WO2000048711A1 - Gas cooling device, gas treatment device, and boiler equipment - Google Patents

Gas cooling device, gas treatment device, and boiler equipment Download PDF

Info

Publication number
WO2000048711A1
WO2000048711A1 PCT/JP2000/000863 JP0000863W WO0048711A1 WO 2000048711 A1 WO2000048711 A1 WO 2000048711A1 JP 0000863 W JP0000863 W JP 0000863W WO 0048711 A1 WO0048711 A1 WO 0048711A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
refrigerant
cooling
temperature
Prior art date
Application number
PCT/JP2000/000863
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Izutsu
Yoshitaka Iizuka
Shinji Aoki
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU25715/00A priority Critical patent/AU2571500A/en
Publication of WO2000048711A1 publication Critical patent/WO2000048711A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Definitions

  • the present invention relates to gas processing, and more particularly, to a gas cooling device and a gas processing device for removing sulfur oxides contained in boiler combustion gas and the like, and a boiler facility using the same.
  • desulfurization is performed by combining sulfur oxides with an alkaline substance such as ammonia.However, in order to increase the desulfurization efficiency, it is necessary to cool the gas. Cooling is generally performed by bringing the gas into contact with cooling water and utilizing the heat of evaporation of the cooling water. However, the cooling by evaporation is limited to the water saturation temperature determined by the amount of water contained in the gas, and therefore, the temperature of the gas cannot be lowered sufficiently, so that the desulfurization There were restrictions on increasing the desulfurization rate in the equipment. In short, the cooling by evaporation increases the water content in the gas during the cooling, so that the water saturation temperature rises and the temperature at which the gas can be cooled is limited.
  • adiabatic cooling water the water saturation temperature determined by the evaporation of cooling water performed under the adiabatic conditions.
  • the saturation temperature increases as the temperature of the gas before cooling increases, and as the water concentration of the gas before cooling increases, so that the gas cannot be lowered accordingly.
  • the following table shows an example.
  • the gas In the case of a wet cooling system in which a high-temperature gas is brought into contact with circulating cooling water to cool the gas, the gas can be cooled almost to the adiabatic cooling water saturation temperature, but the cooling water is sprayed. If water is completely evaporated to prevent drainage, it can only be cooled to a temperature that is typically about 10 ° C higher than the adiabatic cooling water saturation temperature.
  • the present invention provides a gas treatment that can cool a high-temperature gas containing sulfur oxides to a required temperature without increasing the moisture concentration in the gas, and achieve a high desulfurization rate.
  • the purpose is to provide equipment, cooling equipment for cooling the equipment, and boiler equipment using them.
  • the present invention effectively utilizes heat recovered from gas by gas cooling. It is also intended to be used. Disclosure of the invention
  • the present invention basically includes a heat exchanger having a heat exchange surface set in a gas flow path, and having a heat exchanger capable of cooling at least a part of the heat exchange surface to a temperature not higher than the moisture saturation temperature of the gas.
  • the present invention provides a gas cooling device characterized by characteristics. This is different from the conventional cooling method using the heat of evaporation described above. It is possible to cool the gas to a required temperature (a temperature lower than the aforementioned adiabatic cooling water saturation temperature) using a heat exchanger. .
  • the water content in the gas condenses on the portion where the temperature is lower than the water saturation temperature to generate condensed water. This condensed water prevents sulfur oxides and dust contained in the gas from adhering to the heat exchange surface and corroding the surface, or reducing the heat exchange efficiency.
  • the heat exchanger has a storage unit for storing the cooling water, has means for guiding the condensed water recovered by the condensed water recovery device to the storage unit, and is cooled by the heat exchanger.
  • a gas cooler that further cools the gas by bringing the gas into contact with the cooling water can be provided.
  • the heat exchanger has a refrigerant supply device for supplying a refrigerant into the heat exchanger, the device includes a refrigerant flow path for passing a refrigerant for cooling the heat exchange surface,
  • the refrigerant flow path includes a first port for receiving and discharging the refrigerant, and a second port, and the refrigerant supply device supplies the refrigerant to the refrigerant channel from the first port and from the second port.
  • the supply mode of discharging and the supply mode of passing the discharge can be alternately performed.
  • the refrigerant supply device sets the temperature of the refrigerant at a temperature for cooling the heat exchange surface to the moisture saturation temperature or lower on the upstream side in the supply direction of the refrigerant, but on the downstream side, Adjust the refrigerant so that it is at or above the water saturation temperature.
  • This By switching the supply direction of the refrigerant, the portion where the moisture saturation temperature occurs on the heat exchange surface changes periodically, and as a result, the generation of condensed water on the entire heat exchange surface is obtained. It is possible to prevent problems such as corrosion of the heat exchange surface due to sulfur oxides and soot in the gas (which can occur without generation of such condensed water) over the entire heat exchange surface.
  • the refrigerant on the downstream side in the refrigerant supply direction, by adjusting the refrigerant so as to have a temperature equal to or higher than the same moisture saturation temperature, utilization of waste heat in the gas can be enhanced.
  • the entire heat exchange surface is set to a temperature lower than the water saturation temperature (the water concentration of ordinary boiler exhaust gas is about 5 to 15%, and the water saturation temperature is about 33 to 54 ° C
  • the temperature of the refrigerant discharged from the heat exchanger is usually from 35 ° C to 55 ° C at the highest, and at such a temperature, it is difficult to use the heat recovered from the gas. is there.
  • the supply direction of the refrigerant is switched between forward and reverse so that condensed water is generated on the heat exchange surface upstream in the supply direction, and as a result, the heat generated by the condensed water
  • the entire flushing of the exchange surface is performed, and the downstream side in the refrigerant supply direction is adjusted so as to be at or above the water saturation temperature, so that the temperature of the refrigerant discharged from the heat exchanger is reduced.
  • the present invention also provides a boiler, and a boiler facility having a boiler combustion exhaust gas flow path, wherein the gas cooling device as described above is installed in the boiler combustion exhaust gas flow path, and heat recovered from the boiler combustion gas by a heat exchanger.
  • the heat exchanger is water-cooled, and the condensed water in the condenser is supplied to the heat exchanger as cooling water. Water can be supplied to the boiler to use condensate and waste heat.
  • the present invention further provides a heat exchange surface set in a flow path of a gas containing a sulfur oxide such as a boiler combustion gas, the heat exchange surface being in contact with the gas, and at least a part of the heat exchange surface is set to a water saturation temperature.
  • a heat exchanger having the following cooling ability; and a desulfurization device that is set downstream of the heat exchange surface in the gas flow path and reacts an alkaline substance with the gas cooled by the heat exchanger to desulfurize the gas.
  • the present invention provides a gas processing apparatus characterized by the above. The efficiency of desulfurization due to the use of alkaline substances can be increased at lower temperatures, and this gas treatment device can efficiently perform desulfurization by lowering the temperature of the gas to the required temperature using a heat exchanger.
  • the reaction with the alkaline substance is preferably carried out by injecting ammonia into the gas cooled by the heat exchanger.
  • an electron beam irradiation device for irradiating the gas into which ammonia is injected with an electron beam, it is possible to obtain ammonium sulfate powder produced as a result of the reaction between ammonia and sulfur oxides as a by-product. it can.
  • the gas cooled by the heat exchanger has a reduced moisture content, the powder is formed in a much better condition than when the gas is cooled by the conventional cooling method described above. be able to.
  • the condensed water collected in the condensed water recovery device is added to the condensed water recovery device that collects the condensed water generated on the heat exchange surface, and to the gas into which ammonia is injected after cooling by the heat exchanger.
  • condensed water can be used to suppress the temperature rise due to the heat of reaction of desulfurization with ammonia, and the amount of water discharged as wastewater can be reduced.
  • the desulfurization device may be provided with a desulfurization device that performs desulfurization by bringing the gas cooled by the heat exchanger into contact with a desulfurization solution containing an alkaline substance such as ammonia.
  • the heat exchanger A refrigerant supply device for supplying a refrigerant into the exchanger, the device having a refrigerant flow passage for passing a refrigerant for cooling a heat exchange surface, the refrigerant flow passage receiving and discharging the refrigerant.
  • a refrigerant supply device that supplies a refrigerant to the refrigerant flow path from the first port and discharges the refrigerant from the second port, and vice versa.
  • the supply mode and the supply mode can be alternately performed, and condensed water is generated on the entire heat exchange surface by partially and alternately lowering the heat exchange surface to the moisture saturation temperature or lower.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of a gas processing apparatus of the present invention.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the gas processing apparatus of the present invention.
  • FIG. 3 is a schematic configuration diagram showing still another implementation omission of the gas treatment apparatus of the present invention.
  • FIG. 4 is a schematic configuration diagram showing another embodiment of the gas processing apparatus of the present invention.
  • FIG. 5 is a schematic configuration diagram showing an example of a boiler facility provided with the gas processing apparatus according to the present invention.
  • FIG. 6 is a schematic configuration diagram showing one embodiment of a heat exchanger used in the gas processing apparatus according to the present invention.
  • Fig. 7 is a sectional view taken along the line 7-7 in Fig. 6.
  • FIG. 8 is a cross-sectional view of a heat exchanger according to another embodiment.
  • FIG. 9 is a cross-sectional view taken along line 9-1 of FIG.
  • FIG. 10 is a sectional view taken along line 10-10 of FIG.
  • FIG. 11 is a sectional view taken along line 11-11 of FIG. Preferred embodiments of the invention
  • FIG. 1 is a schematic configuration diagram of a gas processing apparatus according to the wood invention.
  • this gas treatment device It has an ammonia injector 2 and a heat exchanger 3, which are set in a duct 1 through which high-temperature exhaust gas G containing compounds and the like passes.
  • the high-temperature exhaust gas G has a water concentration of 150 ° (:, a water concentration of 15 vol%).
  • the heat exchanger having the gas contact surface that is, the heat exchange surface 4 is provided.
  • the cooling water C as cooling soot is passed through the heat exchanger, and the heat exchanging surface 4 is higher than the water saturation temperature (54 ° C) for the above-mentioned water concentration of the exhaust gas.
  • the temperature is kept low at 30 to 40 ° C. Accordingly, the exhaust gas in contact with the heat exchange surface is cooled, and a part of the water contained therein is condensed on the heat exchange surface.
  • the temperature of the exhaust gas at the outlet of the heat exchanger was adjusted to 60 ° C, the water content became 12 vol%.
  • Condensed water is generated on the heat exchange surface, and the sulfur oxides that adhere to the heat exchange surface are washed away.
  • the condensed water generated on the heat exchange surface condenses the sulfur trioxide contained in the exhaust gas to produce dilute sulfuric acid, and the sulfur dioxide in the exhaust gas dissolves in the dilute sulfuric acid, resulting in strong acidity.
  • the ammonia is injected into the exhaust gas by the ammonia injector, so that the injected ammonia also dissolves at the same time, lowering the acidity of the condensed water and improving the cleaning effect. ing.
  • the condensed water is collected and discharged by a condensed water recovery unit 5 provided at the bottom of the heat exchanger 3.
  • Reference numeral 6 denotes a condensed water pH measuring device 6, which determines the amount of ammonia to be injected into the ammonia injector 2 based on the ph value measured here.
  • the opening of the ammonia flow control valve 7 is adjusted so as to be as follows. Data selected to monitor the pH of the condensate include the pH itself of the condensate, electrical conductivity, specific gravity, ammonium ion concentration, and salt concentration.
  • the setting range for each parameter varies depending on the concentration of sulfur oxides and moisture contained in the high-temperature gas, the type of metal material used for the heat exchange surface of the heat exchanger, etc.
  • the heat exchange surface of the heat exchanger is made of general-purpose stainless steel in boiler combustion exhaust gas
