WO2000049038A2 - Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung - Google Patents

Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung Download PDF

Info

Publication number
WO2000049038A2
WO2000049038A2 PCT/DE2000/000525 DE0000525W WO0049038A2 WO 2000049038 A2 WO2000049038 A2 WO 2000049038A2 DE 0000525 W DE0000525 W DE 0000525W WO 0049038 A2 WO0049038 A2 WO 0049038A2
Authority
WO
WIPO (PCT)
Prior art keywords
vpr
glu
arg
leu
ile
Prior art date
Application number
PCT/DE2000/000525
Other languages
English (en)
French (fr)
Other versions
WO2000049038A9 (de
WO2000049038A3 (de
Inventor
Ulrich Schubert
Peter Henklein
Victor Wray
Original Assignee
Ulrich Schubert
Peter Henklein
Victor Wray
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19908752A external-priority patent/DE19908752A1/de
Priority claimed from DE19908766A external-priority patent/DE19908766C2/de
Application filed by Ulrich Schubert, Peter Henklein, Victor Wray filed Critical Ulrich Schubert
Priority to JP2000599775A priority Critical patent/JP2002540768A/ja
Priority to EP00918674A priority patent/EP1155035A2/de
Priority to US09/913,927 priority patent/US6984486B1/en
Publication of WO2000049038A2 publication Critical patent/WO2000049038A2/de
Publication of WO2000049038A3 publication Critical patent/WO2000049038A3/de
Publication of WO2000049038A9 publication Critical patent/WO2000049038A9/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16311Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
    • C12N2740/16322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the invention relates to synthetic peptides of the regulatory virus protein R (Vpr) of the human immunodeficiency virus type 1 (HIV-1). in particular the chemical total synthesis of the 96 amino acid long Vpr protein (sVprl-96) and its sequences.
  • Vpr regulatory virus protein
  • sVprl-96 96 amino acid long Vpr protein
  • synthetic Vpr peptides they are used in biological assays, in the analysis of the molecular structure 10 and the physicochemical properties of Vpr and its domains, and for the generation of antibodies against Vpr peptide sequences.
  • Vpr cation-selective ion channel
  • Vpr A recombinant Vpr fusion protein forms oligomeric structures with molecular weights of> 100 kDa (Zhao et al.,
  • Vpr studies on the molecular structure of Vpr were carried out by two groups using secondary structure analyzes on short Vpr peptides: NMR studies on overlapping peptides in aqueous trifluoroethanol (TFE) and alpha-helical regions identified in sodium dodecyl sulfate (SDS) micelles in the Vpr
  • Vpr peptide does not give any information about the purity or the physicochemical properties of the Vpr peptide. It is only shown by means of the Far-West emblot technique that SDS-denatured Vpr peptide interacts with the viral nucleoprotein NCp7 of the same HIV-1 isolate. This finding of the NCp7-Vpr interaction has so far not been confirmed by any of the numerous other groups researching in the Vpr field. A major disadvantage of this Vpr synthesis is the fact that none of the biological activities described has been shown by the authors for this peptide. In particular, it is shown that this Vpr peptide does not bind to p6 G ⁇ , a widely accepted property of Vpr (Paxton et al.
  • Vpr. Short, about 20 amino acid long peptides of the C-terminal region of Vpr. which contain the motif "HF / SRIG", have a concentration of 0.7 to 3 micro-M cytotoxic effects against various yeast strains, such as Saccharomyces cerevisiae. Candida albicans and Schizosaccharomyces pombe (Macreadie et al. 1996, 1997) triggers.
  • Further studies showed that a C-terminal Vpr peptide (positions 71-82) membrane permeabilization.
  • Recombinant Vpr of the isolate HIV-1 NL - 3 was expressed in insect cells after infection with recombinant baculoviruses (Levy et al. 1995). The purification of the product was carried out only by immunoaffinity chromatography on immobilized polyclonal antiserum which is directed against the N-terminal domain of Vpr. Cell culture supernatants were used for this, since recombinant Vpr is secreted non-specifically into the culture medium. Purification strategies for the production of large amounts of recombinant Vpr have not been described. In most cases, authors used Vpr-containing cell culture supernatants for biological tests. It was shown that recombinant Vpr activates virus replication in PBMC (peripheral blood mononuclear cells) and in various latently infected monocyte and T cell lines. The main disadvantages of this procedure are:
  • Vpr Recombinant Vpr was mixed with detergents in the process of affinity purification, which made dialysis and renaturation necessary;
  • Vpr The effect of recombinant Vpr in HIV-infected primary monocytes / macrophages has not been tested.
  • Expression, purification and biochemical characterization of recombinant Vpr were first described in 1994 by Zhao and co-workers.
  • a 25 amino acid sequence of the heterologous FLAG epitope was fused C-terminally in this method. Except for the oligomerization reported no biological activities of the recombinant product in this work.
  • a major disadvantage of this method is the fact that Vpr is not expressed in its authentic sequence, but as a fusion protein.
  • Vpr of the isolate HIV-1 H XB2 was expressed in E. coli as a GST-5 fusion protein (Piller et al, 1996). After affinity chromatography on glutathione agarose, Vpr was freed of the fusion portion by thrombin cleavage.
  • a major disadvantage of this method is the fact that Vpr has a strong tendency to aggregate after cleavage and cannot be kept in aqueous solution. For example, Arunagiri and co-workers (1997) report that recombinant Vpr
  • Patent application WO 95/26361 (Azad, A.A .. Macreadie, LG .. Arunagiri, C, 1995) describes biologically active peptide fragments of the Vpr protein of HIV;
  • chimeric molecules are protected, consisting of Vpr from HIV-1 and Vpx from HIV-2, which can be specifically incorporated into HIV-1 / HIV-2 virus particles and disrupt the structural organization and functional integrity of virions there . However, they are excluded for use in gene therapy for HIV-1 / HIV-2 infections.
  • WO 96/08970 Weiner, D.B .; Levy, D.N .; Refaeli, Y., 1996) describes methods for
  • Vpr proteins 25 Inhibition of cell division and lymphocyte activation using Vpr proteins, fragments of Vpr or gene sequences of Vpr are described. The chemical synthesis of Vpr proteins plays no role in this.
  • the object of the invention is to develop a synthesis route for Vpr peptides on a mg scale, to enable their purification and to make the end product available to the general public.
  • the object was achieved according to the invention by providing the protein sVprl-96 and the peptides
  • the C-terminal Vpr peptides were synthesized on a serine resin using a Perkin-Elmer synthesizer. All N-terminal peptides were synthesized on a polystyrene-polyoxyethylene carrier resin. The peptides were built up using FMOC (fluoromethyloxycarbonyl) strategy using protective groups. After the synthesis had ended, the protective groups were cleaved off using a cleavage mixture consisting of 95% trifluoroacetic acid, 3% triisopropylsilane and, depending on the peptide, 2 to 5% ethanedithiol. The resin was separated off, the reaction solution was concentrated and heptane was added.
  • FMOC fluoromethyloxycarbonyl
  • the sVpr peptides produced according to the invention after this purification procedure - in contrast to the recombinant or synthetic products described hitherto - are water-soluble and are not subject to protein aggregation even in high concentrations of up to mM solutions. It could be shown that the protein sVprl-96 assumes a folded structure, has biological activities comparable to viral Vpr and is immunologically reactive.
  • Vpr protein corresponds to the amino acid sequence of the virus isolate HIV-KL-I-S.
  • Vpr peptides are understood to mean the peptides produced by solid phase synthesis, which contain the authentic amino acid sequence of the native Vpr protein, such as that by the vpr gene of the molecular isolate HIV-1 NL . 3 is encoded.
  • the essence of the invention lies in a combination of known features (starting materials, synthetic resins, synthesizers) and new solutions - the first-time chemical synthesis of these compounds, the synthetic strategy, the choice of specific protective groups, the trifluoroacetic acid-triisopropylsilane-ethanedithiol cleavage mixture according to the invention.
  • the use of a certain solvent gradient (TFA-water: TFA-acetonitrile for cleaning - which mutually influence one another and, in their new overall effect, give an advantage in use and the desired success, which lies in the fact that new synthetically produced Vpr peptides are now available stand.
  • the synthetic peptides produced according to the invention are distinguished by the following properties:
  • the peptides can be produced under economically acceptable conditions on a mg scale and enriched to a high degree of purity. They show immunogenic and biological properties which are identical to those of natural Vpr proteins. They can be used for diverse areas of basic research as well as applied research in the field of HIV virology.
  • the peptides according to the invention are used in biological assays, in the structural analysis of Vpr and its domains, for the generation of antibodies against HIV peptide sequences, in antiviral reagents, for the construction of test systems for the screening of potential Vpr antagonists, in the establishment of cell culture and Animal models, for the investigation of the pathomechanisms of Vpr, for the in vitro assembly of novel vectors for use in gene transfer methods in gene therapy and for the development of serological test methods, in particular a Vpr antigen ELISA.
