 3 0 Dが隣接する矩形の継ぎ部 3 1を含めて、 つなぎ露光後の全部の領域で均一に 1 0 0 %の積算露光 量が得られることが分かる。 これに続いて、 現像、 エッチング、 レジス ト剥離等の工程を経ることで、 ウェハ W上の各ショッ 卜領域には均一な 線幅の回路パターンが形成される。 このような回路パターンの形成工程 を繰り返すことによって、 大面積で高機能の半導体デバイスが量産でき る。  From Equations (15) to (19), by using the density filter 55 shown in FIG. 4 (a), the four projected images 30A to 30D are connected to the rectangular joint 3 It can be seen that an integrated exposure amount of 100% can be uniformly obtained in all the regions after the bridge exposure including 1. Subsequent processes such as development, etching, and resist stripping form a circuit pattern having a uniform line width in each shot area on the wafer W. By repeating such a circuit pattern forming process, a large-area, high-performance semiconductor device can be mass-produced.
但し、 図 5において、 周辺部の領域 1 1は重ね合わせ露光が行われな いため、 そのままでは露光量が外側に向けて次第に減少する。 そこで、 継ぎ部の中で多重露光が行われない領域は、 パターン領域の外部の領域 として、 その領域は図 1のレチクルブラインド 4によって遮光すればよ い。  However, in FIG. 5, the peripheral area 11 is not subjected to the overlay exposure, so that the exposure amount gradually decreases outward as it is. Therefore, a region in the joint portion where multiple exposure is not performed is a region outside the pattern region, and the region may be shielded from light by the reticle blind 4 in FIG.
図 6は、 そのようにレチクルブラインド 6によって遮光する場合を示 し、 この図 6に示すように、 4個のパターンの投影像をつなぎ合わせて ウェハ上の任意の露光領域を露光した場合、 最外周の領域 1 1において は、 重ね合わせる他方の投影像が欠如するため、 露光量が不足する不完 全部となる。 Figure 6 shows such a case where light is blocked by the reticle blind 6. However, as shown in FIG. 6, when the projected images of the four patterns are joined to expose an arbitrary exposure area on the wafer, the outermost area 11 lacks the other projected image to be superimposed. As a result, the amount of exposure is insufficient and the result is incomplete.
この場合、 例えばレチクルにおいて、 図 6中の枠状の領域 9 A〜9 D に対応する遮光帯を設け、 図 1のレチクルブラインド 4の遮光板 4 1 , 4 2のエツジ 4 1 A, 4 1 B , 4 2 A , 4 2 B (図 2参照) の陰 (像) がその遮光帯の範囲内に収まるように、 主制御系 2 4が不図示の駆動部 を介してレチクルブラインド 4を駆動する。 これによつて、 上記の不完 全部となる部分の照明光が遮光されるため、 ウェハ上での露光量が不均 一となることがない。  In this case, for example, in the reticle, light-shielding bands corresponding to the frame-shaped areas 9A to 9D in FIG. 6 are provided, and the light-shielding plates 41, 42 of the reticle blind 4 in FIG. The main control system 24 drives the reticle blind 4 via a drive unit (not shown) so that the shadow (image) of B, 42A, 42B (see Fig. 2) falls within the range of the light-shielding band. I do. As a result, the illumination light of the above-mentioned incomplete portion is shielded, so that the exposure amount on the wafer does not become uneven.
また、 図 1において、 レチクル Rのパターン面と共役な面 P 1の近傍 には濃度フィルタ 5 5のフィル夕面が存在するため、 レチクルブライン ド 4は濃度フィルタ 5 5と機械的に干渉しないように、 面 P 1から照明 光学系の光軸方向にずれた位置に退避している。 しかしながら、 このよ うにレチクルブラインド 4がパターン面と共役な面 P 1から外れるのを 防止するために、 更に面 P 1を別の共役面にリ レーするリレー光学系を 配置し、 その共役面にレチクルブラインド 4を配置するようにしてもよ レ^  Also, in FIG. 1, since the fill surface of the density filter 55 exists near the plane P 1 conjugate with the pattern surface of the reticle R, the reticle blind 4 does not mechanically interfere with the density filter 55. Then, it is retracted from the plane P1 to a position shifted in the optical axis direction of the illumination optical system. However, in order to prevent the reticle blind 4 from deviating from the plane P1, which is conjugate with the pattern plane, a relay optical system that relays the plane P1 to another conjugate plane is arranged, and the conjugate plane is placed on the relay optics. Reticle blind 4 may be arranged.
これらの場合、 レチクル Rに設ける遮光帯の幅は、 レチクルブライン ド 4をデフォ一カスさせたときには、 このデフォーカスによるレチクル ブラインド 4の遮光板のエッジのぼけ量と、 その遮光板の制御誤差と、 その遮光板の機械的な精度と、 レチクルブラインド 4からレチクル Rま での光学系の収差と、 その光学系のディス卜一ション量とを総合的に考 慮して設定する必要がある。  In these cases, when the reticle blind 4 is defocused, the width of the light-shielding band provided on the reticle R depends on the amount of blur of the edge of the light-shielding plate of the reticle blind 4 due to this defocus, the control error of the light-shielding plate, and However, it is necessary to comprehensively consider the mechanical accuracy of the light shielding plate, the aberration of the optical system from the reticle blind 4 to the reticle R, and the distortion amount of the optical system.
それ以外に、 レチクルブラインド 4を例えばレチクル Rのパターン面 (下面) の底面に近接して配置するようにしてもよい。 逆に、 濃度フィ ル夕 5 5をレチクル Rのパ夕一ン面の底面に配置して、 そのパターン面 と共役な面 P 1上にレチクルブラインド 4を配置するようにしてもよい。 勿論、 レチクルブラインド 4又は濃度フィル夕 5 5をレチクル Rに対し てそのパターン面と反対側 (照明光学系側) に配置してもよい。 また、 投影光学系 P Lがレチクルパターンの中間像をウェハ上に再結像する場 合は、 投影光学系 P L内でその中間像が形成される所定面からレチクル ブラインド 4又は濃度フィル夕 5 5をずらして配置してもよく、 要はゥ ェ八上での照明光量が外側に向けて次第に減少する光量分布が得られれ ばよい。 In addition, the reticle blind 4 may be replaced with the reticle R pattern surface, for example. (Lower surface). Conversely, the density filter 55 may be arranged on the bottom surface of the pattern surface of the reticle R, and the reticle blind 4 may be arranged on a plane P1 conjugate with the pattern plane. Of course, the reticle blind 4 or the density filter 55 may be arranged on the opposite side of the reticle R from the pattern surface (illumination optical system side). When the projection optical system PL re-images the intermediate image of the reticle pattern on the wafer, the reticle blind 4 or the density filter 55 is formed from the predetermined surface where the intermediate image is formed in the projection optical system PL. The light amount distribution may be shifted, in short, as long as the light amount distribution in which the illumination light amount on the top gradually decreases outward.
また、 濃度フィル夕 5 5のフィルタ面を上記のように面 P 1に対して 適正量だけデフォーカスさせて配置した場合でも、 その周囲環境のクリ ーン度が低い場合には、 そのフィルタ面に許容範囲を超える大きさの塵 等の異物が付着して、 その異物がレチクル Rを通してウェハ W上に転写 される恐れがある。 これを防止するためには、 そのフィル夕面を保護す るように例えばセルロース等の光学的に影響を与えない薄膜 (防塵膜と してのペリクル) を張設することが望ましい。  Even when the filter surface of the density filter 55 is defocused by an appropriate amount with respect to the surface P1 as described above, if the cleanness of the surrounding environment is low, the filter surface Foreign matter, such as dust, having a size exceeding the allowable range may adhere to the wafer, and the foreign matter may be transferred onto the wafer W through the reticle R. In order to prevent this, it is desirable to provide a thin film (pellicle as a dust-proof film), such as cellulose, which does not affect optically, so as to protect the filler surface.
図 9は、 そのように濃度フィル夕 5 5のフィル夕面 P 2に矩形の金属 製の枠 (ペリクルフレーム) 5 7を介して防塵用の薄膜 5 8を設置した 実施の形態を示し、 この図 9において、 レチクルのパターン面と共役な 面 P 1を挟むように、 濃度フィル夕 5 5のフィルタ面 P 2と薄膜 5 8と が配置されている。 そして、 薄膜 5 8に近接してレチクルブラインド 4 が配置されている。 これによつて、 フィル夕面 P 2には異物が付着しな いと共に、 薄膜 5 8に付着した異物の像はレチクル上にデフォーカスし て投影されて、 悪影響を与えることが無い。 また、 異物検査機を別途用 意しておき、 必要に応じてフィル夕面 P 2又は薄膜 5 8への許容範囲を 超える異物の付着を確認し、 このような異物が付着しているときには、 濃度フィル夕 5 5を別の異物が付着していない濃度フィル夕と交換する ことが望ましい。 FIG. 9 shows an embodiment in which a dust-proof thin film 58 is installed via a rectangular metal frame (pellicle frame) 57 on the fill surface P2 of the concentration fill 55 in this way. In FIG. 9, the filter surface P 2 of the density filter 55 and the thin film 58 are arranged so as to sandwich the plane P 1 conjugate with the pattern surface of the reticle. The reticle blind 4 is arranged close to the thin film 58. As a result, no foreign matter adheres to the fill surface P2, and the image of the foreign matter adhered to the thin film 58 is defocused and projected on the reticle, and has no adverse effect. In addition, prepare a foreign substance inspection machine separately and adjust the allowable range for the fill surface P2 or thin film 58 as necessary. It is desirable to replace the density filter 55 with a density filter that does not have any other foreign matter if such foreign matter is found.
