JP2000325744A - Exhaust gas treatment apparatus - Google Patents

Exhaust gas treatment apparatus

Info

Publication number
JP2000325744A
JP2000325744A JP11142699A JP14269999A JP2000325744A JP 2000325744 A JP2000325744 A JP 2000325744A JP 11142699 A JP11142699 A JP 11142699A JP 14269999 A JP14269999 A JP 14269999A JP 2000325744 A JP2000325744 A JP 2000325744A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat recovery
mist
desulfurization
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142699A
Other languages
Japanese (ja)
Inventor
Toshio Katsube
利夫 勝部
Shigeru Nozawa
滋 野沢
Furuyuki Saito
降行 斎藤
Naomi Oda
直巳 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11142699A priority Critical patent/JP2000325744A/en
Publication of JP2000325744A publication Critical patent/JP2000325744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an exhaust gas treatment apparatus suitable for reducing SO3 in exhaust gas. SOLUTION: In an exhaust gas treatment apparatus, an NH3 injection device for removing SO3 is arranged only to the exhaust gas flow passage provided to the inlet of a denitration device and a washing device 17 is provided to the GGH heat recovery device 7 arranged to the exhaust gas flow passage provided to the inlet of a dust collector and a high performance demister 16 is provided to the outlet part of an absorbing tower 22. Since NH3 is not injected in the dust collector, no ammonium sulfate is generated and the concn. of soot flowing in th absorbing tower 22 of a desulfurization equipment is not increased and SO3 is condensed in the GGH heat recovery device 7 but can be easily removed by the washing device and SO3 mist contained in exhaust gas is also removed by the high performance demister 16 provided to the outlet of the absorbing tower of the desulfurization equipment and the SO3 mist recovered in the absorbing tower 22 can be recovered as gypsum in the absorbing tower 22 of the desulfurization equipment by the reaction with limestone and, therefore, the concn. of soot at the outlet of the desulfurization equipment is not increased and the concn. of NH3 in waste water is not also increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排煙処理システム
にかかわり、特に排ガス中のSOを低減するのに好適
な排煙処理装置に関する。
The present invention relates to a flue gas treatment system, and more particularly to a flue gas treatment device suitable for reducing SO 3 in exhaust gas.

【0002】[0002]

【従来の技術】従来技術からなる排煙処理システムを図
5に示す。ボイラ1からの排ガスは脱硝装置2内に送ら
れ、ここで配管11から供給されたNHと反応して窒
素酸化物が除去される。その後、排気ガスは空気予熱器
3でガス温度を130℃〜150℃まで冷却され、電気
集塵器(EP)4に導入される。FDF13で導入した
空気は空気余熱器3で予熱され、ボイラに燃料用空気と
して供給される。また、GGH熱回収器7、脱硫装置8
およびGGH再加熱器9の間には熱媒連絡管14、15
を経て熱媒が循環して熱交換を行う。
2. Description of the Related Art FIG. 5 shows a conventional flue gas treatment system. Exhaust gas from the boiler 1 is sent into the denitration device 2, where it reacts with NH 3 supplied from the pipe 11 to remove nitrogen oxides. After that, the exhaust gas is cooled to a gas temperature of 130 ° C. to 150 ° C. by the air preheater 3 and is introduced into the electric precipitator (EP) 4. The air introduced by the FDF 13 is preheated by the air preheater 3 and supplied to the boiler as fuel air. GGH heat recovery unit 7, desulfurization unit 8
And the heat medium communication pipes 14 and 15 between the
The heat medium is circulated through the heat exchanger to perform heat exchange.

【0003】排ガス中に含まれているSOは、空気予
熱器3での排ガス温度の低下により凝縮し、硫酸を生成
する。ここでボイラ燃料が石炭焚きの場合、排ガス中に
は多量のばい塵も含まれ、さらにこのばい塵にはアルカ
リ分が含有されていることから前記凝縮した硫酸は灰に
付着するため大部分は中和される。
[0003] SO 3 contained in the exhaust gas is condensed due to a decrease in the temperature of the exhaust gas in the air preheater 3 to generate sulfuric acid. Here, when the boiler fuel is coal-fired, a large amount of dust is included in the exhaust gas, and since the dust contains an alkali component, most of the condensed sulfuric acid adheres to the ash. Neutralized.

【0004】一方、硫黄を高い濃度で含有する重油を燃
料とするボイラ1から排出する排ガス中のばい塵濃度は
低く、またばい塵中のアルカリ含有割合が低いことから
空気予熱器3で冷却された排ガスから凝縮した硫酸の中
和作用も期待できない。そのため、一般的に上記電気集
塵器4の入口において配管12からNHを注入し、排
ガス中に含まれるSOとの反応により固体の(N
SO(硫安)を生成させて電気集塵器4で捕
集する方法が用いられている。
On the other hand, since the concentration of dust in exhaust gas discharged from a boiler 1 using heavy oil containing sulfur at a high concentration as fuel is low, and the proportion of alkali in the dust is low, it is cooled by an air preheater 3. No neutralizing action of sulfuric acid condensed from exhaust gas is also not expected. Therefore, NH 3 is generally injected from the pipe 12 at the inlet of the electrostatic precipitator 4 and solid (N) is formed by a reaction with SO 3 contained in the exhaust gas.
A method in which H 4 ) 2 SO 4 (ammonium sulfate) is generated and collected by the electrostatic precipitator 4 is used.