  • the products produced according to the invention can be used for the elucidation of the molecular structure of Vpr by means of NMR and CD spectroscopic methods as well as for crystallization and subsequent RKSA.
  • Vpr protein in the HIV-1 replication cycle and the associated pathomechanisms of an AIDS disease, as well as the molecular design of potential Vpr antagonists.
  • these products can be used to display in vitro test systems which allow the intensive screening of potential anti-Vpr-active reagents.
  • they can be used for the generation and testing of Vpr-specific antibodies and for serological test procedures.
  • the invention is in peptide chemistry. basic virological research, structural analysis and medical diagnostics.
  • the invention can be used for the production of poly- and monoclonal Vpr-specific antibodies or antisera, especially for the production of epitope-different Vpr-specific antibodies.
  • serological test methods as Vpr antigen (Ag) ELISA, as standard antigen for the calibration of Vpr-Ag ELISA techniques, detection for determining the concentration of viral Vpr in the blood of HIV-infected individuals, test systems for the determination of Vpr antagonists, complementing the function of endogenous viral Vpr in cell cultures infected with vpr-deficient HIV mutants, complementing the function of viral Vpr in cultures of primary human lymphocytes infected with vpr-deficient HIV mutants and Complementing the function of viral Vpr in cultures of differentiated primary human monocytes / macrophages infected with vpr-deficient HIV mutants.
  • the invention is also useful for determining reagents that a) prevent Vpr from interacting with cellular factors such as the glucocorticoid receptor, transcription factors and other DNA interacting enzymes and factors; b) prevent the transcription activating effect of Vpr; regulate, influence or prevent the activity of Vpr on the effects of steroid hormones; c) regulate, influence or prevent the transport of Vpr alone or in combination with other components of the HIV pre-integration complex; regulate, influence or prevent the incorporation of Vpr into virus particles during HIV assembly; d) regulate, influence or prevent the effect of Vpr on cell differentiation and cell growth, regulate, influence or prevent the Vpr-induced cell cycle arrest e) regulate, influence or prevent the cytotoxic effects of Vpr and f) regulate, influence or prevent the ion channel activity of Vpr
  • Vpr antagonists It is also used for in vivo test systems for the determination of Vpr antagonists possible.
  • the invention is also suitable for animal model studies. Another advantage is that concentrated peptide solutions can be provided. In this way specific Vpr antagonists can be produced.
  • Another area of application is the reduction of the flexibility of sVpr protein induced by the N-terminal domain of Vpr by means of structure-stabilizing factors. These factors are the UBA2 domain of the DNA repair protein HHR23A. which binds to Vpr, Fab fragments of Vpr-specific immunoglobulins or viral factors, in particular components of the HIV-1 Gag polyprotein precursor Pr55Gag, which in the process of virus assembly come into contact with Vpr, the human glucocorticoid receptor or components thereof.
  • an in vitro assembly of retroviral pre-integration complexes in vitro or in vivo applicable gene transfer methods, transfections, integration into chromosomal and episomal host DNA or other gene transfer methods in eukaryotic cells or gene transfers of in vitro produced and / or manipulated gene fragments in cells , Tissues or organisms for the purpose of gene therapy application.
  • Vpr peptides were synthesized on a serine resin from Rapp Polymer Tübingen on an ABI 433 A synthesizer (Perkin Elmer).
  • N-terminal peptides were synthesized on a polystyrene-polyoxyethylene carrier resin (TentaGel R-RAM resin from Rapp Polymer).
  • the peptides were built up using FMOC (fluoromethyloxycarbonyl) strategy using the following protective groups: Ot.Butyl ester for Glu and Asp, OtBu ether for serine. Tyrosine and threonine. Boc (tert-butoxycarbonyl-) for lysine and tryptophan.
  • Trt (trityl - triphenylmethyl-) for histidine, glutamine and asparagine and Pbf (2.2.4.6.7-pentamethyl-dihydrobenzofuran-5-sulfonyl-) for arginine.
  • the protective groups were cleaved off using a cleavage mixture consisting of 95% trifluoroacetic acid. the 3% triisopropylsilane and, depending on the peptide, 2 to 5% ethanedithiol was added. The resin was separated off, the reaction solution was concentrated and heptane was added. It was concentrated again and the remaining oil was digested with diethyl ether. The crude peptide was suctioned off and then lyophilized from 10% acetic acid.
  • the peptide was constructed on a TentaGel S-AC resin (0.20 mmol / gram) on an ABI 433. At the end of the synthesis, the FMOC protective group was split off, the resin was washed successively with dimethylformamide and methylene chloride and dried. The peptide was then cleaved from the resin in the manner described at the outset and then purified.
  • Molar mass 11378 found 11381 H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-T ⁇ -Thr-Leu- Glu-Leu-Leu-Glu -Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-T ⁇ -Leu-His-Asn-Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr -Tyr-Gly-Asp-Thr-T ⁇ -Ala-Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-Ile-His-Phe-Arg-Ile -Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-
  • Example 4 sVprl-47 Analogous to Examples 1 to 3. Molar mass: 5728 found. 5728.8
  • Example 5 sVpr48-96 Analogous to Examples 1 to 3.
  • Example 7 sVprl-20 (Asn ? '10 14 ) Analogous to Examples 1 to 3.
  • Example 8 sVpr21-40 Analogous to Examples 1 to 3. Wild-type sequence H-Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Asn-Arg- Ile-T ⁇ -Leu-His-NH 2
  • a C-terminal domain of HIV-1 accessory protein Vpr is involved in penetration. mitochondrial dysfunction and apoptosis of human CD4 + lymphocytes. Apoptosis 2: 69-76.
  • LXX leucine triplet repeat sequence 4 in p6 g ⁇ g is important for Vpr inco ⁇ oration into human immunodeficiency virus type 1 particles. J. Virol. 69: 6873-6879.
  • Vpr human immunodeficiency virus type 1
  • Vpr function oligomerization by the N-terminal domain.
  • Vpr amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino acid sequence of the amino
  • Associated protein Vpr of HIV-1NL4-3 negatively charged N-terminus (marker (1), positions 1-17); Helix alpha- 1 (marker (2). Positions 18-37); an unspecified region (marker (3), positions 38-51); Helix alpha-2 (marker (4), positions 51-76); basic C-terminus (marker (8), positions 77-96). Overlapping, further areas are shown: a region rich in leucine and isoleucine, which is also referred to as a leucine zipper-like or "LR domain" (marker (5), positions 60-80); a region containing the repeating motif " ⁇ F / SRIG" (marker (6). positions 71-82); the presumed transmembrane anchor of Vpr, which is necessary for the ion channel activity of Vpr (marker (7), positions 52-79).
  • Figure 2 Immunological reactivity of polyclonal antibodies specifically for sVprl-96 in western emblot and immunoprecipitation
  • the autoradiogram of a 2-day exposure is shown in (A) and (B).
  • the positions of standard molecular weight proteins are shown on the left, and the positions of non-specific reaction with the heavy (hc) and light chain (lc) of the immunoglobulins used for immunoprecipitation are shown on the right.
  • FIG. 3 sVprl-96 activates virus replication and increases the number of living cells in cultures of human PBMC Cultures of PHA- and IL-2-activated PBMCs were infected with the same infectious doses of the following virus stocks: HIV-1NL4-3 (ABC), NL4-3 (AD8) (D) and the v-deficient mutant NL (AD8) -UDEL1 (E) and the vpr-deficient mutant NL (AD8) deltaR (F).
  • the cultures were cultured in the presence of 10 nM sVprl-96 or 10 nM of the control peptide Vpu32-81.
  • the virus release is shown as a profile of the virus-associated RT activity in the cell culture supernatant (A, C, D, E, F).
  • (B) shows the number of living cells in the experiment of (A).
  • Figure 4 s Vpr 1-96 activates the replication competence of vpr-deficient HIV-1 mutants in cultures of primary human monocytes / Mak ⁇ . phage isolated from different donors Parallel cultures of differentiated MDM isolates, from three different donors, were infected with the same infectious doses of purified viral stocks of the macrophage-tropic virus NL4-3 (AD8) and its vpr-deficient mutant NL (AD8) deltaR . Virus production was monitored over a period of about two months and plotted against time as virus-associated RT activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • AIDS & HIV (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft synthetische (s) Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1 (HIV-1), insbesondere die chemische Totalsynthese des 96 Aminosäuren langen Vpr-Proteins (sVpr1-96), eines 47 Aminosäuren langen N-terminalen (sVpr1-47), eines 49 Aminosäuren langen C-terminalen Fragmentes davon (sVpr48-96) sowie der Fragmente sVpr1-20 und sVpr21-40 und weiterer Fragmente mit etwa 15 Aminosäuren. Als HIV-1-regulatorische Proteine finden die Produkte Verwendung in biologischen Assays, in der Analyse der molekularen Struktur und der physikochemischen Eigenschaften von Vpr und dessen Domänen oder zur Erzeugung von Antikörpern gegen Vpr-Peptidsequenzen.