なお、 薄膜 5 8の代わりに、 薄膜 5 8とフィル夕面 P 2との間隔程度 の厚さの照明光 I Lに対して透過性のガラス板を配置してもよい。 この 際には、 そのガラス板をフィル夕面 P 2に密着させて固定してもよい。  Note that, instead of the thin film 58, a glass plate that is permeable to the illumination light IL having a thickness about the distance between the thin film 58 and the fill surface P2 may be arranged. In this case, the glass plate may be fixed in close contact with the filling surface P2.
また、 面 P 1上とは異なるレチクルとの共役面にレチクルブラインド 4を配置する場合には、 図 9の配置とは逆に、 濃度フィル夕 5 5のフィ ル夕面 P 2をレチクル側にむけて配置してもよい。  When reticle blind 4 is placed on a conjugate plane with a reticle different from that on plane P1, contrary to the arrangement in FIG. It may be arranged facing.
また、 枠 5 7の一部には外気に連通する孔が形成され、 圧力変化によ つて薄膜 5 8が変形しないように構成されている。 その孔には H E P A フィル夕のみならずケミカルフィルタも設けられ、 イオンやシリコン系 有機物のフィル夕面 P 2上への進入が阻止されている。  Further, a hole communicating with the outside air is formed in a part of the frame 57 so that the thin film 58 is not deformed by a pressure change. A chemical filter as well as a HEPA filter is provided in the hole to prevent ions and silicon-based organic substances from entering the fill surface P2.
次に、 本発明の好適な実施の形態の他の例につき図 7及び図 8を参照 して説明する。 本例でも基本的に図 1の投影露光装置と同じ構成の投影 露光装置を用いて、 複数のレチクルのパターンの投影像を画面継ぎを行 いながらウェハ上に露光する。 但し、 本例では図 1 (図 4 ( a ) ) の濃 度フィル夕 5 5の代わりに、 図 7 ( a ) の濃度フィル夕 5 6を用いる点 が異なっている。 これ以外は、 変形例などを含めて先の実施形態の構成 を適用することができる。 以下では図 7及び図 8においてそれぞれ図 4 及び図 5に対応する部分には同一符号を付して、 濃度フィル夕 5 6の透 過率分布、 及び画面継ぎを行いつつ露光を行って得られる露光量分布に つき説明する。  Next, another example of the preferred embodiment of the present invention will be described with reference to FIGS. In this example as well, a projection exposure apparatus having the same configuration as the projection exposure apparatus of FIG. 1 is used to expose a projection image of a pattern of a plurality of reticles onto a wafer while performing screen joining. However, this example is different from the first embodiment in that the density filter 55 shown in FIG. 7A is used instead of the density filter 55 shown in FIG. 1 (FIG. 4A). Other than this, the configuration of the above-described embodiment including the modified examples can be applied. In the following, portions corresponding to FIGS. 4 and 5 in FIGS. 7 and 8 are denoted by the same reference numerals, and are obtained by performing exposure while performing the transmittance distribution of the density filter 56 and screen jointing. The exposure distribution will be described.
図 7 ( a ) は本例の濃度フィル夕 5 6のフィル夕部を示し、 この図 7 ( a ) において、 つなぎ露光する際に重ね合わせて露光する X方向の両 端の継ぎ部 5 6 a , 5 6 bの幅を a、 y方向の両端の継ぎ部 5 6 c, 5 6 dの幅を bとして、 継ぎ部 5 6 a〜 5 6 dで囲まれた内部の領域の x 方向の幅を a。 、 y方向の幅を b。 とする。 また、 その矩形のフィル夕 部の左下の頂点を位置 X及び位置 yの原点とすると、 そのフィル夕部の X方向及び y方向の範囲は次のようになる。 Fig. 7 (a) shows the fill area of the density fill 56 of this example. In Fig. 7 (a), the joints 56 a , 5 6b the width of a, the joints at both ends in the y direction 5 6c, 5 Let b be the width of 6 d, and let a be the width in the x direction of the internal area surrounded by the joints 56 a to 56 d. The width in the y direction b. And If the lower left vertex of the rectangular fill area is the origin of the position X and position y, the range of the fill area in the X and y directions is as follows.
0≤x 2 a+ a。 , 0≤ y≤ 2 b + b o  0≤x 2 a + a. , 0≤ y≤ 2 b + b o
そして、 フィル夕部内の座標 (X , y) の点 Pでの透過率を T (x, y) とすると、 透過率 T (X, y) は次のように領域 (B i ) ( i = l〜 l l ) 別に T B i に設定されている。 本例でも、 透過率 TB i を露光量 Q i で 置き換えることが可能である。  Then, assuming that the transmittance at the point P at the coordinates (X, y) in the filter area is T (x, y), the transmittance T (X, y) is expressed in the area (B i) (i = l ~ ll) Set separately to TB i. Also in this example, it is possible to replace the transmittance TB i with the exposure amount Q i.
領域 (B 1 ) : 0≤x<a, 0≤y<b, かつ (xZa) + (y/ b) > 1  Area (B 1): 0≤x <a, 0≤y <b, and (xZa) + (y / b)> 1
TB】 = 1 0 0 { (x/a) + (y/b) - 1 } [%] (2 1 ) 領域 (B 2 ) : a≤x≤a + a。 , 0≤yく b  TB] = 1 0 0 {(x / a) + (y / b)-1} [%] (2 1) area (B 2): a≤x≤a + a. , 0≤y
TB2 = 1 0 0 (y/b) [%] ( 2 2) 領域 (B 3 ) : a + a。 く x≤ 2 a + a。 , 0≤yく b かつ b x + a y≤ b ( 2 a + a o ) TB 2 = 100 (y / b) [%] (2 2) area (B 3): a + a. X≤2a + a. , 0≤y <b and bx + ay≤b (2 a + ao)
TB3 = 1 0 0 (y/b) [ ] (2 3 ) 領域 (B 4) : a + a。 く x≤ 2 a + a。 0≤ y < b , かつ b x + a y > b ( 2 a + a o ) TB 3 = 100 (y / b) [] (2 3) region (B 4): a + a. X≤2a + a. 0≤ y <b, and bx + ay> b (2 a + ao)
T B 4 = 1 0 0 [ 1 - { x - ( a + a。 ) } a] [%] ( 24) 領域 (B 5) : 0≤ x≤ a , b≤y≤ b + b o  T B 4 = 1 0 0 [1-{x-(a + a.)} A] [%] (24) Area (B 5): 0≤ x≤ a, b≤y≤ b + b o
TB 5 = 1 0 0 (x/a) [%] ( 2 5 ) 領域 (B 6 ) : a≤ x≤ a + a o , b≤ y≤ b + b o TB 5 = 1 0 0 (x / a) [%] (2 5) area (B 6): a≤ x≤ a + ao, b≤ y≤ b + bo
T B fi = 1 0 0 [%] ( 2 6 ) 領域 (B 7 ) : a + a。 く x≤ 2 a + a b≤ y≤ b + b o T B7 = 1 0 0 [ 1 一 { x— ( a + a。 ) a] [%] ( 2 7 ) 領域 (B 8) : 0≤xく a, b + b。 く y^2 b + b。 、 かつ b x + a y≤ a ( 2 b + b o ) TB fi = 100 [%] (26) area (B7): a + a. X ≤ 2 a + ab ≤ y ≤ b + bo TB 7 = 1 0 0 [1 1 {x— (a + a.) A] [%] (2 7) Area (B8): 0≤x, a, b + b. Y ^ 2 b + b. , And bx + ay≤ a (2 b + bo)
TB8 = 1 00 (x/a) [%] (28) 領域 (B 9) : 0≤ x< a , b + b。 く y≤2 b + b。 、 かつ b x + a y < a (2 b + b。 ) TB 8 = 100 (x / a) [%] (28) Area (B 9): 0≤x <a, b + b. Y≤2 b + b. , And bx + ay <a (2 b + b.)
TB9 = 1 00 [l— {y— b + b。 ) } Zb] [%] (29) 領域 (B I O) : a≤x≤a + a。 , b + b。 く y≤2 b + b。TB 9 = 100 [l— {y—b + b. )} Zb] [%] (29) Area (BIO): a≤x≤a + a. , B + b. Y≤2 b + b.
T B i o = 1 00 [1一 {y— b十! 3。 ) } C%] (30) 領域 (B l l) : a + a。 <x^2 a + a b + b。 く y≤2 b + b o 、 かつ b x + a y≤3 a b + a bo + a b T B i o = 1 00 [1 one {y—b ten! 3. )} C%] (30) Area (Bl l): a + a. <x ^ 2 a + a b + b. Y≤2 b + b o, and b x + a y≤3 a b + a bo + a b
T B ! ! = 1 0 0 [ 1 - { x - (a + a。 ) } a一 {y— (b + b ) } /b] [%] (3 1)  T B!! = 1 0 0 [1-{x-(a + a.)} A-one {y— (b + b)} / b] [%] (3 1)
その他の領域では以下のようになる。  The other areas are as follows.
T (x, y) = 0 [%]  T (x, y) = 0 [%]