  • the properties of the high-temperature gas introduced into the heat exchanger such as the sulfur oxide and moisture concentration or the temperature, change rapidly in a short period of time, the properties of the condensed water remaining on the gas-contacting surface, There is a possibility that the properties of condensed water that has flowed down from the gas contact surface and collected will have a time lag.
  • ammonia injection rate can be adjusted in advance based on the sulfur oxide concentration in the hot gas upstream of the ammonia injector.
  • FIG. 2 is a schematic configuration diagram showing another embodiment of the gas treatment apparatus of the present invention.
  • this apparatus is significantly different from the apparatus shown in FIG. 1 in that a wet cooler 12 is provided downstream of the heat exchanger. That is, the wet-type cooler 12 is in the form of a tower, and the heat exchanger 3 is installed on the top of the wet-type cooler. The moisture condenses on the heat exchange surface 4 of the heat exchanger 3, and the wet-type cooler 12 The condensed water W that has naturally flown is drawn out from the bottom, pressurized by the circulating water pump 14, and then sprayed into the gas from the circulating water spray device 13 to cool the gas. .
  • FIG. 3 is a schematic configuration diagram showing another embodiment of the desulfurization apparatus of the present invention.
  • This apparatus has substantially the same configuration as that of FIG. 2, but is collected at the lower part of the wet cooler 16 The difference is that ammonia is injected into the condensed water W through the ammonia diffuser 17, and the gas is cooled and desulfurized. That is, in this device, the wet cooler 16 is a cooling / desulfurization device.
  • the supply of ammonia to the ammonia diffuser 17 can be the same as the ammonia supply (not shown) to the ammonia injector.
  • the boiler flue gas G that exited the boiler facility had a sulfur oxide concentration of 200 ppm at 150 ° C and a water concentration of 15 vol%, and ammonia gas 10 After being injected, it is introduced into a water-cooled heat exchanger 3, where it is treated to a temperature of 60 ° C and a water concentration of 12 V o 1%.
  • the exhaust gas is further brought into contact with cooling water containing ammonia sprayed by a spraying device 18 in a wet cooler 10 and cooled, and the sulfur oxides react with ammonia to be absorbed into the cooling water.
  • the concentration at the gas absorber outlet is reduced to 100 ppm.
  • the cooling water may include, for example, calcium hydroxide and Z or an alkaline substance such as calcium carbonate, magnesium hydroxide, and magnesium carbonate, and a salt of Z or an alkaline substance.
  • a dissolved aqueous solution or slurry can be used.
  • FIG. 4 shows an example in which the present invention is applied to an apparatus that produces ammonium sulfate powder as a by-product by irradiating an electron beam while reacting ammonia with exhaust gas.
  • 2 is an ammonia injector
  • 3 is a heat exchanger
  • 21 is a reactor that introduces exhaust gas into the reactor to react with ammonia and irradiates it with an electron beam to produce ammonium sulfate
  • 2 2 irradiates with an electron beam
  • the device 24 is an electrostatic precipitator that collects ammonium sulfate powder.
  • the boiler flue gas G leaving the boiler facility is assumed to be 150 ° (with a moisture concentration of 15 Vo 1% and a sulfur oxide concentration of 2000 ppm. After injecting gas A, it is introduced into the water-cooled heat exchanger 3 and treated to 60 ° C and 12 Vo 1% in the heat exchanger as in Figs.
  • the exhaust gas after the treatment is led to the reaction vessel 21, and the ammonia A mixed with the compressed air P is injected from the two-fluid nozzle 23 at the reaction vessel inlet by the line mixer 27, and then the electron beam irradiation device 2 An electron beam is irradiated by 2.
  • the sulfur oxides contained in the exhaust gas are converted into a by-product powder S containing ammonium sulfate as a main component in the reactor, and the sulfur oxide concentration at the reactor outlet is reduced. 100 ppm
  • the by-product powder S is collected by the electrostatic precipitator 24.
  • the gas contact surface 4 of the heat exchanger 3 The generated condensed water is collected in a condensed water recovery section 5 provided at the bottom of the heat exchanger, mixed with industrial water I in a mixed water tank 25, and the mixed water is mixed with a two-fluid nozzle 23 at the inlet of the reactor. Is sprayed together with a mixed gas of ammonia 10 and compressed air 29.
  • FIG. 5 shows an example in which the gas processing apparatus of the present invention is applied to a boiler facility.
  • the exhaust gas from the boiler 31 passes through the economizer 33 and the air heater 34, and then passes through the ammonia injector 2 and the heat exchanger 3 as in the gas processing device described above. It has become so.
  • the water from the boiler 31 passes through the turbine 32 and is condensed into water in the condenser 35, and is supplied to the heat exchanger 3 as cooling water by the pump 36, and then from the turbine 32.
  • the water is returned to the boiler via the economizer 33 by the boiler feed pump 37.
  • F is fuel, which is heated by the air heater 34 and supplied to the boiler.
  • the temperature of the boiler feedwater supplied to the boiler can be increased by recovering heat from the exhaust gas in the heat exchanger 3, so that the boiler efficiency can be improved.
  • 6 and 7 show a heat exchanger used in the gas processing apparatus according to the present invention. 2 shows one embodiment of the present invention.
  • the heat exchanger includes a casing 101 incorporated into the exhaust gas duct, and a plurality of heat exchangers (the upper three in the figure, the lower Cooling water pipes (three on each side) (not shown, but it is preferable to use finned pipes that extend radially from the pipe and extend in the longitudinal direction of the pipe in order to increase the heat exchange area).
  • a cooling water supply circuit for supplying cooling water to the cooling water pipe.
  • the left side is the upstream side of the gas flow, and the upper and lower side walls on the gas upstream side of the casing have first and second cooling water manifolds 105, respectively.
  • each of the upper and lower cooling water pipes 102 has one end connected to the corresponding upper and lower first manifold, and the other end connected to the second manifold.
  • the upper and lower first manifolds 105 are connected to a first cooling water supply / recovery pipe 112, and the cooling water supply / recovery pipe 112 is connected via an on-off valve 115 (not shown).
  • the upper and lower second manifolds 106 are connected to a second cooling water supply / recovery pipe 1 1 ′, and are connected to the cooling water supply tank.
  • the pipe is connected to a collection tank (not shown) via an on-off valve 118.
  • bypass pipes 1 1 9 and 1 2 0 having on-off valves 1 1 6 and 1 1 7 are connected, respectively. I have.
  • the on / off valves 1 1, 1 1, 1 1, 1 1, 1 1 and 1 8 are opened and closed as appropriate to alternately switch the cooling water supply direction between forward direction A and reverse direction B. Can be supplied. That is, if the on-off valves 1 16 and 1 17 are closed and the on-off valves 1 15 and 1 18 are opened, the cooling water is supplied and collected in the forward direction A, and the on-off valves 1 15 and 1 18 When the valve is closed and the other on-off valves 1 16 and 1 17 are opened, it is supplied in the reverse direction B and collected.
  • the temperature of the cooling water depends on the portion of the cooling water pipe 102 on the upstream side at that time.
  • the heat exchange surface (the surface of the cooling water pipe) up to the substantially folded portion 102 2 ′ of the cooling water pipe is set to a temperature low enough to cool the gas to the water saturation temperature or lower.
  • the temperature of the cooling water pipe surface (heat exchange surface) is adjusted to a level that does not lower the temperature to the water saturation temperature. That is, by adjusting the temperature of the cooling water in such a manner, the cooling water condenses on the heat exchange surface in the upstream half of the heat exchange surface in the direction in which the cooling water is supplied, but the downstream half.
  • condensed water is not generated, and the cooling water passing through this part is heated to a certain temperature by the heat from the gas and discharged.
  • the upstream side in the direction of supply of the cooling water is the force at which the above-mentioned sulfur oxides and the like are washed out by the generation of condensed water.
  • the downstream side does not perform such washing, but instead the cooling water is The purpose of this is to allow the heat to be heated to a certain temperature or higher by the heat from the air, and to make it possible to recover and use the heat from the discharged cooling water.
  • the cooling water pipe heat exchange surface
  • the cooling water must be kept at a low temperature until it is discharged from the heat exchanger. This is to avoid waste heat recovery and utilization.
  • the above-described flushing of the entire heat exchange surface with condensed water is performed by causing the condensed water to be generated over the entire heat exchange surface by alternately changing the supply direction of the cooling water between the forward and reverse directions A and B.
  • the condensed water collected at the bottom of the casing 101 is discharged through the discharge hole 107, and a part is used as cooling water or the like.
  • the cooling water pipe 102 extends downstream from one of the manifolds as shown in the figure, and is turned up at almost the middle portion 102 'of the cooling water pipe and upstream. It is preferred that the shape be such that it returns to the other manifold. This is because, regardless of whether the cooling water flows in the forward or reverse direction, the cooling water is returned to the upstream side of the gas flow in the downstream half at that time, and contacts the warm and insufficiently cooled gas. This is because a large amount of heat can be recovered from the gas.
  • FIG. 8 shows another embodiment of the heat exchanger.
  • the first and second cooling water manifolds 105, 106 are mounted only on the upper side wall of the casing 101, and on the downstream side of the wall, A relay manifold 110 is provided.
  • the cooling water pipe 102 extends from the first cooling water manifold 105 to the downstream side while meandering up and down, reaches a relay manifold 110, a first portion 102a, and a relay manifold. And a second portion 102 b reaching the second cooling water manifold 106 while meandering up and down from above.
  • FIG. 8 shows another embodiment of the heat exchanger.
  • the first and second cooling water manifolds 105, 106 are mounted only on the upper side wall of the casing 101, and on the downstream side of the wall, A relay manifold 110 is provided.
  • the cooling water pipe 102 extends from the first cooling water manifold 105 to the downstream side while meandering up and down, reaches a relay manifold 110,
  • the relay manifold 110 is divided into three chambers in the width direction of the casing of the heat exchanger, and the first and second portions 102 a, The end of 1102b communicates with each chamber.
  • the first and second portions 102a and 102b are each formed so as to protrude outside the casing 101 in a U-shape at the center thereof. This facilitates the setting and maintenance of the cooling water pipe.
  • the control of the supply direction of the cooling water is the same as that in the heat exchanger shown in Figs. 6 and 7, and the state shown in the figure is the force flowing the cooling water in one direction A. It is made to flow in the opposite direction, and the temperature of the cooling water is adjusted similarly.
  • the heat exchanger as shown in FIGS. 6 and 8 was used as the heat exchanger 3 in the boiler equipment shown in FIG. 5, and the flow rate of the boiler combustion exhaust gas was 100, 00 Nm 3 / h, The concentration was set to 15 vol%, and the same gas exchanged heat with the boiler feed water and fuel Z air in the economizer 33 and the air heater 34, respectively.As a result, the gas was cooled to 150 ° C. While passing through the ammonia injector 2 and the heat exchanger 3, the moisture generated in the boiler 31 is cooled to 30 ° C in the condenser 36 and the heat of the heat exchanger is converted to 10 O ton / h ascites. When used as cooling water, the exhaust gas is cooled to 50 to produce 2.5 ton of condensed water, and at the same time, the cooling water is heated to 75 C, enabling high-efficiency heat recovery. The boiler efficiency was greatly improved.
  • the gas temperature can be reduced to the required temperature suitable for the desulfurization, and it can occur on the heat exchange surface It is possible to wash off the adherence of the conductive sulfur oxide and the like by the condensed water generated on the heat exchange surface.
  • the cooling medium is supplied into the heat exchanger while alternately switching in the forward and reverse directions, and the temperature of the cooling medium is set so that the heat exchange surface to be cooled by the cooling medium is generally equal to or lower than the moisture saturation temperature.
  • the temperature of the cooling medium is set so that the heat exchange surface to be cooled by the cooling medium is generally equal to or lower than the moisture saturation temperature.
  • only the upstream side in the refrigerant supply direction is set to such a temperature, and the downstream side is allowed to reach the above temperature, thereby generating condensed water on the heat exchange surface.
  • the location changes according to the direction of supply of the refrigerant, but as a whole, it can be generated over the entire heat exchange surface, and the temperature of the refrigerant discharged from the heat exchanger is determined by the heat recovered from the gas.
  • the temperature can be raised above a certain level, waste heat recovery from exhaust gas can be effectively performed, and waste heat in boiler equipment and the like can be efficiently used.
  • the heat exchange surface of the heat exchanger can be made of inexpensive materials such as steel and general-purpose stainless steel.