Description

Synthetische Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1 (HIV-1) und ihre Verwendung
Beschreibung
5
Die Erfindung betrifft synthetische (s) Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1 (HIV-1). insbesondere die chemische Totalsynthese des 96 Aminosäure langen Vpr-Proteins (sVprl-96) sowie seiner Sequenzen. Als synthetische Vpr- Peptide finden sie Verwendung in biologischen Assays, in der Analyse der molekularen Struktur 10 und den physikochemischen Eigenschaften von Vpr und dessen Domänen sowie zur Erzeugung von Antikörpern gegen Vpr-Peptidsequenzen.
Die bislang einzige in vitro charakterisierte biochemische Aktivität von Vpr ist die eines Kationen-selektiven Ionenkanals (Piller et al.. 1996. - Literaturverzeichnis am Ende der
15 Ausfuhrungsbeispiele). Diese Arbeiten basierten auf der Annahme, daß die C-terminale alpha Helix (Positionen 46 bis 71 in Vpr), welche Ähnlichkeiten zu der Bienengift- Komponente Melittin besitzt, als Transmembrananker eine Membranpore ausbilden kann. Tatsächlich konnte rekombinantes, in Escherichia (E.) coli exprimiertes Vpr in künstlichen planaren Lipidbilayern rekonstituiert werden. Dadurch wurde eine durch das Membranpotential regulierbare
20 lonenkanalaktivität ermittelt, deren Regulierbarkeit von der basischen C-terminalen Region abhängt, welche mit der negativ geladenen zytoplasmatischen Seite der Zellmembran in Wechselwirkung treten soll.
Es liegen Hinweise für Homooligomerisierung von Vpr vor: Ein rekombinantes Vpr- Fusionsprotein bildet oligomere Strukturen mit Molekulargewichten von >100 kDa (Zhao et al.,
25 1994b), eine Beobachtung, die bislang an viralen Vpr nicht bestätigt wurde.
Untersuchungen zur molekularen Struktur von Vpr wurden durch zwei Gruppen mittels Sekundärstruktur-Analysen an kurzen Vpr-Peptiden durchgeführt: NMR-Studien an überlappenden Peptiden in wässerigem Trifluorethanol (TFE) sowie in Natriumdodecylsulfat(SDS)-Mizellen identifizierten alpha-helikale Regionen in den Vpr-
30 Positionen 50-82. (Yao et al, 1998). Das Potential zur Helix-Bildung in der C-terminalen als auch der N-terminalen Region von Vpr wurde zuvor von verschiedenen Autoren vorhergesagt (Mahalingam et al., 1995a-d: Yao et al. 1995: Wang et al. 1996b). Neuere Studien mittels CD- Spektroskopie in TFE-haltigen Lösungen an 25 Aminosäure langen Peptiden (Luo et al, 1998) zeigten erste experimentelle Hinweise für die Existenz der N- und C-terminalen Helices in Vpr.
35 Zahlreiche und zum Teil in ihrer Aussage kontroverse Mutationsanalysen haben versucht, die verschiedenen Primär- und Sekundärstrukturen einzelnen biologischen Aktivitäten von Vpr zuzuordnen (Mahalingam et al.. 1995a-d. 1997: Wang et al.. 1996a.b: Nie et al.. 1998; Di Marzio et α/.. 1995).
Über die chemische Vollsynthese eines Vpr-Proteins wurde erstmals 1997 von Rocquigny und Mitarbeitern berichtet. Die Autoren beschrieben die Synthese eines 96 Aminosäure großen Peptides, welches von dem Virusisolat HIV-18 6 (Collman et al. 1992) abstammt. Neben den in dieser Arbeit beschriebenen Nachteilen (siehe im weiteren Text) ist dieses Protein in 9 Aminosäurepositionen unterschiedlich zu Vpr von HIV-1 N -3. dessen Darstellung in der vorliegenden Erfindungsbeschreibung erstmalig berichtet wird. Somit besteht eine 10%-ige Divergenz zwischen den bereits beschriebenen (Rocquigny et al., 1997) und dem in den vorliegenden Verfahren dargestellten Produkten, welche die Gesamt- und Teilsequenzen des Vpr-Proteins von HIV-1 NL -3 (Adachi et al, 1986) betreffen.
Rocquigny und Mitarbeitern (1997) geben keine Angaben über die Reinheit sowie die physikochemischen Eigenschaften des Vpr-Peptides an. Es wird lediglich mittels der Far- Westemblot Technik gezeigt, daß SDS-denaturiertes Vpr-Peptid mit dem viralen Nukleoprotein NCp7 des gleichen HIV-1-Isolates in Wechselwirkung tritt. Dieser Befund der NCp7-Vpr- Wechselwirkung konnte bislang von keiner der zahlreichen anderen auf dem Vpr-Gebiet forschenden Gruppen bestätigt werden. Wesentlicher Nachteil dieser Vpr-Synthese ist die Tatsache, daß für dieses Peptid keine der beschriebenen biologischen Aktivitäten durch die Autoren gezeigt wurde. Insbesondere wird gezeigt, daß dieses Vpr-Peptid nicht an p6 bindet, eine weithin akzeptierte Eigenschaft von Vpr (Paxton et al. 1993; Lavallee et al.. 1994; Kondo et al.. 1995: Lu et al, 1995; Kondo und Göttlinger. 1996). Darüber hinaus wird beschrieben, daß dieses Peptid keine Oligomeren bildet, und es liegen Hinweise vor, daß dieses Peptid in rein wässerigem System unlöslich ist. Von dem gleichen Labor wird in einer weiteren Studie (Roques et al, 1997) ein Modell der Vpr-NCp7- Wechsel Wirkung vorgestellt, welches auf Strukturanalysen an Teilsequenzen dieser Peptide basiert. Die Daten dazu werden jedoch in dieser Arbeit oder anderen Veröffentlichungen der Autoren nicht näher beschrieben. Teilsequenzen von Vpr (Positionen 50-75. 50-82 und 59-86) wurden für NMR-Studien an synthetischen Peptiden eingesetzt (Yao et al.. 1998). Eine andere Gruppe hat zwei 25 Aminosäure lange Peptide aus den Bereichen der vorhergesagten alpha-helikalen Domänen in Vpr mittels CD-Spektroskopie untersucht (Luo et al., 1998):
Kurze, ca. 20 Aminosäure lange Peptide der C-terminalen Region von Vpr. welche das Motiv "HF/SRIG" enthalten, haben in einer Konzentration von 0.7 bis 3 micro-M zytotoxische Wirkungen gegenüber verschiedenen Hefe-Stämmen, wie zum Beispiel Saccharomyces cerevisiae. Candida albicans und Schizosaccharomyces pombe (Macreadie et al.. 1996. 1997) auslöst. Eine erhöhte Konzentration von bivalenten Kationen, insbesondere Magnesium und Kalzium, verhindert die Aufnahme der Vpr-Peptide und dadurch deren toxische Effekte. Weiterführende Studien zeigten, daß ein C-terminales Vpr-Peptid (Positionen 71-82) die Membranpermeabilisierung. weiterhin eine Reduktion des Mitochondrienmembranpotentials und letztendlich den Zelltod von CD4+ T-Zellen bewirkt (Macreadie et al.. 1997). Schließlich wurden ähnliche toxische Effekte ebenfalls für Gesamt- Vpr demonstriert (Arunagiri et al., 1997). Dazu wurde das gleiche rekombinante Glutathione S-Transferase(GST)-Vpr-Fusionsprotein eingesetzt, welches zuvor für Ionenkanalstudien an Vpr verwendet wurde (Piller et al, 1996). Jedoch berichten die Autoren ebenfalls über Probleme mit der Löslichkeit des rekombinanten Produktes in wässerigen Systemen.
Rekombinantes Vpr des Isolates HIV-1NL -3 wurde in Insektenzellen nach Infektion mit rekombinanten Baculoviren exprimiert (Levy et al. 1995). Die Reinigung des Produktes erfolgte lediglich durch Immunaffinitätschromatographie an immobilisiertem polyklonalen Antiserum, welches gegen die N-terminale Domäne von Vpr gerichtet ist. Dazu wurden Zellkulturüberstände eingesetzt, da rekombinantes Vpr unspezifisch in das Kulturmedium sekretiert wird. Reinigungsstrategien für die Produktion größerer Mengen an rekombinanten Vpr wurden nicht beschrieben. In den meisten Fällen wurden von Autoren Vpr-haltige Zellkulturüberstände für biologische Tests verwendet. Dabei konnte gezeigt werden, daß rekombinantes Vpr die Virusreplikation in PBMC (peripheral blood mononuclear cells) und in verschiedenen latent infizierten Monozyten- und T-Zellinien aktiviert. Wesentliche Nachteile dieses Verfahrens sind:
- geringe Ausbeute und keine Möglichkeit zur Herstellung von mg-Mengen an hochreinem Produkt;
- rekombinantes Vpr wurde im Prozeß der Affinitätsreinigung mit Detergentien versetzt, wodurch Dialyse und Renaturierung notwendig wurden;
- Studien zu einer möglichen posttranslationalen Modifizierung von Vpr in Insektenzellen wurden nicht beschrieben;
- die Wirkung von rekombinanten Vpr in HlV-infizierten primären Monozyten / Makrophagen wurde nicht getestet. Expression, Reinigung sowie biochemische Charakterisierung von rekombinanten Vpr wurden erstmals 1994 von Zhao und Mitarbeitern beschrieben. Dazu wurde die kodierende Sequenz des Vpr-Proteins des Isolates HiV-l s<. 6 in E. coli als Fusionsprotein exprimiert. Zum Zweck der Reinigung und des Nachweises wurde in diesem Verfahren C-terminal eine 25 Aminosäuren lange Sequenz des heterologen FLAG-Epitopes fusioniert. Außer der Oligomerisierung wurde über keine biologischen Aktivitäten des rekombinanten Produktes in dieser Arbeit berichtet. Wesentlicher Nachteil dieses Verfahrens ist die Tatsache, daß Vpr nicht in seiner authentischen Sequenz, sondern als Fusionsprotein exprimiert wird.
In einem weiteren Verfahren wurde Vpr des Isolates HIV-1 HXB2 in E. coli als GST- 5 Fusionsprotein exprimiert (Piller et al, 1996). Nach Affinitätschromatographie an Glutathione- Agarose wurde Vpr durch Thrombin-Spaltung vom Fusionsanteil befreit. Wesentlicher Nachteil dieses Verfahrens ist die Tatsache, daß Vpr nach Spaltung eine starke Tendenz zur Aggregation besitzt und nicht in wässeriger Lösung gehalten werden kann. So berichten zum Beispiel Arunagiri und Mitarbeiter (1997), daß mit diesem Verfahren hergestelltes rekombinantes Vpr
10 nach Abspaltung des GST-Fusionsanteils nicht in Lösung gehalten werden kann, sondern nur durch Beibehaltung des heterologen Fusionsanteils Vpr in wässerigen Systemen getestet werden konnte.