この場合、 フィル夕領域の左下の三角形の角部である領域 (B 1) の 透過率 TB, は、 X方向に外側に一次元的に低下する分布 (x/a) と、 y方向に外側に一次元的に低下する分布 (yZa) とを足し合わせた値 に基づいて設定されている。 この領域 (B 1) の DD線に沿う透過率 T は、 図 7 (d) に示すように、 斜め方向の位置 y' に沿って外側に線形 に減少している。 そして、 フィル夕領域の右上の三角形の角部の領域 (B 1 1 ) の透過率 TB^も、 透過率 TB! と対称に設定されている。 また、 フィル夕領域の右下の矩形の角部は隣接する三角形の領域 (B 3) , (B 4) に分けられ、 対応する透過率 TB3 及び TB4 はそれぞ れ y方向に外側に一次元的に低下する分布、 及び X方向に外側に一次元 的に低下する分布である。 同様に、 フィル夕領域の左上の矩形の角部も 隣接する三角形の領域 (B 8) , (B 9 ) に分けられ、 対応する透過率 T B 8 及び TB 9 は、 透過率 T B4 及び T B3 と対称に設定されている。 また、 図 7 ( a) の B B線に沿う領域での透過率 Tは、 図 7 (b) に示 すように位置 Xに関して線形に 0から 1 ( 1 0 0 %) まで変化しており、 図 7 ( a) の C C線に沿う領域での透過率 Tは、 図 7 (c ) に示すよう に位置 yに関して線形に 0から 1 ( 1 0 0 %) まで変化している。 In this case, the transmittance TB, of the area (B 1), which is the corner of the lower left triangle of the filter area, has a distribution (x / a) that decreases one-dimensionally outward in the X direction, And the distribution (yZa) that decreases one-dimensionally. The transmittance T of this region (B1) along the DD line decreases linearly outward along the oblique position y ', as shown in Fig. 7 (d). Also, the transmittance TB ^ of the upper right corner of the filter region (B11) is set symmetrically with the transmittance TB !. Further, the triangular region (B 3) corners of the rectangular bottom right fill evening area adjacent divided into (B 4), the transmittance TB 3 and TB 4 corresponding to outside, respectively therewith y-direction One-dimensionally decreasing distribution and one-dimensionally decreasing distribution outward in the X direction. Similarly, the corner of the upper left rectangle of the filter area is also divided into adjacent triangular areas (B 8) and (B 9), and the corresponding transmittance TB 8 and TB 9 are set symmetrically with the transmittances TB 4 and TB 3 . In addition, the transmittance T in the region along the line BB in Fig. 7 (a) changes linearly from 0 to 1 (100%) with respect to the position X as shown in Fig. 7 (b). The transmittance T in the region along the CC line in FIG. 7 (a) changes linearly from 0 to 1 (100%) with respect to the position y as shown in FIG. 7 (c).
本例でも、 図 7 ( a) の透過率分布を持つ濃度フィル夕 5 6を介して 図 1のレチクルステージ 2 1上のレチクルを照明し、 画面継ぎを行いな がらそのレチクルのパターンの縮小像をウェハ W上のショッ ト領域に露 光する。  In this example, the reticle on the reticle stage 21 shown in Fig. 1 is illuminated through the density filter 56 having the transmittance distribution shown in Fig. 7 (a), and a reduced image of the reticle pattern is formed while screen joining is performed. Is exposed to the shot area on the wafer W.
図 8は、 本例の画面継ぎを行う露光によって図 1のウェハ W上の一つ のショッ ト領域に露光される大きい投影像を示し、 この図 8において、 それぞれ異なるレチクルのパターンの縮小像よりなる矩形の投影像 3 2 A, 3 2 B, 3 2 C, 3 2 D力 X方向の境界部の継ぎ部 3 2 A B , 3 2 CD, 及び Y方向の境界部の継ぎ部 3 2 AC, 3 2 BDが二重に重ね 合わせられるように露光される。 更に、 4個の投影像 3 2 A〜 3 2 Dが 隣接する矩形の継ぎ部は、 斜めの境界線 3 5を挟んで三角形の継ぎ部 3 3及び 3 4に分かれ、 継ぎ部 3 3では投影像 3 2 A, 3 2 B, 3 2 Dの 一部が 3重に重ね合わせて露光され、 継ぎ部 3 4では投影像 3 2 A, 3 FIG. 8 shows a large projection image exposed to one shot area on the wafer W in FIG. 1 by the exposure for performing the screen splicing in this example. 3 A, 3 2 B, 32 C, 32 D force Joints at the boundary in the X direction 3 2 AB, 32 CD, and joints at the boundary in the Y direction 3 2 AC, Exposure is performed so that 32 BDs are superimposed twice. Furthermore, the rectangular joint where the four projected images 32A to 32D are adjacent to each other is divided into triangular joints 33 and 34 across the oblique boundary line 35, and the joint 33 projects at A part of the image 32A, 32B, 32D is exposed in a triple overlapped manner, and the projected image 32A, 3
2 C, 3 2 Dの一部が 3重に重ね合わせて露光される。 A part of 2C and 32D is exposed in triple overlap.
図 8の投影像の各部の露光量を評価すると、 まず投影像 3 2 A〜 3 2 Dの中央部の符号 A〜Dが付された領域は、 濃度フィル夕 5 6の透過率 が 1 0 0 %であるため 1 0 0 %の露光量となる。 また、 継ぎ部 3 2 AB, When the exposure amount of each part of the projected image in FIG. 8 is evaluated, first, in the central areas of the projected images 32 A to 32 D, which are denoted by reference signs A to D, the transmittance of the density filter 56 is 10. Since it is 0%, the exposure amount is 100%. In addition, the joint 3 2 AB,
3 2 BD, 3 2 CD, 3 2 ACの積算露光量は、 図 5の実施の形態と同 様に 1 0 0 %となる。 以下に、 継ぎ部 3 3, 3 4の積算露光量も 1 0 0 %になることを説明する。 図 5 と同様に、 図 8における点 P 3を座標 (X, Y) の原点に取り、 点 P 3を原点としたときの点 Pの座標を (X, Y) とすると、 投影像 3 2 A, 3 2 B, 3 2 C, 3 2 Dの左下の点を原 点としたときの座標 (ΧΛ , ΥΛ ) , (Χ , ΥΒ ) (X Yc ) , (Χο , Υη ) はそれぞれ以下の通りである。 The integrated exposure amount of 32 BD, 32 CD, and 32 AC is 100% as in the embodiment of FIG. Hereinafter, it will be described that the integrated exposure amount of the joints 33 and 34 is also 100%. Similarly to FIG. 5, the point P 3 in FIG. 8 is set as the origin of the coordinates (X, Y), and the coordinates of the point P when the point P 3 is set as the origin is (X, Y). Y), the coordinates (ΧΛ, ΥΛ), (Χ, ΥΒ) (X Yc), with the lower left point of the projected images 32A, 32B, 32C, 32D as the origin. (Χο, Υη) are as follows.
(ΧΑ YA ) = (X+ ( a + a。 ) Y) ( 3 2)
Figure imgf000032_0001
(ΧΑ Y A ) = (X + (a + a.) Y) (3 2)
Figure imgf000032_0001
(Xc Yc ) = (X + ( a + a o ) Y+ (b + b。 ) ) ( 3 4) (XD YD ) = (X, Y + (b + b ) ) ( 3 5) 上記の透過率 TB i を座標 (ΧΛ , ΥΛ ) , (X,s , YR ) (Xc ,(Xc Yc) = (X + (a + ao) Y + (b + b.)) (34) (XD YD) = (X, Y + (b + b)) (35) Transmittance TB above Let i be the coordinates (Χ Λ , ΥΛ), (X, s , YR) (Xc,
Yc ) 及び (XD , YD ) 上で表した値をそれぞれ T B i (A) T B i (B) , T B i (C) , T B i (D) とする。 Yc) and (XD, YD) The values expressed above are denoted as TB i (A), T B i (B), T B i (C), and T B i (D), respectively.
このとき、 継ぎ部 3 3及び 3 4の境界線 3 5は、 (X/ a) + (Y/ b) = 1で表される。 また、 継ぎ部 34における投影像 3 2 A, 3 2 C, 3 2 Dの露光量を ABCDl (A), ABCDl (0 , ABCDl (D)とすると、 これらは以 下のようになる。  At this time, the boundary 35 between the joints 33 and 34 is represented by (X / a) + (Y / b) = 1. Further, assuming that the exposure amounts of the projected images 32A, 32C, 32D at the joint 34 are ABCDl (A), ABCDl (0, ABCDl (D), these are as follows.
ABCDl (A) = T B 3 (A)  ABCDl (A) = T B 3 (A)
= 1 0 0 (Y/b)  = 1 0 0 (Y / b)
ABCDl (C) =TB n (C)  ABCDl (C) = TB n (C)
= 1 0 0 [ 1 一 {X+ ( a + a ( a + a。 ) } / a ] 一 { Y+ (b + b。 ) — (b + b。 ) } /b]  = 1 0 0 [1 {X + (a + a (a + a.)} / A] 1 {Y + (b + b.) — (B + b.)} / B]
= 1 0 0 ( 1 - XZ a - Y/b)  = 1 0 0 (1-XZ a-Y / b)
ABCDl (D)二 T B 8 (D) ABCDl (D) 2 TB 8 (D)
= 1 0 0 (XZ a )  = 1 0 0 (XZ a)
従って、 継ぎ部 3 4における積算露光量 ABCDl は以下のようになる。 ABCDl =ABCD1 (A) + ABCDl (0 + ABCDl (D)  Therefore, the integrated exposure amount ABCDl at the joint portion 34 is as follows. ABCDl = ABCD1 (A) + ABCDl (0 + ABCDl (D)
= 1 0 0 { (Y/b) + ( 1 -X/a - Y/b) + (XZ a) = 1 0 0 {(Y / b) + (1 -X / a-Y / b) + (XZ a)
= 1 0 0 [%] ( 3 6) 同様に、 継ぎ部 3 3における投影像 3 2 A, 3 2 B, 3 2 Dの露光量 を ABCD2 (A) , ABCD2 (B) , ABCD2 (D)とすると、 これらは以下のようになる。 = 1 0 0 [%] (3 6) Similarly, assuming that the exposure amounts of the projected images 32A, 32B, and 32D at the joint 33 are ABCD2 (A), ABCD2 (B), and ABCD2 (D), these are as follows.
ABCD2 (A) =TB4 (A) ABCD2 (A) = TB 4 (A)
= 1 0 0 [ 1 — {X+ (a + a。 ) 一 (a + a。 )  = 1 0 0 [1 — {X + (a + a.) One (a + a.)
= 1 0 0 ( 1 -X/a) · (YZb)  = 1 0 0 (1 -X / a)
ABCD2 (B) =TB , (B)  ABCD2 (B) = TB, (B)
= 1 0 0 (X/a + Y/b - 1 )  = 1 0 0 (X / a + Y / b-1)
ABCD2 (D) =TB9 (D) ABCD2 (D) = TB 9 (D)
= 1 0 0 [ 1 - { Y+ (b + b。 ) 一 (b + b o ) } Zb] = 1 0 0 [1-{Y + (b + b.) One (b + b o)} Zb]
= 1 0 0 ( 1 - Y/b) = 1 0 0 (1-Y / b)
従って、 継ぎ部 3 3における積算露光量 ABCD2 は以下のようになる。 ABCD2 =ABCD2 (A) +ABCD2 (B) +ABCD2 (D)  Therefore, the integrated exposure amount ABCD2 at the joint 33 is as follows. ABCD2 = ABCD2 (A) + ABCD2 (B) + ABCD2 (D)
= 1 0 0 { ( 1 -X/a) + (X/a + Y/b - 1 ) + ( 1 -  = 1 0 0 {(1 -X / a) + (X / a + Y / b-1) + (1-
= 1 0 0 [%] ( 3 7 ) = 1 0 0 [%] (3 7)
よって、 図 8の実施の形態においても、 4個の投影像 3 2 A〜 3 2 D が隣接する矩形の領域 (継ぎ部 3 3, 3 4) で、 その他の領域と同じ露 光量が得られるため、 投影像の全体で露光量均一性が維持される。  Therefore, in the embodiment of FIG. 8 as well, the same amount of exposure light as that of the other areas can be obtained in the rectangular areas (joints 33, 34) where the four projected images 32A to 32D are adjacent. Therefore, the uniformity of the exposure amount is maintained over the entire projected image.