Abstract

A gas treatment device which treats sulfur oxides contained in exhaust gas by the combination of these oxides with alkali substances such as ammonia capable of cooling the exhaust gas to a temperature suitable for the combination through a heat exchanger and properly avoiding sulfur oxides contained in the gas from being adhered to heat exchanging surfaces resulting in corrosion, wherein the temperature of at least a part of the heat exchanging surfaces of the heat exchanger is reduced to a moisture saturated temperature or below of the gas, whereby the moisture contained in the gas condenses partly on a part of the heat exchanging surfaces so as to produce condensed water on the surfaces, thus preventing sulphur oxides or soot and dust from adhering to these surfaces, and also a refrigerant cooling the heat exchanging surfaces can produce the generation of condensed water through the entire surfaces of the heat exchanging surfaces by alternately switching refrigerant supply in the forward and reverse directions, and the refrigerant delivered can efficiently utilize waste heat by increasing the temperature to a high temperature of moisture saturated temperature or higher.

Description

明 細 書 ガス冷却装置、 ガス処理装置、 及び、 ボイラ設備 技術分野  Description Gas cooling equipment, gas treatment equipment, and boiler equipment technical field
本発明は、 ガス処理に係り、 特 ボイラ燃焼ガス等に含まれる硫 黄酸化物を除去するガス冷却装置、 ガス処理装置、 ならびに、 それら を用いたボイラ設備に関する。  The present invention relates to gas processing, and more particularly, to a gas cooling device and a gas processing device for removing sulfur oxides contained in boiler combustion gas and the like, and a boiler facility using the same.
背景技術 Background art
ボイラ燃焼ガス等の、 硫黄酸化物を含む高温ガスを脱硫処理する のに、 アンモニア等のアル力リ性物質を用いて行う方法が知られてい る。 その一つは、 硫黄酸化物を含むガスを、 アンモニア等を含むアル 力リ性水溶液と接触させ、 該硫黄酸化物をアル力リ性物質と化合させ て除去する方法であり、 他の一つは、 硫黄酸化物を含むガス中にアン モニァ等のアル力リ性物質を噴霧等により注入し、 これに電子ビーム を照射し、 (副生物としての) 硫安粉体等に転換して除去する方法で ある。 いずれの方法においても、 硫黄酸化物にアンモニア等のアル力 リ性物質を化合させて脱硫を行うわけであるが、 脱硫効率を高めるた めには、 ガスを冷却することが必要であり、 その冷却は、 一般的に、 該ガスを冷却水と接触させ、 冷却水の蒸発熱を利用して行われる。 し かし、 この蒸発による冷却は、 ガス内に含まれる水分量によって決定 される水分飽和温度までが限度であり、 従って、 該ガスの温度を十分 に低くすることはできず、 このため、 脱硫装置での脱硫率を高くする には制約があった。 要するに、 蒸発による冷却は、 その冷却の最中に 当該ガス中の含有水分が増加するので、 それだけ、 水分飽和温度は上 昇し、 ガスを冷却できる温度が限定される。 より詳細には、 ガスの冷 却は実質的には断熱条忭下で行われるので、 その断熱条件下で行われ る冷却水の蒸発によって定まる水分飽和温度、 いわゆる断熱冷却水分 飽和温度は、 冷却前のガス温度が高いほど、 また、 冷却前のガスの水 分濃度が高いほど、 高くなり、 従って、 その分だけガスを低温にする ことはできなくなるのである。 下表は、 その例を示す。 There is known a method for desulfurizing a high-temperature gas containing sulfur oxides such as a boiler combustion gas by using an alkaline substance such as ammonia. One is a method in which a gas containing sulfur oxide is brought into contact with an alkaline aqueous solution containing ammonia or the like, and the sulfur oxide is combined with an alkaline substance to remove the sulfur oxide. Is used to inject ammonia or other alkaline substances into a gas containing sulfur oxides by spraying, etc., irradiate them with an electron beam, convert them into ammonium sulfate powder (as a by-product), and remove them. Method. In either case, desulfurization is performed by combining sulfur oxides with an alkaline substance such as ammonia.However, in order to increase the desulfurization efficiency, it is necessary to cool the gas. Cooling is generally performed by bringing the gas into contact with cooling water and utilizing the heat of evaporation of the cooling water. However, the cooling by evaporation is limited to the water saturation temperature determined by the amount of water contained in the gas, and therefore, the temperature of the gas cannot be lowered sufficiently, so that the desulfurization There were restrictions on increasing the desulfurization rate in the equipment. In short, the cooling by evaporation increases the water content in the gas during the cooling, so that the water saturation temperature rises and the temperature at which the gas can be cooled is limited. More specifically, since gas cooling is performed substantially under adiabatic conditions, the water saturation temperature determined by the evaporation of cooling water performed under the adiabatic conditions, so-called adiabatic cooling water The saturation temperature increases as the temperature of the gas before cooling increases, and as the water concentration of the gas before cooling increases, so that the gas cannot be lowered accordingly. The following table shows an example.
Figure imgf000004_0001
Figure imgf000004_0001
なお、 高温ガスを循環冷却水と接触させて冷却する湿式冷却方式の 場合、 ガスはほぼ断熱冷却水分飽和温度まで冷却することができるが 、 冷却水を噴霧して行う場合であって、 噴霧した水を完全に蒸発させ て排水を出さないようにする場合には、 断熱冷却水分飽和温度よりも 通常 1 0 °c程度高い温度までしか冷却できない。  In the case of a wet cooling system in which a high-temperature gas is brought into contact with circulating cooling water to cool the gas, the gas can be cooled almost to the adiabatic cooling water saturation temperature, but the cooling water is sprayed. If water is completely evaporated to prevent drainage, it can only be cooled to a temperature that is typically about 10 ° C higher than the adiabatic cooling water saturation temperature.
従って、 高い脱硫率を達成するためには、 前記の冷却水の蒸発熱を 用いる方法に代わる効率的なガスの冷却方法を見い出す必要がある。 また、 前述のように従来の冷却方法においては、 冷却に伴いガス中 の水分濃度の上昇は避けられないが、 ガス中にアンモニアを注入して 、 硫安を含むアンモニア化合物紛体を乾燥状態で回収するためには、 回収時に紛体ができるだけ乾燥していることが望ましく、 従って、 上 記の如き従来の冷却方法は、 それに適しておらず、 特に、 排ガス中に もともと含まれる水分濃度が高い場合ゃ排ガスの冷却前の温度が高い 場合には、 乾燥状態での回収が困難にであった。  Therefore, in order to achieve a high desulfurization rate, it is necessary to find an efficient gas cooling method that can replace the above-mentioned method using the heat of evaporation of cooling water. Further, as described above, in the conventional cooling method, an increase in the water concentration in the gas is inevitable due to the cooling, but ammonia is injected into the gas to recover the ammonia compound powder containing ammonium sulfate in a dry state. For this reason, it is desirable that the powder is as dry as possible at the time of collection. Therefore, the conventional cooling method as described above is not suitable for such a method, especially when the moisture concentration originally contained in the exhaust gas is high. If the temperature before cooling was high, it was difficult to recover in a dry state.
この点でもまた、 ガスの冷却方法を改善することが望まれていた。 本発明は、 このような点に鑑み、 硫黄酸化物を含む高温ガスを、 ガ ス中の水分濃度をあげることなく、 所要の温度まで冷却することがで き、 高い脱硫率を達成できるガス処理装置、 また、 その冷却を行うた めの冷却装置、 更に、 それらを利用したボイラ設備を提供することを 目的としている。  In this respect, it was also desired to improve the gas cooling method. In view of the above, the present invention provides a gas treatment that can cool a high-temperature gas containing sulfur oxides to a required temperature without increasing the moisture concentration in the gas, and achieve a high desulfurization rate. The purpose is to provide equipment, cooling equipment for cooling the equipment, and boiler equipment using them.
また、 本発明は、 ガス冷却によってガスから回収した熱を、 有効に 利用することをも目的としている。 発明の開示 In addition, the present invention effectively utilizes heat recovered from gas by gas cooling. It is also intended to be used. Disclosure of the invention
本発明は、 ガスの流路内に設定される熱交換面を備え、 該熱交換面 の少なくとも一部を当該ガスの水分飽和温度以下に冷却する能力を有 する熱交換器を備えることを基本的特徴とするガス冷却装置を提供す る。 これは前述した従来の蒸発熱によって冷却していたものとは異な り、 熱交換器により所要の温度 (前述の断熱冷却水分飽和温度より低 い温度) までガスを冷却することを'可能とする。 また、 熱交換面には 、 水分飽和温度以下にした部分にガス中の含有水分が凝縮して凝縮水 を生成する。 この凝縮水は、 ガス中に含まれる硫黄酸化物や煤塵が熱 交換面に付着して当該面を腐食したり、 熱交換効率を低下するのを防 止する。  The present invention basically includes a heat exchanger having a heat exchange surface set in a gas flow path, and having a heat exchanger capable of cooling at least a part of the heat exchange surface to a temperature not higher than the moisture saturation temperature of the gas. The present invention provides a gas cooling device characterized by characteristics. This is different from the conventional cooling method using the heat of evaporation described above. It is possible to cool the gas to a required temperature (a temperature lower than the aforementioned adiabatic cooling water saturation temperature) using a heat exchanger. . In addition, on the heat exchange surface, the water content in the gas condenses on the portion where the temperature is lower than the water saturation temperature to generate condensed water. This condensed water prevents sulfur oxides and dust contained in the gas from adhering to the heat exchange surface and corroding the surface, or reducing the heat exchange efficiency.