In der Patentanmeldung WO 95/26361 (Azad, A.A.. Macreadie, LG.. Arunagiri, C, 1995) werden biologisch aktive Peptidfragmente des Vpr-Proteins von HIV beschrieben;
15 pharmazeutische Verbindungen, welche diese Peptide oder biologisch aktive Analoga davon enthalten; Antagonisten der Vpr-Peptide sowie pharmazeutische Verbindungen, welche diese Vpr-Antagonisten enthalten. Die chemische Synthese von Gesamt- Vpr-Protein spielt darin keine Rolle. In der WO 96/07741 (Cohen, E.: Bergeron, D.; Checroune, F.; Yao, X.-J.; Pignac-Kobinger, G.,
20 1996) werden chimere Moleküle unter Schutz gestellt, bestehend aus Vpr von HIV-1 und Vpx von HIV-2, welche spezifisch in HIV- l/HIV-2- Viruspartikel eingebaut werden können und dort die strukturelle Organisation und funktionelle Integrität von Virionen stören. Sie sind jedoch für den Einsatz zur Gentherapie von HIV-l/HIV-2-Infektionen ausgeschlossen. In WO 96/08970 (Weiner, D.B.; Levy, D.N.; Refaeli, Y., 1996) werden Methoden zur
25 Inhibierung der Zellteilung und der Lymphozyten-Aktivierung unter Anwendung von Vpr- Proteinen, Fragmenten von Vpr oder Gensequenzen von Vpr beschrieben. Die chemische Synthese von Vpr-Proteinen spielt darin keine Rolle.
Die Verwendung von vpr Genen im screening assay für anti-HIV-Arzneimittel wird in den US- Patenten 5721104 und 5639619 beschrieben, zur Bestimmung von HIV-2 in US 5580739, ein
30 Vpr-Rezeptor-Protein in US 5780238.
Der Erfindung liegt die Aufgabe zugrunde, einen Syntheseweg für Vpr-Peptide im mg-Maßstab zu entwickeln, ihre Reinigung zu ermöglichen, und der Allgemeinheit das Endprodukt zur Verfügung zu stellen. Die Aufgabe wurde erfindungsgemäß durch die Bereitstellung des Proteins sVprl-96 sowie der Peptide
- ein 47 Aminosäuren langes N-terminales Peptid (s Vpr 1-47), - ein 49 Aminosäuren langes C-terminales Peptid (sVpr48-96) und von Fragmenten dieser Peptide. zum Beispiel
- überlappende, etwa 15 Aminosäuren lange Peptide für die Epitop-Charakterisierung und isolelektrische Fokussierung
- etwa 20 Aminosäuren lange Peptide zur strukturellen und funktionellen Charakterisierung einzelner Domänen von Vpr, insbesondere die Peptide sVprl-20 und sVpr21-40 gelöst: sVprl -96:
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Trp-Thr-Leu-
Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Trp-Leu-His-Asn-
Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Trp-Ala-Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile- Leu-Gln-Gln-Leu-leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg-
Gln- Arg-Arg- Ala-Arg-Asn-Gly-Ala-Ser-Arg-Ser-OH sVprl-47:
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-T -Thr-Leu-
Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Trp-Leu-His-Asn- Leu-Gly-Gln-His-Ile-Tyr-NH sVpr48-96:
Glu-Thr-Tyr-Gly-Asp-Thr-Trp-Ala-Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-
Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg-Gln-Arg-Arg-Ala-Arg-Asn-
Gly-Ala-Ser-Arg-Ser-OH sVprl-20 als sVprl-20( Asn5'10'14):
H-Met-Glu-Gln-Ala-Asn-Glu-Asp-Gln-Gly-Asn-Gln-Arg-Glu-Asn-Tyr-Asn-Glu-Tφ-Thr-Leu-
NH und sVpr21-40 als sVpr21^.0(Asn35):
H-Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Asn-Arg-Ile-Trp-Leu-His-NH2
Fragmente dieser Peptide - mit etwa 15 Aminosäuren langen Peptiden sVpr 1 1 -25:
Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Trp-Thr-Leu-Glu-Leu-Leu-Glu-Glu-, sVpr41 -55: Asn-Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tip-Ala, sVpr46-60:
Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile-, sVpr56-70: Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-Ile. sVpr66-80:
Gln-Leu-leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg, sVpr76-96:
Cys-Arg-His-Ser-Arg-Ile-Gly- Val-Thr-Arg-Gln- Arg-Arg- Ala-Arg-Asn-Gly-Ala-Ser-Arg-Ser- OH,
Die Synthese der C-terminalen Vpr-Peptide erfolgte an einem Serin-Harz mit Hilfe eines Perkin- Elmer-Synthesizers. Alle N-terminalen Peptide wurden an einem Polystyren-Polyoxyethylen- Trägerharz synthetisiert. Der Aufbau der Peptide erfolgte mittels FMOC(Fluormethyloxycarbonyl)-Strategie unter Verwendung von Schutzgruppen. Nach Beendigung der Synthese erfolgte die Abspaltung der Schutzgruppen mittels eines Abspaltungsgemisches, bestehend aus 95% Trifluoressigsäure, der 3% Triisopropylsilan und je nach Peptid 2 bis 5 % Ethandithiol zugesetzt wurde. Das Harz wurde abgetrennt, die Reaktionslösung eingeengt und mit Heptan versetzt. Es wurde erneut eingeengt und das verbleibende Öl mit Diethylether digeriert. Das rohe Peptid wurde abgesaugt und anschließend aus Essigsäure lyophilisiert. Zur Reinigung wurden die Rohpeptide an einer präparativen HPLC- Anlage (High Pressure Liquid Chromatography) chromatographiert. Alle Peptide wurden an einer Kieselgelsäule mittels eines linearen Gradienten, bestehend aus TFA (Trifluoressigsäure) in Wasser und TFA in Acetonitril gereinigt. Die Eluate wurden eingeengt und lyophilisiert. Überraschenderweise hat sich herausgestellt, daß die erfindungsgemäß hergestellten sVpr- Peptide nach dieser Reinigungsprozedur - im Unterschied zu den bislang beschriebenen rekombinanten oder synthetischen Produkten - wasserlöslich sind und selbst in hohen Konzentration von bis zu mM-Lösungen keiner Proteinaggregation unterliegen. Es konnte gezeigt werden, daß das Protein sVprl-96 eine gefaltete Struktur annimmt, biologische Aktivitäten vergleichbar mit viralen Vpr hat und immunologisch reaktiv ist.
Erstmals wird die chemische Synthese des Vpr-Proteins und seiner Fragmente beschrieben, welcher der Aminosäuresequenz des Virusisolates HIV- KL-I-S entspricht.
Unter dem Begriff synthetische (s) Vpr-Peptide werden im Rahmen der vorliegenden Erfindungsbeschreibung die durch Festphasensynthese hergestellten Peptide verstanden, welche die authentische Aminosäuresequenz des nativen Vpr-Proteins enthalten, so wie dieses durch das vpr Gen des molekularen Isolates HIV-1NL .3 kodiert wird.
Das Wesen der Erfindung liegt in einer Kombination bekannter Merkmale (Ausgangsstoffe, Syntheseharze, Synthesizer) und neuer Lösungswege - der erstmaligen chemischen Synthese dieser Verbindungen, der Synthesestrategie, der Wahl der spezifischen Schutzgruppen, dem erfindungsgemäßen Abspaltungsgemisch Trifluoressigsäure-Triisopropylsilan-Ethandithiol. dem Einsatz eines bestimmten Lösungsmittelgradienten (TFA- Wasser- : TFA-Acetonitril für die Reinigung - die sich gegenseitig beeinflussen und in ihrer neuen Gesamtwirkung einen Gebrauchsvorteil und den erstrebten Erfolg ergeben, der darin liegt, daß nunmehr neue synthetisch hergestellte s Vpr-Peptide zur Verfügung stehen.
Die erfindungsgemäß hergestellten synthetischen Peptide zeichnen sich durch folgende Eigenschaften aus:
Sie haben eine extrem gute Löslichkeit in wässerigen Systemen, welche bis zu mM konzentrierte Peptid-Lösungen erlauben. Dies wiederum ist Voraussetzung für nachfolgende Strukturanalysen von Vpr mittels NMR(Nuclear Magnetic Resonance)-spektroskopischer und RKSA(Röntgenkristallstrukturanalyse)-Techniken.
Die Peptide lassen sich unter ökonomisch vertretbaren Bedingungen im mg-Maßstab herstellen und bis zu einem hohen Reinheitsgrad anreichern. Sie zeigen immunogene und biologische Eigenschaften, welche identisch sind mit denen von natürlichen Vpr-Proteinen. Sie lassen sich für vielfältige Gebiete der Grundlagenforschung sowie der angewandten Forschung auf dem Gebiet der HIV-Virologie einsetzen.
Die erfindungsgemäßen Peptide finden Verwendung in biologischen Assays, in der Strukturanalyse von Vpr und dessen Domänen, zur Erzeugung von Antiköφern gegen HIV- Peptidsequenzen, in antiviralen Reagenzien, zum Aufbau von Testsystemen zum Screenen von potentiellen Vpr-Antagonisten, bei der Etablierung von Zellkultur- und Tiermodellen, zur Untersuchung der Pathomechanismen von Vpr, für die in vitro Assemblierung von neuartigen Vektoren für den Einsatz bei Gentransfermethoden in der Gentherapie und zur Entwicklung von serologischen Testmethoden, insbesondere eines Vpr-Antigen-ELISA. Die erfindungsgemäß hergestellten Produkte können für die Aufklärung der molekularen Struktur von Vpr mittels NMR- und CD-spektrokopischen Methoden sowie der Kristallisation und nachfolgender RKSA eingesetzt werden. Diese Informationen wiederum sind essentiell für das Verständnis der molekularen Wirkungsweise des Vpr-Proteins im HIV-1-Replikationszyklus und der damit verbundenen Pathomechanismen einer AIDS -Erkrankung sowie dem molekularen Design von potentiellen Vpr-Antagonisten. Weiterhin können mit diesen Produkten in vitro Testsysteme dargestellt werden, welche das intensive Screening von potentiellen anti-Vpr-wirksamen Reagenzien erlauben. Darüber hinaus können sie für die Erzeugung und Testung von Vpr-spezifischen Antiköφern und für serologische Testverfahren angewendet werden. Die Erfindung wird in der Peptidchemie. der virologischen Grundlagenforschung, der Strukturanalyse sowie der medizinischen Diagnostik angewendet.