なお、 上記の実施の形態は、 つなぎ露光方式で半導体デバイス、 液晶 ディスプレイ、 プラズマディスプレイ等を製造する場合に本発明を適用 したものであるが、 本発明はつなぎ露光方式でマスクとしてのヮーキン グレチクルを製造する場合にも適用することができる。 この場合には、 レチクルパターンを拡大した原版パターンを複数個に分割し、 分割され た原版パターンを複数のマスタ一レチクルに描画しておく。 そして、 こ れらの複数枚のマスタ一レチクルのパターンの縮小像を上記の実施の形 態のように、 濃度フィル夕 5 5 , 5 6を用いてつなぎ露光方式でガラス 基板等のマスク基板上に転写する。 このマスク基板上には予めクロム等 の遮光膜が形成され、 この上にフォトレジストが塗布されている。 そこ で、 つなぎ露光後に現像、 エッチング及びレジスト剥離等を行うことで、 高精度に、 かつ高い線幅均一性でヮ一キングレチクルが製造される。 な お、 電子線露光装置や後述の E U V露光装置ではワーキングレチクルの マスク基板としてシリコンウェハなどが用いられる。 特に E U V露光装 置では反射型のワーキングレチクルが使用される。 In the above embodiment, the present invention is applied to the case of manufacturing a semiconductor device, a liquid crystal display, a plasma display, and the like by the bridge exposure method, but the present invention uses a peak reticle as a mask in the bridge exposure method. It can be applied to the case of manufacturing. In this case, the original pattern obtained by enlarging the reticle pattern is divided into a plurality of parts, and the divided original patterns are drawn on a plurality of master reticles. Then, the reduced images of the patterns of the master reticle are glass-connected by the density exposure method 55, 56 as in the above-described embodiment. Transfer onto a mask substrate such as a substrate. A light-shielding film such as chromium is formed on the mask substrate in advance, and a photoresist is applied thereon. Therefore, by performing development, etching, resist stripping, and the like after the bridge exposure, a single reticle is manufactured with high accuracy and high line width uniformity. In an electron beam exposure apparatus and an EUV exposure apparatus described later, a silicon wafer or the like is used as a mask substrate of a working reticle. Particularly in EUV exposure equipment, a reflective working reticle is used.
なお、 上記の実施の形態の投影露光装置において、 照明光 I Lとして A r Fエキシマレーザ光等の真空紫外域の短波長の紫外光を使用する場 合には、 照明光学系の光路上には窒素ガス (N 2 )やヘリウムガス (H e ) 等の透過率の高い気体がパージされる。 この場合には図 9において、 薄膜 5 8と枠 5 7と濃度フィル夕 5 5とで囲まれる空間にその高透過率 の気体を充てんしておくか、 又は枠 5 7に設けた開口を介してその気体 を流すことが望ましい。 In the projection exposure apparatus according to the above-described embodiment, when short-wavelength ultraviolet light in the vacuum ultraviolet region such as ArF excimer laser light is used as the illumination light IL, the optical path of the illumination optical system is Gases with high transmittance, such as nitrogen gas (N 2 ) and helium gas (H e), are purged. In this case, in FIG. 9, the space surrounded by the thin film 58, the frame 57, and the concentration filter 55 is filled with a gas having a high transmittance, or through an opening provided in the frame 57. It is desirable to flow the gas.
また、 図 1において、 照度均一化光学系 2としてロッド ·インテグレ —夕を用いる場合には、 この射出面に近接してレチクルブラインド 4を 配置し、 かつレチクルブラインド 4に近接して濃度フィルタ 5 δを設け ることができる。 あるいは、 そのロッド · インテグレ一夕とレチクルと の間でその射出面と共役な面、 又はこの面からわずかにずらした面に濃 度フィル夕 5 5のフィル夕面を配置してもよい。  In FIG. 1, when a rod integrator is used as the illuminance uniforming optical system 2, a reticle blind 4 is arranged close to the exit surface, and a density filter 5 δ is close to the reticle blind 4. Can be provided. Alternatively, a fill surface of the density fill 55 may be arranged on a surface conjugate with the exit surface between the rod / integre and the reticle, or on a surface slightly shifted from this surface.
さらに、 レチクル上のパターン領域の大きさや形状に応じて濃度フィ ル夕 5 5を交換できる構成としておくことが望ましい。 この際に、 その 交換を自動的に行うために、 サイズの異なる複数の濃度フィル夕を位置 決め装置 5上の夕一レツ ト板などに固定しておくとよい。  Further, it is desirable that the density filter 55 can be changed according to the size and shape of the pattern area on the reticle. At this time, in order to automatically perform the exchange, it is preferable that a plurality of density filters having different sizes be fixed to an evening lett plate on the positioning device 5 or the like.
また、 濃度フィル夕 5 5 (又は 5 6 ) の位置合わせ用マークを検出す る装置は照度センサ 6 3に限られるものではなく、 例えば照度センサ 6 3とは別にウェハステージ 2 5に少なくとも受光部を有する光学系を設 置して用いてもよいし、 あるいは照明光学系内に専用の光学系を組み込 んでもよい。 また、 その位置合わせ用マークの検出光として前述の照明 光 I Lを用いてもよいし、 光源 1とは別の光源を用意して照明光 I Lと 波長が実質的に同一の光を用いるようにしてもよい。 The device for detecting the alignment mark of the density filter 55 (or 56) is not limited to the illuminance sensor 63. An optical system having at least a light receiving unit may be provided and used on the wafer stage 25 separately from 3, or a dedicated optical system may be incorporated in the illumination optical system. In addition, the above-mentioned illumination light IL may be used as the detection light of the alignment mark, or a light source different from the light source 1 may be prepared so that light having substantially the same wavelength as the illumination light IL is used. You may.
また、 上記の実施の形態は本発明を一括露光型の投影露光装置に適用 したものであるが、 本発明はプロキシミティ方式の露光装置でつなぎ露 光を行う場合にも同様に適用することができる。 更に本発明は、 ステツ プ · アンド ' スキャン方式のような走査露光型の投影露光装置でつなぎ 露光を行う場合にも適用することができる。 そして、 本発明は、 例えば 波長 5 nm〜 1 5 n m程度の軟 X線や X線等の極端紫外光 (EUV光) を露光ビームとする EUV露光装置でつなぎ露光を行う場合にも適用す ることができる。 EUV光を用いる場合には、 透過性の材料が殆ど無い ため、 濃度フィル夕 (減光フィル夕) としては反射型の基板上に所定の 反射率分布で反射膜 (例えばモリブデンとシリコンとの多層膜、 又はモ リブデンとベリリウムとの多層膜) を形成した反射型のフィル夕を使用 してもよい。  In the above embodiment, the present invention is applied to a batch exposure type projection exposure apparatus. However, the present invention can be similarly applied to a case where a connection exposure is performed by a proximity type exposure apparatus. it can. Further, the present invention can be applied to a case where a connecting exposure is performed by a scanning exposure type projection exposure apparatus such as a step-and-scan method. The present invention is also applicable to a case where a bridge exposure is performed by an EUV exposure apparatus that uses extreme ultraviolet light (EUV light) such as soft X-ray or X-ray having a wavelength of about 5 nm to 15 nm as an exposure beam. be able to. When EUV light is used, since there is almost no transmissive material, a concentration film (dimming filter) is used as a reflection film (for example, a multilayer of molybdenum and silicon) with a predetermined reflectance distribution on a reflective substrate. Alternatively, a reflective filter formed with a film or a multilayer film of molybdenum and beryllium) may be used.
また、 露光用の照明光としての D F B半導体レーザ又はファイバレー ザから発振される赤外域又は可視域の単一波長レーザを、 例えばェルビ ゥム (E r) (又はエルビウムとイッテルビウム (Yb) の両方) がド —プされたファイバ一アンプで増幅し、 かつ非線形光学結晶を用いて紫 外光に波長変換した高調波を用いてもよい。 例えば、 単一波長レーザの 発振波長を 1. 544〜 1. 5 5 3 mの範囲内とすると、 1 93〜 1 94 nmの範囲内の 8倍高調波、 即ち A r Fエキシマレ一ザとほぼ同一 波長となる紫外光が得られ、 発振波長を 1. 57〜 1. 58 mの範囲 内とすると、 1 57〜 1 58 nmの範囲内の 1 0倍高調波、 即ち F 2 レ 一ザとほぼ同一波長となる紫外光が得られる。 In addition, a single-wavelength laser in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser as illumination light for exposure may be used, for example, by using Erbium (Er) (or both Erbium and Ytterbium (Yb)). ) May be amplified by a doped fiber amplifier, and a harmonic converted to a wavelength of ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 m, the 8th harmonic in the range of 193 to 194 nm, that is, almost the same as the ArF excimer laser Assuming that ultraviolet light having the same wavelength is obtained and the oscillation wavelength is in the range of 1.57 to 1.58 m, the 10th harmonic in the range of 157 to 158 nm, that is, F 2 Ultraviolet light having substantially the same wavelength as that of one laser is obtained.