また、 このガス冷却装置においては、 熱交換面において発生する凝 縮水を回収するための凝縮水回収装置を備えるようにし、 回収された 凝縮水を利用することができるようにすることが好ましい。 具体的に は、 上記熱交換器は、 冷却水を貯留する貯留部を有し、 凝縮水回収装 置で回収した凝縮水を該貯留部に導く手段を有し、 熱交換器によって 冷却されたガスを冷却水と接触させることにより更に冷却するガス冷 却器を備えるようにすることができる。 また、 熱交換器が、 当該熱交 換器内に冷媒を供給するための冷媒供給装置を有し、 該装置は、 前記 熱交換面を冷却するための冷媒を通す冷媒流路を備え、 該冷媒流路が 冷媒を受入排出する第 1の出入口、 及び、 第 2の出入口を備え、 冷媒 供給装置が、 前記冷媒流路に対し冷媒を、 第 1の出入口から供給して 第 2の出入口から排出する供給態様と、 その逆に通す供給態様とを交 互に行えるようにすることができる。 具体的には、 冷媒供給装置が、 冷媒の温度を、 当該冷媒の供給方向の上流側では前記熱交換面を前記 水分飽和温度以下まで冷却するための温度とするが、 下流側では、 当 該冷媒を同水分飽和温度以上になるように、 調整するようにする。 こ のようにすると、 冷媒の供給方向を切替えることにより、 熱交換面で の水分飽和温度の生じる部分が周期的に変り、 結果的には、 当該熱交 換面全体に凝縮水の発生を得ることができ、 (そのような凝縮水の発 生が無ければ生じ得る)ガス中の硫黄酸化物や煤煙等による熱交換面 の腐食等の問題を,熱交換面全面にわたって防止することができる。 また、 冷媒供給方向での下流側では、 当該冷媒を同水分飽和温度以上 になるように、 調整することにより、 ガス中の廃熱利用を高めること ができる。 すなわち、 熱交換面全体を水分飽和温度以下にするとする と (ボイラの通常の排ガスの水分濃度が約 5— 1 5 %であるので、 そ の水分飽和温度は 3 3 — 5 4 °C程度なので)、 当該熱交換器から排出 される冷媒の温度は、 通常 3 5 °Cから、 高くても 5 5 °C程度であり、 このような温度ではガスから回収した熱を利用するのが困難である。 本発明では、 上記のように、 冷媒の供給方向を正逆交互に切替えるこ とにより、 供給方向での上流では熱交換面に凝縮水が発生するように して、 結果として、 凝縮水による熱交換面の洗い流しを全面的に行え るようにすると共に、 冷媒供給方向での下流側では、 水分飽和温度以 上になるように調整するようにしたので、 当該熱交換器から排出され る冷媒温度をより高温とすることができ、 廃熱利用を効率的に行うこ とができる。 また、 ガスの流路の前記熱交換器よりも上流側には、 ガ ス中にアンモニア等のアル力リ性物質を注入するアル力リ性物質注入 装置を設けることが好ましい。 このようにすることにより、 熱交換面 上に発生する凝縮水が硫黄酸化物が溶け込みにより酸性になる傾向を 緩和することができる。 ただし、 熱交換面に樹脂材料、 特にフッ素樹 脂等を塗布することにより、 熱交換面の腐食等の問題を回避すること ができ、 このような場合には、 アンモニア等のアルカリ性物質の注入 の必要性は、 特には無くなる。 Further, in this gas cooling device, it is preferable to provide a condensed water collecting device for collecting the condensed water generated on the heat exchange surface so that the collected condensed water can be used. Specifically, the heat exchanger has a storage unit for storing the cooling water, has means for guiding the condensed water recovered by the condensed water recovery device to the storage unit, and is cooled by the heat exchanger. A gas cooler that further cools the gas by bringing the gas into contact with the cooling water can be provided. Further, the heat exchanger has a refrigerant supply device for supplying a refrigerant into the heat exchanger, the device includes a refrigerant flow path for passing a refrigerant for cooling the heat exchange surface, The refrigerant flow path includes a first port for receiving and discharging the refrigerant, and a second port, and the refrigerant supply device supplies the refrigerant to the refrigerant channel from the first port and from the second port. The supply mode of discharging and the supply mode of passing the discharge can be alternately performed. Specifically, the refrigerant supply device sets the temperature of the refrigerant at a temperature for cooling the heat exchange surface to the moisture saturation temperature or lower on the upstream side in the supply direction of the refrigerant, but on the downstream side, Adjust the refrigerant so that it is at or above the water saturation temperature. This By switching the supply direction of the refrigerant, the portion where the moisture saturation temperature occurs on the heat exchange surface changes periodically, and as a result, the generation of condensed water on the entire heat exchange surface is obtained. It is possible to prevent problems such as corrosion of the heat exchange surface due to sulfur oxides and soot in the gas (which can occur without generation of such condensed water) over the entire heat exchange surface. Further, on the downstream side in the refrigerant supply direction, by adjusting the refrigerant so as to have a temperature equal to or higher than the same moisture saturation temperature, utilization of waste heat in the gas can be enhanced. In other words, if the entire heat exchange surface is set to a temperature lower than the water saturation temperature (the water concentration of ordinary boiler exhaust gas is about 5 to 15%, and the water saturation temperature is about 33 to 54 ° C, The temperature of the refrigerant discharged from the heat exchanger is usually from 35 ° C to 55 ° C at the highest, and at such a temperature, it is difficult to use the heat recovered from the gas. is there. In the present invention, as described above, the supply direction of the refrigerant is switched between forward and reverse so that condensed water is generated on the heat exchange surface upstream in the supply direction, and as a result, the heat generated by the condensed water The entire flushing of the exchange surface is performed, and the downstream side in the refrigerant supply direction is adjusted so as to be at or above the water saturation temperature, so that the temperature of the refrigerant discharged from the heat exchanger is reduced. Can be heated to a higher temperature, and waste heat can be used efficiently. Further, it is preferable to provide an apparatus for injecting an alkaline substance such as ammonia into the gas upstream of the heat exchanger in the gas flow path. By doing so, the tendency of the condensed water generated on the heat exchange surface to become acidic due to the dissolution of sulfur oxides can be mitigated. However, by applying a resin material, especially fluorine resin, to the heat exchange surface, it is possible to avoid problems such as corrosion of the heat exchange surface, and in such a case, it is necessary to inject an alkaline substance such as ammonia. The need is particularly eliminated.
本発明はまた、 ボイラ、 及び、 ボイラ燃焼排ガス流路を有するボイ ラ設備において、 前記ボイラ燃焼排ガス流路に上記のようなガス冷却 装置を設置し、 熱交換器によってボイラ燃焼ガスから回収した熱をボ ィラ給水の加熱に利用するようにしたボイラ設備を提供することを特 徴とする。 復水器を有するボイラ設備にあっては、 熱交換器を水冷式 とするとともに、 該熱交換器に、 その冷却水として、 前記復水器で凝 縮した水を供給し、 熱交換後に同水をボイラに供給するようにし復水 の利用及び廃熱の利用を図ることができる。 The present invention also provides a boiler, and a boiler facility having a boiler combustion exhaust gas flow path, wherein the gas cooling device as described above is installed in the boiler combustion exhaust gas flow path, and heat recovered from the boiler combustion gas by a heat exchanger. A It is a feature to provide boiler equipment to be used for heating the feed water of the boiler. In a boiler facility having a condenser, the heat exchanger is water-cooled, and the condensed water in the condenser is supplied to the heat exchanger as cooling water. Water can be supplied to the boiler to use condensate and waste heat.
更に、 本発明は、 ボイラ燃焼ガス等の硫黄酸化物を含むガスの流路 に設定されて、 同ガスに接触する熱交換面を備え、 該熱交換面の少な くとも一部を水分飽和温度以下に冷却する能力を有する熱交換器と、 ガスの流路における熱交換面の下流側に設定され、 熱交換器によって 冷却されたガスにアルカリ性物質を反応させ脱硫するための脱硫装置 とを備えたことを特徴とするガス処理装置を提供する。 アル力リ性物 質による脱硫は低温においてほど、 効率を上げることができ、 このガ ス処理装置では、 熱交換器によってガスを所要の温度まで温度を下げ て効率良く脱硫処理を行うことができる。 アル力リ性物質との反応は 、 熱交換器により冷却されたガス中にアンモニアを注入することによ つて行うことが好ましい。 また、 アンモニアが注入されたガスに電子 ビームを照射する電子ビーム照射装置を設けることにより、 アンモニ ァと硫黄酸化物とが反応して生成される硫安の粉体を副生品として得 ることができる。 この場合、 熱交換器で冷却されたガスは、 その含有 水分が低下されているので、 前述の従来の冷却方法でガス冷却した場 合に比べて、 遥かに良好な状態で紛体の生成を行うことができる。 ま たこの装置では、 熱交換面で発生した凝縮水を回収する凝縮水回収装 置と、 熱交換器による冷却後でアンモニアが注入されるガスに、 凝縮 水回収装置に回収された凝縮水を注入するノズルとを設けることによ り、 凝縮水を、 アンモニアによる脱硫の反応熱による温度上昇を抑え るのに利用できると共に、 それを排水として排出する量も減らすこと ができる。 また、 脱硫装置が、 熱交換器により冷却されたガスを、 ァ ンモニァ等のアルカリ性物質を含む脱硫液に接触させることにより脱 硫を行う脱硫装置を設けることもできる。 更に、 熱交換器が、 当該熱 交換器内に冷媒を供給するための冷媒供給装置を有し、 該装置は、 熱 交換面を冷却するための冷媒を通す冷媒流路を備え、 該冷媒流路が冷 媒を受入排出する第 1の出入口、 及び、 第 2の出入口を備え、 冷媒供 給装置が、 冷媒流路に対し冷媒を、 第 1の出入口から供給して第 2の 出入口から排出する供給態様と、 その逆に通す供給態様とを交互に行 えるようにし、 熱交換面を部分的に交互に水分飽和温度以下にするこ とにより、 当該熱交換面全体に凝縮水を発生させるようにすることが 好ましい。 図面の簡単な説明 The present invention further provides a heat exchange surface set in a flow path of a gas containing a sulfur oxide such as a boiler combustion gas, the heat exchange surface being in contact with the gas, and at least a part of the heat exchange surface is set to a water saturation temperature. A heat exchanger having the following cooling ability; and a desulfurization device that is set downstream of the heat exchange surface in the gas flow path and reacts an alkaline substance with the gas cooled by the heat exchanger to desulfurize the gas. The present invention provides a gas processing apparatus characterized by the above. The efficiency of desulfurization due to the use of alkaline substances can be increased at lower temperatures, and this gas treatment device can efficiently perform desulfurization by lowering the temperature of the gas to the required temperature using a heat exchanger. . The reaction with the alkaline substance is preferably carried out by injecting ammonia into the gas cooled by the heat exchanger. In addition, by providing an electron beam irradiation device for irradiating the gas into which ammonia is injected with an electron beam, it is possible to obtain ammonium sulfate powder produced as a result of the reaction between ammonia and sulfur oxides as a by-product. it can. In this case, since the gas cooled by the heat exchanger has a reduced moisture content, the powder is formed in a much better condition than when the gas is cooled by the conventional cooling method described above. be able to. In this system, the condensed water collected in the condensed water recovery device is added to the condensed water recovery device that collects the condensed water generated on the heat exchange surface, and to the gas into which ammonia is injected after cooling by the heat exchanger. By providing a nozzle for injection, condensed water can be used to suppress the temperature rise due to the heat of reaction of desulfurization with ammonia, and the amount of water discharged as wastewater can be reduced. Further, the desulfurization device may be provided with a desulfurization device that performs desulfurization by bringing the gas cooled by the heat exchanger into contact with a desulfurization solution containing an alkaline substance such as ammonia. In addition, the heat exchanger A refrigerant supply device for supplying a refrigerant into the exchanger, the device having a refrigerant flow passage for passing a refrigerant for cooling a heat exchange surface, the refrigerant flow passage receiving and discharging the refrigerant. A refrigerant supply device that supplies a refrigerant to the refrigerant flow path from the first port and discharges the refrigerant from the second port, and vice versa. Preferably, the supply mode and the supply mode can be alternately performed, and condensed water is generated on the entire heat exchange surface by partially and alternately lowering the heat exchange surface to the moisture saturation temperature or lower. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のガス処理装置の一実施形態を示す概略構成図。 図 2は、 本発明のガス処理装置の他の実施形態を示す概略構成図。 図 3は、 本発明のガス処理装置の更に他の実施懈怠を示す概略構成 図。  FIG. 1 is a schematic configuration diagram showing one embodiment of a gas processing apparatus of the present invention. FIG. 2 is a schematic configuration diagram showing another embodiment of the gas processing apparatus of the present invention. FIG. 3 is a schematic configuration diagram showing still another implementation omission of the gas treatment apparatus of the present invention.