【0005】図5に示す排煙処理システムでは電気集塵
器4で排ガス中のばい塵と共に上述の硫安を除去した
後、IDF5とBUF6により昇圧され、GGH熱回収
器7で熱を回収され、排ガス温度を約90℃に低下させ
て脱硫装置8に導入される。脱硫装置8では吸収液との
気液接触により排ガス濃度は水分飽和温度である約45
℃まで低下する。脱硫装置8で排ガス中のSOを除去
された後、GGH再加熱器9において、上記GGH熱回
収器7で排ガスから熱回収して昇温した熱媒により排ガ
スは約90℃まで昇温され、煙突10から排出される。
In the flue gas treatment system shown in FIG. 5, after removing the above-mentioned ammonium sulfate together with the dust in the exhaust gas by the electric dust collector 4, the pressure is increased by the IDF 5 and the BUF 6, and the heat is recovered by the GGH heat recovery device 7. The temperature of the exhaust gas is reduced to about 90 ° C., and is introduced into the desulfurizer 8. In the desulfurization unit 8, the exhaust gas concentration becomes about 45 which is the water saturation temperature due to the gas-liquid contact with the absorbent.
To ℃. After the SO 2 in the exhaust gas is removed by the desulfurizer 8, the exhaust gas is heated to about 90 ° C. by the heating medium in the GGH reheater 9, which recovers heat from the exhaust gas by the GGH heat recovery unit 7 and raises the temperature. , Discharged from the chimney 10.

【0006】上記排煙処理システムにおいて、生成する
SOとしてはボイラ1での燃焼により生成したSO
がボイラ1内を通過する過程で付着ダストに含まれる重
金属を触媒として酸化されて生じるものと、前記SO
が脱硝装置2の触媒により酸化されるものと2種類があ
る。前者で生成するSOは、重金属による接触酸化で
生成SOの2〜5%であるが、触媒作用となるダスト
の付着状況又は組成により、SOの酸化割合が大きく
異なる。また、後者で生成するSOは、初期は約1〜
2%であるが、触媒に付着するダスト量により、生成量
が変化することが知られている。
[0006] In the flue gas treating system, SO as the SO 3 to produce generated by combustion in the boiler 1 2
Are oxidized using heavy metal contained in the adhering dust as a catalyst in the process of passing through the boiler 1 and the SO 2
Is oxidized by the catalyst of the denitration device 2 and two types. SO 3 produced in the former, but 2-5% of the product SO 2 in catalytic oxidation by heavy metals, the adhesion state or composition of the dust as a catalytic oxidation ratio of SO 2 are greatly different. Also, the SO 3 generated in the latter is initially about 1 to 1
Although it is 2%, it is known that the amount of generation varies depending on the amount of dust adhering to the catalyst.

【0007】このため、特に硫黄分の高い燃料において
は生成SO量の変化幅が大きく、NH注入量の生成
量の制御が困難となる。例えば硫黄分が4%の場合、S
濃度が約2000ppmとなり、生成SO濃度は
100ppmを超えることもある。SOとの反応に必
要なNHは、SO1モルに対して2モルであるた
め、その供給量は200ppm以上必要になる。
For this reason, particularly in the case of fuels having a high sulfur content, the variation range of the amount of generated SO 3 is large, and it is difficult to control the amount of NH 3 injected. For example, if the sulfur content is 4%, S
The O 2 concentration will be about 2000 ppm, and the resulting SO 3 concentration may exceed 100 ppm. Since NH 3 required for the reaction with SO 3 is 2 mol per 1 mol of SO 3 , the supply amount is required to be 200 ppm or more.

【0008】ここで万一、SOに対してNHのモル
比率が2倍以下になると、NH(HSO)(酸性硫
安)を生成するが、この酸性硫安は非常に付着性が強
く、電気集塵器4内や排煙処理システム後流側に配置さ
れるIDF5とBUF6内部に付着し、集塵性能の低下
やファンの振動を誘発するため、装置の運転継続が困難
になる。
If the molar ratio of NH 3 to SO 3 becomes twice or less, NH 4 (HSO 3 ) (ammonium acid sulfate) is produced, and this acid ammonium sulfate has a very strong adhesion. The dust adheres to the inside of the IDF 5 and the BUF 6 disposed in the electric precipitator 4 and on the downstream side of the smoke exhaust treatment system, and causes the deterioration of the dust collection performance and the vibration of the fan.