また、 露光光源や照度均一化光学系等から構成される照明光学系、 及 び投影光学系を露光装置本体に組み込み光学調整をすると共に、 多数の 機械部品からなるレチクルステージやウェハステージを露光装置本体に 取り付けて配線や配管を接続し、 上述の実施の形態の濃度フィル夕 5 5 を取り付け、 更に総合調整 (電気調整、 動作確認等) をすることにより 上述の実施の形態の投影露光装置を製造することができる。 なお、 露光 装置の製造は温度及びクリーン度等が管理されたクリーンルームで行う ことが望ましい。  In addition, an illumination optical system composed of an exposure light source and an illuminance uniforming optical system, and a projection optical system are incorporated in the main body of the exposure apparatus for optical adjustment, and a reticle stage and a wafer stage composed of many mechanical parts are mounted on the exposure apparatus. The projection exposure apparatus of the above-described embodiment can be mounted by attaching it to the main body, connecting wiring and piping, attaching the density filter 55 of the above-described embodiment, and performing overall adjustment (electrical adjustment, operation confirmation, etc.). Can be manufactured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない 範囲で種々の構成を取り得る。 更に、 明細書、 特許請求の範囲、 図面、 及び要約を含む、 1 9 9 9年 3月 2 6日付提出の日本国特許出願第 1 1 - 8 3 1 7 8号の全ての開示内容は、 そっく りそのまま引用してここに 組み込まれている。 産業上の利用の可能性  The present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, all disclosures, including the specification, claims, drawings, and abstract, of Japanese Patent Application No. 11-83 178, filed March 26, 1999, are: Exactly quoted and incorporated here. Industrial applicability
本発明によれば、 複数枚のパターンを 2次元的に画面継ぎを行いなが ら転写する場合、 4枚のパターンが隣接する部分での積算露光量を他の 部分での積算露光量とほぼ同じにできる利点がある。 従って、 大型の半 導体デバイス等のパターンを高精度に露光できると共に、 最終的に製造 される大型のデバイス中の継ぎ部で欠陥を生じることがない。  According to the present invention, when a plurality of patterns are transferred while performing two-dimensional screen splicing, the integrated exposure amount in a portion where the four patterns are adjacent is substantially equal to the integrated exposure amount in other portions. There are advantages to doing the same. Therefore, a pattern of a large semiconductor device or the like can be exposed with high precision, and no defect occurs at a joint portion in a large device to be finally manufactured.
また、 本発明のマスクの製造方法によれば、 画面継ぎを行う方法で大 型のマスクであっても欠陥を生じることなく、 高精度にかつ高スループ ッ 卜で製造することができる。  Further, according to the method of manufacturing a mask of the present invention, even a large-sized mask can be manufactured with high accuracy and high throughput without causing a defect even when a large-sized mask is formed by screen joining.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板上に複数のパターンを継ぎ合わせて露光することによって、 前 記各パターンよりも大きいパターンを前記基板上に露光する露光方法に おいて、 1. In an exposure method for exposing a pattern larger than each of the above patterns on the substrate by splicing and exposing a plurality of patterns on the substrate,
複数のパターンを互いに交差する第 1方向及び第 2方向にそれぞれ一 部の領域が重なり合うように継ぎ合わせて露光し、  Exposure is performed by joining a plurality of patterns together in a first direction and a second direction that intersect with each other such that a part of each region overlaps,
4個のパターンが隣接する領域では該 4個のパターンの角部を互いに 重ね合わせて露光すると共に、  In the area where the four patterns are adjacent to each other, the corners of the four patterns are overlapped with each other and exposed,
前記 4個のパターンをそれぞれ露光する際に、 該パターンの前記角部 の露光量を前記第 1方向に沿って外側に次第に減少する第 1特性と、 前 記第 2方向に沿って外側に次第に減少する第 2特性とを掛け合わせた特 性に基づいて設定することを特徴とする露光方法。  When each of the four patterns is exposed, a first characteristic in which the exposure amount of the corner of the pattern gradually decreases outward along the first direction, and gradually decreases outward along the second direction. An exposure method characterized in that the exposure method is set based on a characteristic obtained by multiplying the characteristic by a decreasing second characteristic.
2 . 前記隣接する 4個のパターンの内の一つのパターンの前記角部を露 光する際に、 2. When exposing the corner of one of the four adjacent patterns,
前記角部の前記第 1方向及び第 2方向の幅をそれぞれ a及び bとして、 前記角部の頂点を原点として前記第 1方向及び第 2方向に沿って前記角 部の内側に増加する座標をそれぞれ X及び yとすると、  The width of the corner in the first and second directions is a and b, respectively, and the coordinates that increase inside the corner along the first and second directions with the vertex of the corner as the origin point. Let X and y be respectively
前記角部での露光量を (x Z a ) · ( y / b ) に比例する値に設定す ることを特徴とする請求の範囲 1記載の露光方法。  2. The exposure method according to claim 1, wherein the exposure amount at the corner is set to a value proportional to (xZ a) · (y / b).
3 . 基板上に複数のパターンを継ぎ合わせて露光することによって、 前 記各パターンよりも大きいパターンを前記基板上に露光する露光方法に おいて、  3. An exposure method for exposing a pattern larger than each of the above patterns on the substrate by splicing and exposing a plurality of patterns on the substrate,
複数のパターンを互いに交差する第 1方向及び第 2方向にそれぞれ一 部の領域が重なり合うように継ぎ合わせて露光し、  Exposure is performed by joining a plurality of patterns together in a first direction and a second direction that intersect with each other such that a part of each region overlaps,
4個のパターンが隣接する領域ではそれぞれ斜めに対向する第 1及び 第 2の一対のパターンの内で、 前記第 1の一対のパターンについてはそ れぞれの矩形の角部を互いに重ね合わせて露光すると共に、 In the area where the four patterns are adjacent, the first and Among the second pair of patterns, the first pair of patterns are exposed by overlapping their rectangular corners with each other,
前記第 2の一対のパターンについてはそれぞれの三角形の角部を前記 矩形の角部の内部で隣接させて露光することを特徴とする露光方法。  An exposure method comprising exposing the second pair of patterns such that corners of respective triangles are adjacent to each other inside the corners of the rectangle.
4 . 前記第 2の一対のパターンをそれぞれ露光する際に、 該パターンの 前記三角形の角部の露光量を前記第 1方向に沿って外側に次第に減少す る第 1特性と、 前記第 2方向に沿って外側に次第に減少する第 2特性と を加算した特性に基づいて設定し、 4. When exposing the second pair of patterns, a first characteristic in which the exposure amount of the corners of the triangle of the pattern is gradually reduced outward along the first direction, and the second direction. Is set based on the characteristic obtained by adding the second characteristic that gradually decreases outward along
前記第 1の一対のパターンをそれぞれ露光する際に、 該パターンの前 記角部の露光量を外側に次第に一次元的に減少する特性に基づいて設定 することを特徴とする請求の範囲 3記載の露光方法。  4. The method according to claim 3, wherein, when exposing the first pair of patterns, the exposure amount of the corner portion of the patterns is set based on a characteristic of gradually decreasing one-dimensionally outward. Exposure method.
5 . マスクのパターンを基板上に転写する露光装置において、  5. In an exposure apparatus that transfers a mask pattern onto a substrate,
前記マスクを照明する照明光学系と、  An illumination optical system for illuminating the mask,
前記照明光学系内で前記マスクのパターン面に対して実質的に共役な 位置に配置されて、 前記マスク上の照明領域を設定する視野絞りと、 前記基板の位置決めを行う基板ステージと、  A field stop that is arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask, and sets a field of illumination on the mask; and a substrate stage that positions the substrate.
前記マスクのパターン面の近傍の面、 又は前記パターン面に対する共 役面若しくはその近傍の面上に配置されて、 前記パターン面の交差する 第 1方向及び第 2方向に実質的に平行な外形を有するパターン領域の少 なくとも一つの角部に対応する領域の露光用の照明光に対する透過率を, 前記第 1方向に沿って外側に次第に減少する第 1特性と、 前記第 2方向 に沿って外側に次第に減少する第 2特性とを掛け合わせた特性に基づい て設定する減光フィル夕と、  The mask is arranged on a surface near the pattern surface of the mask, or on a common surface with respect to the pattern surface or on a surface near the pattern surface, and has an outer shape substantially parallel to the first direction and the second direction intersecting the pattern surface. A first characteristic in which the transmittance of the region corresponding to at least one corner of the pattern region having at least one corner to the illumination light for exposure gradually decreases outward in the first direction, and along the second direction. A dimming filter set based on a characteristic obtained by multiplying a second characteristic that gradually decreases outward,