図 4は、 本発明のガス処理装置の別の実施形態を示す概略構成図。 図 5は、 本発明の本発明に係るガス処理装置を備えたボイラ施設の 一例を示す概略構成図。  FIG. 4 is a schematic configuration diagram showing another embodiment of the gas processing apparatus of the present invention. FIG. 5 is a schematic configuration diagram showing an example of a boiler facility provided with the gas processing apparatus according to the present invention.
図 6は、 本発明に係るガス処理装置で用いられる熱交換器の一実施 形態を示す概略構成図。  FIG. 6 is a schematic configuration diagram showing one embodiment of a heat exchanger used in the gas processing apparatus according to the present invention.
図 7は、 図 6の 7 — 7線断面図。  Fig. 7 is a sectional view taken along the line 7-7 in Fig. 6.
図 8は、 他の実施形態の熱交換器の断面図。  FIG. 8 is a cross-sectional view of a heat exchanger according to another embodiment.
図 9は、 図 8の 9一 9線断面図。  FIG. 9 is a cross-sectional view taken along line 9-1 of FIG.
図 10は、 図 8の 10— 10線断面図。  FIG. 10 is a sectional view taken along line 10-10 of FIG.
図 11は、 図 8の 11— 11線断面図。 発明の好適な実施形態  FIG. 11 is a sectional view taken along line 11-11 of FIG. Preferred embodiments of the invention
以下、 本発明の実施形態を、 添付図面に基づき説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 1は、 木発明にかかるガス処理装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of a gas processing apparatus according to the wood invention.
図示のように、 このガス処理装置は、 ボイラから排出される硫黄酸 化物等を含む高温排ガス Gを通すダク 卜 1内に設定されるアンモニア 注入器 2、 熱交換器 3を有している。 As shown in the figure, this gas treatment device It has an ammonia injector 2 and a heat exchanger 3, which are set in a duct 1 through which high-temperature exhaust gas G containing compounds and the like passes.
高温排ガス Gは、 1 5 0 ° (:、 水分濃度 1 5 v o l %とされ、 アンモ ニァ注入装置 2からアンモニアガス Aを注入した後、 接ガス面すなわ ち熱交換面 4を備える熱交換器 3に通される。 熱交換器には、 冷煤と しての冷却水 Cが通され、 熱交換面 4は、 排ガスの上記水分濃度に対 する水分飽和温度 ( 5 4 °C ) よりも低い 3 0〜 4 0 °Cに保たれる。 従 つて、 該熱交換面に接する排ガスは冷却されると共に、 それに含まれ る水分の一部は熱交換面上で凝縮する。 このため、 排ガス中の水分量 は低下し、 熱交換器の出口での排ガスの温度を 6 0 °Cとなるようにし た場合、 その水分濃度は 1 2 vol %となった。  The high-temperature exhaust gas G has a water concentration of 150 ° (:, a water concentration of 15 vol%). After the ammonia gas A is injected from the ammonia injector 2, the heat exchanger having the gas contact surface, that is, the heat exchange surface 4 is provided. The cooling water C as cooling soot is passed through the heat exchanger, and the heat exchanging surface 4 is higher than the water saturation temperature (54 ° C) for the above-mentioned water concentration of the exhaust gas. The temperature is kept low at 30 to 40 ° C. Accordingly, the exhaust gas in contact with the heat exchange surface is cooled, and a part of the water contained therein is condensed on the heat exchange surface. When the temperature of the exhaust gas at the outlet of the heat exchanger was adjusted to 60 ° C, the water content became 12 vol%.
熱交換面上では凝縮した凝縮水が発生し、 同熱交換面に付着しょう とする硫黄酸化物を洗い流す。 実際には、 熱交換面に生成する凝縮水 には、 排ガス中に含まれている三酸化硫黄が凝縮して希硫酸が生じ、 さらに該希硫酸に排ガス中の二酸化硫黄が溶解して強酸性となるが、 図示の例では、 アンモニア注入器によって、 排ガス中にアンモニアを 注入しているため、 注入されたアンモニアも同時に溶解して、 当該凝 縮水の酸性度を低下し、 洗浄効果を向上している。 その結果、 該熱交 換器の熱交換面を鋼、 あるいは汎用ステンレス鋼のように安価な材料 で製作しても、 接ガス面での腐食を抑制することができる。 凝縮水は 熱交換器 3の底部に設けられた凝縮水回収部 5で回収され排出される 。 参照番号 6は凝縮水の p H測定器 6であり、 ここで測定される p h 値に基づきアンモニア注入装置 2でのアンモニア注入量を決定して、 該凝縮水の p Hが 3以上 5以下になるようにアンモニア流量調整弁 7 の開度を調整するようになっている。 該凝縮水の p Hをモニタするた めに選ばれるデータとしては、 該凝縮水の p H自体、 電気伝導度、 比 重、 アンモニゥムイオン濃度、 及び塩濃度がある。 なお、 各パラメ一 夕の設定範囲は、 高温ガスに含まれる硫黄酸化物及び水分濃度、 熱交 換器の熱交換面に使用される金属材料の種類等によって変わってくる 力 例えば、 ボイラ燃焼排ガスにおいて、 熱交換器の熱交換面を汎用 ステンレス鋼で製作する場合、 p Hを 2以上 7以下の範囲に調整する のが好ましい。 ただし、 熱交換器に導入される高温ガスの硫黄酸化物 及び水分濃度、 又は温度等の性状が、 短期間で急激に変化する場合、 接ガス面上に滞留している凝縮水の性状と、 接ガス面から流下して回 収された後の凝縮水の性状には、 時間的なズレが生じる可能性がある 。 このため、 アンモニア注入装置でのアンモニアの注入量は、 時間的 応答のより速い指標である、 熱交換器から出たガス中のアンモニア濃 度に基づいて調整することが望ましい。 あるいは、 アンモニア注入量 は、 先行的にアンモニア注入装置の上流の高温ガス中の硫黄酸化物濃 度に基づき調整することも可能である。 Condensed water is generated on the heat exchange surface, and the sulfur oxides that adhere to the heat exchange surface are washed away. Actually, the condensed water generated on the heat exchange surface condenses the sulfur trioxide contained in the exhaust gas to produce dilute sulfuric acid, and the sulfur dioxide in the exhaust gas dissolves in the dilute sulfuric acid, resulting in strong acidity. However, in the example shown in the figure, the ammonia is injected into the exhaust gas by the ammonia injector, so that the injected ammonia also dissolves at the same time, lowering the acidity of the condensed water and improving the cleaning effect. ing. As a result, even if the heat exchange surface of the heat exchanger is made of an inexpensive material such as steel or general-purpose stainless steel, corrosion on the gas contact surface can be suppressed. The condensed water is collected and discharged by a condensed water recovery unit 5 provided at the bottom of the heat exchanger 3. Reference numeral 6 denotes a condensed water pH measuring device 6, which determines the amount of ammonia to be injected into the ammonia injector 2 based on the ph value measured here. The opening of the ammonia flow control valve 7 is adjusted so as to be as follows. Data selected to monitor the pH of the condensate include the pH itself of the condensate, electrical conductivity, specific gravity, ammonium ion concentration, and salt concentration. The setting range for each parameter varies depending on the concentration of sulfur oxides and moisture contained in the high-temperature gas, the type of metal material used for the heat exchange surface of the heat exchanger, etc. Force For example, when the heat exchange surface of the heat exchanger is made of general-purpose stainless steel in boiler combustion exhaust gas, it is preferable to adjust the pH to a range of 2 or more and 7 or less. However, if the properties of the high-temperature gas introduced into the heat exchanger, such as the sulfur oxide and moisture concentration or the temperature, change rapidly in a short period of time, the properties of the condensed water remaining on the gas-contacting surface, There is a possibility that the properties of condensed water that has flowed down from the gas contact surface and collected will have a time lag. For this reason, it is desirable to adjust the amount of ammonia injected by the ammonia injector based on the ammonia concentration in the gas leaving the heat exchanger, which is a faster indicator of the time response. Alternatively, the ammonia injection rate can be adjusted in advance based on the sulfur oxide concentration in the hot gas upstream of the ammonia injector.
図 2は、 本発明のガス処理装置の他の実施形態を示す概略構成図で ある。  FIG. 2 is a schematic configuration diagram showing another embodiment of the gas treatment apparatus of the present invention.
図示の通り、 この装置は、 図 1のものに比べて、 熱交換器の下流側 に湿式冷却器 1 2を備えている点が大きな相違である。 すなわち、 湿 式冷却器 1 2は搭状とされ、 その頂部に該熱交換器 3が設置されてお り、 熱交換器 3の熱交換面 4で水分が凝縮し、 湿式冷却器の底部に自 然流下した凝縮水 Wを、 その底部から抜き出して循環水ポンプ 1 4に よって昇圧の後、 循環水噴霧装置 1 3からガス中に噴霧することによ り、 当該ガスの冷却を行っている。  As shown in the figure, this apparatus is significantly different from the apparatus shown in FIG. 1 in that a wet cooler 12 is provided downstream of the heat exchanger. That is, the wet-type cooler 12 is in the form of a tower, and the heat exchanger 3 is installed on the top of the wet-type cooler. The moisture condenses on the heat exchange surface 4 of the heat exchanger 3, and the wet-type cooler 12 The condensed water W that has naturally flown is drawn out from the bottom, pressurized by the circulating water pump 14, and then sprayed into the gas from the circulating water spray device 13 to cool the gas. .
ボイラ設備を出た 1 5 0 :、 水分濃度 1 5 V o 1 %のボイラ燃焼排 ガス 8に、 ァンモニァ注入装置 2からアンモニアガス 1 0を注入した 後、 水冷式の熱交換器 1 2に導入される。 排ガスは図 1の場合と同じ く、 該熱交換器 3で温度 6 0 :、 水分濃度 1 2 V o 1 %まで処理され 、 さらに湿式冷却器 1 2で循環冷却水 1 5と接触され、 水分飽和温度 である 5 4 °Cまで冷却される。 熱交換器の底部に集められた凝縮水は 、 同低部から抜き出して循環水ポンプ 1 4によって昇圧の後、 循環水 噴霧装置 1 3から噴霧する。 なお、 該熱交換器の熱交換面 4で生成す る凝縮水の水量は、 湿式冷却塔内で蒸発する水量よりも多いため、 凝 縮水の一部は、 底部より系外に排出される。 . 150 after leaving the boiler facility: After injecting ammonia gas 10 from the ammonia injection device 2 into the boiler combustion exhaust gas 8 with a moisture concentration of 15 Vo 1%, it was introduced into the water-cooled heat exchanger 12 Is done. Exhaust gas is treated in the heat exchanger 3 at a temperature of 60: and a water concentration of 12 Vo 1% as in the case of Fig. 1, and then contacted with circulating cooling water 15 in a wet cooler 12 to remove water. It is cooled to the saturation temperature of 54 ° C. The condensed water collected at the bottom of the heat exchanger is extracted from the lower part, pressurized by a circulating water pump 14, and sprayed from a circulating water spraying device 13. Note that the amount of condensed water generated on the heat exchange surface 4 of the heat exchanger is larger than the amount of water evaporated in the wet cooling tower. Part of the condensate is discharged out of the system from the bottom. .
図 3は、 本発明の脱硫装置の他の実施形態を示す概略構成図である この装置は、 図 2のものとほぼ同じ構成となっているが、 湿式冷却 器 1 6の低部に集められる凝縮水 W中にアンモニア散気装置 1 7を通 してアンモニアを注入するようになっており、 ガスの冷却と共に脱硫 を行うようになっている点で異なる。 すなわち、 この装置では、 湿式 冷却器 1 6は、 冷却 · 脱硫装置となっている。 アンモニア散気装置 1 7に対するアンモニアの供給は、 アンモニア注入器への(図示しない) アンモニア供給源と同じにすることができる。  FIG. 3 is a schematic configuration diagram showing another embodiment of the desulfurization apparatus of the present invention. This apparatus has substantially the same configuration as that of FIG. 2, but is collected at the lower part of the wet cooler 16 The difference is that ammonia is injected into the condensed water W through the ammonia diffuser 17, and the gas is cooled and desulfurized. That is, in this device, the wet cooler 16 is a cooling / desulfurization device. The supply of ammonia to the ammonia diffuser 17 can be the same as the ammonia supply (not shown) to the ammonia injector.