【0009】従って、NHはSO濃度に対し、常に
過剰量になるように供給する必要がある。しかし、SO
濃度は連続測定できないので、ボイラ1と脱硝装置2
の運転条件により生成量が異なることから、NHを大
過剰に供給する必要があった。
Therefore, it is necessary to supply NH 3 so as to always be in excess with respect to the SO 3 concentration. However, SO
Since the three concentrations cannot be measured continuously, the boiler 1 and the denitration device 2
Since the amount of production differs depending on the operating conditions, it was necessary to supply NH 3 in a large excess.

【0010】大過剰に供給した結果生じる未反応のNH
は排煙処理システム後流側の脱硫装置8でSO吸収
用に排ガスに向けて噴霧される炭酸カルシウムなどを含
む吸収液に吸収除去され、吸収液中に溶解する。吸収液
の一部は排水として排水処理装置で浄化処理した後に排
出されるが、排水を海や川に放流する場合に、海や川の
富栄養化を防止するため、窒素分の排出量が規制されて
おり、排水処理装置内で高価な脱窒素装置を設置する必
要がある。
Unreacted NH resulting from a large excess supply
3 is absorbed removed absorbent including calcium carbonate and the like to be sprayed toward the exhaust gas for SO 2 absorption in the desulfurization apparatus 8 of flue gas treatment system downstream side, is dissolved in the absorbing liquid. Part of the absorbent is discharged as wastewater after purification treatment by a wastewater treatment device.However, when discharging wastewater to the sea or river, the amount of nitrogen content is reduced to prevent eutrophication of the sea or river. It is regulated, and it is necessary to install expensive denitrification equipment in the wastewater treatment equipment.

【0011】このようにNH注入によりSOを除去
する排煙処理システムはNHの購入費用、NH注入
装置の設備、さらに排水処理装置で脱窒素装置を設置す
る必要がある。また、生成した硫安はばい塵となり、こ
れは電気集塵器4で捕集されるが、その一部は電気集塵
器4を通過し、脱硫装置8に流入する。この硫安は粒径
が約0.5μmと非常に微細な粒子のため、脱硫装置8
での除塵性能が低く、煙突10入口のばい塵濃度を増加
させることになる。
[0011] the cost of purchasing the flue gas treatment system NH 3 to remove the SO 3 by thus NH 3 injection equipment of the NH 3 injection device, it is necessary to provide a denitrification device further waste water treatment apparatus. In addition, the generated ammonium sulfate becomes dust, which is collected by the electric precipitator 4, and a part of the dust passes through the electric precipitator 4 and flows into the desulfurization device 8. Since this ammonium sulfate has a very fine particle size of about 0.5 μm, the desulfurization device 8
, The dust concentration at the entrance of the chimney 10 is increased.

【0012】またNHを排ガス中に注入せずに空気予
熱器3出口ガス温度をSO露点以上に高くするという
運転上の対応を強いられる場合があるが、この場合、脱
硫装置8出口の排ガス昇温用に用いるGGH再加熱器9
とそのGGH再加熱器9に熱媒体を介して熱エネルギー
を供給するためのGGH熱回収器7は設置できない。な
ぜなら空気予熱器3出口ガス温度を露点以上に維持して
も、GGH熱回収器7を設置するとGGH熱回収器7内
での熱交換によりガス温度は低下し、露点以下となり、
GGH熱回収器7の熱回収用の伝熱管に硫酸が凝縮す
る。そのためGGH熱回収器7の伝熱管が詰まったり、
腐食が生じる結果、排煙処理システムの運用ができなく
なる。
In some cases, it is necessary to take operational measures to raise the gas temperature at the outlet of the air preheater 3 to a value higher than the dew point of SO 3 without injecting NH 3 into the exhaust gas. GGH reheater 9 used for raising exhaust gas temperature
And a GGH heat recovery unit 7 for supplying thermal energy to the GGH reheater 9 via a heat medium cannot be installed. Because, even if the gas temperature at the outlet of the air preheater 3 is maintained at the dew point or higher, when the GGH heat recovery device 7 is installed, the gas temperature decreases due to heat exchange in the GGH heat recovery device 7 and becomes lower than the dew point.
Sulfuric acid condenses on the heat transfer tubes of the GGH heat recovery unit 7 for heat recovery. Therefore, the heat transfer tube of the GGH heat recovery unit 7 becomes clogged,
As a result of the corrosion, the operation of the flue gas treatment system becomes impossible.

【0013】例えばSO濃度と露点の関係を図4に示
す。空気予熱器3入口ガス中のSO 濃度が100pp
mであるとすると、露点は150℃と予想されるため、
空気予熱器3出口ガス温度を153℃以上になるように
運転すればSOの凝縮はないが、空気予熱器3の後流
側に設置されるGGH熱回収器7においては、脱硫装置
8出口に設置されるGGH再加熱器9での昇温分(約4
0℃)とほぼ等しく、ガス温度が低下するため、SO
の露点以下になる。
For example, SO3Fig. 4 shows the relationship between concentration and dew point.
You. SO in the gas at the inlet of the air preheater 3 3The concentration is 100pp
m, the dew point is expected to be 150 ° C,
Air preheater 3 outlet gas temperature should be 153 ℃ or more
Driving SO3Of the air preheater 3
In the GGH heat recovery unit 7 installed on the side, a desulfurization device
8 GGH reheater 9 installed at the exit
0 ° C.) and the gas temperature drops, so SO3
Below the dew point.