を有することを特徴とする露光装置。 An exposure apparatus comprising:
6 . マスクのパターンを基板上に転写する露光装置において、  6. In an exposure apparatus for transferring a mask pattern onto a substrate,
前記マスクを照明する照明光学系と、 前記照明光学系内で前記マスクのパターン面に対して実質的に共役な 位置に配置されて、 前記マスク上の照明領域を設定する視野絞りと、 前記基板の位置決めを行う基板ステージと、 An illumination optical system for illuminating the mask, A field stop that is arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask, and sets a field of illumination on the mask; and a substrate stage that positions the substrate.
前記マスクのパターン面の近傍の面、 又は前記パターン面に対する共 役面若しくはその近傍の面上に配置された減光フィル夕と、 を有し、 該減光フィル夕は、 前記パターン面の互いに交差する第 1方向及び第 2方向に実質的に平行な外形を有するパターン領域のそれぞれ斜めに対 向する第 1及び第 2の一対の角部の内で、 前記第 1の一対の角部に対応 する領域での露光用の照明光に対する透過率を前記第 1方向に沿って外 側に次第に減少する第 1特性、 又は前記第 2方向に沿つて外側に次第に 減少する第 2特性に基づいて設定し、  And a dimming filter disposed on a surface near the pattern surface of the mask or a common surface with respect to the pattern surface or a surface near the pattern surface. Among the first and second pair of corners that are obliquely opposed to each other in the pattern region having an outer shape substantially parallel to the intersecting first and second directions, Based on a first characteristic in which the transmittance for the illumination light for exposure in the corresponding region gradually decreases outward along the first direction, or based on a second characteristic that gradually decreases outward along the second direction. Set,
前記第 2の一対の角部に対応する領域での露光用の照明光に対する透 過率を、 該一対の角部の対向する方向に沿って外側に広がった三角形状 の領域内で、 前記第 1方向に沿つて外側に次第に減少する第 1特性と前 記第 2方向に沿って外側に次第に減少する第 2特性とを加算した特性に 基づいて設定することを特徴とする露光装置。  The transmittance for the illumination light for exposure in the region corresponding to the second pair of corners is set to be within the triangular region extending outward along the direction in which the pair of corners face each other. An exposure apparatus characterized in that it is set based on a characteristic obtained by adding a first characteristic that gradually decreases outward in one direction and a second characteristic that gradually decreases outward in a second direction.
7 . 前記減光フィル夕を露光用の照明光の光軸に垂直な面内で位置決め する位置決め部材と、  7. a positioning member for positioning the neutral density filter in a plane perpendicular to the optical axis of the illumination light for exposure;
前記減光フィル夕のフィルタ面から所定間隔離れた位置に配置された 防塵膜と、 を有することを特徴とする請求の範囲 5又は 6記載の露光装  7. The exposure apparatus according to claim 5, further comprising: a dustproof film disposed at a predetermined distance from a filter surface of the neutral density filter.
8 . 前記減光フィル夕は、 前記視野絞りとの間に前記防塵膜が設定され るように、 前記照明光学系内で前記視野絞りに近接して配置されること を特徴とする請求の範囲 7記載の露光装置。 8. The dimming filter is arranged close to the field stop in the illumination optical system so that the dust-proof film is set between the field stop and the field stop. 7. The exposure apparatus according to 7.
9 . 前記減光フィル夕は、 前記照明光学系内で、 前記マスクのパターン 面に対する共役面から所定距離だけ離れて配置されることを特徴とする 請求の範囲 8記載の露光装置。 9. The dimming filter is disposed within the illumination optical system at a predetermined distance from a conjugate plane with respect to a pattern surface of the mask. 9. The exposure apparatus according to claim 8, wherein:
1 0 . 前記マスク上のマークと前記減光フィル夕上のマークとを検出す るマーク検出系と、 前記マーク検出系の検出結果に基づいて前記減光フ ィル夕を移動する駆動機構とを更に備えたことを特徴とする請求の範囲 5又は 6記載の露光装置。  10. A mark detection system for detecting a mark on the mask and a mark on the darkening filter, and a driving mechanism for moving the darkening filter based on a detection result of the mark detection system. 7. The exposure apparatus according to claim 5, further comprising:
1 1 . 前記駆動機構は、 前記照明光学系の光軸と垂直な面内で前記減光 フィル夕を移動することを特徴とする請求の範囲 1 0記載の露光装置。 11. The exposure apparatus according to claim 10, wherein the drive mechanism moves the dimming filter in a plane perpendicular to an optical axis of the illumination optical system.
1 2 . 前記減光フィルタは、 前記照明光学系内で前記マスクのパターン 面に対する共役面から所定距離だけ離れて配置されることを特徴とする 請求の範囲 1 0又は 1 1記載の露光装置。 12. The exposure apparatus according to claim 10, wherein the neutral density filter is arranged at a predetermined distance from a conjugate plane with respect to a pattern surface of the mask in the illumination optical system.
1 3 . 前記駆動機構は、 前記共役面との位置関係を調整するために、 前 記減光フィル夕を前記照明光学系の光軸に沿って移動可能であり、 且つ 前記光軸と垂直な面に対して傾斜可能であることを特徴とする請求の範 囲 1 2記載の露光装置。  13. The drive mechanism is capable of moving the dimming filter along the optical axis of the illumination optical system to adjust a positional relationship with the conjugate plane, and perpendicular to the optical axis. 13. The exposure apparatus according to claim 12, wherein the exposure apparatus can be inclined with respect to a plane.
1 4 . 基板上で周辺部が部分的に重なる少なくとも 2つの領域にそれぞ れパターンを転写する露光方法において、  14. An exposure method for transferring a pattern to at least two regions where peripheral portions partially overlap each other on a substrate,
前記パターンに照射される照明光の前記基板上での光量を前記少なく とも 2つの領域が重なる部分で徐々に減少させる減光フィル夕の位置情 報と回転情報との少なくとも一方を得るために、 前記減光フィル夕に設 けられる少なくとも 1つのマークパターンを検出することを特徴とする 露光方法。  In order to obtain at least one of the position information and the rotation information of the dimming filter, which gradually reduces the amount of illumination light irradiated on the pattern on the substrate at the portion where the at least two regions overlap. An exposure method comprising detecting at least one mark pattern provided in the darkening filter.
1 5 . 前記得られた情報に基づいて、 前記パターンが形成されるマスク と前記減光フィル夕との相対関係を調整することを特徴とする請求の範 囲 1 4記載の露光方法。  15. The exposure method according to claim 14, wherein a relative relationship between a mask on which the pattern is formed and the dimming filter is adjusted based on the obtained information.
1 6 . 前記得られた情報に基づいて、 前記減光フィル夕が配置される光 学系内での光軸方向に関する前記減光フィル夕の位置と傾斜との少なく とも一方を調整することを特徴とする請求の範囲 1 4記載の露光方法。16. Based on the obtained information, the position and inclination of the dimming filter in the optical axis direction in the optical system in which the dimming filter is arranged are reduced. 15. The exposure method according to claim 14, wherein one of them is adjusted.
1 7 . 基板上で周辺部が部分的に重なる少なくとも 2つの領域にそれぞ れパターンを転写する露光装置において、 17. An exposure apparatus for transferring a pattern to at least two regions where peripheral portions partially overlap each other on a substrate,
前記パターンに照射される照明光の前記基板上での光量を前記少なく とも 2つの領域が重なる部分で徐々に減少させる減光フィル夕と、 前記減光フィル夕の位置情報と回転情報との少なくとも一方を得るた めに、 前記減光フィル夕に設けられる少なくとも 1つのマークパターン を検出する検出装置とを備えたことを特徴とする露光装置。  A dimming filter that gradually reduces the amount of illumination light applied to the pattern on the substrate at a portion where the at least two regions overlap; and at least one of position information and rotation information of the dimming filter. An exposure apparatus, comprising: a detection device for detecting at least one mark pattern provided in the darkening filter to obtain one of them.