ボイラ設備を出たボイラ燃焼排ガス Gは、 1 5 0 °C、 水分濃度 1 5 v o l %で、 2 0 0 0 p p mの硫黄酸化物濃度とされており、 アンモ ニァ注入装置 2からアンモニアガス 1 0を注入した後、 水冷式の熱交 換器 3に導入され、 温度 6 0 °C、 水分濃度 1 2 V o 1 %まで処理され る。 該排ガスはさらに湿式冷却器 1 0で、 噴霧装置 1 8によって噴霧 されたアンモニアを含む冷却水と 2 0と接触され、 冷却されると共に 、 硫黄酸化物はアンモニアと反応して冷却水中に吸収され、 ガス吸収 器出口での濃度は 1 0 0 p p mまで低減される。 冷却水には、 アンモ ニァゃアンモニゥム塩以外にも、 例えば、 水酸化カルシウム及び Z又 は炭酸カルシウム、 水酸化マグネシウム、 炭酸マグネシウム等のアル 力リ性物質及び Z又はアル力リ性物質の塩の溶解した水溶液乃至スラ リーを用いることができる。  The boiler flue gas G that exited the boiler facility had a sulfur oxide concentration of 200 ppm at 150 ° C and a water concentration of 15 vol%, and ammonia gas 10 After being injected, it is introduced into a water-cooled heat exchanger 3, where it is treated to a temperature of 60 ° C and a water concentration of 12 V o 1%. The exhaust gas is further brought into contact with cooling water containing ammonia sprayed by a spraying device 18 in a wet cooler 10 and cooled, and the sulfur oxides react with ammonia to be absorbed into the cooling water. However, the concentration at the gas absorber outlet is reduced to 100 ppm. In addition to the ammonium salt, the cooling water may include, for example, calcium hydroxide and Z or an alkaline substance such as calcium carbonate, magnesium hydroxide, and magnesium carbonate, and a salt of Z or an alkaline substance. A dissolved aqueous solution or slurry can be used.
図 4は、 本発明を、 排ガスにアンモニアを反応させるとともに、 電 子ビームを照射することによって、 硫安の紛体を副生物として生成す る装置に利用した例が示されている。  FIG. 4 shows an example in which the present invention is applied to an apparatus that produces ammonium sulfate powder as a by-product by irradiating an electron beam while reacting ammonia with exhaust gas.
この装置において、 2はアンモニア注入器、 3は熱交換器、 2 1は 排ガスを内部に導入してアンモニアと反応させると共に電子ビームを 照射して硫安を生成する反応器、 2 2は電子ビーム照射装置、 2 4は 硫安の粉体を集める電気集塵装置である。 ボイラ設備を出たボイラ燃焼排ガス Gは 1 5 0 ° (:、 水分濃度 1 5 V o 1 %で、 硫黄酸化物濃度が 2 0 0 0 p p mのものとされる。 アンモ ニァ注入装置 2からアンモニアガス Aを注入した後、 水冷式の熱交換 器 3に導入され、 図 1、 図 2及び図 3の場合と同じく該熱交換器で 6 0 °C、 1 2 V o 1 %まで処理される。 処理後の排ガスは反応容器 2 1 に導かれ、 反応容器入口の二流体ノズル 2 3から、 ラインミキサ 2 7 で圧縮空気 Pと混合されたアンモニア Aが注入された後、 電子ビーム 照射装置 2 2によって電子ビームを照射される。 該排ガスに含まれて いた硫黄酸化物は反応器内で硫安を主成分とする副生品粉体 Sに転換 され、 反応器出口での硫黄酸化物濃度は 1 0 0 p p mとなる。 該副生 品粉体 Sは電気集塵装置 2 4で捕集される。 前記熱交換器 3の接ガス 面 4で生成した凝縮水は該熱交換器の底部に設けられた凝縮水回収部 5で回収され、 混合水槽 2 5で工業用水 I と混合され、 該混合水は反 応器入口の二流体ノズル 2 3からアンモニア 1 0と圧縮空気 2 9との 混合ガスとともに噴霧される。 In this device, 2 is an ammonia injector, 3 is a heat exchanger, 21 is a reactor that introduces exhaust gas into the reactor to react with ammonia and irradiates it with an electron beam to produce ammonium sulfate, and 2 2 irradiates with an electron beam The device 24 is an electrostatic precipitator that collects ammonium sulfate powder. The boiler flue gas G leaving the boiler facility is assumed to be 150 ° (with a moisture concentration of 15 Vo 1% and a sulfur oxide concentration of 2000 ppm. After injecting gas A, it is introduced into the water-cooled heat exchanger 3 and treated to 60 ° C and 12 Vo 1% in the heat exchanger as in Figs. 1, 2 and 3 The exhaust gas after the treatment is led to the reaction vessel 21, and the ammonia A mixed with the compressed air P is injected from the two-fluid nozzle 23 at the reaction vessel inlet by the line mixer 27, and then the electron beam irradiation device 2 An electron beam is irradiated by 2. The sulfur oxides contained in the exhaust gas are converted into a by-product powder S containing ammonium sulfate as a main component in the reactor, and the sulfur oxide concentration at the reactor outlet is reduced. 100 ppm The by-product powder S is collected by the electrostatic precipitator 24. The gas contact surface 4 of the heat exchanger 3 The generated condensed water is collected in a condensed water recovery section 5 provided at the bottom of the heat exchanger, mixed with industrial water I in a mixed water tank 25, and the mixed water is mixed with a two-fluid nozzle 23 at the inlet of the reactor. Is sprayed together with a mixed gas of ammonia 10 and compressed air 29.
図 5は、 本発明のガス処理装置をボイラ設備に適用した例を示して いる。  FIG. 5 shows an example in which the gas processing apparatus of the present invention is applied to a boiler facility.
すなわち、 この装置では、 ボイラ 3 1からの排ガスは、 ェコノマイ ザ 3 3、 エアヒ一夕 3 4を通されて、 前述のガス処理装置にあるよう なアンモニア注入器 2、 熱交換器 3に通されるようになつている。 ボ イラ 3 1からの水分は、 タービン 3 2を通されて復水器 3 5で水に凝 縮され、 ポンプ 3 6によって、 冷却水として熱交換器 3に供給され、 その後、 タービン 3 2からの抽気とともに、 ボイラ給水ポンプ 3 7に よりェコノマイザ 3 3を介してボイラに戻される。 Fは燃料であり、 エアヒー夕 3 4によって加熱されてボイラに供給される。 この装置で は、 熱交換器 3における排ガスからの熱回収によって、 ボイラに供給 されるボイラ給水の温度を上げることができるため、 ボイラ効率を向 J二させることができる。  That is, in this device, the exhaust gas from the boiler 31 passes through the economizer 33 and the air heater 34, and then passes through the ammonia injector 2 and the heat exchanger 3 as in the gas processing device described above. It has become so. The water from the boiler 31 passes through the turbine 32 and is condensed into water in the condenser 35, and is supplied to the heat exchanger 3 as cooling water by the pump 36, and then from the turbine 32. Along with the bleed air, the water is returned to the boiler via the economizer 33 by the boiler feed pump 37. F is fuel, which is heated by the air heater 34 and supplied to the boiler. In this device, the temperature of the boiler feedwater supplied to the boiler can be increased by recovering heat from the exhaust gas in the heat exchanger 3, so that the boiler efficiency can be improved.
図 6及び図 7は、 本発明に係るガス処理装置に用いられる熱交換器 の 1つの実施形態を示している。 6 and 7 show a heat exchanger used in the gas processing apparatus according to the present invention. 2 shows one embodiment of the present invention.
この熱交換器は、 図示のように、 排ガスのダク ト中に組み込まれる ケ一シング 1 0 1 と、 該ケーシング内を延びるように設定される複数 (図で見て上側の 3本と、 下側の 3本) の冷却水管(図示はしないが 、 熱交換面積を多くするために管から放射状且つ管の長さ方向に伸び るフィ ンのついた管とすることが好ましい) 1 0 2 と、 該冷却水管に 冷却水を供給するための冷却水供給回路とを有している。 図 7で見て 、 左側がガスの流れの上流側であり、 ケ一シングのガス上流側におけ る上側壁と下側壁には、 それぞれ第 1及び第 2の冷却水マ二ホルド 1 0 5, 1 0 6が設けられており、 上側及び下側のそれぞれの冷却水管 1 0 2は、 対応する上側及び下側の第 1のマニホルドにその一端が、 第 2のマニホルドに他端が連通されている。 上下の第 1マニホルド 1 0 5は、 第 1の冷却水供給回収管 1 1 2に接続されており、 該冷却水 供給回収管 1 1 2は、 開閉弁 1 1 5を介して (図示しない) 冷却水供 給タンクに連通されており、 上下の第 2のマ二ホルド 1 0 6は、 第 2 の冷却水供給回収管 1 1 2 'に接続されており、 該第 2の冷却水供給 回収管は、 開閉弁 1 1 8を介して (図示しない) 回収タンクに連通さ れている。 第 1及び第 2の冷却水供給回収管 1 1 2 , 1 1 2 'の間に は、 開閉弁 1 1 6 , 1 1 7をそれぞれ備えたバイパス管 1 1 9, 1 2 0が接続されている。  As shown in the figure, the heat exchanger includes a casing 101 incorporated into the exhaust gas duct, and a plurality of heat exchangers (the upper three in the figure, the lower Cooling water pipes (three on each side) (not shown, but it is preferable to use finned pipes that extend radially from the pipe and extend in the longitudinal direction of the pipe in order to increase the heat exchange area). A cooling water supply circuit for supplying cooling water to the cooling water pipe. In FIG. 7, the left side is the upstream side of the gas flow, and the upper and lower side walls on the gas upstream side of the casing have first and second cooling water manifolds 105, respectively. , 106 are provided, and each of the upper and lower cooling water pipes 102 has one end connected to the corresponding upper and lower first manifold, and the other end connected to the second manifold. ing. The upper and lower first manifolds 105 are connected to a first cooling water supply / recovery pipe 112, and the cooling water supply / recovery pipe 112 is connected via an on-off valve 115 (not shown). The upper and lower second manifolds 106 are connected to a second cooling water supply / recovery pipe 1 1 ′, and are connected to the cooling water supply tank. The pipe is connected to a collection tank (not shown) via an on-off valve 118. Between the first and second cooling water supply / recovery pipes 1 1 2 and 1 1 2 ′, bypass pipes 1 1 9 and 1 2 0 having on-off valves 1 1 6 and 1 1 7 are connected, respectively. I have.
この熱交換器においては、 開閉弁 1 1 5、 1 1 6、 1 1 7、 1 1 8 を適宜、 開閉することにより、 冷却水の供給方向を正方向 A 及び逆 方向 B に交互に切り替えて供給することができる。 すなわち、 開閉 弁 1 1 6、 1 1 7を閉じて開閉弁 1 1 5, 1 1 8を開ければ、 冷却水 は、 正方向 A に供給されて回収され、 開閉弁 1 1 5, 1 1 8を閉じ て他の開閉弁 1 1 6, 1 1 7を開けば、 逆方向 B に供給されて回収 されることになる。  In this heat exchanger, the on / off valves 1 1, 1 1, 1 1, 1 1, 1 1 and 1 8 are opened and closed as appropriate to alternately switch the cooling water supply direction between forward direction A and reverse direction B. Can be supplied. That is, if the on-off valves 1 16 and 1 17 are closed and the on-off valves 1 15 and 1 18 are opened, the cooling water is supplied and collected in the forward direction A, and the on-off valves 1 15 and 1 18 When the valve is closed and the other on-off valves 1 16 and 1 17 are opened, it is supplied in the reverse direction B and collected.