【0014】ここで、GGH熱回収器7出口ガス温度が
露点153℃以上になるように空気予熱器3出口ガス温
度を約200℃に設定する方法もあるが、これはボイラ
効率の大幅な低下を招くことになり、不経済である。
Here, there is a method in which the gas temperature at the outlet of the air preheater 3 is set to about 200 ° C. so that the gas temperature at the outlet of the GGH heat recovery unit 7 becomes 153 ° C. or more, but this greatly reduces the boiler efficiency. This is uneconomical.

【0015】[0015]

【発明が解決しようとする課題】上記図5に示す排ガス
中のSOを除去するために排ガス中にNHを注入す
る排煙処理システムにおいては、NH注入部以降の後
流機器への影響が考慮されておらず、脱硫装置8出口の
ばい塵濃度が増加することや脱硫後の排水処理装置に脱
窒素装置を設置する必要があった。
In the flue gas treatment system shown in FIG. 5 for injecting NH 3 into exhaust gas in order to remove SO 3 in the exhaust gas, the system is connected to a downstream device after the NH 3 injection section. The influence was not taken into account, and the dust concentration at the outlet of the desulfurization device 8 increased, and it was necessary to install a denitrification device in the wastewater treatment device after desulfurization.

【0016】本発明の課題はNHを投入せずに排ガス
中のSOを除去する排煙処理システムを提供すること
である。
An object of the present invention is to provide a flue gas treatment system for removing SO 3 in exhaust gas without introducing NH 3 .

【0017】[0017]

【課題を解決するための手段】本発明の上記課題は排ガ
ス流路に設けられた集塵器にはNHを注入せず、GG
H熱回収器に水洗装置を設け、脱硫装置の吸収塔出口に
高性能のミスト除去装置を設けることにより解決され
る。
SUMMARY OF THE INVENTION The object of the present invention is to provide a dust collector provided in an exhaust gas flow path without injecting NH 3 into the dust collector.
The problem can be solved by providing a water washing device in the H heat recovery unit and a high-performance mist removal device at the outlet of the absorption tower of the desulfurization device.

【0018】すなわち、本発明はボイラ等の燃焼装置か
らの排ガス中に含まれるばい塵と窒素酸化物と硫黄酸化
物を除去するために排ガス流路の上流側から順次脱硝装
置、集塵器、吸収塔を備えた脱硫装置および該脱硫装置
を挟んで、その前後にガスガスヒータの熱回収器と再加
熱器を配置した排煙処理装置において、SO除去のた
めのNH注入装置を脱硝装置入口の排ガス流路にのみ
配置し、集塵器入口の排ガス流路に配置されるGGH熱
回収器に洗浄装置を設け、また吸収塔出口部に高性能ミ
スト除去装置を設けた排煙処理装置である。
That is, according to the present invention, in order to remove dust, nitrogen oxides and sulfur oxides contained in exhaust gas from a combustion device such as a boiler, the denitration device, the dust collector, In a desulfurization apparatus provided with an absorption tower and a flue gas treatment apparatus having a heat recovery unit and a reheater of a gas gas heater arranged before and after the desulfurization apparatus, an NH 3 injection apparatus for removing SO 3 is provided by a denitration apparatus. A flue gas treatment device that is installed only in the exhaust gas channel at the inlet, a cleaning device is installed in the GGH heat recovery device that is installed in the exhaust gas channel at the dust collector inlet, and a high-performance mist removal device is installed at the outlet of the absorption tower. It is.

【0019】上記高性能ミスト除去装置は、微細な液滴
のスプレ装置と、ミストエリミネータから構成すること
または湿式EPから構成することができる。
The high-performance mist removing device can be constituted by a spray device for fine droplets and a mist eliminator, or can be constituted by a wet EP.

【0020】[0020]

【作用】集塵器でNHを注入しないため硫安が生成せ
ず、さらに脱硫装置に流入するばい塵濃度が増加せず、
またGGH熱回収器においてはSOが凝縮するが、水
洗装置により容易に除去でき、また排ガス中に含まれる
SOミストは脱硫装置の吸収塔出口の高性能ミスト除
去装置によっても除去され、吸収塔内に回収されたSO
ミストは脱硫装置の吸収塔内で石灰石との反応により
石膏として回収できるようになる。従って、脱硫装置出
口のばい塵濃度も増加せず、また排水中のNH濃度の
増加もない。
[Action] Since NH 3 is not injected into the dust collector, ammonium sulfate is not generated, and the concentration of the dust flowing into the desulfurizer does not increase.
In the GGH heat recovery unit, SO 3 is condensed, but can be easily removed by a water washing device, and SO 3 mist contained in exhaust gas is also removed by a high-performance mist removal device at an outlet of an absorption tower of a desulfurization device. SO recovered in the tower
The three mist can be recovered as gypsum by reaction with limestone in the absorption tower of the desulfurization device. Therefore, the concentration of the dust at the outlet of the desulfurizer does not increase, and the concentration of NH 3 in the wastewater does not increase.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態について図面
と共に以下説明する。硫黄分含有燃料を使用するボイラ
の排煙処理システムにおいて、NHを注入しないSO
除去装置を有する排煙処理システムを図1に示す。
Embodiments of the present invention will be described below with reference to the drawings. In a flue gas treatment system for a boiler using a sulfur-containing fuel, SO 3 without injecting NH 3 is used.
FIG. 1 shows a flue gas treatment system having a three- removal device.