1 8 . 前記減光フィル夕の位置と回転との少なくとも一方を調整するた めに、 前記減光フィル夕を駆動するァクチユエ一夕を更に備えることを 特徴とする請求の範囲 1 7記載の露光装置。  18. The exposure according to claim 17, further comprising: an actuating unit for driving the dimming filter in order to adjust at least one of a position and a rotation of the dimming filter. apparatus.
1 9 . 前記検出装置は、 前記減光フィル夕と前記パターンが形成される マスクとの相対位置情報と相対回転情報との少なくとも一方を検出する ことを特徴とする請求の範囲 1 7記載の露光装置。  19. The exposure according to claim 17, wherein the detection device detects at least one of relative position information and relative rotation information between the dimming filter and a mask on which the pattern is formed. apparatus.
2 0 . 前記減光フィル夕は、 前記パターンが形成されるマスクのパター ン面、 又はその共役面からずれて配置されることを特徴とする請求の範 囲 1 7記載の露光装置。 20. The exposure apparatus according to claim 17, wherein the dimming filter is arranged so as to be shifted from a pattern surface of a mask on which the pattern is formed or a conjugate surface thereof.
2 1 . 請求の範囲 5〜 1 3、 1 7〜 2 0の何れか一項記載の露光装置に よつて複数のマス夕一パターンの画面継ぎを行つてデバィスパターンが 形成されることを特徴とするマスク。  21. The exposure apparatus according to any one of claims 5 to 13 and 17 to 20, wherein a device pattern is formed by performing screen joining of a plurality of masks and patterns. mask.
2 2 . 請求の範囲 1〜4、 1 4〜 1 6の何れか一項記載の露光方法を用 いて、 デバイスパターンを感光基板上に転写する工程を含むことを特徴 とするデバイス製造方法。  22. A device manufacturing method comprising a step of transferring a device pattern onto a photosensitive substrate using the exposure method according to any one of claims 1 to 4, and 14 to 16.
2 3 . 請求の範囲 5〜 1 3、 1 7〜 2 0の何れか一項記載の露光装置を 用いて、 デバイスパターンを感光基板上に転写する工程を含むことを特 徴とするデバイス製造方法。 23. A device manufacturing method characterized by including a step of transferring a device pattern onto a photosensitive substrate using the exposure apparatus according to any one of claims 5 to 13 and 17 to 20. .
2 4 . 請求の範囲 1〜 4、 1 4〜 1 6の何れか一項記載の露光方法を用 いたマスクの製造方法であって、 24. A method of manufacturing a mask using the exposure method according to any one of claims 1 to 4, and 14 to 16,
前記露光方法を用いてマスク基板上に複数のマスクパターンを画面継 ぎを行いながら転写する工程を含むことを特徴とするマスクの製造方法。  A method of manufacturing a mask, comprising a step of transferring a plurality of mask patterns onto a mask substrate by using the exposure method while performing screen connection.
2 5 . マスクのパターンを基板上に転写する露光装置の製造方法におい て、 25. In a method of manufacturing an exposure apparatus for transferring a mask pattern onto a substrate,
前記マスクを照明する照明光学系と、  An illumination optical system for illuminating the mask,
前記照明光学系内で前記マスクのパターン面に対して実質的に共役な 位置に配置されて、 前記マスク上の照明領域を設定する視野絞りと、 前記基板の位置決めを行う基板ステージと、  A field stop that is arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask, and sets a field of illumination on the mask; and a substrate stage that positions the substrate.
前記マスクのパターン面の近傍の面、 又は前記パターン面に対する共 役面若しくはその近傍の面上に配置されて、 前記パターン面の交差する 第 1方向及び第 2方向に実質的に平行な外形を有するパターン領域の少 なくとも一つの角部に対応する領域の露光用の照明光に対する透過率を、 前記第 1方向に沿って外側に次第に減少する第 1特性と、 前記第 2方向 に沿って外側に次第に減少する第 2特性とを掛け合わせた特性に基づい て設定する減光フィル夕と、  The mask is arranged on a surface in the vicinity of the pattern surface of the mask, or on a common surface with respect to the pattern surface or on a surface in the vicinity thereof, and has an outer shape substantially parallel to the first direction and the second direction intersecting the pattern surface. A first characteristic that gradually reduces the transmittance of the region corresponding to at least one corner of the pattern region having the illumination light for exposure to the outside along the first direction, and the second characteristic along the second direction. A dimming filter set based on a characteristic obtained by multiplying a second characteristic that gradually decreases outward,
を所定の位置関係で組み上げることを特徴とする露光装置の製造方法。 Are assembled in a predetermined positional relationship.
2 6 . マスクのパターンを基板上に転写する露光装置の製造方法におい て、 26. In a method of manufacturing an exposure apparatus for transferring a mask pattern onto a substrate,
前記マスクを照明する照明光学系と、  An illumination optical system for illuminating the mask,
前記照明光学系内で前記マスクのパターン面に対して実質的に共役な 位置に配置されて、 前記マスク上の照明領域を設定する視野絞りと、 前記基板の位置決めを行う基板ステージと、  A field stop that is arranged in the illumination optical system at a position substantially conjugate to the pattern surface of the mask, and sets a field of illumination on the mask; and a substrate stage that positions the substrate.
前記マスクのパターン面の近傍の面、 又は前記パターン面に対する共 役面若しくはその近傍の面上に配置されて、 前記パターン面の互いに交 差する第 1方向及び第 2方向に実質的に平行な外形を有するパターン領 域のそれぞれ斜めに対向する第 1及び第 2の一対の角部の内で、 前記第 1の一対の角部に対応する領域での露光用の照明光に対する透過率を前 記第 1方向に沿って外側に次第に減少する第 1特性、 又は前記第 2方向 に沿って外側に次第に減少する第 2特性に基づいて設定し、 前記第 2の 一対の角部に対応する領域での露光用の照明光に対する透過率を、 該ー 対の角部の対向する方向に沿って外側に広がった三角形状の領域内で、 前記第 1方向に沿って外側に次第に減少する第 1特性と前記第 2方向に 沿って外側に次第に減少する第 2特性とを加算した特性に基づいて設定 する減光フィル夕と、 The mask is arranged on a surface in the vicinity of the pattern surface of the mask, or on a common surface with respect to the pattern surface or on a surface in the vicinity thereof, and intersects the pattern surfaces. Among the first and second pair of corners obliquely opposed to each other in the pattern area having an outer shape substantially parallel to the first direction and the second direction to be inserted, Based on the first characteristic in which the transmittance for the illumination light for exposure in the corresponding area gradually decreases outward in the first direction, or based on the second characteristic in which the transmittance gradually decreases outward along the second direction. The transmittance for the illumination light for exposure in the region corresponding to the second pair of corners is set within a triangular region extending outward along the direction in which the pair of corners oppose each other. A dimming filter set based on a characteristic obtained by adding a first characteristic that gradually decreases outward along the first direction and a second characteristic that gradually decreases outward along the second direction;
を所定の位置関係で組み上げることを特徴とする露光装置の製造方法。 Are assembled in a predetermined positional relationship.
2 7 . 基板上で周辺部が部分的に重なる少なくとも 2つの領域にそれぞ れパターンを転写する露光装置の製造方法において、 27. In a method for manufacturing an exposure apparatus for transferring a pattern to at least two regions where peripheral portions partially overlap each other on a substrate,
前記パターンに照射される照明光の前記基板上での光量を前記少なく とも 2つの領域が重なる部分で徐々に減少させる減光フィル夕と、 前記減光フィルタの位置情報と回転情報との少なくとも一方を得るた めに、 前記減光フィル夕に設けられる少なくとも 1つのマークパターン を検出する検出装置と、  A dimming filter that gradually reduces the amount of illumination light applied to the pattern on the substrate at a portion where the at least two regions overlap; and at least one of position information and rotation information of the dimming filter. A detecting device for detecting at least one mark pattern provided in the darkening filter,
を所定の位置関係で組み上げることを特徴とする露光装置の製造方法。 Are assembled in a predetermined positional relationship.
PCT/JP2000/001540 1999-03-26 2000-03-14 Exposure method and apparatus WO2000059012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU29445/00A AU2944500A (en) 1999-03-26 2000-03-14 Exposure method and apparatus
KR1020017010813A KR20010112286A (en) 1999-03-26 2000-03-14 Exposure method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8317899 1999-03-26
JP11/83178 1999-03-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09937481 A-371-Of-International 2001-12-20
US10/636,570 Continuation US20040032576A1 (en) 1999-03-26 2003-08-08 Exposure method and apparatus