Die Erfindung kann zur Herstellung von poly- und monoklonalen Vpr-spezifischen Antiköφern oder Antiseren, speziell zur Gewinnung von Epitop-differenten Vpr-spezifischen Antköφern verwendet werden. Weitere Anwemdungsgebiete sind: serologische Testverfahren, als Vpr- Antigen(Ag)-ELISA, als Standard- Antigen für die Eichung von Vpr-Ag-ELISA-Techniken, Nachweis zur Konzentrationsbestimmung von viralem Vpr im Blut HlV-infizierter Individuen, Testsysteme zur Bestimmung von Vpr-Antagonisten, Komplementierung der Funktion von endogenen, viralen Vpr in Zellkulturen, die mit vpr-defizienten HIV-Mutanten infiziert sind, Komplementierung der Funktion von viralem Vpr in Kulturen von primären humanen Lymphozyten, die mit vpr-defizienten HIV-Mutanten infiziert sind und Komplementierung der Funktion von viralen Vpr in Kulturen von ausdifferenzierten primären humanen Monozyten / Makrophagen, die mit vpr-defizienten HIV-Mutanten infiziert sind. Die Erfindung eignet sich außerdem zur Bestimmung von Reagenzien, die a) die Wechselwirkung von Vpr mit zellulären Faktoren, wie zum Beispiel mit dem Glucocorticoid-Rezeptor, Transkriptionsfaktoren und anderen DNA-interagierenden Enzymen und Faktoren unterbinden; b) die Transkriptions-aktivierende Wirkung von Vpr verhindern; die Aktivität von Vpr auf die Wirkung von Steroidhormone regulieren, beeinflussen oder verhindern; c) den Transport von Vpr allein oder im Verbund mit anderen Komponenten des HIV- Präintegrationskomplexes regulieren, beeinflussen oder verhindern; den Einbau von Vpr in Viruspartikel während der HIV-Assemblierung regulieren, beeinflussen oder verhindern; d) den Vpr-induzierten Zellzyklusarrest regulieren, beeinflussen oder verhindern den Effekt von Vpr auf Zelldifferenzierung und Zellwachstum regulieren, beeinflussen oder verhindern e) die zytotoxischen Effekte von Vpr regulieren, beeinflussen oder verhindern und f) die lonenkanalaktivität von Vpr regulieren, beeinflussen oder verhindern
Weiterhin ist die Verwendung für in vivo Testsysteme zur Bestimmung von Vpr-Antagonisten möglich. Die Erfindung eignet sich auch für Tiermodellstudien. Ein weiterer Vorteil besteht darin, daß konzentrierter Peptid-Lösungen bereitgestellt werden können. So können spezifische Vpr-Antagonisten hergestellt werden. Ein weiteres Anwendungsgebiet ist die Reduktion der durch die N-terminale Domäne von Vpr induzierten Flexibilität von sVpr-Protein mittels strukturstabilisierenden Faktoren. Bei diesen Faktoren handelt es sich um die UBA2-Domäne des DNA-Reparatuφroteins HHR23A. welches an Vpr bindet, Fab-Fragmente von Vpr-spezifischen Immunglobulinen oder virale Faktoren, insbesondere Komponenten des HIV-1 Gag- Polyproteinprecursurs Pr55Gag, welche im Prozess der Virus-Assemblierung mit Vpr in Verbindung treten, dem humanen Glucocorticoidrezeptor oder Bestandteile davon. Mit der Erfindung lassen sich eine in vitro Assemblierung von retroviralen Präintegrationskomplexen, in vitro oder in vivo applizierbaren Gentransfermethoden, Transfektionen, Integration in chromosomale und episomale Wirts-DNA oder andere Gentransfermethoden in eukaryotischen Zellen oder Gentransfers von in vitro hergestellter und/oder manipulierter Genfragmente in Zellen, Gewebe oder Organismen mit dem Zweck einer gentherapeutischen Applikation erreichen.
Sie soll anhand von Ausführungsbeispielen näher erläutert werden, ohne auf sie beschränkt zu sein.
Ausführungsbeispiele
Beispiel 1 :
Synthese von Vpr-Peptiden - Allgemeine Vorschrift
Die Synthese der C-terminalen Vpr-Peptide erfolgte an einem Serin-Harz der Fa. Rapp Polymere Tübingen an einem ABI 433 A Synthesizer (Perkin Eimer).
Alle N-terminalen Peptide wurden an einem Polystyren-polyoxyethylen-Trägerharz (TentaGel R- RAM-Harz der Fa. Rapp Polymere) synthetisiert. Der Aufbau der Peptide erfolgte mittels FMOC(Fluormethyloxycarbonyl)-Strategie unter Verwendung nachfolgender Schutzgruppen: O-t.Butylester für Glu und Asp, OtBu-Ether für Serin. Tyrosin und Threonin. Boc ( tert-Butoxycarbonyl-) für Lysin und Tryptophan. Trt (Trityl - Triphenylmethyl-) für Histidin, Glutamin und Asparagin sowie Pbf (2.2.4.6.7-pentamethyl- dihydrobenzofuran-5-sulfonyl-) für Arginin. Nach Beendigung der Synthese erfolgte die Abspaltung der Schutzgruppen mittels eines Abspaltungsgemisches, bestehend aus 95% Trifluoressigsäure. der 3% Triisopropylsilan und je nach Peptid 2 bis 5 % Ethandithiol zugesetzt wurde. Das Harz wurde abgetrennt, die Reaktionslösung eingeengt und mit Heptan versetzt. Es wurde erneut eingeengt und das verbleibende Öl mit Diethylether digeriert. Das rohe Peptid wurde abgesaugt und anschließend aus 10%iger Essigsäure lyophilisiert.
Beispiel 2:
Reinigung der Peptide - Allgemeine Vorschrift Zur Reinigung wurden jeweils 100 mg Rohpeptid an einer präparativen HPLC-Anlage (Shimadzu LC-8 Anlage) chromatographiert. Alle Peptide wurden an einer Kieselgelsäule (300 x 400 mm Vydac-RP18-Säule, Korngröße 15 - 20 μM) mittels eines linearen Gradienten, bestehend aus A = 1% TFA (Trifluoressigsäure) in Wasser und B = 0,1 % TFA in 80%igem Acetonitril mit einem Fluss von 100 ml / min gereinigt. Die Eluate wurden eingeengt und lyophilisiert.
Beispiel 3: sVprl-96
Das Peptid wurde an einem TentaGel S-AC-Harz (0,20 mmol/Gramm) an einem ABI 433 aufgebaut. Am Schluß der Synthese wurde die FMOC-Schutzgruppe abgespalten, das Harz nacheinander mit Dimethylformamid und Methylenchlorid gewaschen und getrocknet. Das Peptid wurde dann in der eingangs beschriebenen Weise vom Harz abgespalten und anschließend gereinigt.
Molmasse: 11378 gef. 11381 H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu- Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Tφ-Leu-His-Asn- Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile- Leu-Gln-Gln-Leu-leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg- Gln-Arg-Arg-Ala-Arg-Asn-Gly-Ala- Ser-Arg-Ser-OH
Figur 1 : sVprl-96 - Direkte Auftrennung im SDS-PAGE (A)
Immunpräzipitation vor SDS-PAGE (B) Figur 2: sVprl-96 - Präparative Reinigung des Rohpeptids - HPLC-Chromatogramm Figur 3: sVprl-96 - Massenspektrum (% Int. und Molmasse)
Beispiel 4: sVprl-47 Analog zu Beispielen 1 bis 3. Molmasse: 5728 gef. 5728.8
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu- Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Tφ-Leu-His-Asn- Leu-Gly-Gln-His- Ile-Tyr-NH2
Figur 4: sVprl-47 - Massenspektrum (% Int. und Molmasse)
Beispiel 5: sVpr48-96 Analog zu Beispielen 1 bis 3.
Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ue-Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-
Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg-Gln-Arg-Arg-Ala-Arg-Asn-
Gly-Ala-Ser-Arg-Ser-OH
Beispiel 6: sVprl-20
Analog zu Beispielen 1 bis 3. H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg"Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu-
NH2 Figur 5: sVprl-20 - Massenspektrum (%Int. 10% =111 mV[sum= 9505 mV] Profiles
1-85 Unsmoothed und Molmasse)
Beispiel 7: sVprl-20(Asn?' 10 14) Analog zu Beispielen 1 bis 3.
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg"Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu- NH2
Beispiel 8: sVpr21-40 Analog zu Beispielen 1 bis 3. Wildtyp-Sequenz H-Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Asn-Arg-Ile-Tφ-Leu-His-NH2
Figur 6: sVpr21-40 - Massenspektrum (%Int. 10% =335 mV[sum= 28541 mV] Profiles
1-85 Unsmoothed und Molmasse)
Beispiel 9: sVpr21-40(Asn35)
Analog zu Beispielen 1 bis 3. H-Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Asn-Arg-Ile-Tφ-Leu-His-NH2
Beispiel 10: sVprl l-25:
Analog zu Beispielen 1 bis 3. Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu-Glu-Leu-Leu-Glu-Glu-
Beispiel 11 : sVpr41-55:
Analog zu Beispielen 1 bis 3. Asn-Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala
Beispiel 12: sVpr46-60:
Analog zu Beispielen 1 bis 3. Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile- Beispiel 13: sVpr56-70:
Analog zu Beispielen 1 bis 3. Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-Ile
Beispiel 14: sVpr66-80:
Analog zu Beispielen 1 bis 3. Gln-Leu-Leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg
Beispiel 15: sVpr76-96
Analog zu Beispielen 1 bis 3. Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg-Gln-Arg-Arg-Ala-Arg-Asn-Gly-Ala-Ser-Arg-Ser-OH
Literaturverzeichnis :
Adachi, A.; Gendelman, H. E.; König. S.; Folks. T.; Willey, R. L.; Rabson, A.; Martin. M.A.
(1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and non-human cells transfected with an infectious molecular clone. J. Virol. 59:284-291.
Arunagiri, C; Macreadie, I; Hewish. D.; Azad. A. (1997) A C-terminal domain of HIV-1 accessory protein Vpr is involved in penetration. mitochondrial dysfunction and apoptosis of human CD4+ lymphocytes. Apoptosis 2:69-76.
Collman, J.W.; Balliet, J.W.; Greory, S.A.; Friedman, H.; Kolson, D.L; Nathanson, N.; Srinivasan, A. (1992) An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66:5717-5721.
Di Marzio, P.: Choe, S.; Ebright, M.; Knoblauch. R.; Landau. N.R. (1995) Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J.Virol. 69:7909-7916. Kondo. E.; Göttlinger. H.G. (1996) A conserved LXXLF sequence is the major determinant in p6gag required for the incoporation of human immunodeficiency virus type 1 Vpr. J.Virol.
70: 159-164. Kondo, E.; Mammano. F.; Cohen. E.A.; Göttlinger, H.G. (1995) The p6 ag domain of human immunodeficiency virus type 1 is sufficent for incoφoration of Vpr into heterologous viral particles. J.Virol. 69:2759-2764.
Lavallee. C; Yao, X.J.; Ladha. A.; Göttlinger, H.G.; Haseltine, W.A.; Cohen. E.A. (1994) Requirement of the Pr55gαg precursor for incoφoration of the Vpr product into human immunodeficiency virus type 1 viral particles. J. Virol. 68:1926-1934.
Levy, D.N.; Refaeli. Y.; Weiner. D.B. (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus type 1. Proc.Natl.Acad.Sci. USA 91:10873-
10877. Lu. Y.-L.; Bennett, R.P.; Wills. J.W.; Gorelick, R.; Ratner. L. (1995) A leucine triplet repeat sequence (LXX)4 in p6gαg is important for Vpr incoφoration into human immunodeficiency virus type 1 particles. J. Virol. 69:6873-6879.
Luo, Z.; Butcher, DJ.; Murali. R.; Srinivasan, A.; Huang. Z. (1998) Structural studies of synthetic peptide fragments derived from the HIV-1 Vpr protein. Biochem. Biophys. Research Communications 244:732-736.
Macreadie, LG.; Arunagiri, C.K.; Hewish, D.R.; White, J.F.: Azad, A.A. (1996) Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death. Mol.Microbiol. 19:1185-1192.
Macreadie, LG.; Kirkpatrick, A.; Strike, P.M.; Azad, A.A. (1997) Cytocidal activities of HIV-1 Vpr and SAC1P peptides bioassayed in yeast. Protein and Peptide Letters 4: 181-186.
Mahalingam, S.; Ayyavoo, V.; Patel. M.: Kieber-Emmons. T.; Weiner, D.B. (1997) Nuclear import, virion incoφoration, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J.Virol. 71 :6339-6347.
Mahalingam, S.; Collman, R.G.; Patel, M.; Monken, C.E.: Srinivasan, A. (1995a) Functional analysis of HIV-1 Vpr: Identification of determinants essential for subcellular localization.
Virol. 212:331-339.
Mahalingam, S.; Khan, S.H.; Jabbar. M.A.; Monken, C.E.; Collman. R.G.; Srinivasan. A.
(1995b) Identification of residues in the N-terminal acidic domain of HIV-1 Vpr essential for virion incoφoration. Virol. 207:297-302. Mahalingam, S.; Khan, S.H.; Murali. R.; Jabbar. M.A.: Monken, C.E.; Collman. R.G.;
Srinivasan, A. (1995c) Mutagenesis of the putative alpha-helical domain of the Vpr protein of human immunodeficiency virus type 1 : effect on stability and virion incoφoration.
Proc.Natl.Acad.Sci. USA 92:3794-3798.
Mahalingam, S.; Patel. M.; Collman, R.G.; Srinivasan. A. (1995d) The carboxy-terminal domain is essential for stability and not for virion incoφoration of HIV-1 Vpr into virus particles. Virol.
214:647-652.
Nie, Z.; Bergeron. D.: Subbramanian. R.A.; Yao. X.-J.: Checroune, F.: Rougeau, N.; Cohen, E.A.
(1998) The putative alpha helix 2 of human immunodeficiency virus type 1 Vpr contains a 5 determinant which is responsible for the nuclear translocalization of proviral DNA in growth- arrested cells. J.Virol. 73:4104-4115.
Paxton, W.; Connor, R.I.; Landau, N.R. (1993) Incoφoration of vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J. Virol. 67:7229-7237. 10 Piller, S.C; Ewart. G.D.; Premkumar, A.; Cox. G.B.; Gage. P.W. (1996) Vpr protein of human immunodeficiency virus type 1 forms cation-selective Channels in planar lipid bilayers.
Proc.Natl.Acad.Sci. USA 93:111-115.
Roques, B.P.; Morellet, N.; de Rocquigny, H.; Demene. H.; Schueler. W.: Jullian. N. (1997)
Structure, biological functions and inhibition of the HIV-1 proteins Vpr and NCp7. Biochimie 15 79:673-680. de Rocquigny, H.; Petitjean, P.; Tanchou, V.; Decimo, D.: Drouot, L.; Delaunay, T.; Darlix, J.-
L.; Roques, B.P. (1997) The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J. Biol. Chem. 272(49): 30753-30759.
Wang, B.; Ge, Y.C.; Palasanthiran, P.; Xiang. S.-H.; Ziegler, J.; Dwyer, D.E.; Rändle, C; 20 Dowton, D.; Cunningham, A.; Saksena, N.K. (1996) Gene defects clustered at the C-terminus of the vpr gene of HIV-1 in long-term nonprogressing mother and child pair: in vivo evolution of vpr quasispecies in blood and plasma. Virol. 223:224-232.
Wang, L.; Mukherjee, S.; Narayan, O; Zhao, L.-J. (1996) Characterization of a leucine-zipper- like domain in Vpr protein of human immunodeficiency virus type 1. Gene 178:7-13. 25 Yao, S.; Azad, A.A.; Macreadie. LG.; Norton, R.S. (1998) Helical structure of polypeptides from the C-terminal half of HIV- 1 Vpr. Protein and Peptide Letters 5:127-134.
Yao, X.-J.; Subbramanian, R.A.; Rougeau, N; Boisvert, F.; Bergeron. D.: Cohen, E.A. (1995)
Mutagenic analysis of human immunodeficiency virus type 1 Vpr: role of a predicted N-terminal alpha-helical structure in Vpr nuclear localization and virion incoφoration. J.Virol. 69:7032- 30 7044.
Zhao. L.J.; Mukherjee, S.; Narayan. O. (1994a) Biochemical mechanism of HIV-1 Vpr function: specific interaction with a cellular protein. J. Biol. Chem. 269:15577-15582.
Zhao, L.J.; Wang, L.; Mukherjee. S.; Narayan. O. (1994b) Biochemical mechanism of HIV-1
Vpr function: oligomerization by the N-terminal domain. J. Biol. Chem. 269:32131-32137. Zhao, Y.; Cao, J.; O'Gorman, M.R.: Yu. M.; Yogev, R. (1996) Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe. J. Virol. 70:5821-5826.
Legende zu den Figuren
Figur 1 : Struktur- und Funktionsdomänen in Vpr
Folgende Primär- und Sekundär-Strukturelemente in Vpr sind der Aminosäuresequenz des
Proteins Vpr von HIV-1NL4-3 zugeordnet: negativ geladener N-Terminus (Markierung (1), Positionen 1-17); Helix alpha- 1 (Markierung (2). Positionen 18-37); eine nicht näher definierte Region (Markierung (3), Positionen 38-51); Helix alpha-2 (Markierung (4), Positionen 51-76); basischer C-Terminus (Markierung (8), Positionen 77-96). Überlappend dazu sind weitere Bereiche angezeigt: eine Leuzin- und Isoleuzin-reiche Region, welche auch als Leuzin-Zipper- ähnlich oder auch "LR-Domäne" bezeichnet wird (Markierung (5), Positionen 60-80); eine Region, welche das sich wiederholende Motiv "ΗF/SRIG" enthält (Markierung (6). Positionen 71-82); den vermutlichen Transmembrananker von Vpr, welcher notwendig für die lonenkanalaktivität von Vpr ist (Markierung (7). Positionen 52-79).
Figur 2: Immunologische Reaktivität von polyklonalen Antiköφern spezifisch für sVprl-96 im Westemblot und Immunpräzipitation
Serum von Kaninchen immunisiert mit sVprl-96, R-96, wurde in Westemblot (A) und Immunpräzipitation (B) getestet. Eine Verdünnungsreihe von 0.01 bis 10 ng sVprl-96 wurde im SDS-PAGE (12.5%o Acryl aide Gel) aufgetrennt (A). Eine ähnliche Verdünnungsreihe an sVprl- 96 wurde mit humanen Serum versetzt, und aus diesem Gemisch wurde mittels dem Serum R-96 das Peptid sVprl-96 durch Immunpräzipitation isoliert, und nachfolgend ebenfalls im SDS- PAGE aufgetrennt (B). Nach Elektrotransfer auf PVDF-Membranen wurde sVprl-96 mittels R- 96 Antiköφern sowie anschließender Bindung von 1251-Protein G detektiert. Das Autoradiogramm einer 2-Tage-Exposition ist in (A) und (B) dargestellt. Die Positionen von Molekulargewichtsstandardproteinen sind auf der linken Seite, sowie die Positionen von unspezifischen Reaktion mit der schweren (hc) und leichten Kette (lc) der zur Immunpräzipitation eingesetzten Immunglobuline ist auf der rechten Seite angezeigt.
Figur 3: sVprl-96 aktiviert Virusreplikation und erhöht Zahl lebender Zellen in Kulturen von humanen PBMC Kulturen von PHA- und IL-2-aktivierte PBMCs wurden mit gleichen infektiösen Dosen folgender Virusstocks infiziert: HIV-1NL4-3 (A.B.C), NL4-3(AD8) (D) sowie der vpu- defizienten Mutante NL(AD8)-UDEL1 (E) und der vpr-defizienten Mutante NL(AD8)deltaR (F). Während des Infektionsexperimentes wurden die Kulturen in Gegenwart von 10 nM sVprl-96 oder 10 nM des Kontrollpeptides Vpu32-81 kultiviert. Die Virusfreisetzung ist als Profil der Virus-assoziierten RT-Aktivität im Zellkulturüberstand dargestellt (A,C,D,E,F). (B) zeigt die Zahl der lebenden Zellen im Experiment von (A).
Figur 4: s Vpr 1-96 aktiviert die Replikationskompetenz von vpr-defizienten HIV-1 Mutanten in Kulturen von primären humanen Monozyten/Makπ. phagen isoliert von verschiedenen Donoren Parallele Kulturen von ausdifferenzierten MDM-Isolaten gewonnen, von drei verschiedenen Donoren, wurden mit gleichen infektiösen Dosen von gereinigten Virusstocks des Makrophagen- tropen Virus NL4-3(AD8) sowie dessen vpr-defizienten Mutante NL(AD8)deltaR infiziert. Die Virusproduktion wurde über einen Zeitraum von etwa zwei Monaten verfolgt und als Virus- assozierte RT-Aktivität gegen die Zeit aufgetragen.
Figur 5: 2D IH TOCSY Spektrum
(Mischungszeit = 110 ms) einer 2 mM-Lösung of sVprl-96 in 1:1 (V/V) TFE-d2/H2= bei 300°K.
Die Ordinate und Abzisse zeigen die entsprechenden ID IH Spektren. Vergrößerungen der Regionen A. B und C werden in Figur 6 gezeigt.
Figur 6:
Vergrößerte Regionen der 2D TOCSY Spektren, dargestellt in Figur 5, welche den Wechselwirkungen zwischen den Protonen H-7 and H-2 von Tryptophaneresten (A); H-2 und H- 4 von Histidinresten (B), und epsilon-H und alpha-H von Argininresten (C) entsprechen.
Figur 7: sVprl-96 - Chromatogramm und Massenspektrum
Figur 8: sVpr 1-47 - Massenspektrum
Figur 9: sVprl-20 - Massenspektrum
Figur 10: sVpr21-40 - Massenspektrum

Claims

Patentansprüche
1. Synthetische Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1 (HIV-1).
2. Peptide nach Anspruch 1. dadurch gekennzeichnet, daß es sich um
2.1. ein 96 Aminosäuren langes Vpr-Protein (s Vpr 1-96)
2.2. ein 47 Aminosäuren langes N-terminales Peptid (sVprl-47)
2.3. ein 49 Aminosäuren langes C-terminales Peptid (sVpr48-96) sowie 2.4. Fragmente dieser Peptide, zum Beispiel
2.4.1. überlappende, etwa 15 Aminosäuren lange Peptide für die Epitop-Charakterisierung und isolelektrische Fokussierung
2.4.2. etwa 20 Aminosäuren lange Peptide zur strukturellen und funktionellen Charakterisierung einzelner Domänen von Vpr, insbesondere 2.4.2.1. die Peptide sVpr 1-20 und 2.4.2.2. sVpr21-40 handelt.
3. Peptide nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß es sich
3.1. bei dem 96 Aminosäuren langen Vpr-Protein um sVprl-96
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu- Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Tφ-Leu-His- Asn-Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile- Ile-Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg- Ile-Gly-Val-Thr-Arg-Gln-Arg-Arg-Ala-Arg-Asn-Gly-Ala-Ser-Arg-Ser-OH
3.2. bei dem 47 Aminosäuren langen N-terminalen Peptid um sVprl^.7
H-Met-Glu-Gln-Ala-Pro-Glu-Asp-Gln-Gly-Pro-Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu-
Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Pro-Arg-Ile-Tφ-Leu-His-
Asn-Leu-Gly-Gln-His-Ile-Tyr-NH2
3.3. bei dem 49 Aminosäuren langen C-terminalen Peptid um sVpr48-96
Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile-Ile-Arg-Ile-Leu-Gln-Gln-Leu- leu-Phe-Ile-His-Phe-Arg-Ile-Gly-Cys-Arg-His-Ser-Arg-Ile-Gly-Val-Thr-Arg-Gln-Arg-Arg-Ala- Arg-Asn-Gly-Ala-Ser-Arg-Ser-OH
3.4. bei den Fragmenten dieser Peptide um die etwa 15 Aminosäuren lange Peptide 3.4.1. sVpr 11-25 Gln-Arg-Glu-Pro-Tyr-Asn-Glu-Tφ-Thr-Leu-Glu-Leu-Leu-Glu-Glu- 3.4.2. sVpr41 -55
Asn-Leu-Gly-Gln-His-Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala
3.4.3. sVpr46-60 Ile-Tyr-Glu-Thr-Tyr-Gly-Asp-Thr-Tφ-Ala-Gly-Val-Glu-Ala-Ile-
3.4.4. sVpr56-70 Gly- Val-Glu- Ala-Ile-Ile- Arg-Ile-Leu-Gln-Gln-Leu-leu-Phe-Ile
3.5. bei den etwa 20 Aminosäuren langen Peptiden um
3.5.1. die Peptide sVprl-20 als sVprl-20(Asn5'10-14) H-Met-Glu-Gln-Ala-Asn-Glu-Asp-Gln-Gly-Asn-Gln-Arg-Glu-Asn-Tyr-Asn-Glu-Tφ-Thr-Leu- NH2 und
3.5.2. sVpr21-40 als sVpr 21- 0(Asn35) H-Glu-Leu-Leu-Glu-Glu-Leu-Lys-Ser-Glu-Ala-Val-Arg-His-Phe-Asn-Arg-Ile-Tφ-Leu-His-NH2 handelt.
4. Verfahren zur Herstellung von neuen synthetischen Peptiden des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1 (HIV-1) nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Synthese der C-terminalen Vpr-Peptide an einem Serin-Harz mit Hilfe eines Perkin-Elmer-Synthesizers erfolgt, alle N-terminalen Peptide an einem Polystyren-Polyoxyethylen-Trägerharz synthetisiert werden und der Autbau der Peptide mittels FMOC-Strategie unter Verwendung von Schutzgruppen erfolgt.
5. Verfahren nach Anspruch 4. dadurch gekennzeichnet, daß nach Beendigung der Synthese die Abspaltung der Schutzgruppen mittels eines Abspaltungsgemisches, bestehend aus 95% Trifluoressigsäure, der 3% Triisopropylsilan und je nach Peptid 2 bis 5 % Ethandithiol zugesetzt wurde, erfolgt und das Harz abgetrennt wird.
6. Verfahren nach den Ansprüchen 4 und 5. dadurch gekennzeichnet, daß die Rohpeptide an einer präparativen HPLC-Anlage chromatographiert und die Peptide an einer Kieselgelsäule mittels eines linearen Gradienten, bestehend aus TFA (Trifluoressigsäure) in Wasser und TFA in Acetonitril, gereinigt werden.
7. Verwendung von synthetischen (s) Peptiden des regulatorischen Virusproteins R (Vpr) Humaner Immundefizienzviren (HIV) zu therapeutischen und/oder diagnostischen Zwecken.
8. Verwendung nach Anspruch 7 8.1. in biologischen Assays
8.1.1. zur Entwicklung von serologischen Testmethoden
8.1.2. zur Entwicklung eines Vpr-Antigen-ELISA
8.2. zur Erzeugung von Antiköφern gegen HlV-Peptidsequenzen
8.3. in antiviralen Reagenzien 8.4. zum Aufbau von Testsystemen zum Screenen von potentiellen Vpr-Antagonisten
8.5. bei der Etablierung von Zellkultur- und Tiermodellen zur Untersuchung der Pathomechanismen von Vpr
8.6. in der Strukturanalyse von Vpr und dessen Domänen oder
8.7. bei der in vitro Assemblierung von neuartigen Vektoren für den Einsatz bei Gentransfermethoden in der Gentherapie.
9. Verwendung nach Anspruch 7 und 8, dadurch gekennzeichnet, daß es sich um sVpr-Proteine handelt, in denen die N-terminale Domäne der sVpr-Proteine in einem, mehreren oder allen vier Prolin-Reste mutiert ist.
10. Verwendung nach Anspruch 7 bis 9 zur Herstellung von poly- und monoklonalen Vpr- spezifischen Antiköφern oder Antiseren.
11. Verwendung nach Anspruch 7 bis 10 zur Gewinnung von Epitop-differenten Vpr- spezifischen Antköφern.
12. Verwendung von Antiköφern nach Anspruch 7 bis 1 1 in serologischen Testverfahren.
5 13. Verwendung nach Anspruch 7 bis 12 in einem Vpr-Antigen(Ag)-ELISA.
14. Verwendung von sVpr-Proteinen nach Anspmch 7 bis 13 als Standard- Antigen für die Eichung von Vpr-Ag-ELISA-Techniken.
10 15. Verwendung nach Anspmch 7 und 8 zum Nachweis und zur Konzentrationsbestimmung von viralem Vpr im Blut HlV-infizierter Individuen.
16. Verwendung von sVpr-Proteinen nach Anspmch 7 und 8 für in vitro Testsysteme zur Bestimmung von Vpr-Antagonisten.
15
17. Verwendung nach Anspmch 7, 8 zur Komplementiemng der Funktion von endogenen, viralen Vpr in Zellkulturen, die mit vpr-defizienten HIV-Mutanten infiziert sind.
18. Verwendung nach Anspmch 7, 8 und 17 zur Komplementiemng der Funktion von viralem 0 Vpr in Kulturen von primären humanen Lymphozyten. die mit vpr-defizienten HIV-Mutanten infiziert sind.
19. Verwendung nach Anspruch 7. 8. 17 und 18 zur Komplementiemng der Funktion von viralen Vpr in Kulturen von ausdifferenzierten primären humanen Monozyten / Makrophagen. die mit 5 vpr-defizienten HIV-Mutanten infiziert sind.
20. Verwendung nach Anspmch 7 bis 19 zur Bestimmung von Reagenzien, die
a) die Wechselwirkung von Vpr mit zellulären Faktoren, wie zum Beispiel mit dem 0 Glucocorticoid-Rezeptor, Transkriptionsfaktoren und anderen DNA-interagierenden Enzymen und Faktoren unterbinden: b) die Transkriptions-aktivierende Wirkung von Vpr verhindern; die Akt i ät \ on Vpr auf die Wirkung \ on Steroidhormone regulieren, beeinflussen oder verhindern: c) den Transport von Vpr allein oder im Verbund mit anderen Komponenten des HIV- Präintegrationskomplexes regulieren, beeinflussen oder verhindern: den Einbau von Vpr in Viruspartikel während der HIV-Assemblierung regulieren, beeinflussen oder verhindern; 5 d) den Vpr-induzierten Zellzyklusarrest regulieren, beeinflussen oder verhindern den Effekt von Vpr auf Zelldifferenzierung und Zellwachstum regulieren, beeinflussen oder verhindern e) die zytotoxischen Effekte von Vpr regulieren, beeinflussen oder verhindern f) die lonenkanalaktivität von Vpr regulieren, beeinflussen oder verhindern 10
21. Verwendung von sVpr-Proteinen nach Anspmch 7 und 8 für in vivo Testsysteme zur Bestimmung von Vpr-Antagonisten.
22. Verwendung von sVpr-Proteinen nach Anspmch 7 und 8 in Tiermodellstudien zur 15 Bestimmung von Funktionen nach Anspmch 20.
23. Verwendung von sVpr-Proteinen nach Anspruch 7 und 8 zur Herstellung konzentrierter Peptid-Lösungen.
20 24. Verwendung von sVpr-Proteinen nach Anspmch 7, 8 und 23 zur Herstellung spezifischer Vpr-Antagonisten.
25. Verwendung von sVpr-Proteinen nach Anspmch 7. 8. 21 und 24 zur Reduktion der durch die N-terminale Domäne von Vpr induzierten Flexibilität von sVpr-Protein mittels
25 strukturstabilisierenden Faktoren.
26. Verwendung nach Anspmch 25, dadurch gekennzeichnet, daß es sich bei den strukturstabilisierenden Faktoren um a) die UBA2-Domäne des DNA-Reparatuφroteins HHR23A. welches an Vpr bindet, 30 b) Fab-Fragmente von Vpr-spezifischen Immunglobulinen oder c) virale Faktoren, insbesondere Komponenten des HIV-1 Gag-Polyproteinprecursurs Pr55Gag, welche im Prozess der Vims-Assembliemng mit Vpr in Verbindung treten oder J) dem humanen Glucocorticoidrezeptor oder Bestandteile davon handelt.
27. Verwendung von sVpr-Proteinen nach Anspmch 7 für in vitro Assembliemng von retroviralen Präintegrationskomplexen.
28. Verwendung von sVpr-Proteinen nach Anspmch 7. 8 und 27 in in vitro oder in vivo applizierbaren Gentransfermethoden.
29. Verwendung von sVpr-Proteinen nach Anspmch 7. 8 und 28 für Transfektionen. Integration in chromosomale und episomale Wirts-DNA oder andere Gentransfermethoden in eukaryotischen Zellen.
30. Verwendung von sVpr-Proteinen nach Anspmch 7. 8 und 28 für Gentransfers von in vitro hergestellter und/oder manipulierter Genfragmente in Zellen, Gewebe oder Organismen mit dem Zweck einer gentherapeutischen Applikation.
PCT/DE2000/000525 1999-02-19 2000-02-19 Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung WO2000049038A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000599775A JP2002540768A (ja) 1999-02-19 2000-02-19 ヒト免疫不全ウイルス1型(HIV−1)ウイルス性調節タンパク質R(Vpr)の合成ペプチドおよびその適用
EP00918674A EP1155035A2 (de) 1999-02-19 2000-02-19 Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung
US09/913,927 US6984486B1 (en) 1999-02-19 2000-02-19 Synthetic peptide of regulatory virus protein R (VPR) of human immunodeficiency virus type 1 (HIV-1) and the utilization thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19908766.0 1999-02-19
DE19908752A DE19908752A1 (de) 1999-02-19 1999-02-19 Synthetische Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1
DE19908752.0 1999-02-19
DE19908766A DE19908766C2 (de) 1999-02-19 1999-02-19 Verwendung synthetischer Vpr-Peptide des Humanen Immundefizienzvirus Typ 1 (HIV-1) zur Entwicklung von therapeutischen und diagnostischen Reagenzien
CA002356390A CA2356390A1 (en) 1999-02-19 2001-08-17 Synthetic peptide of regulatory virus protein r (vpr) of human immunodeficiency virus type 1 (hiv-1) and the utilization thereof

Publications (3)

Publication Number Publication Date
WO2000049038A2 true WO2000049038A2 (de) 2000-08-24
WO2000049038A3 WO2000049038A3 (de) 2001-03-01
WO2000049038A9 WO2000049038A9 (de) 2001-05-17

Family

ID=27808200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000525 WO2000049038A2 (de) 1999-02-19 2000-02-19 Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung

Country Status (4)

Country Link
EP (1) EP1155035A2 (de)
JP (1) JP2002540768A (de)
CA (1) CA2356390A1 (de)
WO (1) WO2000049038A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090159A2 (en) * 2000-05-23 2001-11-29 The J. David Gladstone Institutes Compositions and methods for delivery of a molecule into a cell
WO2003089472A2 (en) * 2002-04-22 2003-10-30 Yissum Research Development Company Of The Hebrew University Of Jerusalem Anti-nls scfv and peptides and uses thereof in nuclear import inhibition
WO2005030238A1 (fr) * 2003-09-25 2005-04-07 Theraptosis Peptides possedant notamment une activite anti-angiogenique et leurs applications en therapeutique
WO2005103654A2 (fr) * 2004-04-09 2005-11-03 Bioalliance Pharma Methode d’identification de composes actifs sur la replication du virus hiv.
WO2006041192A1 (ja) * 2004-10-12 2006-04-20 Riken アポトーシス誘導物質を含む医薬組成物
WO2007104932A2 (en) * 2006-03-10 2007-09-20 Peptcell Limited Peptides of regulatory or accessory proteins of hiv, compositions and the utilization thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769009B2 (ja) * 2005-04-05 2011-09-07 オリエンタル酵母工業株式会社 Vpr特異的モノクローナル抗体を産生するハイブリドーマを作製するためのVpr抗原、抗Vpr特異的モノクローナル抗体産生ハイブリドーマとそのハイブリドーマの産生する抗Vpr特異的モノクローナル抗体およびそれを利用したVprの免疫学的測定

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026361A1 (en) 1994-03-25 1995-10-05 Biomolecular Research Institute Ltd. Vpr AND Vpx PROTEINS OF HIV
WO1996007741A1 (en) 1994-09-07 1996-03-14 Universite De Montreal Protein targeting into hiv virions based on hiv-1 vpr fusion molecules
WO1996008970A1 (en) 1994-09-21 1996-03-28 The Trustees Of The University Of Pennsylvania COMPOSITIONS AND METHODS FOR THE ABROGATION OF CELLULAR PROLIFERATION UTILIZING THE HUMAN IMMUNODEFICIENCY VIRUS Vpr PROTEIN
US5580739A (en) 1986-01-22 1996-12-03 Institut Pasteur Peptides of human immunodeficiency virus type 2 (HIV-2) and in vitro diagnostic methods and kits employing the peptides for the detection of HIV-2
US5639619A (en) 1994-10-13 1997-06-17 Regents Of The University Of California Screening assay for anti-HIV drugs using the Vpr gene
US5780238A (en) 1993-12-15 1998-07-14 The Trustees Of The University Of Pennsylvania VPR receptor protein
WO1998044945A1 (en) 1997-04-04 1998-10-15 The Immune Response Corporation Non-infectious, protease defective hiv particles and nucleic acid molecules encoding therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580739A (en) 1986-01-22 1996-12-03 Institut Pasteur Peptides of human immunodeficiency virus type 2 (HIV-2) and in vitro diagnostic methods and kits employing the peptides for the detection of HIV-2
US5780238A (en) 1993-12-15 1998-07-14 The Trustees Of The University Of Pennsylvania VPR receptor protein
WO1995026361A1 (en) 1994-03-25 1995-10-05 Biomolecular Research Institute Ltd. Vpr AND Vpx PROTEINS OF HIV
WO1996007741A1 (en) 1994-09-07 1996-03-14 Universite De Montreal Protein targeting into hiv virions based on hiv-1 vpr fusion molecules
WO1996008970A1 (en) 1994-09-21 1996-03-28 The Trustees Of The University Of Pennsylvania COMPOSITIONS AND METHODS FOR THE ABROGATION OF CELLULAR PROLIFERATION UTILIZING THE HUMAN IMMUNODEFICIENCY VIRUS Vpr PROTEIN
US5639619A (en) 1994-10-13 1997-06-17 Regents Of The University Of California Screening assay for anti-HIV drugs using the Vpr gene
US5721104A (en) 1994-10-13 1998-02-24 Regents Of The University Of California Screening assay for anti-HIV drugs
WO1998044945A1 (en) 1997-04-04 1998-10-15 The Immune Response Corporation Non-infectious, protease defective hiv particles and nucleic acid molecules encoding therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
W. SCHULER ET AL.: "NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: Molecular insights into its biological functions", JOURNAL OF MOLECULAR BIOLOGY, vol. 285, no. 5, 5 February 1999 (1999-02-05), pages 2105 - 2117
Z. LUO ET AL.: "Structural Studies of Synthetic Peptide Fragments derived from the HIV-1 Vpr Protein", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 244, no. 3, 27 March 1998 (1998-03-27), pages 732 - 736

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090159A2 (en) * 2000-05-23 2001-11-29 The J. David Gladstone Institutes Compositions and methods for delivery of a molecule into a cell
WO2001090159A3 (en) * 2000-05-23 2002-06-13 David Gladstone Inst Compositions and methods for delivery of a molecule into a cell
US6664040B2 (en) 2000-05-23 2003-12-16 The Regents Of The University Of California Compositions and methods for delivery of a molecule into a cell
WO2003089472A2 (en) * 2002-04-22 2003-10-30 Yissum Research Development Company Of The Hebrew University Of Jerusalem Anti-nls scfv and peptides and uses thereof in nuclear import inhibition
WO2003089472A3 (en) * 2002-04-22 2004-05-13 Yissum Res Dev Co Anti-nls scfv and peptides and uses thereof in nuclear import inhibition
WO2005030238A1 (fr) * 2003-09-25 2005-04-07 Theraptosis Peptides possedant notamment une activite anti-angiogenique et leurs applications en therapeutique
WO2005103654A2 (fr) * 2004-04-09 2005-11-03 Bioalliance Pharma Methode d’identification de composes actifs sur la replication du virus hiv.
WO2005103654A3 (fr) * 2004-04-09 2006-01-26 Bioalliance Pharma Methode d’identification de composes actifs sur la replication du virus hiv.
WO2006041192A1 (ja) * 2004-10-12 2006-04-20 Riken アポトーシス誘導物質を含む医薬組成物
WO2007104932A2 (en) * 2006-03-10 2007-09-20 Peptcell Limited Peptides of regulatory or accessory proteins of hiv, compositions and the utilization thereof
WO2007104932A3 (en) * 2006-03-10 2007-11-22 Peptcell Ltd Peptides of regulatory or accessory proteins of hiv, compositions and the utilization thereof
AU2007226430B2 (en) * 2006-03-10 2013-08-29 Peptcell Limited Peptides of regulatory or accessory proteins of HIV, compositions and the utilization thereof
EA019733B1 (ru) * 2006-03-10 2014-05-30 Пептселл Лимитед Иммуногенный полипептид для лечения и/или профилактики вич-инфекции
US8992934B2 (en) 2006-03-10 2015-03-31 Peptcell Limited Peptide Sequences of HIV polypeptides and compositions thereof
CN104558126A (zh) * 2006-03-10 2015-04-29 派特塞尔有限公司 Hiv的调节或辅助蛋白的肽、组合物及它们的应用
AP3642A (en) * 2006-03-10 2016-03-16 Peptcell Ltd Peptides of regulatory or accessory proteins of hiv, compositions and the utilization thereof
US9675686B2 (en) 2006-03-10 2017-06-13 PepTCell, Ltd. HIV peptides and immunogenic compositions
US10034933B2 (en) * 2006-03-10 2018-07-31 PepTCell, Ltd. HIV and immunogenic peptide sequences and compositions
CN104558126B (zh) * 2006-03-10 2020-02-14 派特塞尔有限公司 Hiv的调节或辅助蛋白的肽、组合物及它们的应用

Also Published As

Publication number Publication date
WO2000049038A9 (de) 2001-05-17
JP2002540768A (ja) 2002-12-03
EP1155035A2 (de) 2001-11-21
WO2000049038A3 (de) 2001-03-01
CA2356390A1 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
DE60215626T2 (de) Antagonist für die multimerisierung von hiv-1 vif-protein
DE69434335T2 (de) Synthetische peptidinhibitoren der hiv-übertragung
MILLER et al. A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides
US5447915A (en) Terminally blocked antiviral peptides
Jiang et al. The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability
DD283935A5 (de) Verfahren zur herstellung eines aids-virus-impfstoffes
DE69133242T2 (de) Peptide zur verwendung in impfung und anregung von antikörperbildung gegen menschliches immunschwäche virus
AT398080B (de) Immortalisierte zellinie, verfahren zu ihrer herstellung und verfahren zur herstellung von monoklonalen antikörpern sowie diagnoseverfahren und -mittel
DE69736474T2 (de) Antikörper gegen einen komplex aus cd4 und einer chemokinrezeptordomäne, sowie deren verwendung gegen hiv infektionen
DE60015312T2 (de) Anti-hiv-1 impfstoff enthaltend das ganzen hiv-1 tat protein oder ein teil davon
WO2000049038A2 (de) Synthetische peptide des regulatorischen virusproteins r (vpr) des humanen immundefizienzvirus typ 1 (hiv-1) und ihre verwendung
US11680086B2 (en) Lipopeptide for potently inhibiting HIV, derivative thereof, pharmaceutical composition thereof and use thereof
DE69132795T3 (de) Gereinigtes gp120, in dem seine natürliche konformation erhalten bleibt
Secchi et al. Enhancement of anti-HIV-1 activity by hot spot evolution of RANTES-derived peptides
DE69233455T2 (de) Modifizierte proteine und deren verwendung zur kontrolle von virusinfektionen
DE60221805T2 (de) Peptide mit affinität zu gp120, und ihre verwendungen
EP1228203B1 (de) Humanes zirkulierendes virus inhibierendes peptid (virip) und seine verwendung
EP0732339B1 (de) Peptide des HIV-gag Proteins, ihre Herstellung und Verwendung
WO1991018454A1 (en) Compositions capable of blocking cytotoxicity of viral regulatory proteins and neurotoxic symptoms associated with retroviral infection
DE19908752A1 (de) Synthetische Peptide des regulatorischen Virusproteins R (Vpr) des Humanen Immundefizienzvirus Typ 1
DE69433057T2 (de) Peptide zur verwendung bei der impfung und induktion neutralisierender antikörper gegen das menschliche immunschwäche-virus
US6984486B1 (en) Synthetic peptide of regulatory virus protein R (VPR) of human immunodeficiency virus type 1 (HIV-1) and the utilization thereof
DE19908766C2 (de) Verwendung synthetischer Vpr-Peptide des Humanen Immundefizienzvirus Typ 1 (HIV-1) zur Entwicklung von therapeutischen und diagnostischen Reagenzien
EP0981543A1 (de) Verfahren zum nachweis von hiv-antikörpern und dazu verwendete antigene
EP1754715A1 (de) Impfstoff auf Basis virusneutralisierender Antikörper

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: C2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 21-23, CLAIMS, REPLACED BY NEW PAGES 21-23; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 599775

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000918674

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000918674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09913927

Country of ref document: US