また、 この熱交換器では、 冷却水をいずれの方向に供給する場合で も、 冷却水の温度は、 冷却水管 1 0 2におけるその時の上流側の部分 、 好ましくは当該冷却水管のほぼ中間の折り返し部分 1 0 2 'までの 部分の熱交換面 (冷却水管の表面) を、 ガスの水分飽和温度以下に冷 却する程度の低温とするが、 その下流側においては、 冷却水管の表面 (熱交換面) の温度を水分飽和温度まで下げない程度のものに温度調 整される。 すなわち、 冷却水の温度をそのように調整することにより 、 熱交換面における、 冷却水を供給している方向での上流側半分では 、 当該熱交換面に冷却水が凝縮するが、 下流側半分においては凝縮水 の生成は行われず、 同部分を通る冷却水はガスからの熱により一定温 度まで暖められて排出されるようになる。 これは冷却水の供給方向の 上流側では、 凝縮水の生成による上述のごとき硫黄酸化物等の洗い流 しが行われる力 下流側では、 そのような洗い流しを行わない代わり に、 冷却水がガスからの熱によって一定温度以上に暖められるの許容 し、 排出される冷却水から熱を回収利用できるようにするためである 。 すなわち、 冷却水管の表面 (熱交換面) の全体を水分飽和温度以下 にしようとした場合には、 冷却水はそれが熱交換器から排出されるま で低温に保たねばならず、 排出後の廃熱回収利用が困難となるので、 これを回避するものである。 熱交換面全体の凝縮水による上記の如き 洗い流しは、 冷却水の供給方向を、 正逆方向 A , Bに交互に替えるこ とにより、 凝縮水を熱交換面全体に生じさせて行われる。 ケーシング 101 の底部に集められた凝縮水は、 排出孔 107 を通して排出され、 一部は冷却水等として用いられる。 Also, in this heat exchanger, the temperature of the cooling water, regardless of the direction in which the cooling water is supplied, depends on the portion of the cooling water pipe 102 on the upstream side at that time. Preferably, the heat exchange surface (the surface of the cooling water pipe) up to the substantially folded portion 102 2 ′ of the cooling water pipe is set to a temperature low enough to cool the gas to the water saturation temperature or lower, On the side, the temperature of the cooling water pipe surface (heat exchange surface) is adjusted to a level that does not lower the temperature to the water saturation temperature. That is, by adjusting the temperature of the cooling water in such a manner, the cooling water condenses on the heat exchange surface in the upstream half of the heat exchange surface in the direction in which the cooling water is supplied, but the downstream half. In this case, condensed water is not generated, and the cooling water passing through this part is heated to a certain temperature by the heat from the gas and discharged. This is because the upstream side in the direction of supply of the cooling water is the force at which the above-mentioned sulfur oxides and the like are washed out by the generation of condensed water.The downstream side does not perform such washing, but instead the cooling water is The purpose of this is to allow the heat to be heated to a certain temperature or higher by the heat from the air, and to make it possible to recover and use the heat from the discharged cooling water. In other words, if the entire surface of the cooling water pipe (heat exchange surface) is to be kept below the water saturation temperature, the cooling water must be kept at a low temperature until it is discharged from the heat exchanger. This is to avoid waste heat recovery and utilization. The above-described flushing of the entire heat exchange surface with condensed water is performed by causing the condensed water to be generated over the entire heat exchange surface by alternately changing the supply direction of the cooling water between the forward and reverse directions A and B. The condensed water collected at the bottom of the casing 101 is discharged through the discharge hole 107, and a part is used as cooling water or the like.
熱回収をより効率的に行うためには、 冷却水管 1 0 2を、 図示の如 く、 一方のマニホルドから下流側に伸ばし、 当該冷却水管のほぼ中間 部分 1 0 2 'で折り返し、 上流側に戻して他方のマ二ホルドに至るよ うな形状にすることが好ましい。 これは冷却水が正逆いずれの方向に 流されても、 その時の下流側半分では、 当該冷却水がガス流の上流側 に戻されて、 まだ冷却が十分でなく暖かなガスに接することにより、 多くの熱量をガスから回収できるようにするためである。  In order to perform heat recovery more efficiently, the cooling water pipe 102 extends downstream from one of the manifolds as shown in the figure, and is turned up at almost the middle portion 102 'of the cooling water pipe and upstream. It is preferred that the shape be such that it returns to the other manifold. This is because, regardless of whether the cooling water flows in the forward or reverse direction, the cooling water is returned to the upstream side of the gas flow in the downstream half at that time, and contacts the warm and insufficiently cooled gas. This is because a large amount of heat can be recovered from the gas.
図 8は、 熱交換器の他の実施形態を示している。 この熱交換器においては、 第 1及び第 2の冷却水マ二ホルド 1 0 5 , 1 0 6力^ ケ一シング 1 0 1の上側壁にのみ取付けられており、 同 壁の下流側には中継マニホルド 1 1 0が設けられている。 冷却水管 1 0 2は、 第 1の冷却水マ二ホルド 1 0 5から上下に蛇行しながら下流 側に延び、 中継マニホルド 1 1 0に至る第 1の部分 1 0 2 a と、 中継 マ二ホルドから上下に蛇行しながら第 2の冷却水マ二ホルド 1 0 6に 至る第 2の部分 1 0 2 b とを有している。 中継マニホルド 1 1 0は、 図 1 1 に示すように、 熱交換器のケーシングの幅方向で 3つ室に区切 られており、 各冷却水管の上記第 1及び第 2の部分 1 0 2 a、 1 1 0 2 b の端部が各室に連通されている。 図示の例では、 上記第 1及び第 2の部分 1 0 2 a、 1 0 2 b は、 それぞれ,その中央部分においてケー シング 1 0 1の外側に U 字状に突出するように形成されており、 こ れは当該冷却水管の設定、 メンテナンスを容易にするものである。 この熱交換器においても冷却水の供給方向の制御は、 図 6及び図 7 に示した熱交換器におけるものと同じであり、 図示の状態は、 冷却水 を一方向 A に流している力 定期的に逆方向に流すようにされ、 ま た、 冷却水の温度の調整も同様にされる。 FIG. 8 shows another embodiment of the heat exchanger. In this heat exchanger, the first and second cooling water manifolds 105, 106 are mounted only on the upper side wall of the casing 101, and on the downstream side of the wall, A relay manifold 110 is provided. The cooling water pipe 102 extends from the first cooling water manifold 105 to the downstream side while meandering up and down, reaches a relay manifold 110, a first portion 102a, and a relay manifold. And a second portion 102 b reaching the second cooling water manifold 106 while meandering up and down from above. As shown in FIG. 11, the relay manifold 110 is divided into three chambers in the width direction of the casing of the heat exchanger, and the first and second portions 102 a, The end of 1102b communicates with each chamber. In the illustrated example, the first and second portions 102a and 102b are each formed so as to protrude outside the casing 101 in a U-shape at the center thereof. This facilitates the setting and maintenance of the cooling water pipe. In this heat exchanger, the control of the supply direction of the cooling water is the same as that in the heat exchanger shown in Figs. 6 and 7, and the state shown in the figure is the force flowing the cooling water in one direction A. It is made to flow in the opposite direction, and the temperature of the cooling water is adjusted similarly.
図 6及び図 8に示した如き、 熱交換器を、 図 5に示したボイラ設備 における熱交換器 3として用い、 ボイラ燃焼排ガスの流量を 1 0 0 、 0 0 0 N m 3 /h、 水分濃度を 1 5 vol %とし、 同ガスがェコマイザ 3 3 、 エアヒ一夕 3 4でそれぞれボイラ給水及び燃料 Z空気との間で熱交 換を行い、 その結果 1 5 0 °Cまで冷却された後に、 アンモニア注入器 2及び熱交換器 3を通すと共に、 ボイラ 3 1で発生した水分は、 復水 器 3 6で 3 0 °Cまで冷却して 1 0 O ton/h の腹水として熱交換器の冷 却水として使用した場合、 排ガスは 5 0 まで冷却されて 2 . 5 ton の凝縮水を生成すると同時に、 当該冷却水は 7 5 Cまで加熱され、 高 率での熱回収を行うことができ、 ボイラ効率を大きく向上させること ができた。 The heat exchanger as shown in FIGS. 6 and 8 was used as the heat exchanger 3 in the boiler equipment shown in FIG. 5, and the flow rate of the boiler combustion exhaust gas was 100, 00 Nm 3 / h, The concentration was set to 15 vol%, and the same gas exchanged heat with the boiler feed water and fuel Z air in the economizer 33 and the air heater 34, respectively.As a result, the gas was cooled to 150 ° C. While passing through the ammonia injector 2 and the heat exchanger 3, the moisture generated in the boiler 31 is cooled to 30 ° C in the condenser 36 and the heat of the heat exchanger is converted to 10 O ton / h ascites. When used as cooling water, the exhaust gas is cooled to 50 to produce 2.5 ton of condensed water, and at the same time, the cooling water is heated to 75 C, enabling high-efficiency heat recovery. The boiler efficiency was greatly improved.
産業上の利用可能性 本発明によれば、 前記のような構成としたことにより、 次のような 効果を奏することができる。 Industrial applicability According to the present invention, the following effects can be obtained by adopting the above configuration.
ボイラ燃焼ガス等の硫黄酸化物を含む排ガスを、 アンモニゥム等の アルカリ物質と化合させて脱硫するのに、 その脱硫に適する所要温度 までガス温度を下げることができ、 しかも熱交換面上に生じる可能性 のある硫黄酸化物等の付着を、 当該熱交換面上に生じる凝縮水によつ て洗い流すことができる。  When desulfurization is performed by combining exhaust gas containing sulfur oxides such as boiler combustion gas with an alkaline substance such as ammonia, the gas temperature can be reduced to the required temperature suitable for the desulfurization, and it can occur on the heat exchange surface It is possible to wash off the adherence of the conductive sulfur oxide and the like by the condensed water generated on the heat exchange surface.
更に、 冷却媒体を当該熱交換器内に正逆両方向に交互に切替ながら 供給し、 且つ、 当該冷却媒体の温度を、 それが冷却する熱交換面を全 体的に水分飽和温度以下にするようなものではなく、 冷媒供給方向で の上流側だけをそのような温度にし、 その下流側では、 上記温度以上 になるのを許容するようにすることにより、 凝縮水の熱交換面での発 生場所は、 冷媒供給方向に従って変るが、 全体的に見れば、 熱交換面 全面にわたって発生するようにすることができ、 しかも当該熱交換器 から排出される冷媒の温度を、 ガスから回収した熱によって一定以上 高温になるようにすることができ、 排ガスからの廃熱回収をも有効に 行うことができ、 ボイラ設備等における廃熱を高率的に有効利用する ことができる。  Further, the cooling medium is supplied into the heat exchanger while alternately switching in the forward and reverse directions, and the temperature of the cooling medium is set so that the heat exchange surface to be cooled by the cooling medium is generally equal to or lower than the moisture saturation temperature. In this case, only the upstream side in the refrigerant supply direction is set to such a temperature, and the downstream side is allowed to reach the above temperature, thereby generating condensed water on the heat exchange surface. The location changes according to the direction of supply of the refrigerant, but as a whole, it can be generated over the entire heat exchange surface, and the temperature of the refrigerant discharged from the heat exchanger is determined by the heat recovered from the gas. The temperature can be raised above a certain level, waste heat recovery from exhaust gas can be effectively performed, and waste heat in boiler equipment and the like can be efficiently used.
さらに、 アンモニア注入装置によって、 排ガスへのアンモニアの注 入を行えば、 該熱交換器の接ガス面で生成した酸性の凝縮水中にこの アンモニアが溶解し、 該凝縮水溶液を中和せしめるか、 あるいはその 酸性度を緩和し、 前記接ガス面の腐食を抑制することができるため、 熱交換器の熱交換面を鋼、 汎用ステンレス鋼のような安価な材料で作 製できる。  Further, if ammonia is injected into the exhaust gas by the ammonia injection device, the ammonia dissolves in the acidic condensed water generated on the gas contacting surface of the heat exchanger, and the ammonia is neutralized, or Since the acidity can be reduced and the corrosion of the gas contact surface can be suppressed, the heat exchange surface of the heat exchanger can be made of inexpensive materials such as steel and general-purpose stainless steel.