Publications (1)

Publication Number Publication Date
WO2000059012A1 true WO2000059012A1 (en) 2000-10-05

Family

ID=13795052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001540 WO2000059012A1 (en) 1999-03-26 2000-03-14 Exposure method and apparatus

Country Status (3)

Country Link
KR (1) KR20010112286A (en)
AU (1) AU2944500A (en)
WO (1) WO2000059012A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607863B2 (en) 2000-02-29 2003-08-19 Nikon Corporation Exposure method of production of density filter
WO2004066371A1 (en) * 2003-01-23 2004-08-05 Nikon Corporation Exposure device
JP2006203032A (en) * 2005-01-21 2006-08-03 Victor Co Of Japan Ltd Method of manufacturing element
WO2008120785A1 (en) * 2007-04-03 2008-10-09 Nsk Ltd. Exposure apparatus and exposure method
JP2008256810A (en) * 2007-04-03 2008-10-23 Nsk Ltd Exposure method and exposure device
US8480946B2 (en) 2008-03-06 2013-07-09 Kabushiki Kaisha Toshiba Imprint method and template for imprinting
US8797510B2 (en) 2007-01-22 2014-08-05 Tokyo Denki University Gradient refractive index lens array projection exposure
CN111258172A (en) * 2020-01-21 2020-06-09 中国科学院微电子研究所 Novel mask for manufacturing display panel and parameter determination method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135166A (en) * 1993-11-11 1995-05-23 Nikon Corp Aligner
JPH07235466A (en) * 1994-02-22 1995-09-05 Nikon Corp Exposure device
US5486896A (en) * 1993-02-19 1996-01-23 Nikon Corporation Exposure apparatus
JPH10256140A (en) * 1997-03-07 1998-09-25 Canon Inc Device aligner and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486896A (en) * 1993-02-19 1996-01-23 Nikon Corporation Exposure apparatus
JPH07135166A (en) * 1993-11-11 1995-05-23 Nikon Corp Aligner
JPH07235466A (en) * 1994-02-22 1995-09-05 Nikon Corp Exposure device
JPH10256140A (en) * 1997-03-07 1998-09-25 Canon Inc Device aligner and method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607863B2 (en) 2000-02-29 2003-08-19 Nikon Corporation Exposure method of production of density filter
WO2004066371A1 (en) * 2003-01-23 2004-08-05 Nikon Corporation Exposure device
JP2006203032A (en) * 2005-01-21 2006-08-03 Victor Co Of Japan Ltd Method of manufacturing element
US8797510B2 (en) 2007-01-22 2014-08-05 Tokyo Denki University Gradient refractive index lens array projection exposure
WO2008120785A1 (en) * 2007-04-03 2008-10-09 Nsk Ltd. Exposure apparatus and exposure method
JP2008256810A (en) * 2007-04-03 2008-10-23 Nsk Ltd Exposure method and exposure device
US8480946B2 (en) 2008-03-06 2013-07-09 Kabushiki Kaisha Toshiba Imprint method and template for imprinting
CN111258172A (en) * 2020-01-21 2020-06-09 中国科学院微电子研究所 Novel mask for manufacturing display panel and parameter determination method thereof

Also Published As

Publication number Publication date
AU2944500A (en) 2000-10-16
KR20010112286A (en) 2001-12-20

Similar Documents

Publication Publication Date Title
US6653025B2 (en) Mask producing method
TW512444B (en) Exposure method and exposure apparatus
TW529078B (en) Exposure device, micro-device, mask and exposure method
WO2000068738A1 (en) Aligner, microdevice, photomask, exposure method, and method of manufacturing device
CN100389480C (en) Exposure device and exposure method
WO1999034255A1 (en) Method and apparatus for manufacturing photomask and method of fabricating device
WO2000028380A1 (en) Exposure method and exposure apparatus
JP2001319871A (en) Exposing method, method of manufacturing gray filter and aligner
JP2000029202A (en) Production of mask
JP2004200701A (en) Lithography projection mask, method for manufacturing device by lithography projection mask, and device manufactured by this method
WO2000059012A1 (en) Exposure method and apparatus
TW518662B (en) Exposure method and exposure device
JP4635354B2 (en) Exposure method, splice error measurement method, and device manufacturing method
JP4835921B2 (en) Measuring method, exposure method, device manufacturing method, and mask
US20040032576A1 (en) Exposure method and apparatus
JP2003224055A (en) Exposure method and aligner
JP4376227B2 (en) Projection apparatus for lithographic apparatus
JPWO2004066371A1 (en) Exposure equipment
JP2004311896A (en) Method and equipment for exposure, process for fabricating device, and mask
JP2004311897A (en) Method and equipment for exposure, process for fabricating device, and mask
TW396295B (en) Method and device for producing masks
JP2005079470A (en) Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
JP2000058422A (en) Aligner
JP2000250226A (en) Exposure device
JP2002231613A (en) Exposure method and aligner, mask, and method of manufacturing the mask

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 608422

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017010813

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09937481

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017010813

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020017010813

Country of ref document: KR