【0022】図1に示す排煙処理システムにおいては図
5に示す排煙処理システムと同様に、ボイラ1、脱硝装
置2、空気予熱器3、電気集塵器4、IDF5、BUF
6、GGH熱回収器7、脱硫装置8、GGH再加熱器
9、煙突10、NH供給配管11、FDF13、熱媒
連絡管14、15を設けている。
In the flue gas treatment system shown in FIG. 1, similarly to the flue gas treatment system shown in FIG. 5, a boiler 1, a denitration device 2, an air preheater 3, an electric precipitator 4, an IDF 5, a BUF
6, a GGH heat recovery unit 7, a desulfurization unit 8, a GGH reheater 9, a chimney 10, an NH 3 supply pipe 11, an FDF 13, and heat medium communication pipes 14, 15.

【0023】本発明では電気集塵器前流側の排ガス中に
はNHの注入を実施せず、GGH熱回収器7に洗浄装
置17を設け、脱硫装置8の吸収塔出口にミスト除去装
置16を設けることによりNHを注入しないでSO
の除去を行う。
In the present invention, NH 3 is not injected into the exhaust gas upstream of the electrostatic precipitator, a cleaning device 17 is provided in the GGH heat recovery device 7, and a mist removal device is provided at the outlet of the absorption tower of the desulfurization device 8. SO 3 not inject NH 3 by providing the 16
Is removed.

【0024】図2には、図1に示す脱硫装置8の吸収塔
22の構造を示すが、GGH熱回収器7の入口に洗浄装
置17を設けると共に、吸収塔22の出口にミスト除去
装置16を設けている。
FIG. 2 shows the structure of the absorption tower 22 of the desulfurization unit 8 shown in FIG. 1. A washing unit 17 is provided at the inlet of the GGH heat recovery unit 7 and a mist removal unit 16 is provided at the outlet of the absorption tower 22. Is provided.

【0025】また、図3に洗浄装置17の水洗装置の系
統を示す。GGH熱回収器7の伝熱管上で凝縮した硫酸
とばい塵が湿潤状態を形成するものであり、水洗によっ
て容易に除去可能である。
FIG. 3 shows a system of a water washing device of the washing device 17. Sulfuric acid and dust condensed on the heat transfer tube of the GGH heat recovery unit 7 form a wet state, and can be easily removed by washing with water.

【0026】洗浄装置17の水洗装置内には、通常、水
洗配管19と該水洗配管19に取り付けられた散水型
(フルコーン)ノズル20と洗浄弁21が設けられ、G
GH熱回収器7に全面が洗浄できるように、これらが複
数組設置されている。
In the washing device of the washing device 17, a washing pipe 19, a water spray type (full cone) nozzle 20 attached to the washing pipe 19 and a washing valve 21 are usually provided.
A plurality of these are installed in the GH heat recovery unit 7 so that the entire surface can be washed.

【0027】また、図2に示すとおり、ミスト除去装置
16にはスプレ装置23で水をスプレーし、SOミス
トを肥大化させた後、後段のミスト除去装置24でミス
トを除去する。
As shown in FIG. 2, water is sprayed on the mist removing device 16 by the spray device 23 to enlarge the SO 3 mist, and then the mist is removed by the mist removing device 24 at the subsequent stage.

【0028】また、吸収塔22では吸収液のスプレノズ
ル25から吸収液が噴霧され、排ガスと接触して硫黄酸
化物を吸収する。スプレノズル25から噴霧された吸収
液は吸収塔22の下部に設けられた吸収液貯留タンク2
6に貯留され、循環ポンプ27により再びスプレノズル
25に供給される。
In the absorption tower 22, the absorption liquid is sprayed from the spray nozzle 25 of the absorption liquid, and comes into contact with the exhaust gas to absorb the sulfur oxides. The absorbing liquid sprayed from the spray nozzle 25 is supplied to the absorbing liquid storage tank 2 provided at the lower part of the absorbing tower 22.
6 and supplied to the spray nozzle 25 again by the circulation pump 27.

【0029】図1に示すように、ボイラ1からの排ガス
は空気予熱器3を出て電気集塵器4に導入されるが、電
気集塵器4流入前の排ガスにはNHの注入を行わない
ため、SOはガス状のままでGGH熱回収器7に導入
される。GGH熱回収器7内では排ガス温度が低下する
ので、SOは凝縮して硫酸ミストとなって、その一部
はGGH熱回収器7の伝熱管上に付着する。これによ
り、伝熱管表面は湿った状態となり、排ガス中のばい塵
が伝熱管上に付着すると硫酸ミストの付着性が強く、ス
ートブロワでは除去できないため、GGH熱回収器7の
伝熱管18を洗浄するための洗浄装置17を設け、定期
的に洗浄する。
As shown in FIG. 1, the exhaust gas from the boiler 1 exits the air preheater 3 and is introduced into the electric precipitator 4, but the exhaust gas before flowing into the electric precipitator 4 is injected with NH 3 . Since it is not performed, SO 3 is introduced into the GGH heat recovery unit 7 in a gaseous state. Since the exhaust gas temperature decreases in the GGH heat recovery unit 7, SO 3 is condensed to form a sulfuric acid mist, and a part thereof adheres to the heat transfer tube of the GGH heat recovery unit 7. As a result, the surface of the heat transfer tube becomes wet, and if dust in the exhaust gas adheres to the heat transfer tube, the sulfuric acid mist is strongly adhered and cannot be removed by the soot blower. A cleaning device 17 is provided to perform periodic cleaning.

【0030】また、図3に示した洗浄装置17内の水洗
配管19とノズル20とは耐酸性を考慮して、ポリプロ
ピレン、テフロン等の樹脂製のものが使用できる。水洗
水量は、本実施の形態によれば約50リットル/min
・mであるが、全伝熱管表面を同時に洗浄すると水量
が多くなるため、複数組設けられた洗浄配管19、ノズ
ル20と洗浄弁21の組み合わを順次分割して操作し
て、洗浄操作する方法が望ましい。
The washing pipe 19 and the nozzle 20 in the washing apparatus 17 shown in FIG. 3 can be made of resin such as polypropylene or Teflon in consideration of acid resistance. According to the present embodiment, the washing water amount is about 50 liter / min.
・ M 2 , but if the entire heat transfer tube surface is washed at the same time, the amount of water will increase. Therefore, the washing operation is performed by dividing and operating a plurality of sets of the washing pipe 19, the nozzle 20 and the washing valve 21 sequentially. The method is desirable.

【0031】洗浄装置17による洗浄時間は、通常1回
/日で1回10分程度を基本とし、洗浄後の△P(GG
H熱回収器7の排ガス流れの圧力損失(△P)の実測
値)から必要な場合には伝熱管18の再洗浄を実施す
る。
The cleaning time by the cleaning device 17 is generally about 10 minutes once per day / day, and ΔP (GG
If necessary, the heat transfer tube 18 is re-cleaned based on the pressure loss (ΔP) of the exhaust gas flow of the H heat recovery unit 7).

【0032】また、図2に示すGGH熱回収器7の伝熱
管18は洗浄効果が十分得られるよう裸管にする方が望
ましく、耐硫酸腐食性の材料を使用することが望まし
い。この洗浄排水は吸収塔22内に回収して補給水とし
て使用できるため、脱硫装置8全体の使用水量が増加す
ることはない。
Further, it is desirable that the heat transfer tube 18 of the GGH heat recovery unit 7 shown in FIG. 2 be a bare tube so that a sufficient cleaning effect can be obtained, and it is desirable to use a sulfuric acid corrosion resistant material. Since the washing wastewater can be collected in the absorption tower 22 and used as makeup water, the amount of water used in the entire desulfurization device 8 does not increase.

【0033】GGH熱回収器7を通過した硫酸ミストは
脱硫装置8の吸収塔22に流入するが、硫酸ミストは粒
径が1μm以下と小さいため、吸収塔22内での気液接
触により捕集できないため、吸収塔22出口にミスト除
去装置16を設置する。ミスト除去装置16としては、
スプレ装置23で水をスプレーし、SOミストを肥大
化させた後、後段のミスト除去装置24で捕集するシス
テムを採用することができる。ミスト除去装置24で捕
集したミストは図示しない装置で吸収塔22に回収す
る。なお、ミスト除去装置24として湿式EPを採用す
る方法もある。
The sulfuric acid mist that has passed through the GGH heat recovery unit 7 flows into the absorption tower 22 of the desulfurization unit 8, but the sulfuric acid mist is collected by gas-liquid contact in the absorption tower 22 because the particle size of the sulfuric acid mist is as small as 1 μm or less. Therefore, the mist removing device 16 is installed at the outlet of the absorption tower 22. As the mist removing device 16,
A system in which water is sprayed by the spray device 23 to enlarge the SO 3 mist and then collected by the mist removal device 24 at the subsequent stage can be employed. The mist collected by the mist removal device 24 is collected in the absorption tower 22 by a device (not shown). In addition, there is also a method of employing a wet EP as the mist removing device 24.

【0034】[0034]

【発明の効果】本発明によれば、排煙処理システムにお
いて、電気集塵器においてNHを注入する事なく排ガ
ス中のSOを除去することができるため、ユーティリ
ティー低減が可能になるばかりでなく、排水処理装置で
の脱窒素装置が不要となる。
According to the present invention, in a flue gas treatment system, SO 3 in exhaust gas can be removed without injecting NH 3 in an electric precipitator, so that utility can be reduced. Therefore, a denitrification device in the wastewater treatment device is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の排煙処理システムを示
す図である。
FIG. 1 is a diagram showing a flue gas treatment system according to an embodiment of the present invention.

【図2】 図1の排煙処理システムのGGH熱回収器と
脱硫装置の部分図である。
FIG. 2 is a partial view of a GGH heat recovery unit and a desulfurization device of the flue gas treatment system of FIG.

【図3】 図1の排煙処理システムの水洗装置の部分図
である。
FIG. 3 is a partial view of a flushing device of the flue gas treatment system of FIG. 1;

【図4】 排ガス中のSO濃度と露点の関係を示す図
である。
FIG. 4 is a graph showing the relationship between the concentration of SO 3 in exhaust gas and the dew point.

【図5】 従来技術からなる排煙処理システムを示す図
である。
FIG. 5 is a diagram illustrating a smoke exhaust treatment system according to the related art.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 脱硝装置 3 空気予熱器 4 電気集塵器 5 IDF 6 BUF 7 GGH熱回収器 8 脱硫装置 9 GGH再加熱器 10 煙突 11、12 NH供給配管 13 FDF 14、15 熱媒連絡管 16 ミスト除
去装置 17 水洗装置 18 伝熱管 19 水洗配管 20 フルコー
ンノズル 21 水洗弁 22 吸収塔 23 スプレ装置 24 ミスト除
去装置 25 スプレノズル 26 吸収液貯
留タンク 27 循環ポンプ
REFERENCE SIGNS LIST 1 boiler 2 denitrification device 3 air preheater 4 electric precipitator 5 IDF 6 BUF 7 GGH heat recovery device 8 desulfurization device 9 GGH reheater 10 chimney 11, 12 NH 3 supply pipe 13 FDF 14, 15 heat medium communication pipe 16 Mist removing device 17 Rinse device 18 Heat transfer tube 19 Rinse pipe 20 Full cone nozzle 21 Rinse valve 22 Absorption tower 23 Spray device 24 Mist remover 25 Spray nozzle 26 Absorbing liquid storage tank 27 Circulation pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 降行 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 尾田 直巳 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 4D002 AA02 AA12 AC01 BA02 BA03 BA14 BA16 CA01 CA13 DA05 DA07 DA16 EA02 EA09 FA03 GA01 GB03 GB06 HA03 HA08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Sayuki Saito 6-9 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi Inside the Kure Plant (72) Inventor Naomi Oda 6-9 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi Co., Ltd. F-term in the Kure Plant (reference) 4D002 AA02 AA12 AC01 BA02 BA03 BA14 BA16 CA01 CA13 DA05 DA07 DA16 EA02 EA09 FA03 GA01 GB03 GB06 HA03 HA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ等の燃焼装置からの排ガス中に含
まれるばい塵と窒素酸化物と硫黄酸化物を除去するため
に排ガス流路の上流側から順に脱硝装置、集塵器、吸収
塔を備えた該脱硫装置および脱硫装置を挟んで、その前
後にガスガスヒータの熱回収器と再加熱器を配置した排
煙処理装置において、 SO除去のためのNH注入装置を脱硝装置入口の排
ガス流路にのみ配置し、集塵器入口の排ガス流路に配置
されるGGH熱回収器に洗浄装置を設け、また吸収塔出
口部に高性能ミスト除去装置を設けたことを特徴とする
排煙処理装置。
1. A denitration device, a dust collector, and an absorption tower in order from an upstream side of an exhaust gas passage to remove dust, nitrogen oxides, and sulfur oxides contained in exhaust gas from a combustion device such as a boiler. In a flue gas treatment device in which a heat recovery unit and a re-heater of a gas gas heater are arranged before and after the desulfurization device and the desulfurization device provided, an NH 3 injection device for removing SO 3 is provided with an exhaust gas at the inlet of the denitration device. Smoke exhaust, which is provided only in the flow channel, provided with a cleaning device in the GGH heat recovery device disposed in the exhaust gas channel at the dust collector inlet, and provided with a high-performance mist removal device at the outlet of the absorption tower. Processing equipment.
【請求項2】 高性能ミスト除去装置は、微細な液滴の
スプレ装置と、ミストエリミネータから構成されること
を特徴とする請求項1記載の排煙処理装置。
2. The smoke exhaust treatment device according to claim 1, wherein the high-performance mist removal device comprises a spray device for fine droplets and a mist eliminator.
【請求項3】 高性能ミスト除去装置は、湿式電気集塵
器を用いることを特徴とする請求項1記載の排煙処理装
置。
3. The smoke exhaust treatment device according to claim 1, wherein the high-performance mist removal device uses a wet-type electrostatic precipitator.
JP11142699A 1999-05-24 1999-05-24 Exhaust gas treatment apparatus Pending JP2000325744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142699A JP2000325744A (en) 1999-05-24 1999-05-24 Exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142699A JP2000325744A (en) 1999-05-24 1999-05-24 Exhaust gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2000325744A true JP2000325744A (en) 2000-11-28

Family

ID=15321507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142699A Pending JP2000325744A (en) 1999-05-24 1999-05-24 Exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2000325744A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313188C (en) * 2005-08-16 2007-05-02 孙克勤 Smoke absorbing tower with trunk-shaped smoke outlet
CN102393023A (en) * 2011-10-20 2012-03-28 南京龙源环保有限公司 Exhaust gas dedusting, denitration and desulfuration method for thermal power plant
JP2012250154A (en) * 2011-06-01 2012-12-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Flue gas treatment apparatus
JP2015085235A (en) * 2013-10-29 2015-05-07 株式会社Ihi Exhaust gas treatment system and exhaust gas treatment method
WO2016175163A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Method and device for treating wastewater from gas-cooler cleaning
JP6070851B2 (en) * 2013-09-17 2017-02-01 株式会社Ihi Exhaust gas treatment system and treatment method
CN107138045A (en) * 2017-06-12 2017-09-08 青岛双瑞海洋环境工程股份有限公司 Marine exhaust processing unit for removing sulfur and nitrogen oxides simultaneously
CN109569237A (en) * 2018-11-30 2019-04-05 佛山丰汇环保工程有限公司 A kind of flue gas takes off white demister

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313188C (en) * 2005-08-16 2007-05-02 孙克勤 Smoke absorbing tower with trunk-shaped smoke outlet
JP2012250154A (en) * 2011-06-01 2012-12-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Flue gas treatment apparatus
CN102393023A (en) * 2011-10-20 2012-03-28 南京龙源环保有限公司 Exhaust gas dedusting, denitration and desulfuration method for thermal power plant
JP6070851B2 (en) * 2013-09-17 2017-02-01 株式会社Ihi Exhaust gas treatment system and treatment method
US10532312B2 (en) 2013-09-17 2020-01-14 Ihi Corporation Exhaust gas processing system and processing method
JP2015085235A (en) * 2013-10-29 2015-05-07 株式会社Ihi Exhaust gas treatment system and exhaust gas treatment method
JP2016203121A (en) * 2015-04-27 2016-12-08 三菱日立パワーシステムズ株式会社 Cleaning wastewater treatment method and apparatus for gas cooler
KR20170138546A (en) 2015-04-27 2017-12-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Method and device for treating wastewater from gas-cooler cleaning
CN107530621A (en) * 2015-04-27 2018-01-02 三菱日立电力系统株式会社 The cleaning method of wastewater treatment and device of gas cooler
WO2016175163A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Method and device for treating wastewater from gas-cooler cleaning
CN107530621B (en) * 2015-04-27 2020-10-27 三菱日立电力系统株式会社 Method and device for treating cleaning wastewater of gas cooler
CN107138045A (en) * 2017-06-12 2017-09-08 青岛双瑞海洋环境工程股份有限公司 Marine exhaust processing unit for removing sulfur and nitrogen oxides simultaneously
CN109569237A (en) * 2018-11-30 2019-04-05 佛山丰汇环保工程有限公司 A kind of flue gas takes off white demister

Similar Documents

Publication Publication Date Title
JP4988864B2 (en) Use of SO2 from flue gas in ammonia acid cleaning
JP5984712B2 (en) Exhaust gas treatment system and exhaust gas treatment method
CA2152743C (en) Regenerative scrubber application with condensing heat exchanger
WO2014038354A1 (en) Desulfurization device, and soot removal system
WO2004023040A1 (en) Exhaust smoke-processing system
CA2446500A1 (en) Method and system for removal of sulfur and dust from waste gases
WO2014103682A1 (en) Exhaust gas processing equipment and gas turbine power generation system using same
JP4227676B2 (en) Gas purification equipment
TWI531538B (en) Oxidation tank, seawater desulfurization system and power generation system
JP4475697B2 (en) Gas purification method
JP2000325744A (en) Exhaust gas treatment apparatus
JPH1157397A (en) Gas purifying method
KR100266098B1 (en) Method of treating combustion gas and apparatus therefor
JP3792290B2 (en) Smoke exhaust treatment method and apparatus
CN204601967U (en) A kind of flue gas desulfurization and denitrification system
CN106582226B (en) It is a kind of using ammonia-contaminated gas as the Denitration in Boiler technique of denitrfying agent
WO2018041813A1 (en) Simplified air quality control system for fluid catalytic cracking units
JP4719117B2 (en) Exhaust gas treatment method
JP2002361035A (en) Boiler flue gas treatment equipment
JPH11147024A (en) Flue-gas treatment method
CN219272656U (en) Processing system for deep dust removal of industrial boiler flue gas
JP2002068734A (en) Method for producing ammonia and method for treating exhaust gas
JPH05317646A (en) Waste gas treating method
JP2725784B2 (en) Flue gas desulfurization method
CN1772350A (en) Wet fume purifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515