Claims

請 求 の 範 囲 . The scope of the claims .
1 . ガスの流路内に設定される熱交換面を備え、 該熱交換面の少なく とも一部を当該ガスの水分飽和温度以下に冷却する能力を有する熱交 換器を備えるガス冷却装置。  1. A gas cooling device including a heat exchange surface set in a gas flow path and having a heat exchanger capable of cooling at least a part of the heat exchange surface to a temperature equal to or lower than a moisture saturation temperature of the gas.
2 . 前記熱交換面において発生する凝縮水を回収するための凝縮水回 収装置を備える請求項 1 に規定のガス冷却装置。  2. The gas cooling device according to claim 1, further comprising a condensed water recovery device for collecting condensed water generated on the heat exchange surface.
3 . 前記熱交換器の下流側に設定され、 冷却水を貯留する貯留部、 及 び、 前記凝縮水回収装置で回収した凝縮水を該貯留部に導く手段を有 し、 前記熱交換器によって冷却されたガスを前記冷却水と接触させる ことにより更に冷却するガス冷却器を備えることを特徴とする請求項 2に記載のガス冷却装置。  3. A storage unit that is set downstream of the heat exchanger and stores cooling water, and a unit that guides condensed water recovered by the condensed water recovery device to the storage unit. 3. The gas cooling device according to claim 2, further comprising a gas cooler that further cools the cooled gas by bringing the cooled gas into contact with the cooling water.
4 . 前記熱交換器が、 当該熱交換器内に冷媒を供給するための冷媒供 給装置を有し、 該装置は、 前記熱交換面を冷却するための冷媒を通す 冷媒流路を備え、 該冷媒流路が冷媒を受入排出する第 1の出入口、 及 び、 第 2の出入口を備え、 前記冷媒供給装置が、 前記冷媒流路に対し 冷媒を、 第 1の出入口から供給して第 2の出入口から排出する供給態 様と、 その逆に通す供給態様とを交互に行えるようにしたことを特徴 とする請求項 1 に記載のガス冷却装置。  4. The heat exchanger has a refrigerant supply device for supplying a refrigerant into the heat exchanger, the device includes a refrigerant flow path for passing a refrigerant for cooling the heat exchange surface, The refrigerant flow path includes a first port for receiving and discharging the refrigerant, and a second port, and the refrigerant supply device supplies a refrigerant to the refrigerant flow path from a first port to a second port. 2. The gas cooling device according to claim 1, wherein a supply mode of discharging from the entrance and a supply mode of passing the reverse are alternately performed.
5 . 前記冷媒供給装置が、 冷媒の温度を、 当該冷媒の供給方向の上流 側では前記熱交換面を前記水分飽和温度以下まで冷却するための温度 とするが、 下流側では、 当該冷媒を同水分飽和温度以上になるように 、 調整するようにしたことを特徴とする請求項 4に記載のガス冷却装 置。  5. The refrigerant supply device sets the temperature of the refrigerant at a temperature for cooling the heat exchange surface to a temperature equal to or lower than the moisture saturation temperature on the upstream side in the supply direction of the refrigerant, but on the downstream side. 5. The gas cooling device according to claim 4, wherein the temperature is adjusted so as to be equal to or higher than the water saturation temperature.
6 . 前記ガスの流路の前記熱交換器よりも上流側に設定され、 ガス中 にアンモニア等のアル力リ性物質を注入するアル力リ性物質注入装置 を備えたことを特徴とする請求項 1 に記載のガス冷却装置。  6. A gas injection device, which is set upstream of the heat exchanger in the gas flow path and injects a gaseous substance such as ammonia into the gas. Item 2. A gas cooling device according to item 1.
7 . ボイラ、 及び、 ボイラ燃焼排ガス流路を有するボイラ設備におい て、 前記ボイラ燃焼排ガス流路に請求項 1 乃至 6のいずれかに記載の ガス冷却装置を設置し、 前記熱交換器によってボイラ燃焼ガスから回 収した熱をボイラ給水の加熱に利用することを特徴とするボイラ設備 7. In a boiler and a boiler facility having a boiler flue gas passage, the gas cooling device according to any one of claims 1 to 6 is installed in the boiler flue gas passage, and boiler combustion is performed by the heat exchanger. Times from gas Boiler equipment characterized by utilizing the collected heat for heating boiler feed water
8 . 復水器を有するボイラ設備であって、 前記熱交換器を水冷式とす るとともに、 該熱交換器に、 その冷却水として、 前記復水器で凝縮し た水を供給し、 熱交換後に同水をボイラに供給することを特徴とする 請求項 8に記載のボイラ設備。 8. A boiler facility having a condenser, wherein the heat exchanger is water-cooled, and the condensed water in the condenser is supplied to the heat exchanger as cooling water. 9. The boiler equipment according to claim 8, wherein the water is supplied to the boiler after the replacement.
9 . ボイラ燃焼ガス等の硫黄酸化物を含むガスの流路に設定されて、 同ガスに接触する熱交換面を備え、 該熱交換面の少なくとも一部を水 分飽和温度以下に冷却する能力を有する熱交換器と、  9. A heat exchange surface set in the flow path of a gas containing sulfur oxides, such as boiler combustion gas, having a heat exchange surface in contact with the gas, and an ability to cool at least a part of the heat exchange surface to a water saturation temperature or lower. A heat exchanger having
前記ガスの流路における熱交換面の下流側に設定され、 前記熱交換 器によって冷却されたガスにアル力リ性物質を反応させ脱硫するため の脱硫装置と、  A desulfurization device that is set downstream of a heat exchange surface in the gas flow path and reacts a gaseous substance with the gas cooled by the heat exchanger to desulfurize the gas;
を備えたことを特徴とするガス処理装置。  A gas processing device comprising:
1 0 . 前記アルカリ性物質との反応が、 前記熱交換器により冷却され た前記ガス中にアンモニアを注入することによって生起せしめること を特徴とする請求項 9に記載のガス処理装置。  10. The gas processing apparatus according to claim 9, wherein the reaction with the alkaline substance is caused by injecting ammonia into the gas cooled by the heat exchanger.
1 1 . アンモニアが注入されたガスに電子ビームを照射する電子ビー ム照射装置を有することを特徴とする請求項 1 0に記載のガス処理装  11. The gas processing apparatus according to claim 10, further comprising an electron beam irradiation device for irradiating the gas into which ammonia has been injected with an electron beam.
1 2 . 熱交換面で発生した凝縮水を回収する凝縮水回収装置と、 前記 熱交換器による冷却後で前記アンモニアが注入されるガスに、 前記凝 縮水回収装置に回収された凝縮水を注入するノズルとを有することを 特徴とする請求項 1 0若しくは 1 1 に記載のガス処理装置。 1 2. A condensed water recovery device that recovers condensed water generated on the heat exchange surface, and a condensed water recovered by the condensed water recovery device is injected into a gas into which the ammonia is injected after cooling by the heat exchanger. The gas processing apparatus according to claim 10, further comprising: a nozzle that performs the processing.
1 3 . 前記アルカリ性物質との反応が、 前記熱交換器により冷却され た前記ガスを、 アンモニア等のアルカリ性物質を含む脱硫液に接触さ せることによって生起せしめることを特徴とする請求項 9に記載のガ ス処理装置。  13. The reaction with the alkaline substance is caused by bringing the gas cooled by the heat exchanger into contact with a desulfurization liquid containing an alkaline substance such as ammonia. Gas processing equipment.
1 4 . 冷却水を貯留する貯留部と前記凝縮水回収装置で冋収した凝縮 水を該貯留部に導く手段とを有することを特徴とする請求項 1 3に記 載のガス処理装置。 14. The storage device according to claim 13, further comprising a storage unit that stores the cooling water, and a unit that guides the condensed water collected by the condensed water recovery device to the storage unit. On-gas processing equipment.
1 5 . 前記熱交換器が、 当該熱交換器内に冷媒を供給するための冷媒 供給装置を有し、 該装置は、 前記熱交換面を冷却するための冷媒を通 す冷媒流路を備え、 該冷媒流路が冷媒を受入排出する第 1の出入口、 及び、 第 2の出入口を備え、 前記冷媒供給装置が、 前記冷媒流路に対 し冷媒を、 第 1の出入口から供給して第 2の出入口から排出する供給 態様と、 その逆に通す供給態様とを交互に行えるようにしたことを特 徴とする請求項 9 、 1 0若しくは 1 3に記載のガス処理装置。  15. The heat exchanger has a refrigerant supply device for supplying a refrigerant into the heat exchanger, and the device has a refrigerant flow path through which a refrigerant for cooling the heat exchange surface passes. A first inlet / outlet for receiving and discharging the refrigerant, and a second inlet / outlet, wherein the refrigerant supply device supplies a refrigerant to the refrigerant flow from the first inlet / outlet, and 14. The gas processing apparatus according to claim 9, 10 or 13, characterized in that a supply mode discharged from the inlet / outlet of (2) and a supply mode passed in the opposite direction can be alternately performed.
PCT/JP2000/000863 1999-02-16 2000-02-16 Gas cooling device, gas treatment device, and boiler equipment WO2000048711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU25715/00A AU2571500A (en) 1999-02-16 2000-02-16 Gas cooling device, gas treatment device, and boiler equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3685799 1999-02-16
JP11/36857 1999-02-16

Publications (1)

Publication Number Publication Date
WO2000048711A1 true WO2000048711A1 (en) 2000-08-24

Family

ID=12481465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000863 WO2000048711A1 (en) 1999-02-16 2000-02-16 Gas cooling device, gas treatment device, and boiler equipment

Country Status (2)

Country Link
AU (1) AU2571500A (en)
WO (1) WO2000048711A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220066A (en) * 2008-03-18 2009-10-01 Hitachi Plant Technologies Ltd Wet type electric dust collector and method for operating wet type electric dust collector
JP2010281525A (en) * 2009-06-05 2010-12-16 Mitsubishi Heavy Industries Mechatronics Systems Ltd Exhaust gas heat recovery system
CN101954239A (en) * 2010-09-26 2011-01-26 攀钢集团钢铁钒钛股份有限公司 Method for removing sulphate and ammonia from smoke
JP2019063688A (en) * 2017-09-28 2019-04-25 株式会社Ihi Drying device and drying method
KR20210017902A (en) * 2019-08-09 2021-02-17 한국에너지기술연구원 Apparatus and method for condensing Toxic Gas
CN113457399A (en) * 2021-06-22 2021-10-01 宁波博汇化工科技股份有限公司 Ammonia desulphurization discharge system and method of sulfur recovery device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113419A (en) * 1976-03-19 1977-09-22 Nissan Motor Co Ltd Water cooling type system for capturing and removing fine particles
JPH01171623A (en) * 1987-12-26 1989-07-06 Ebara Corp Method and apparatus for treating exhaust gas by irradiation of radiant rays
JPH01310721A (en) * 1988-06-09 1989-12-14 Babcock Hitachi Kk Exhaust gas desulfurizer
JPH0821618A (en) * 1994-07-06 1996-01-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113419A (en) * 1976-03-19 1977-09-22 Nissan Motor Co Ltd Water cooling type system for capturing and removing fine particles
JPH01171623A (en) * 1987-12-26 1989-07-06 Ebara Corp Method and apparatus for treating exhaust gas by irradiation of radiant rays
JPH01310721A (en) * 1988-06-09 1989-12-14 Babcock Hitachi Kk Exhaust gas desulfurizer
JPH0821618A (en) * 1994-07-06 1996-01-23 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas treating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220066A (en) * 2008-03-18 2009-10-01 Hitachi Plant Technologies Ltd Wet type electric dust collector and method for operating wet type electric dust collector
JP2010281525A (en) * 2009-06-05 2010-12-16 Mitsubishi Heavy Industries Mechatronics Systems Ltd Exhaust gas heat recovery system
CN101954239A (en) * 2010-09-26 2011-01-26 攀钢集团钢铁钒钛股份有限公司 Method for removing sulphate and ammonia from smoke
JP2019063688A (en) * 2017-09-28 2019-04-25 株式会社Ihi Drying device and drying method
KR20210017902A (en) * 2019-08-09 2021-02-17 한국에너지기술연구원 Apparatus and method for condensing Toxic Gas
KR102241119B1 (en) * 2019-08-09 2021-04-19 한국에너지기술연구원 Apparatus and method for condensing Toxic Gas
CN113457399A (en) * 2021-06-22 2021-10-01 宁波博汇化工科技股份有限公司 Ammonia desulphurization discharge system and method of sulfur recovery device
CN113457399B (en) * 2021-06-22 2024-01-12 宁波博汇化工科技股份有限公司 Ammonia desulfurization emission system and method of sulfur recovery device

Also Published As

Publication number Publication date
AU2571500A (en) 2000-09-04

Similar Documents

Publication Publication Date Title
CN101601964B (en) Ammonia flue gas desulfurization device
JP5335740B2 (en) Exhaust gas treatment method and equipment
CN200998639Y (en) Concentrated crystallization and absorbed oxidation combined type ammonia process desulfuration tower
CN101600489B (en) Use of so2 from flue gas for acid wash of ammonia
TWI276460B (en) Exhaust smoke-processing system
CN201026440Y (en) Absorption, oxidation, concentration combined desulfurizing tower
KR20170124106A (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
JP2012239958A (en) Wet type flue gas desulfurizing apparatus and method
JP4841065B2 (en) Smoke removal device for SO3
CN101254392A (en) Energy-saving type sodium sulphite circulation desulfurizing device and method
JP2015073955A (en) Exhaust gas treatment method, and exhaust gas treatment device
WO2000048711A1 (en) Gas cooling device, gas treatment device, and boiler equipment
JPH1157397A (en) Gas purifying method
JPH0933024A (en) Heat recovering method in exhaust gas treatment
JP2013078742A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
WO2012132003A1 (en) Exhaust gas treatment system and exhaust gas treatment method
CN110104717B (en) Method and system for evaporating desulfurization wastewater and stabilizing circulating slurry by using bypass flue gas
CN201058277Y (en) Wet desulfurizing device with cross flow double circles in air flow
JP2012196611A (en) Flue gas desulfurization apparatus and flue gas desulfurization method
CN209735286U (en) Comprehensive treatment system for environmental protection and desulfurization of flue gas
JP2000325744A (en) Exhaust gas treatment apparatus
JP3665919B2 (en) Pressurized coal gasification plant
JP2010281525A (en) Exhaust gas heat recovery system
CN105396451A (en) Process for cleaning alkali liquor in spray scrubber tower to effectively remove sulfur trioxide (SO3)
JPH09103641A (en) Flue gas desulfurization facility and boiler equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 599489

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase