WO2012132003A1 - Exhaust gas treatment system and exhaust gas treatment method - Google Patents

Exhaust gas treatment system and exhaust gas treatment method Download PDF

Info

Publication number
WO2012132003A1
WO2012132003A1 PCT/JP2011/058313 JP2011058313W WO2012132003A1 WO 2012132003 A1 WO2012132003 A1 WO 2012132003A1 JP 2011058313 W JP2011058313 W JP 2011058313W WO 2012132003 A1 WO2012132003 A1 WO 2012132003A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
seawater
heat
heat exchanger
temperature
Prior art date
Application number
PCT/JP2011/058313
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 落合
考司 村本
片川 篤
隆行 斉藤
中本 隆則
石坂 浩
みさき 隅倉
康二 原田
Original Assignee
バブコック日立株式会社
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社, 株式会社ササクラ filed Critical バブコック日立株式会社
Priority to PCT/JP2011/058313 priority Critical patent/WO2012132003A1/en
Priority to AU2011364094A priority patent/AU2011364094B2/en
Publication of WO2012132003A1 publication Critical patent/WO2012132003A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention particularly relates to an exhaust gas treatment system and an exhaust gas treatment method provided with wet desulfurization means for removing sulfur oxides and the like in the exhaust gas.
  • Exhaust gas discharged from boilers installed in thermal power plants and factories contains acidic gases such as sulfur oxides, hydrogen chloride, and hydrogen fluoride.
  • acidic gases such as sulfur oxides, hydrogen chloride, and hydrogen fluoride.
  • the wet desulfurization apparatus has advantages such as higher desulfurization performance than the dry desulfurization apparatus and less pollution of waste water discharged from the apparatus.
  • Exhaust gas from boilers installed in conventional thermal power plants and factories is introduced into wet desulfurization equipment at a relatively high temperature of 120 ° C. to 160 ° C. Therefore, in the absorption tower of the wet desulfurization apparatus, the high temperature exhaust gas and the slurry come into contact with each other and are vaporized to increase the amount of steam water. The generated large amount of mist (steam) cannot be captured by the mist eliminator and is discharged outside the absorption tower. For this reason, in order to supplement the amount of water for the steam discharged to the outside, make-up water has to be added, and a large amount of make-up water has been required.
  • the conventional wet desulfurization apparatus requires a large amount of makeup water.
  • fresh water is produced by a desalinator that converts seawater into fresh water and used as make-up water for wet desulfurization equipment.
  • a conventional desalination apparatus there is a method using an evaporation method such as a multistage flash method or a multi-effect method.
  • the desalination apparatus using the evaporation method it is necessary to supply heat from the outside by supplying steam or hot water to the seawater heater in the process of producing fresh water. Therefore, there has been a problem that power generation efficiency is reduced in a plant such as a thermal power plant.
  • the desalination apparatus requires heat of about 1-2 Ton / h of steam and 110 ° C. and about 1000 Ton / h of hot water.
  • seawater is directly supplied to the absorption tower, and after removing sulfur oxides and dust in the exhaust gas, the seawater is discharged to the sea.
  • the amount of seawater supplied to the absorption tower and discharged becomes large. Therefore, when wastewater treatment is performed, the facility becomes large in order to treat a large amount of wastewater.
  • the simple waste water treatment which only adjusts the dissolved oxygen concentration in waste water, the heavy metal etc. in waste water are not processed, and waste water temperature is also high. For this reason, the problem of secondary pollution of contaminated wastewater such as an increase in seawater temperature has occurred.
  • Patent Documents 1 and 2 are examples of techniques for desalinating seawater using exhaust heat from a boiler or the like.
  • seawater is desalinated using the exhaust heat of the power generation apparatus, and the efficiency of the power generation facility is increased, and the exhaust heat from the gas turbine is directly supplied to the seawater heater of the evaporative seawater desalination apparatus.
  • facilities for heating seawater are disclosed.
  • Patent Document 2 discloses a facility that heats seawater by using exhaust heat from a plurality of power plants such as a waste heat boiler and directly supplying it to a seawater heater of a seawater desalination apparatus.
  • Patent Documents 3 and 4 can be cited as technologies including a desulfurization apparatus and a desalination apparatus.
  • Patent Document 3 is a system that cools exhaust gas and seawater in indirect contact with each other in a heat exchanger on the desulfurization processing side of an indirect heat exchange device.
  • Patent Document 3 discloses a system in which moisture in exhaust gas is condensed and recovered by cooling, and heated seawater is supplied to an electrodialysis apparatus.
  • Patent Document 4 is a system in which exhaust gas from a thermal power generation boiler is processed by a dry-type flue gas desulfurization apparatus, and sensible heat of the exhaust gas is used as a heat source of a seawater desalination apparatus.
  • the seawater desalination apparatus of patent document 4 is a multistage flash, and supplies the obtained fresh water to a boiler.
  • JP 2006-70889 A Japanese Patent Laid-Open No. 61-15003 JP 62-30530 A JP 59-107105 A
  • Patent Documents 1 and 2 are a configuration in which heat of exhaust gas discharged from a power plant is directly exchanged as a heat source of a seawater desalination apparatus. This type of direct heat exchange between the exhaust gas and seawater, and when a malfunction occurs in the heat exchanger during plant operation, the exhaust gas treatment process and the desalination process are linked, resulting in a malfunction. Only the installed equipment could not be stopped, and the entire system had to be stopped.
  • Patent Document 3 heat exchange is performed after the desulfurization apparatus. For this reason, there is a problem that the temperature difference between the exhaust gas temperature and the seawater is small, and efficient heat exchange cannot be performed unless the capacity of the heat exchanger is increased, and the entire apparatus becomes large.
  • Patent Document 4 since a dry method is used as a desulfurization method, expensive active coke is required, and there is a problem that the desulfurization performance is low as compared with the wet method.
  • an object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method that can reduce the amount of makeup water in the desulfurization means. Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method capable of reducing the heat source required for the desalination means. Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method that improve the efficiency of fresh water production by the desalination means. Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method in which the dust collection efficiency of the electric dust collection means is improved.
  • the exhaust gas treatment system of the present invention includes a wet desulfurization means for removing sulfur oxides in the exhaust gas, a desalination means for producing fresh water from seawater and supplying the fresh water to the wet desulfurization means, and the exhaust gas before the wet desulfurization means.
  • a heat exchanger for heating the heat medium a seawater heater for the desalination means, and a circulation line for the heat medium by connecting the heat exchanger to the seawater heater. .
  • the amount of makeup water supplied to the desulfurization means can be reduced. Further, a heat source of exhaust gas can be used for the desalination means. Therefore, it is possible to reduce the cost of the entire system and save energy.
  • the flow control valve provided in the circulation line and the bypass line to adjust the flow rate of the heating medium, and the flow control valve.
  • a control means for controlling the supply amount of the heat medium to the seawater heater According to the said structure, the heating temperature of seawater can be controlled and manufacture of fresh water can be performed efficiently.
  • seawater temperature measuring means for detecting the outlet temperature of the seawater heater
  • the control means sets the measured value of the temperature measuring means so that the outlet temperature of the seawater heater becomes a predetermined temperature. Based on this, the supply amount of the heat medium to the seawater heater may be controlled. According to the said structure, the heating temperature of seawater can be controlled to the preset setting value, and manufacture of fresh water can be performed efficiently.
  • an electric dust collecting means is provided in the previous stage of the heat exchanger. According to the above configuration, heat exchange between the heat medium of the heat exchanger and the exhaust gas can be performed without lowering the exhaust gas temperature of the electric dust collecting means.
  • an electric dust collecting means may be provided between the heat exchanger and the wet desulfurization means.
  • transduced into an electrical dust collection means can be lowered
  • control means may be connected to the flow rate control valve to control the supply amount of the heat medium to the heat exchanger.
  • exhaust gas temperature can be controlled and it can remove efficiently with an electrical dust collection means.
  • gas temperature measuring means for detecting the temperature of the exhaust gas to be introduced into the electric dust collecting means
  • the control means has a predetermined temperature for the exhaust gas to be introduced into the electric dust collecting means.
  • exhaust gas temperature can be controlled to the preset value of gas temperature, and it can remove efficiently with an electrical dust collection means.
  • the heat medium when a second heat exchanger is provided in the liquid distillation section of the wet desulfurization means and connected to the circulation line, the heat medium circulates between the heat exchanger and the second heat exchanger. Good.
  • the heat medium can be heated by exchanging heat between the heat medium and the absorbing liquid without reducing the dust removal efficiency of the electric dust collecting means. Therefore, even when the exhaust gas temperature is low, the heating medium can be heated, the amount of steam used in the desalination means can be reduced, and the cost of the entire system and energy saving can be achieved.
  • the exhaust gas treatment system of the present invention includes a wet desulfurization means for removing sulfur oxides in the exhaust gas, a desalination means for producing fresh water from seawater and supplying the fresh water to the wet desulfurization means, and the exhaust gas after the wet desulfurization means.
  • a heat exchanger for heating the heat medium a seawater heater for the desalination means, a heat medium circulation line for connecting the heat exchanger to the seawater heater and circulating the heat medium, and in the exhaust gas.
  • a mist eliminator for removing mist contained therein.
  • the exhaust gas that has been saturated with water after the desulfurization treatment can be condensed and recovered by reducing the gas temperature by heat exchange with the heat medium of the heat exchanger. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved.
  • the exhaust gas treatment method of the present invention is the exhaust gas treatment method for removing sulfur oxides contained in the exhaust gas, wherein the exhaust gas before the desulfurization treatment and the heat medium are heat-exchanged to lower the gas temperature of the exhaust gas to reduce the heat.
  • a step of heating the medium a step of desulfurizing the exhaust gas whose gas temperature has decreased, a step of circulating the heated heating medium to a seawater heater, a step of exchanging heat between the heated heating medium and seawater, It comprises a step of producing fresh water from the heated seawater, and a step of measuring the heated seawater temperature and controlling the circulation amount of the heating medium.
  • the amount of makeup water supplied to the desulfurization means can be reduced. Further, a heat source of exhaust gas can be used for the desalination means. Therefore, it is possible to reduce the cost of the entire system and save energy. Moreover, the heating temperature of seawater can be controlled and the manufacture of fresh water can be performed efficiently.
  • a heat exchanger can be installed on the upstream side (front stage) of the wet desulfurization means to lower the exhaust gas temperature at the inlet of the wet desulfurization means.
  • 1 is a schematic configuration diagram of an exhaust gas treatment system according to a first embodiment.
  • 1 is a schematic configuration diagram of an exhaust gas treatment system using a multiple effect method for desalination means.
  • 1 is a schematic configuration diagram of an exhaust gas treatment system using a multistage flash method as a desalination means. It is a graph which shows the correlation of absorption tower inlet gas temperature and absorption tower evaporation water amount.
  • It is a composition schematic diagram of an exhaust gas treatment system concerning a 2nd embodiment.
  • It is a block schematic diagram of the waste gas treatment system concerning a 3rd embodiment.
  • It is a block schematic diagram of the exhaust gas treatment system concerning a 4th embodiment.
  • It is a block schematic diagram of the exhaust gas treatment system concerning a 5th embodiment.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas treatment system according to the first embodiment.
  • the exhaust gas treatment system 10 according to the first embodiment removes sulfur components from the exhaust gas disposed in the subsequent stage of the electrostatic dust collection means 12 for removing soot and dust from the exhaust gas.
  • the desulfurization means 40 for this purpose, the desalination means 80 for producing fresh water from seawater, and the heat exchanger 20 that uses the heat of the exhaust gas for the seawater heating of the desalination means are the main basic components.
  • the electric dust collecting means 12 is mainly composed of a discharge electrode and a dust collecting plate.
  • the electric dust collecting means 12 having such a configuration charges and removes dust in the exhaust gas discharged from the boiler by corona discharge generated between the discharge electrode and the dust collecting plate.
  • An exhaust gas fan 14 is provided after the electric dust collecting means 12. The exhaust gas fan 14 pressurizes the exhaust gas.
  • the heat exchanger 20 is a multi-tube type, and is disposed in the outlet path of the electric dust collecting means 12 and has a structure in which exhaust gas flows on the outer surface of the heat transfer tube and heat medium flows on the inner surface of the heat transfer tube.
  • the heat exchanger 20 is connected to a seawater heater 22 provided in the desalination means 80 via a heat medium circulation line 24.
  • the circulation line 24 is a heat medium circulation path including a circulation pump 26. Through the circulation line 24, heat exchange between the exhaust gas and the heat medium is performed by the heat exchanger 20, heat exchange between the heat medium and the sea water is performed by the seawater heater 22, and the desalination means 80 is utilized using the heat of the exhaust gas.
  • the supplied seawater is heated.
  • the temperature of exhaust gas discharged from a boiler installed in a thermal power plant, a plant or the like is a relatively high temperature of 120 ° C. to 160 ° C. in the case of a coal fired boiler.
  • the heat medium is heated by high-temperature exhaust gas.
  • the heated heat medium is sent to the seawater heater 22, heat exchange is performed between the seawater and the heat medium, and the seawater is heated.
  • the exhaust gas temperature is lowered by heat exchange with the heat medium flowing on the inner surface of the pipe.
  • fresh water (industrial water) is preferably used as the heat medium.
  • an inexpensive carbon steel material can be used for the heat exchanger and the circulation line.
  • the desulfurization means 40 basically has a configuration in which an absorption tower 42 is provided with a liquid reservoir 44 disposed in the lower portion thereof, an absorption portion 46 disposed in an exhaust gas rising path, and a mist eliminator 48 disposed in an outlet portion. Yes.
  • the absorption tower 42 is provided with a gas inflow portion 41 on the upstream side where the exhaust gas pressurized by the exhaust gas fan 14 is introduced.
  • the liquid reservoir 44 is provided in the lower part of the absorption tower 42 and can temporarily store an absorbent slurry for reacting with a sulfur component in the exhaust gas.
  • An absorbent slurry (limestone slurry) supply unit 50 is connected to the liquid reservoir 44. Necessary absorbent slurry (limestone slurry) is supplied from the supply unit 50 to the liquid reservoir 44 in accordance with the amount of sulfur oxide contained in the exhaust gas from the boiler or the like.
  • the liquid reservoir 44 is connected to the absorber 46 through the absorbent circulation pipe 52.
  • the absorption liquid circulation pipe 52 is provided with an absorption liquid circulation pump 54. With this configuration, the slurry-like absorption liquid in the liquid reservoir 44 is circulated and supplied to the absorption section 46 via the absorption liquid circulation pipe 52 by the absorption liquid circulation pump 54.
  • the absorber 46 is provided above the liquid reservoir 44 in the absorption tower 42.
  • the absorber 46 is provided with spray headers 56 in multiple stages in the gas flow direction, and an absorbent is supplied to the spray headers 56.
  • Each spray header 56 is provided with a plurality of spray nozzles 58. Due to the supply pressure of the absorption liquid circulation pump 54, the absorption liquid is sprayed from the spray nozzle 58 toward the upward flow of the exhaust gas.
  • the absorption unit 46 absorbs an acidic gas such as sulfur oxide, hydrogen chloride, or hydrogen fluoride contained in the exhaust gas by gas-liquid contact between the absorption liquid sprayed from the spray nozzle 58 and the exhaust gas. It is absorbed by the droplet surface of the absorbing liquid circulating in the tower 42. At this time, the absorption liquid partially evaporates depending on the temperature of the exhaust gas to be mist.
  • the mist eliminator 48 is provided at the desulfurization means gas outlet 59 (after the absorber 46) in the absorption tower 42.
  • the mist eliminator 48 can remove mist contained in the exhaust gas. With such a configuration, the exhaust gas containing mist is finally discharged from a chimney (not shown) after the mist is removed by the mist eliminator 48.
  • the sulfur oxide contained in the exhaust gas reacts with the calcium compound in the absorption liquid to become calcium sulfite as an intermediate product and flows down to the liquid reservoir 44.
  • the liquid reservoir 44 is provided with an oxidizing air blower 60 and an oxidizing stirrer 62. Air is forcibly supplied to the liquid reservoir 44 by the oxidation air blower 60, and an oxidation reaction between the air and calcium sulfite is performed to generate gypsum slurry as a reaction product.
  • the oxidized air supplied to the liquid reservoir 44 is refined by an oxidizing stirrer 62 that stirs the absorbing liquid in the liquid reservoir 44. Thereby, the use efficiency of oxidized air can be improved.
  • the liquid reservoir 44 is connected to the gypsum dewatering means 64.
  • an absorbing liquid extraction pump 66 is provided on the pipe connected to the gypsum dewatering means 64.
  • the absorbent slurry is extracted from the liquid reservoir 44 to the gypsum dewatering means 64 by the absorption liquid extraction pump 66 according to the amount of gypsum produced.
  • the gypsum dewatering means 64 is dehydrated and collected as powder gypsum 65.
  • the treated water is temporarily stored in the filtrate collection tank 67 and discharged to the outside by the filtrate pump 68 as makeup water or drainage.
  • the desalination means 80 is a seawater desalination apparatus that produces fresh water from seawater.
  • the desalination means of this embodiment employs an evaporation method such as a multi-effect method or a multistage flash method.
  • FIG. 2 is a schematic diagram of the configuration of an exhaust gas treatment system using a multi-effect method as a desalination means.
  • the configuration other than the desalination means is the same as the configuration shown in FIG. 1, and the same reference numerals are given and detailed description is omitted.
  • the multi-effect desalination means 80a depressurizes the inside of the system, a pre-heater 82 that heats the sea water with warm water before the sea water heater 22, a sea water sprayer and a steam heat exchanger.
  • An ejector 86 and a condenser 88 that heats the taken-in seawater and condenses fresh water at the most concentrated stage of the effect cans 84 have a main basic configuration.
  • the taken seawater is heated by supplying it to the condenser 88 and sent to the seawater return line, and a part of the seawater is supplied to the preheater 82 heated by the hot water.
  • the seawater heated by the pre-heater 82 is sprayed from the sprayers of the effect cans 84 and condensed in the steam supplied to the heat exchangers of the effect cans 84, and is further heated and decompressed by the ejector 86. It becomes steam.
  • the seawater from the preheater 82 is further heated by the seawater heater 22 by the heat medium of the circulation line 24 or the heat of steam from the outside.
  • FIG. 1st effect can 84a And it is supplied to the 1st effect can 84a, and becomes a partial vapor
  • FIG. The heat of the steam generated here can be used for the evaporation of seawater in the second effect can 84b.
  • the steam generated in the first effect can 84a is supplied to the second effect can 84b in the subsequent stage.
  • the sea water on the rear stage side of the preheater 82 is heated, and the steam is condensed to become fresh water. This operation is repeated with utility cans 84 arranged in multiple stages.
  • the fresh water condensed in the final stage condenser 88 is discharged out of the system by the fresh water pump 90 and used as industrial water.
  • the concentrated water is discharged out of the system by the concentrated water pump 92.
  • the heat quantity of the steam and hot water necessary for heating the seawater is performed by the exhaust gas heat upstream of the absorption tower 42 of the wet desulfurization means 40, thereby enabling more efficient heat exchange.
  • FIG. 3 is a schematic configuration diagram of an exhaust gas treatment system using a multistage flash method as a desalination means.
  • the configuration other than the desalination means is the same as the configuration shown in FIG. 1, and the same reference numerals are given and detailed description is omitted.
  • the desalination means 80b using the multi-stage flash method is composed of an exhaust heat section 94 and a heat recovery section 95 in which evaporation chambers 93 are formed in multiple stages, and each evaporation chamber 93 is provided with a condenser 96 and a concentrated water reservoir 97. ing.
  • Such desalination means 80b is configured such that the drawn seawater passes through the condenser 96 of the exhaust heat section 94 and condenses the flash vapor in the evaporation chamber 93, and then is sent to the seawater return line, and part of the exhaust heat section. 94 is supplied to the concentrated water reservoir 97.
  • the seawater in the concentrated water reservoir 97 of the exhaust heat unit 94 is supplied to the condenser 96 of the heat recovery unit 95 via the supply pump 98 and condensed by the flash vapor of each evaporation chamber 93 and then heated by the seawater heater 22. .
  • the heated seawater is supplied to the first-stage concentrated water reservoir 97a of the heat recovery unit 95, and sequentially moves from the first-stage concentrated water reservoir 97a to the subsequent-stage concentrated water reservoir 97. It is condensed with.
  • the condensed water generated in each evaporation chamber sequentially moves to the subsequent stage, and is discharged out of the system by the fresh water pump 90 from the final-stage evaporation chamber 93b and used as industrial water.
  • the concentrated water is discharged out of the system by the concentrated water pump 92.
  • the seawater heated by the seawater heater 22 generates steam by the decompression of the ejector 86 at each stage. Seawater is used before this steam is generated.
  • Seawater used for condensation passes through the condenser 96 and is supplied to the seawater heater 22 while being heated at each stage.
  • a part of the fresh water produced by the desalination means 80 is used as makeup water for the absorption liquid in the absorption tower 42. It is also used as cleaning water for the inlet of the absorption tower 42.
  • the absorbing liquid circulating in the absorption tower 42 is scattered on the mist eliminator 48 installed at the outlet of the absorption tower 42 and adheres to the elements of the mist eliminator 48. For this reason, fresh water is used as washing water, and the element is washed with water.
  • the absorption liquid in the liquid reservoir 44 is approximately 50 ° C.
  • the outlet temperature of the oxidizing air blower 60 is normally 120 ° C. to 150 ° C. If it is supplied to the liquid reservoir 44 as it is, a dry state and a wet state are alternately repeated at the end of the pipe inserted into the absorbing liquid in the liquid reservoir 44, and the slurry adheres.
  • the exhaust gas treatment system 10 of the present invention having the above-described configuration, the exhaust gas discharged from the boiler or the like is introduced into the electric dust collecting means 12, and dust in the exhaust gas is removed.
  • the exhaust gas is pressurized by the exhaust gas fan 14 and introduced into the heat exchanger 20.
  • the temperature of the exhaust gas decreases due to heat exchange with the heat medium flowing on the inner surface of the tube of the heat exchanger 20.
  • the heat medium heated by the heat exchanger 20 is subjected to heat exchange between the seawater and the heat medium in the seawater heater 22 via the circulation line 24.
  • fresh water can be manufactured from the heated seawater.
  • the exhaust gas whose gas temperature has decreased is introduced into the wet desulfurization means 40, and gas-liquid contact occurs between the absorption liquid sprayed from the spray nozzle 58 and the exhaust gas in the absorption section 46.
  • an acidic gas such as sulfur oxide, hydrogen chloride, or hydrogen fluoride contained in the exhaust gas is absorbed by the surface of the droplet of the absorbing liquid circulating in the absorption tower 42.
  • a part of the absorbing solution is misted in the absorption tower 42, and the exhaust gas containing the mist is finally discharged from the chimney (not shown) after the mist is removed by the mist eliminator 48.
  • FIG. 4 is a graph showing the correlation between absorption tower inlet gas temperature and absorption tower evaporation water amount.
  • the horizontal axis of the graph represents the absorption tower inlet gas temperature (° C.), and the vertical axis represents the absorption tower evaporation water amount (t / h).
  • the absorption tower inlet gas temperature and the absorption tower evaporation water amount are in a proportional relationship. Therefore, if the absorption tower inlet gas temperature is reduced, the absorption tower evaporation water amount can also be reduced.
  • the exhaust gas temperature introduced into the wet desulfurization means is lowered by the heat exchanger, so that the steam generated in the absorption tower of the wet desulfurization means can be reduced. Therefore, steam is not discharged to the outside of the wet desulfurization means and the absorption liquid is not reduced, and the amount of makeup water can be greatly reduced. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved.
  • the heat exchanger and the desalination unit are connected by a circulation line to perform heat exchange.
  • the desalination unit is installed on the top of the heat exchanger to save space. You may comprise so that.
  • FIG. 5 is a schematic configuration diagram of an exhaust gas treatment system according to the second embodiment.
  • the amount of heat recovered by the heat exchanger 20 varies depending on the amount of exhaust gas from the boiler, the exhaust gas temperature, and the like.
  • the exhaust gas treatment system 100 according to the second embodiment includes a seawater temperature measuring means 102 that measures the outlet temperature of seawater heated by the seawater heater 22, and a first flow rate control valve 104 that can adjust the flow rate of the circulation line 24.
  • a bypass line 106 that connects the feed pipe and return pipe of the circulation line, a second flow rate control valve 108 that adjusts the flow rate of the bypass line 106, and a control means 110 are provided.
  • the seawater temperature measuring means 102 is a temperature sensor that can be attached to the outlet side of the seawater heater 22 in the circulation line 24 and measure the heated seawater temperature.
  • the first flow rate control valve 104 is a valve that is attached to the circulation line 24 and can adjust the flow rate of the heat medium flowing in the piping.
  • the bypass line 106 is a pipe that connects the feed pipe and the return pipe of the circulation line 24.
  • the second flow rate control valve 108 is a valve that is attached to the bypass line 106 and can adjust the flow rate of the heat medium flowing in the pipe.
  • the control means 110 is electrically connected to the seawater temperature measurement means 102 and the first and second flow rate control valves 104 and 108.
  • the control means 110 controls the flow rate of the heating medium in the circulation line 24 based on the detected value of the outlet temperature (heated seawater temperature) of the seawater heater 22 by the seawater temperature measuring means 102, and the seawater temperature is determined in advance. The set value can be controlled.
  • the control target value of the seawater outlet side temperature of the seawater heater 22 in the circulation line 24 is 105 ° C.
  • the bypass line 106 is opened to increase the amount of heat medium bypassing the seawater. It is necessary to control the circulating amount of the heat medium to the heater 22 to be small. Or the opening degree of the 1st flow control valve 104 can be made small, and the circulation amount of a heat medium can also be controlled small.
  • the seawater temperature to be heated can be controlled to a preset value of the seawater temperature, and freshwater can be efficiently produced by the desalination means.
  • FIG. 6 is a schematic configuration diagram of an exhaust gas treatment system according to the third embodiment.
  • the exhaust gas treatment system 200 according to the third embodiment has a heat exchanger 20 a disposed on the upstream side of the electric dust collection means 12.
  • a gas temperature measuring means 102a for the exhaust gas is provided between the heat exchanger 20a and the electrostatic dust collecting means 12.
  • the control means 110 is electrically connected to the gas temperature measuring means 102a.
  • Other configurations are the same as those of the exhaust gas treatment system 100 according to the second embodiment, and detailed description thereof is omitted.
  • Exhaust gas discharged from boilers has a relatively high gas temperature of 120 ° C to 160 ° C.
  • the heat exchanger 20a By disposing the heat exchanger 20a on the upstream side of the electric dust collecting means 12, the exhaust gas temperature introduced into the electric dust collecting means 12 can be lowered by heat exchange between the exhaust gas and the heat medium.
  • the removal performance of the dust contained in the exhaust gas by the electrostatic dust collecting means 12 is determined by a plurality of factors such as dust particle size, dust composition, dust electric resistance value, charge amount in the electrostatic dust collecting means 12 and the like. .
  • the electrical resistance value of dust is lowered due to a decrease in gas temperature, and the dust removal performance is improved.
  • the inlet gas temperature of the electrostatic precipitator 12 drops below a certain value, it is difficult to fix the dust inside the electrostatic precipitator 12 and transport the dust collected by the electrostatic precipitator 12. There are problems such as becoming.
  • the gas temperature measuring means 102a is installed at the outlet of the heat exchanger 20a.
  • the control means 110 controls the flow rate of the heat medium in the circulation line 24 based on the detected value of the outlet temperature (exhaust gas temperature) of the heat exchanger 20a by the gas temperature measuring means 102a, and sets the exhaust gas temperature to a predetermined value. Can be controlled.
  • the exhaust gas / exhaust gas temperature at the boiler outlet decreases, and the inlet temperature of the electrostatic dust collecting means 12 also decreases. If the inlet temperature of the electrostatic precipitator 12 is too low, ash sticks to the internal electrode plate, ash is clogged at the hopper of the precipitator 12, and stable operation becomes difficult. For this reason, in the case of a low boiler load, the opening amount of the first flow control valve 104 is reduced to reduce the circulation amount of the heat medium so that the outlet temperature of the heat exchanger 20a does not decrease too much.
  • the inlet temperature of the means 12 can be maintained at a preset value (for example, 80 ° C.) or higher.
  • the exhaust gas temperature can be controlled to a preset value of the gas temperature, and can be efficiently removed by the electric dust collection means 12.
  • FIG. 7 is a schematic configuration diagram of an exhaust gas treatment system according to the fourth embodiment.
  • an exhaust gas treatment system 300 according to the fourth embodiment has a basic configuration of the exhaust gas treatment system 200 of the third embodiment.
  • the heat exchange between the exhaust gas and the heat medium is performed before the electric dust collecting means 12, and therefore the exhaust gas temperature is too low when the initial temperature of the exhaust gas is low.
  • the dust removal efficiency of the electrostatic precipitator 12 is reduced. Therefore, there is a limit to the temperature for cooling the exhaust gas.
  • the second heat exchanger 21 is provided in the absorption tower 42 of the wet desulfurization means 40 to heat the heat medium.
  • the second heat exchanger 21 is connected to the second circulation line 25 branched to the circulation line 24.
  • the second heat exchanger 21 is disposed in the liquid reservoir 44.
  • the oxidation reaction of absorbed SO 2 occurring inside the absorption tower 42 is an exothermic reaction.
  • the second heat exchanger 21 can heat the heat medium by exchanging heat between the heat medium and the absorbing liquid. Then, this heat medium is introduced into the circulation line 24 via the second circulation line 25, and heat exchange with the seawater can be performed by the seawater heater 22.
  • the exhaust gas treatment system 300 According to the exhaust gas treatment system 300 according to the fourth embodiment having such a configuration, heat is exchanged between the heat medium and the absorbing liquid without reducing the dust removal efficiency of the electrostatic precipitator 12.
  • the medium can be heated. Therefore, even when the exhaust gas temperature is low, the heating medium can be heated, the amount of steam used in the desalination means can be reduced, and the cost of the entire system and energy saving can be achieved.
  • FIG. 8 is a schematic configuration diagram of an exhaust gas treatment system according to the fifth embodiment.
  • the exhaust gas treatment system 400 according to the fifth embodiment is provided with the heat exchanger 20 according to the first embodiment in the subsequent stage of the first mist eliminator 48a.
  • the 2nd mist eliminator 48b is arrange
  • the second mist eliminator 48b is connected to a makeup water supply line of the wet desulfurization means 40.
  • Other configurations are the same as those of the first embodiment, and detailed description thereof is omitted.
  • the first mist eliminator 48a is introduced with exhaust gas from which components such as sulfur oxide have been removed and mist vaporized by high-temperature exhaust gas.
  • the exhaust gas containing the mist that has passed through the first mist eliminator 48a is heat-exchanged with the heat medium of the heat exchanger 20b.
  • the heat medium exchanges heat with the seawater by the seawater heater 22 via the circulation line 24.
  • the exhaust gas that has become a water saturated state in which the gas temperature has decreased due to heat exchange with the heat medium in the heat exchanger 20b can be recovered by condensing the water in the second mist eliminator 48b.
  • the recovered moisture can be used as makeup water for the absorption liquid in the absorption tower 42.
  • the exhaust gas that has been saturated with water through the desulfurization process is cooled to the gas temperature in the saturated state by heat exchange with the heat medium of the heat exchanger. Water can be condensed and recovered. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved.
  • the heat exchanger may be installed on the inlet side or the outlet side of the absorption tower liquid circulation pump 54 of the absorption liquid circulation pipe 52.
  • the seawater heater 22 may be installed on the seawater inlet side of the desalination means 80.
  • the exhaust gas treatment system and exhaust gas treatment method of the present invention can be applied to exhaust gas treatment of various plants such as thermal power plants that contain sulfur oxide in the exhaust gas.
  • Desulfurization means gas outlet, 60 ... Air blower for oxidation, 62 ... Stirrer for oxidation, 64 ... Gypsum dehydration Means, 65 ... gypsum, 66 ... absorption pump, 67 ... ... Filtrate recovery tank, 68 ... ... Filtrate pump, 80 ... ... Desalination means, 82 ... ... Preheater, 84 ... ... Effect can, 86 ... ... Ejector, 88 ... ... Condenser, 90 ... — Fresh water pump, 92 ......... Concentrated water pump, 93 ......... Evaporation chamber, 94 ......... Exhaust heat section, 95 — Heat recovery section, 96 .........
  • Condenser 97 ......... Concentrated water reservoir, 98 ......... Supply pump, 102 ......... Seawater temperature measuring means, 102a ......... Gas temperature measuring means, 104 ......... First flow control valve, 106 ......... Bypass line, 108 ......... Second flow control Valve, 110... Control means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

[Problem] The purpose of the present invention is to provide an exhaust gas treatment system and exhaust gas treatment method that can reduce the amount of make-up water to a desulfurization means and make a reduction in the heat source required for a desalination means. [Solution] This exhaust gas treatment system (10) is characterized by comprising a wet type desulfurization means (40) that eliminates sulfur oxides in the exhaust gas, a desalination means (80) that produces fresh water from seawater and supplies the same to the wet type desulfurization means (40), a heat exchanger (20) that heats a heating medium by means of the exhaust gas in a stage prior to the wet type desulfurization means (40), a seawater heater (22) for the desalination means (80), and a circulation line (24) that connects the heat exchanger (20) to the seawater heater and circulates the heating medium.

Description

排ガス処理システム及び排ガス処理方法Exhaust gas treatment system and exhaust gas treatment method
 この発明は、特に排ガス中の硫黄酸化物等を除去する湿式脱硫手段を備えた排ガス処理システム及び排ガス処理方法に関する。 The present invention particularly relates to an exhaust gas treatment system and an exhaust gas treatment method provided with wet desulfurization means for removing sulfur oxides and the like in the exhaust gas.
 火力発電所や工場等に設置されるボイラ等から排出される排ガス中には硫黄酸化物、塩化水素、フッ化水素等の酸性ガスが含まれている。この酸性ガスを除去する手段として湿式脱硫装置がある。湿式脱硫装置は、乾式脱硫装置と比べて脱硫性能が高く、装置から排出される排水の汚染が少ないなどの利点がある。 Exhaust gas discharged from boilers installed in thermal power plants and factories contains acidic gases such as sulfur oxides, hydrogen chloride, and hydrogen fluoride. There is a wet desulfurization apparatus as means for removing the acid gas. The wet desulfurization apparatus has advantages such as higher desulfurization performance than the dry desulfurization apparatus and less pollution of waste water discharged from the apparatus.
 従来の火力発電所や工場等に設置されるボイラ等からの排ガスは、ガス温度が120℃~160℃と比較的高温の状態で湿式脱硫装置に導入されている。従って湿式脱硫装置の吸収塔内では、高温の排ガスとスラリが接触することにより蒸気化されて蒸気水量が増加する。発生した多量のミスト(蒸気)は、ミストエリミネータで捕捉することができず、吸収塔の外部へ排出されてしまう。このため、外部へ排出された蒸気分の水量を補うために補給水を追加しなければならず、多量の補給水が必要となっていた。 Exhaust gas from boilers installed in conventional thermal power plants and factories is introduced into wet desulfurization equipment at a relatively high temperature of 120 ° C. to 160 ° C. Therefore, in the absorption tower of the wet desulfurization apparatus, the high temperature exhaust gas and the slurry come into contact with each other and are vaporized to increase the amount of steam water. The generated large amount of mist (steam) cannot be captured by the mist eliminator and is discharged outside the absorption tower. For this reason, in order to supplement the amount of water for the steam discharged to the outside, make-up water has to be added, and a large amount of make-up water has been required.
 このように従来の湿式脱硫装置では多量の補給水が必要である。淡水(工業用水)を確保することが困難な地域では、海水を淡水にする淡水化装置によって淡水を製造して湿式脱硫装置の補給水に用いている。 Thus, the conventional wet desulfurization apparatus requires a large amount of makeup water. In areas where it is difficult to secure fresh water (industrial water), fresh water is produced by a desalinator that converts seawater into fresh water and used as make-up water for wet desulfurization equipment.
 従来の淡水化装置としては、多段フラッシュ法や多重効用法といった蒸発法を用いる方式がある。蒸発法による淡水化装置では、淡水の製造過程において海水ヒータへの蒸気や温水の供給等による外部からの熱量供給が必要となる。よって火力発電所などのプラントでは発電効率が低下してしまうという問題があった。一例として、約160Ton/hの淡水を製造するために、淡水化装置では約1~2Ton/hの蒸気と110℃、約1000Ton/hの温水による熱量が必要となる。 As a conventional desalination apparatus, there is a method using an evaporation method such as a multistage flash method or a multi-effect method. In the desalination apparatus using the evaporation method, it is necessary to supply heat from the outside by supplying steam or hot water to the seawater heater in the process of producing fresh water. Therefore, there has been a problem that power generation efficiency is reduced in a plant such as a thermal power plant. As an example, in order to produce about 160 Ton / h of fresh water, the desalination apparatus requires heat of about 1-2 Ton / h of steam and 110 ° C. and about 1000 Ton / h of hot water.
 一方、海水を脱硫吸収液として用いる湿式脱硫装置がある。この方式は海水を直に吸収塔へ供給し、排ガス中の硫黄酸化物及びダスト等を除去した後、海水を海へ排出している。しかし、海水を用いた場合には吸収塔へ供給して排出される海水量が多量となる。従って、排水処理を行う場合、多量の排水を処理するために設備が大型化してしまう。また排水中の溶存酸素濃度を調整するのみの簡易な排水処理では、排水中の重金属等の処理は行われず、排水温度も高温である。このため、海水温度の上昇などの汚染排水の二次公害の問題が生じていた。 On the other hand, there is a wet desulfurization apparatus that uses seawater as a desulfurization absorbent. In this method, seawater is directly supplied to the absorption tower, and after removing sulfur oxides and dust in the exhaust gas, the seawater is discharged to the sea. However, when seawater is used, the amount of seawater supplied to the absorption tower and discharged becomes large. Therefore, when wastewater treatment is performed, the facility becomes large in order to treat a large amount of wastewater. Moreover, in the simple waste water treatment which only adjusts the dissolved oxygen concentration in waste water, the heavy metal etc. in waste water are not processed, and waste water temperature is also high. For this reason, the problem of secondary pollution of contaminated wastewater such as an increase in seawater temperature has occurred.
 またボイラ等の排熱を利用して海水の淡水化を行う技術としては特許文献1,2が挙げられる。特許文献1には、発電装置の排熱を利用して海水を淡水化すると共に、発電設備の効率を高めて、ガスタービンからの排熱を蒸発式海水淡水化装置の海水加熱器に直接供給し、海水の加温を行う設備が開示されている。
 特許文献2には、排熱ボイラ等の複数の発電プラントからの排熱を利用し、海水淡水化装置の海水加熱器に直接供給し、海水の加温を行う設備が開示されている。
Patent Documents 1 and 2 are examples of techniques for desalinating seawater using exhaust heat from a boiler or the like. In Patent Document 1, seawater is desalinated using the exhaust heat of the power generation apparatus, and the efficiency of the power generation facility is increased, and the exhaust heat from the gas turbine is directly supplied to the seawater heater of the evaporative seawater desalination apparatus. However, facilities for heating seawater are disclosed.
Patent Document 2 discloses a facility that heats seawater by using exhaust heat from a plurality of power plants such as a waste heat boiler and directly supplying it to a seawater heater of a seawater desalination apparatus.
 また脱硫装置と淡水化装置を備えた技術として特許文献3,4が挙げられる。特許文献3は、間接式熱交換装置の脱硫処理側の熱交換器において、排ガスと海水を間接的に接触させて冷却するシステムである。特許文献3には冷却により排ガス中の水分を凝縮させて回収するとともに、加温された海水を電気透析装置に供給しているシステムが開示されている。 Further, Patent Documents 3 and 4 can be cited as technologies including a desulfurization apparatus and a desalination apparatus. Patent Document 3 is a system that cools exhaust gas and seawater in indirect contact with each other in a heat exchanger on the desulfurization processing side of an indirect heat exchange device. Patent Document 3 discloses a system in which moisture in exhaust gas is condensed and recovered by cooling, and heated seawater is supplied to an electrodialysis apparatus.
 特許文献4は、火力発電用ボイラの排ガスを乾式排煙脱硫装置で処理し、排ガスの顕熱を海水淡水化装置の熱源に利用するシステムである。特許文献4の海水淡水化装置は多段フラッシュであり、得られた淡水をボイラに供給している。 Patent Document 4 is a system in which exhaust gas from a thermal power generation boiler is processed by a dry-type flue gas desulfurization apparatus, and sensible heat of the exhaust gas is used as a heat source of a seawater desalination apparatus. The seawater desalination apparatus of patent document 4 is a multistage flash, and supplies the obtained fresh water to a boiler.
特開2006-70889号公報JP 2006-70889 A 特開昭61-15003号公報Japanese Patent Laid-Open No. 61-15003 特開昭62-30530号公報JP 62-30530 A 特開昭59-107105号公報JP 59-107105 A
 しかしながら、特許文献1,2に開示の排熱利用は、発電プラントから排出される排ガスの熱を海水淡水化装置の熱源として直接的に熱交換する構成である。このような排ガスと海水とを直に熱交換する方式で、プラントの運用上、熱交換器で不具合が生じた場合、排ガスの処理工程と、淡水化工程が連動しているため、不具合を生じた設備機器のみ停止させることができず、システム全体を停止させなければならなかった。 However, the use of exhaust heat disclosed in Patent Documents 1 and 2 is a configuration in which heat of exhaust gas discharged from a power plant is directly exchanged as a heat source of a seawater desalination apparatus. This type of direct heat exchange between the exhaust gas and seawater, and when a malfunction occurs in the heat exchanger during plant operation, the exhaust gas treatment process and the desalination process are linked, resulting in a malfunction. Only the installed equipment could not be stopped, and the entire system had to be stopped.
 特許文献3は、脱硫装置の後段で熱交換を行っている。このため排ガス温度と海水の温度差が小さく、熱交換器の容量を大きくしなければ効率的な熱交換が行えず、装置全体が大型化するという問題があった。
 特許文献4は、脱硫方式として乾式法を用いているため、高価な活性コークスが必要となり、湿式法に比べて脱硫性能が低いという問題があった。
In Patent Document 3, heat exchange is performed after the desulfurization apparatus. For this reason, there is a problem that the temperature difference between the exhaust gas temperature and the seawater is small, and efficient heat exchange cannot be performed unless the capacity of the heat exchanger is increased, and the entire apparatus becomes large.
In Patent Document 4, since a dry method is used as a desulfurization method, expensive active coke is required, and there is a problem that the desulfurization performance is low as compared with the wet method.
 上記従来技術の問題点を解決するため、本発明は、脱硫手段の補給水量を低減できる排ガス処理システム及び排ガス処理方法を提供とすることを目的としている。
 また本発明は、淡水化手段に必要な熱源の低減化を図れる排ガス処理システム及び排ガス処理方法を提供することを目的としている。
 また本発明は、淡水化手段の淡水製造を効率化した排ガス処理システム及び排ガス処理方法を提供することを目的としている。
 また本発明は、電気集塵手段の集塵率を効率化した排ガス処理システム及び排ガス処理方法を提供することを目的としている。
In order to solve the above-described problems of the prior art, an object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method that can reduce the amount of makeup water in the desulfurization means.
Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method capable of reducing the heat source required for the desalination means.
Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method that improve the efficiency of fresh water production by the desalination means.
Another object of the present invention is to provide an exhaust gas treatment system and an exhaust gas treatment method in which the dust collection efficiency of the electric dust collection means is improved.
 本発明の排ガス処理システムは、排ガス中の硫黄酸化物を除去する湿式脱硫手段と、海水から淡水を製造して前記湿式脱硫手段に供給する淡水化手段と、前記湿式脱硫手段の前段で前記排ガスによって熱媒を加熱させる熱交換器と、前記淡水化手段の海水加熱器と、前記熱交換器を前記海水加熱器と接続させて前記熱媒の循環ラインと、を備えたことを特徴としている。 The exhaust gas treatment system of the present invention includes a wet desulfurization means for removing sulfur oxides in the exhaust gas, a desalination means for producing fresh water from seawater and supplying the fresh water to the wet desulfurization means, and the exhaust gas before the wet desulfurization means. A heat exchanger for heating the heat medium, a seawater heater for the desalination means, and a circulation line for the heat medium by connecting the heat exchanger to the seawater heater. .
 上記構成によれば、脱硫手段への補給水量を低減することができる。また淡水化手段に排ガスの熱源を利用することができる。よってシステム全体の低コスト化、省エネルギー化を図ることができる。 According to the above configuration, the amount of makeup water supplied to the desulfurization means can be reduced. Further, a heat source of exhaust gas can be used for the desalination means. Therefore, it is possible to reduce the cost of the entire system and save energy.
 この場合において、前記循環ラインの送り配管と戻り配管を繋ぐバイパスラインと、前記循環ラインと前記バイパスラインに設けて前記熱媒の流量を調節する流量制御弁と、前記流量制御弁と接続して前記海水加熱器への熱媒供給量を制御する制御手段と、を備えているとよい。
 上記構成によれば、海水の加熱温度を制御することができ、淡水の製造を効率良く行うことができる。
In this case, connected to the bypass line connecting the feed pipe and the return pipe of the circulation line, the flow control valve provided in the circulation line and the bypass line to adjust the flow rate of the heating medium, and the flow control valve. And a control means for controlling the supply amount of the heat medium to the seawater heater.
According to the said structure, the heating temperature of seawater can be controlled and manufacture of fresh water can be performed efficiently.
 この場合において、前記海水加熱器の出口温度を検出する海水温度測定手段を備え、前記制御手段は、前記海水加熱器の出口温度が予め定めた温度となるように前記温度測定手段の測定値に基づいて前記海水加熱器への熱媒供給量を制御するとよい。
 上記構成によれば、海水の加熱温度を予め定めた設定値に制御することができ、淡水の製造を効率良く行うことができる。
In this case, seawater temperature measuring means for detecting the outlet temperature of the seawater heater is provided, and the control means sets the measured value of the temperature measuring means so that the outlet temperature of the seawater heater becomes a predetermined temperature. Based on this, the supply amount of the heat medium to the seawater heater may be controlled.
According to the said structure, the heating temperature of seawater can be controlled to the preset setting value, and manufacture of fresh water can be performed efficiently.
 この場合において、前記熱交換器の前段に電気集塵手段を設けているとよい。
 上記構成によれば、電気集塵手段の排ガス温度を低下させることなく、熱交換器の熱媒と排ガスの熱交換を行うことができる。
In this case, it is preferable that an electric dust collecting means is provided in the previous stage of the heat exchanger.
According to the above configuration, heat exchange between the heat medium of the heat exchanger and the exhaust gas can be performed without lowering the exhaust gas temperature of the electric dust collecting means.
 この場合において、前記熱交換器と前記湿式脱硫手段の間に電気集塵手段を設けているとよい。
 上記構成によれば、電気集塵手段に導入される高温の排ガスのガス温度を低下させて、ダストの除去効率を効率良く行うことができる。
In this case, an electric dust collecting means may be provided between the heat exchanger and the wet desulfurization means.
According to the said structure, the gas temperature of the hot exhaust gas introduce | transduced into an electrical dust collection means can be lowered | hung and dust removal efficiency can be performed efficiently.
 この場合において、前記制御手段は、前記流量制御弁と接続して前記熱交換器への熱媒供給量を制御するとよい。
 上記構成によれば、排ガス温度を制御することができ、電気集塵手段で効率よく除去することができる。
In this case, the control means may be connected to the flow rate control valve to control the supply amount of the heat medium to the heat exchanger.
According to the said structure, exhaust gas temperature can be controlled and it can remove efficiently with an electrical dust collection means.
 この場合において、前記電気集塵手段に導入する前記排ガスの温度を検出するガス温度測定手段を備え、前記制御手段は、前記電気集塵手段に導入する前記排ガスの温度が予め定めた温度となるように前記ガス温度測定手段の測定値に基づいて前記熱交換器への熱媒供給量を制御するとよい。
 上記構成によれば、排ガス温度を予め定めたガス温度の設定値に制御することができ、電気集塵手段で効率良く除去することができる。
In this case, gas temperature measuring means for detecting the temperature of the exhaust gas to be introduced into the electric dust collecting means is provided, and the control means has a predetermined temperature for the exhaust gas to be introduced into the electric dust collecting means. Thus, it is preferable to control the supply amount of the heat medium to the heat exchanger based on the measured value of the gas temperature measuring means.
According to the said structure, exhaust gas temperature can be controlled to the preset value of gas temperature, and it can remove efficiently with an electrical dust collection means.
 この場合において、前記湿式脱硫手段の液留部に第2の熱交換器を設けて前記循環ラインに接続し、前記熱媒は、前記熱交換器と前記第2の熱交換器を循環させるとよい。
 上記構成によれば、電気集塵手段のダストの除去効率を低下させることなく、熱媒と吸収液との間で熱交換を行って熱媒を加熱させることができる。従って、排ガス温度が低温の場合であっても、熱媒を加熱することができ、淡水化手段の蒸気使用量を低減でき、システム全体の低コスト化、省エネルギー化を図ることができる。
In this case, when a second heat exchanger is provided in the liquid distillation section of the wet desulfurization means and connected to the circulation line, the heat medium circulates between the heat exchanger and the second heat exchanger. Good.
According to the above configuration, the heat medium can be heated by exchanging heat between the heat medium and the absorbing liquid without reducing the dust removal efficiency of the electric dust collecting means. Therefore, even when the exhaust gas temperature is low, the heating medium can be heated, the amount of steam used in the desalination means can be reduced, and the cost of the entire system and energy saving can be achieved.
 本発明の排ガス処理システムは、排ガス中の硫黄酸化物を除去する湿式脱硫手段と、海水から淡水を製造して前記湿式脱硫手段に供給する淡水化手段と、前記湿式脱硫手段の後段で前記排ガスによって熱媒を加熱させる熱交換器と、前記淡水化手段の海水加熱器と、前記熱交換器を前記海水加熱器と接続させて前記熱媒を循環させる熱媒循環ラインと、前記排ガス中に含まれるミストを除去するミストエリミネータと、を有することを特徴としている。 The exhaust gas treatment system of the present invention includes a wet desulfurization means for removing sulfur oxides in the exhaust gas, a desalination means for producing fresh water from seawater and supplying the fresh water to the wet desulfurization means, and the exhaust gas after the wet desulfurization means. A heat exchanger for heating the heat medium, a seawater heater for the desalination means, a heat medium circulation line for connecting the heat exchanger to the seawater heater and circulating the heat medium, and in the exhaust gas. And a mist eliminator for removing mist contained therein.
 上記構成によれば、脱硫処理を経て水分飽和状態となった排ガスを熱交換器の熱媒との熱交換によってガス温度を低下させて、水分を凝縮し回収することができる。また、淡水化手段の海水の加熱に排ガスの熱を利用することにより、蒸気使用量を低減でき、システム全体の低コスト化、省エネルギー化を図ることができる。 According to the above configuration, the exhaust gas that has been saturated with water after the desulfurization treatment can be condensed and recovered by reducing the gas temperature by heat exchange with the heat medium of the heat exchanger. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved.
 本発明の排ガス処理方法は、排ガス中に含まれる硫黄酸化物を除去する排ガス処理方法において、脱硫処理する前の前記排ガスと熱媒を熱交換して前記排ガスのガス温度を低下させて前記熱媒を加熱する工程と、前記ガス温度が低下した排ガスを脱硫処理する工程と、加熱した前記熱媒を海水加熱器に循環させる工程と、加熱した前記熱媒と海水を熱交換する工程と、前記加熱した海水から淡水を製造する工程と、前記加熱した海水温度を測定して前記熱媒の循環量を制御する工程と、からなることを特徴としている。 The exhaust gas treatment method of the present invention is the exhaust gas treatment method for removing sulfur oxides contained in the exhaust gas, wherein the exhaust gas before the desulfurization treatment and the heat medium are heat-exchanged to lower the gas temperature of the exhaust gas to reduce the heat. A step of heating the medium, a step of desulfurizing the exhaust gas whose gas temperature has decreased, a step of circulating the heated heating medium to a seawater heater, a step of exchanging heat between the heated heating medium and seawater, It comprises a step of producing fresh water from the heated seawater, and a step of measuring the heated seawater temperature and controlling the circulation amount of the heating medium.
 上記構成によれば、脱硫手段への補給水量を低減することができる。また淡水化手段に排ガスの熱源を利用することができる。よってシステム全体の低コスト化、省エネルギー化を図ることができる。また、海水の加熱温度を制御することができ、淡水の製造を効率良く行うことができる。 According to the above configuration, the amount of makeup water supplied to the desulfurization means can be reduced. Further, a heat source of exhaust gas can be used for the desalination means. Therefore, it is possible to reduce the cost of the entire system and save energy. Moreover, the heating temperature of seawater can be controlled and the manufacture of fresh water can be performed efficiently.
 湿式脱硫手段の上流側(前段)に熱交換器を設置して、湿式脱硫手段入口の排ガス温度を低下させることができる。これにより、吸収塔内の水が多量に蒸気化して外部へ排出されることがない。よって吸収塔内への供給水量を低減することができる。 A heat exchanger can be installed on the upstream side (front stage) of the wet desulfurization means to lower the exhaust gas temperature at the inlet of the wet desulfurization means. Thereby, a large amount of water in the absorption tower is not vaporized and discharged to the outside. Therefore, the amount of water supplied to the absorption tower can be reduced.
 また熱交換器を間接式として、排ガスとの熱交換で得られた熱を淡水化手段の熱源として再利用することにより、浄水化手段で必要な蒸気供給が必要なくなり、システム全体の省エネルギー化を図ることができる。 In addition, by using the heat exchanger as an indirect type and reusing the heat obtained by heat exchange with the exhaust gas as a heat source for the desalination means, it is no longer necessary to supply steam necessary for the water purification means, thus reducing the energy consumption of the entire system. Can be planned.
第1実施形態に係る排ガス処理システムの構成概略図である。1 is a schematic configuration diagram of an exhaust gas treatment system according to a first embodiment. 淡水化手段に多重効用法を用いた排ガス処理システムの構成概略図である。1 is a schematic configuration diagram of an exhaust gas treatment system using a multiple effect method for desalination means. 淡水化手段に多段フラッシュ法を用いた排ガス処理システムの構成概略図である。1 is a schematic configuration diagram of an exhaust gas treatment system using a multistage flash method as a desalination means. 吸収塔入口ガス温度と吸収塔蒸発水量の相関関係を示すグラフである。It is a graph which shows the correlation of absorption tower inlet gas temperature and absorption tower evaporation water amount. 第2実施形態に係る排ガス処理システムの構成概略図である。It is a composition schematic diagram of an exhaust gas treatment system concerning a 2nd embodiment. 第3実施形態に係る排ガス処理システムの構成概略図である。It is a block schematic diagram of the waste gas treatment system concerning a 3rd embodiment. 第4実施形態に係る排ガス処理システムの構成概略図である。It is a block schematic diagram of the exhaust gas treatment system concerning a 4th embodiment. 第5実施形態に係る排ガス処理システムの構成概略図である。It is a block schematic diagram of the exhaust gas treatment system concerning a 5th embodiment.
 本発明の排ガス処理システム及び排ガス処理方法の実施形態を添付の図面を参照しながら、以下詳細に説明する。
 図1は第1実施形態に係る排ガス処理システムの構成概略図である。図示のように第1実施形態に係る排ガス処理システム10は、排ガス中から煤塵を取り除くための電気集塵手段12と、この電気集塵手段12の後段に配置され排ガス中の硫黄成分を除去するための脱硫手段40と、海水から淡水を造水するための淡水化手段80と、排ガスの熱を前記淡水化手段の海水加熱に利用する熱交換器20と、を主な基本構成としている。
Embodiments of an exhaust gas treatment system and an exhaust gas treatment method of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an exhaust gas treatment system according to the first embodiment. As shown in the figure, the exhaust gas treatment system 10 according to the first embodiment removes sulfur components from the exhaust gas disposed in the subsequent stage of the electrostatic dust collection means 12 for removing soot and dust from the exhaust gas. The desulfurization means 40 for this purpose, the desalination means 80 for producing fresh water from seawater, and the heat exchanger 20 that uses the heat of the exhaust gas for the seawater heating of the desalination means are the main basic components.
 電気集塵手段12は放電極と集塵板を主な基本構成としている。このような構成の電気集塵手段12は、放電極と集塵板の間で発生させたコロナ放電によってボイラから排出された排ガス中の塵埃を帯電させて除去している。
 電気集塵手段12の後段には排ガスファン14が設けられている。排ガスファン14は排ガスを昇圧している。
The electric dust collecting means 12 is mainly composed of a discharge electrode and a dust collecting plate. The electric dust collecting means 12 having such a configuration charges and removes dust in the exhaust gas discharged from the boiler by corona discharge generated between the discharge electrode and the dust collecting plate.
An exhaust gas fan 14 is provided after the electric dust collecting means 12. The exhaust gas fan 14 pressurizes the exhaust gas.
 熱交換器20は多管式であり、前記電気集塵手段12の出口経路に配置されており、伝熱管外面を排ガスが流れ、伝熱管内面を熱媒が流れる構造となっている。熱交換器20は、淡水化手段80に設けた海水加熱器22と熱媒の循環ライン24を介して接続されている。循環ライン24は、循環ポンプ26を備えた熱媒の循環経路である。この循環ライン24により、熱交換器20で排ガスと熱媒の熱交換が行われ、海水加熱器22で熱媒と海水の熱交換が行われ、排ガスの熱を利用して淡水化手段80に供給される海水の加熱を行なっている。火力発電所やプラント等に設置されるボイラ等から排出される排ガス温度は、一例として、石炭焚きボイラの場合120℃~160℃の比較的高温となっている。このような構成の熱交換器20では、高温の排ガスにより熱媒が加熱される。加熱された熱媒は海水加熱器22へ送られて、海水と熱媒の間で熱交換が行われ、海水が加温される。一方、排ガスは管内面を流れる熱媒との熱交換により排ガス温度が低下する。なお熱媒は、淡水(工業用水)を用いると良い。これにより熱交換器、循環ラインに安価な炭素鋼材料を用いることができる。また、循環ライン24のような閉じられた系で熱媒を循環させることにより、系外から熱媒を補給する必要がなくなる。さらに、排ガス側と海水側の熱交換器20を間接式とすることにより、プラントの運用上、熱交換器20に不具合が生じた場合でも、排ガス処理工程と淡水処理工程を独立して処理することができ、両者の運用に大きな影響を与えることがない。よってプラントの運用上、信頼性の高いシステムを構築できる。 The heat exchanger 20 is a multi-tube type, and is disposed in the outlet path of the electric dust collecting means 12 and has a structure in which exhaust gas flows on the outer surface of the heat transfer tube and heat medium flows on the inner surface of the heat transfer tube. The heat exchanger 20 is connected to a seawater heater 22 provided in the desalination means 80 via a heat medium circulation line 24. The circulation line 24 is a heat medium circulation path including a circulation pump 26. Through the circulation line 24, heat exchange between the exhaust gas and the heat medium is performed by the heat exchanger 20, heat exchange between the heat medium and the sea water is performed by the seawater heater 22, and the desalination means 80 is utilized using the heat of the exhaust gas. The supplied seawater is heated. As an example, the temperature of exhaust gas discharged from a boiler installed in a thermal power plant, a plant or the like is a relatively high temperature of 120 ° C. to 160 ° C. in the case of a coal fired boiler. In the heat exchanger 20 having such a configuration, the heat medium is heated by high-temperature exhaust gas. The heated heat medium is sent to the seawater heater 22, heat exchange is performed between the seawater and the heat medium, and the seawater is heated. On the other hand, the exhaust gas temperature is lowered by heat exchange with the heat medium flowing on the inner surface of the pipe. Note that fresh water (industrial water) is preferably used as the heat medium. Thereby, an inexpensive carbon steel material can be used for the heat exchanger and the circulation line. Further, by circulating the heat medium in a closed system such as the circulation line 24, it is not necessary to supply the heat medium from outside the system. Furthermore, by making the heat exchanger 20 on the exhaust gas side and the seawater side indirect, even if a failure occurs in the heat exchanger 20 in the operation of the plant, the exhaust gas treatment process and the fresh water treatment process are processed independently. It does not have a big influence on both operations. Therefore, a highly reliable system can be constructed for plant operation.
 脱硫手段40は、吸収塔42に、その下部に配置される液溜部44と、排ガス上昇経路に配置される吸収部46と、出口部分に配置されるミストエリミネータ48を備えた構成を基本としている。 The desulfurization means 40 basically has a configuration in which an absorption tower 42 is provided with a liquid reservoir 44 disposed in the lower portion thereof, an absorption portion 46 disposed in an exhaust gas rising path, and a mist eliminator 48 disposed in an outlet portion. Yes.
 吸収塔42は、排ガスファン14で昇圧された排ガスが導入される上流側にガス流入部41が設けられている。
 液溜部44は吸収塔42の下部に設けられ、排ガス中の硫黄成分と反応させるための吸収剤スラリを一時的に貯留できる。液溜部44には吸収剤スラリ(石灰石スラリ)の供給部50が接続されている。液溜部44にはボイラ等からの排ガスに含まれる硫黄酸化物の量に応じて、必要な吸収剤スラリ(石灰石スラリ)が供給部50から供給されている。
The absorption tower 42 is provided with a gas inflow portion 41 on the upstream side where the exhaust gas pressurized by the exhaust gas fan 14 is introduced.
The liquid reservoir 44 is provided in the lower part of the absorption tower 42 and can temporarily store an absorbent slurry for reacting with a sulfur component in the exhaust gas. An absorbent slurry (limestone slurry) supply unit 50 is connected to the liquid reservoir 44. Necessary absorbent slurry (limestone slurry) is supplied from the supply unit 50 to the liquid reservoir 44 in accordance with the amount of sulfur oxide contained in the exhaust gas from the boiler or the like.
 液溜部44は吸収液循環配管52を介して吸収部46と接続されている。吸収液循環配管52は吸収液循環ポンプ54が設けられている。このような構成により、液溜部44にあるスラリ状の吸収液は、吸収液循環ポンプ54により、吸収液循環配管52を経由して、吸収部46に循環供給される。 The liquid reservoir 44 is connected to the absorber 46 through the absorbent circulation pipe 52. The absorption liquid circulation pipe 52 is provided with an absorption liquid circulation pump 54. With this configuration, the slurry-like absorption liquid in the liquid reservoir 44 is circulated and supplied to the absorption section 46 via the absorption liquid circulation pipe 52 by the absorption liquid circulation pump 54.
 吸収部46は、吸収塔42内の液溜部44の上方に設けられている。吸収部46にはガスの流れ方向に多段にスプレヘッダ56が設けられ、これに吸収剤が供給されるようにしている。各スプレヘッダ56には、複数のスプレノズル58が設けられている。前記吸収液循環ポンプ54の供給圧により、スプレノズル58から吸収液が排ガスの上昇流に向けて散布される。このような構成により、吸収部46では、スプレノズル58から散布される吸収液と排ガスとの気液接触により、排ガス中に含まれる硫黄酸化物や塩化水素やフッ化水素等の酸性ガスが、吸収塔42内を循環する吸収液の液滴表面に吸収される。このとき、排ガスの温度によって吸収液が一部蒸発してミスト化する。 The absorber 46 is provided above the liquid reservoir 44 in the absorption tower 42. The absorber 46 is provided with spray headers 56 in multiple stages in the gas flow direction, and an absorbent is supplied to the spray headers 56. Each spray header 56 is provided with a plurality of spray nozzles 58. Due to the supply pressure of the absorption liquid circulation pump 54, the absorption liquid is sprayed from the spray nozzle 58 toward the upward flow of the exhaust gas. With such a configuration, the absorption unit 46 absorbs an acidic gas such as sulfur oxide, hydrogen chloride, or hydrogen fluoride contained in the exhaust gas by gas-liquid contact between the absorption liquid sprayed from the spray nozzle 58 and the exhaust gas. It is absorbed by the droplet surface of the absorbing liquid circulating in the tower 42. At this time, the absorption liquid partially evaporates depending on the temperature of the exhaust gas to be mist.
 ミストエリミネータ48は、吸収塔42内の脱硫手段ガス出口部59(吸収部46の後段)に設けられている。ミストエリミネータ48は、排ガス中に含まれるミストを除去することができる。このような構成により、ミストを含んだ排ガスはミストエリミネータ48によりミストが除去された後、最終的に煙突(不図示)から排出される。 The mist eliminator 48 is provided at the desulfurization means gas outlet 59 (after the absorber 46) in the absorption tower 42. The mist eliminator 48 can remove mist contained in the exhaust gas. With such a configuration, the exhaust gas containing mist is finally discharged from a chimney (not shown) after the mist is removed by the mist eliminator 48.
 一方、排ガス中に含まれる硫黄酸化物は吸収液中のカルシウム化合物と反応し、中間生成物として亜硫酸カルシウムとなり液溜部44に流下する。
 液溜部44には酸化用空気ブロワ60と酸化用撹拌機62が設けられている。酸化用空気ブロワ60により空気を液溜部44に強制供給して、空気と亜硫酸カルシウムとの酸化反応を行って反応生成物として石膏スラリを生成させる。なお、その際に液溜部44に供給する酸化空気は、液溜部44内の吸収液を撹拌する酸化用撹拌機62によって微細化される。これにより酸化空気の使用効率を高めることができる。
On the other hand, the sulfur oxide contained in the exhaust gas reacts with the calcium compound in the absorption liquid to become calcium sulfite as an intermediate product and flows down to the liquid reservoir 44.
The liquid reservoir 44 is provided with an oxidizing air blower 60 and an oxidizing stirrer 62. Air is forcibly supplied to the liquid reservoir 44 by the oxidation air blower 60, and an oxidation reaction between the air and calcium sulfite is performed to generate gypsum slurry as a reaction product. At this time, the oxidized air supplied to the liquid reservoir 44 is refined by an oxidizing stirrer 62 that stirs the absorbing liquid in the liquid reservoir 44. Thereby, the use efficiency of oxidized air can be improved.
 また液溜部44は石膏脱水手段64と接続している。石膏脱水手段64と接続する配管上には吸収液抜出しポンプ66が設けられている。このような構成の液溜部44では、吸収液スラリが石膏生成量に応じて、吸収液抜出しポンプ66により液溜部44から石膏脱水手段64へ抜き出される。 The liquid reservoir 44 is connected to the gypsum dewatering means 64. On the pipe connected to the gypsum dewatering means 64, an absorbing liquid extraction pump 66 is provided. In the liquid reservoir 44 having such a configuration, the absorbent slurry is extracted from the liquid reservoir 44 to the gypsum dewatering means 64 by the absorption liquid extraction pump 66 according to the amount of gypsum produced.
 石膏脱水手段64は脱水処理が行われて、粉体の石膏65として回収される。一方、処理水は、ろ液回収タンク67内で一次的に貯留されて、ろ液ポンプ68によって補給水又は排液として外部へ排出される。
 淡水化手段80は、海水から淡水を製造する海水淡水化装置である。本実施形態の淡水化手段は、多重効用法、多段フラッシュ法等の蒸発法式を採用している。
The gypsum dewatering means 64 is dehydrated and collected as powder gypsum 65. On the other hand, the treated water is temporarily stored in the filtrate collection tank 67 and discharged to the outside by the filtrate pump 68 as makeup water or drainage.
The desalination means 80 is a seawater desalination apparatus that produces fresh water from seawater. The desalination means of this embodiment employs an evaporation method such as a multi-effect method or a multistage flash method.
 図2は淡水化手段に多重効用法を用いた排ガス処理システムの構成概略図である。なお、淡水化手段以外の構成は図1に示す構成と同一であり、同一符号を付して詳細な説明を省略する。 FIG. 2 is a schematic diagram of the configuration of an exhaust gas treatment system using a multi-effect method as a desalination means. The configuration other than the desalination means is the same as the configuration shown in FIG. 1, and the same reference numerals are given and detailed description is omitted.
 多重効用法による淡水化手段80aは、海水加熱器22の前段で海水を温水で加熱するプレヒータ82と、海水の散布器と蒸気の熱交換器を備えた効用缶84と、系内を減圧するエジェクタ86と、取水された海水を加熱し前記効用缶84の最集段で淡水を凝集する凝縮器88とを主な基本構成としている。 The multi-effect desalination means 80a depressurizes the inside of the system, a pre-heater 82 that heats the sea water with warm water before the sea water heater 22, a sea water sprayer and a steam heat exchanger. An ejector 86 and a condenser 88 that heats the taken-in seawater and condenses fresh water at the most concentrated stage of the effect cans 84 have a main basic configuration.
 取水された海水は、凝縮器88へ供給することにより加熱されて、海水戻りラインへ送られると共に、一部の海水が温水により加熱するプレヒータ82に供給される。プレヒータ82で加熱された海水は、各効用缶84の散布器からスプレされて各効用缶84の熱交換器内に供給される蒸気を凝縮させて、自らはさらに加熱されてエジェクタ86による減圧によって蒸気となる。またプレヒータ82からの海水は海水加熱器22で循環ライン24の熱媒又は外部からの蒸気の熱によりさらに加熱される。そして第1効用缶84aに供給されてエジェクタ86による減圧とプレヒータ82の後段の温水の熱によって一部蒸気となる。ここで発生した蒸気の熱を第2効用缶84bでの海水の蒸発に利用できる。第1効用缶84aで発生した蒸気は、後段の第2効用缶84bへ供給される。第2効用缶84bでは、プレヒータ82後段側の海水を加熱し、蒸気は凝縮されて淡水となる。この操作を多段に並べた効用缶84で繰り返し行う。最終段の凝縮器88で凝集された淡水は、淡水ポンプ90により系外へ排出されて工業用水として利用される。一方、濃縮水は、濃縮水ポンプ92により系外へ排出される。
 このように海水の加熱に必要な蒸気と温水の熱量を、湿式脱硫手段40の吸収塔42の上流側の排ガス熱で行うことによって、より効率的な熱交換が可能となる。
The taken seawater is heated by supplying it to the condenser 88 and sent to the seawater return line, and a part of the seawater is supplied to the preheater 82 heated by the hot water. The seawater heated by the pre-heater 82 is sprayed from the sprayers of the effect cans 84 and condensed in the steam supplied to the heat exchangers of the effect cans 84, and is further heated and decompressed by the ejector 86. It becomes steam. The seawater from the preheater 82 is further heated by the seawater heater 22 by the heat medium of the circulation line 24 or the heat of steam from the outside. And it is supplied to the 1st effect can 84a, and becomes a partial vapor | steam by the pressure_reduction | reduced_pressure by the ejector 86 and the heat | fever water of the back | latter stage of the preheater 82. FIG. The heat of the steam generated here can be used for the evaporation of seawater in the second effect can 84b. The steam generated in the first effect can 84a is supplied to the second effect can 84b in the subsequent stage. In the second effect can 84b, the sea water on the rear stage side of the preheater 82 is heated, and the steam is condensed to become fresh water. This operation is repeated with utility cans 84 arranged in multiple stages. The fresh water condensed in the final stage condenser 88 is discharged out of the system by the fresh water pump 90 and used as industrial water. On the other hand, the concentrated water is discharged out of the system by the concentrated water pump 92.
As described above, the heat quantity of the steam and hot water necessary for heating the seawater is performed by the exhaust gas heat upstream of the absorption tower 42 of the wet desulfurization means 40, thereby enabling more efficient heat exchange.
 図3は淡水化手段に多段フラッシュ法を用いた排ガス処理システムの構成概略図である。なお、淡水化手段以外の構成は図1に示す構成と同一であり、同一符号を付して詳細な説明を省略する。
 多段フラッシュ法を用いた淡水化手段80bは、蒸発室93が多段に形成された排熱部94及び熱回収部95から構成され、各蒸発室93には凝縮器96と濃縮水溜97が設けられている。
FIG. 3 is a schematic configuration diagram of an exhaust gas treatment system using a multistage flash method as a desalination means. The configuration other than the desalination means is the same as the configuration shown in FIG. 1, and the same reference numerals are given and detailed description is omitted.
The desalination means 80b using the multi-stage flash method is composed of an exhaust heat section 94 and a heat recovery section 95 in which evaporation chambers 93 are formed in multiple stages, and each evaporation chamber 93 is provided with a condenser 96 and a concentrated water reservoir 97. ing.
 このような淡水化手段80bは、取水された海水が排熱部94の凝縮器96を通って蒸発室93のフラッシュ蒸気を凝縮した後、海水戻りラインへ送られると共に、一部が排熱部94の濃縮水溜97に供給される。排熱部94の濃縮水溜97の海水は、供給ポンプ98を介して熱回収部95の凝縮器96に供給され、各蒸発室93のフラッシュ蒸気を凝縮した後、海水加熱器22で加熱される。加熱された海水は、熱回収部95の初段の濃縮水溜97aに供給され、初段の濃縮水溜97aから後段の濃縮水溜97へ順次移動し、その間、各蒸発室93でフラッシュ蒸発し、凝縮器96で凝縮される。各蒸発室で発生した凝縮水は順次後段に移動し、最終段の蒸発室93bから淡水ポンプ90により系外へ排出されて工業用水として利用される。一方、濃縮水は、濃縮水ポンプ92により系外へ排出される。また海水加熱器22で加熱された海水は、各段でエジェクタ86の減圧によって蒸気を発生させる。この蒸気の発生前に海水が利用される。凝縮に用いられる海水は凝縮器96内を通り各段で加温されながら海水加熱器22に供給される。海水の加熱に必要な蒸気の熱量を、湿式脱硫手段40の吸収塔42の上流側の排ガス熱で補うことによって、より効率的な熱交換が可能となる。
 淡水化手段80で製造された淡水の一部は、吸収塔42内の吸収液の補給水として用いている。また吸収塔42の入口洗浄水として用いている。
Such desalination means 80b is configured such that the drawn seawater passes through the condenser 96 of the exhaust heat section 94 and condenses the flash vapor in the evaporation chamber 93, and then is sent to the seawater return line, and part of the exhaust heat section. 94 is supplied to the concentrated water reservoir 97. The seawater in the concentrated water reservoir 97 of the exhaust heat unit 94 is supplied to the condenser 96 of the heat recovery unit 95 via the supply pump 98 and condensed by the flash vapor of each evaporation chamber 93 and then heated by the seawater heater 22. . The heated seawater is supplied to the first-stage concentrated water reservoir 97a of the heat recovery unit 95, and sequentially moves from the first-stage concentrated water reservoir 97a to the subsequent-stage concentrated water reservoir 97. It is condensed with. The condensed water generated in each evaporation chamber sequentially moves to the subsequent stage, and is discharged out of the system by the fresh water pump 90 from the final-stage evaporation chamber 93b and used as industrial water. On the other hand, the concentrated water is discharged out of the system by the concentrated water pump 92. The seawater heated by the seawater heater 22 generates steam by the decompression of the ejector 86 at each stage. Seawater is used before this steam is generated. Seawater used for condensation passes through the condenser 96 and is supplied to the seawater heater 22 while being heated at each stage. By supplementing the amount of heat of the steam necessary for heating the seawater with the heat of the exhaust gas upstream of the absorption tower 42 of the wet desulfurization means 40, more efficient heat exchange is possible.
A part of the fresh water produced by the desalination means 80 is used as makeup water for the absorption liquid in the absorption tower 42. It is also used as cleaning water for the inlet of the absorption tower 42.
 また、吸収塔42出口に設置されたミストエリミネータ48には、吸収塔42を循環する吸収液が飛散し、ミストエリミネータ48のエレメントに付着する。このため淡水を洗浄水として用い、エレメントを水洗している。
 また、液溜部44内の吸収液は概ね50℃程度である。酸化用空気ブロワ60の出口温度は、通常、120℃から150℃である。そのまま液溜部44に供給すると液溜44内の吸収液中に内挿した配管端部で乾いた状態と湿った状態が交互に繰り返されてスラリが付着してしまう。そこで酸化用空気ブロワ17出口の空気に淡水を噴霧して空気温度を低下させてから、液溜部44へ導入させている。
 上記構成による本発明の排ガス処理システム10は、ボイラ等から排出された排ガスが電気集塵手段12に導入されて、排ガス中の塵埃が除去される。
Further, the absorbing liquid circulating in the absorption tower 42 is scattered on the mist eliminator 48 installed at the outlet of the absorption tower 42 and adheres to the elements of the mist eliminator 48. For this reason, fresh water is used as washing water, and the element is washed with water.
Further, the absorption liquid in the liquid reservoir 44 is approximately 50 ° C. The outlet temperature of the oxidizing air blower 60 is normally 120 ° C. to 150 ° C. If it is supplied to the liquid reservoir 44 as it is, a dry state and a wet state are alternately repeated at the end of the pipe inserted into the absorbing liquid in the liquid reservoir 44, and the slurry adheres. Therefore, fresh water is sprayed on the air at the outlet of the oxidizing air blower 17 to lower the air temperature and then introduced into the liquid reservoir 44.
In the exhaust gas treatment system 10 of the present invention having the above-described configuration, the exhaust gas discharged from the boiler or the like is introduced into the electric dust collecting means 12, and dust in the exhaust gas is removed.
 次に排ガスは排ガスファン14で昇圧されて熱交換器20に導入される。排ガスは、熱交換器20の管内面を流れる熱媒との熱交換により温度が低下する。
 熱交換器20で加熱された熱媒は、循環ライン24を介して海水加熱器22の海水と熱媒の間で熱交換が行われる。淡水化手段80では、加熱された海水から淡水を製造することができる。
Next, the exhaust gas is pressurized by the exhaust gas fan 14 and introduced into the heat exchanger 20. The temperature of the exhaust gas decreases due to heat exchange with the heat medium flowing on the inner surface of the tube of the heat exchanger 20.
The heat medium heated by the heat exchanger 20 is subjected to heat exchange between the seawater and the heat medium in the seawater heater 22 via the circulation line 24. In the desalination means 80, fresh water can be manufactured from the heated seawater.
 次にガス温度が低下した排ガスは湿式脱硫手段40に導入されて、吸収部46でスプレノズル58から噴霧される吸収液と排ガスとの気液接触が起こる。そして排ガス中に含まれる硫黄酸化物や塩化水素やフッ化水素等の酸性ガスが、吸収塔42内を循環する吸収液の液滴表面に吸収される。
 吸収塔42内で吸収液の一部がミスト化して、ミストを含んだ排ガスはミストエリミネータ48によりミストが除去された後、最終的に煙突(不図示)から排出される。
Next, the exhaust gas whose gas temperature has decreased is introduced into the wet desulfurization means 40, and gas-liquid contact occurs between the absorption liquid sprayed from the spray nozzle 58 and the exhaust gas in the absorption section 46. Then, an acidic gas such as sulfur oxide, hydrogen chloride, or hydrogen fluoride contained in the exhaust gas is absorbed by the surface of the droplet of the absorbing liquid circulating in the absorption tower 42.
A part of the absorbing solution is misted in the absorption tower 42, and the exhaust gas containing the mist is finally discharged from the chimney (not shown) after the mist is removed by the mist eliminator 48.
 図4は吸収塔入口ガス温度と吸収塔蒸発水量の相関関係を示すグラフである。同グラフの横軸は吸収塔入口ガス温度(℃)、縦軸は吸収塔蒸発水量(t/h)を示している。図示のように吸収塔入口ガス温度と吸収塔蒸発水量は比例関係にある。従って吸収塔入口ガス温度を低下させれば、吸収塔蒸発水量も低下させることができる。 FIG. 4 is a graph showing the correlation between absorption tower inlet gas temperature and absorption tower evaporation water amount. The horizontal axis of the graph represents the absorption tower inlet gas temperature (° C.), and the vertical axis represents the absorption tower evaporation water amount (t / h). As shown in the figure, the absorption tower inlet gas temperature and the absorption tower evaporation water amount are in a proportional relationship. Therefore, if the absorption tower inlet gas temperature is reduced, the absorption tower evaporation water amount can also be reduced.
 このような本発明の排ガス処理システムによれば、湿式脱硫手段に導入する排ガス温度を熱交換器によって低下させているので、湿式脱硫手段の吸収塔内で発生する蒸気を低減することができる。従って、湿式脱硫手段の外部へ蒸気が排出されて吸収液が低減することがなく、補給水量を大幅に低減することができる。また、淡水化手段の海水の加熱に排ガスの熱を利用することにより、蒸気使用量を低減でき、システム全体の低コスト化、省エネルギー化を図ることができる。なお本実施形態では、熱交換器と淡水化手段を循環ラインで接続して熱交換を行う構成で説明したが、この他、淡水化手段を熱交換器の上部に設置することにより省スペース化を図るように構成してもよい。 According to such an exhaust gas treatment system of the present invention, the exhaust gas temperature introduced into the wet desulfurization means is lowered by the heat exchanger, so that the steam generated in the absorption tower of the wet desulfurization means can be reduced. Therefore, steam is not discharged to the outside of the wet desulfurization means and the absorption liquid is not reduced, and the amount of makeup water can be greatly reduced. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved. In this embodiment, the heat exchanger and the desalination unit are connected by a circulation line to perform heat exchange. In addition, the desalination unit is installed on the top of the heat exchanger to save space. You may comprise so that.
 図5は第2実施形態に係る排ガス処理システムの構成概略図である。ボイラ等からの排ガス量、排ガス温度などによって熱交換器20での回収熱量は変動する。第2実施形態に係る排ガス処理システム100は、海水加熱器22で加熱された海水の出口温度を測定する海水温度測定手段102と、循環ライン24の流量を調整可能な第1流量制御弁104と、循環ラインの送り配管と戻り配管を繋ぐバイパスライン106と、バイパスライン106の流量を調整する第2流量制御弁108と、制御手段110を備えている。
 海水温度測定手段102は循環ライン24の海水加熱器22の出口側に取り付けて、加熱された海水温度を測定することができる温度センサである。
FIG. 5 is a schematic configuration diagram of an exhaust gas treatment system according to the second embodiment. The amount of heat recovered by the heat exchanger 20 varies depending on the amount of exhaust gas from the boiler, the exhaust gas temperature, and the like. The exhaust gas treatment system 100 according to the second embodiment includes a seawater temperature measuring means 102 that measures the outlet temperature of seawater heated by the seawater heater 22, and a first flow rate control valve 104 that can adjust the flow rate of the circulation line 24. A bypass line 106 that connects the feed pipe and return pipe of the circulation line, a second flow rate control valve 108 that adjusts the flow rate of the bypass line 106, and a control means 110 are provided.
The seawater temperature measuring means 102 is a temperature sensor that can be attached to the outlet side of the seawater heater 22 in the circulation line 24 and measure the heated seawater temperature.
 第1流量制御弁104は循環ライン24に取り付け、配管内を流れる熱媒の流量を調整することができる弁である。
バイパスライン106は、循環ライン24の送り配管と戻り配管を繋ぐ配管である。
The first flow rate control valve 104 is a valve that is attached to the circulation line 24 and can adjust the flow rate of the heat medium flowing in the piping.
The bypass line 106 is a pipe that connects the feed pipe and the return pipe of the circulation line 24.
 第2流量制御弁108は、バイパスライン106に取り付け、配管内を流れる熱媒の流量を調整することができる弁である。
 制御手段110は、海水温度測定手段102と第1及び第2流量制御弁104,108と電気的に接続させている。制御手段110は、海水温度測定手段102による海水加熱器22の出口温度(加熱された海水温度)の検出値に基づいて、循環ライン24の熱媒の流量を制御して、海水温度を予め定めた設定値に制御することができる。
The second flow rate control valve 108 is a valve that is attached to the bypass line 106 and can adjust the flow rate of the heat medium flowing in the pipe.
The control means 110 is electrically connected to the seawater temperature measurement means 102 and the first and second flow rate control valves 104 and 108. The control means 110 controls the flow rate of the heating medium in the circulation line 24 based on the detected value of the outlet temperature (heated seawater temperature) of the seawater heater 22 by the seawater temperature measuring means 102, and the seawater temperature is determined in advance. The set value can be controlled.
 一例として、加熱温度が120℃以上の場合、循環ライン24の海水加熱器22の海水出口側温度の制御目標値は105℃となる。海水温度が目標値よりも高くなった場合には、海水加熱器22に海水中の塩分が付着するスケーリングの問題があるため、バイパスライン106を開放して熱媒のバイパス量を増加させて海水加熱器22への熱媒循環量を少なく制御する必要がある。あるいは第1流量制御弁104の開度を小さくして熱媒の循環量を少なく制御することもできる。 As an example, when the heating temperature is 120 ° C. or higher, the control target value of the seawater outlet side temperature of the seawater heater 22 in the circulation line 24 is 105 ° C. When the seawater temperature becomes higher than the target value, there is a scaling problem in which the salt content in the seawater adheres to the seawater heater 22, so the bypass line 106 is opened to increase the amount of heat medium bypassing the seawater. It is necessary to control the circulating amount of the heat medium to the heater 22 to be small. Or the opening degree of the 1st flow control valve 104 can be made small, and the circulation amount of a heat medium can also be controlled small.
 一方、海水温度が目標値よりも低くなった場合には、淡水化手段80の蒸発器各段の差圧が小さくなって蒸発し難くなる。このため海水流量を下げて海水のキャリーオーバー防止などの制御が必要となる。また海水加熱器出口温度が低い場合には、熱交換器20とは別に、外部からの蒸気の投入などにより海水を加温する必要がある。 On the other hand, when the seawater temperature is lower than the target value, the differential pressure of each stage of the evaporator of the desalination means 80 becomes small and it is difficult to evaporate. For this reason, it is necessary to control the seawater flow rate by reducing the seawater flow rate. Further, when the seawater heater outlet temperature is low, it is necessary to heat the seawater separately from the heat exchanger 20 by introducing steam from the outside.
 このような第2実施形態の排ガス処理システム100によれば、加熱する海水温度を予め定めた海水温度の設定値に制御することができ、淡水化手段で効率よく淡水を製造することができる。 According to the exhaust gas treatment system 100 of the second embodiment as described above, the seawater temperature to be heated can be controlled to a preset value of the seawater temperature, and freshwater can be efficiently produced by the desalination means.
 図6は第3実施形態に係る排ガス処理システムの構成概略図である。
 図示のように第3実施形態に係る排ガス処理システム200は、熱交換器20aを電気集塵手段12の上流側に配置している。そして海水温度測定手段に換えて熱交換器20aと電気集塵手段12の間に排ガスのガス温度測定手段102aを設けている。制御手段110はガス温度測定手段102aと電気的に接続させている。その他の構成は第2実施形態に係る排ガス処理システム100と同様の構成であり、詳細な説明を省略する。
FIG. 6 is a schematic configuration diagram of an exhaust gas treatment system according to the third embodiment.
As shown in the figure, the exhaust gas treatment system 200 according to the third embodiment has a heat exchanger 20 a disposed on the upstream side of the electric dust collection means 12. In place of the seawater temperature measuring means, a gas temperature measuring means 102a for the exhaust gas is provided between the heat exchanger 20a and the electrostatic dust collecting means 12. The control means 110 is electrically connected to the gas temperature measuring means 102a. Other configurations are the same as those of the exhaust gas treatment system 100 according to the second embodiment, and detailed description thereof is omitted.
 ボイラ等から排出される排ガスは、ガス温度が120℃~160℃と比較的高温である。熱交換器20aを電気集塵手段12の上流側に配置することにより、排ガスと熱媒の熱交換によって、電気集塵手段12に導入する排ガス温度を低下させることができる。 Exhaust gas discharged from boilers has a relatively high gas temperature of 120 ° C to 160 ° C. By disposing the heat exchanger 20a on the upstream side of the electric dust collecting means 12, the exhaust gas temperature introduced into the electric dust collecting means 12 can be lowered by heat exchange between the exhaust gas and the heat medium.
 ここで電気集塵手段12による排ガス中に含まれるダストの除去性能は、ダスト粒径、ダスト組成、ダストの電気抵抗値、電気集塵手段12での荷電量等の複数の因子により決定される。一般にガス温度の低下によってダストの電気抵抗値は低下し、ダストの除去性能は向上する。しかしながら、電気集塵手段12の入口ガス温度が一定値以下に低下した場合には、電気集塵手段12の内部へのダストの固着及び電気集塵手段12で捕集されたダストの搬送が困難になる等の問題がある。 Here, the removal performance of the dust contained in the exhaust gas by the electrostatic dust collecting means 12 is determined by a plurality of factors such as dust particle size, dust composition, dust electric resistance value, charge amount in the electrostatic dust collecting means 12 and the like. . In general, the electrical resistance value of dust is lowered due to a decrease in gas temperature, and the dust removal performance is improved. However, when the inlet gas temperature of the electrostatic precipitator 12 drops below a certain value, it is difficult to fix the dust inside the electrostatic precipitator 12 and transport the dust collected by the electrostatic precipitator 12. There are problems such as becoming.
 そこで第3実施形態に係る排ガス処理システム200では、熱交換器20aの出口にガス温度測定手段102aを設置している。制御手段110は、ガス温度測定手段102aによる熱交換器20aの出口温度(排ガス温度)の検出値に基づいて、循環ライン24の熱媒の流量を制御して、排ガス温度を予め定めた設定値に制御することができる。 Therefore, in the exhaust gas treatment system 200 according to the third embodiment, the gas temperature measuring means 102a is installed at the outlet of the heat exchanger 20a. The control means 110 controls the flow rate of the heat medium in the circulation line 24 based on the detected value of the outlet temperature (exhaust gas temperature) of the heat exchanger 20a by the gas temperature measuring means 102a, and sets the exhaust gas temperature to a predetermined value. Can be controlled.
 一例として、ボイラが低負荷の運転状態の場合、ボイラ出口の排ガス・排ガス温度が低下して、電気集塵手段12の入口温度も低下する。電気集塵手段12の入口温度が低下しすぎると、内部電極板への灰の固着、電気集塵手段12のホッパ部での灰のつまり等が発生し、安定運転が困難となる。このため、ボイラ低負荷の場合には熱交換器20aの出口温度が低下しすぎないように第1流量制御弁104の開度を小さくして熱媒の循環量を低減して、電気集塵手段12の入口温度を予め定めた設定値(例えば80℃)以上に維持することができる。 As an example, when the boiler is in a low-load operation state, the exhaust gas / exhaust gas temperature at the boiler outlet decreases, and the inlet temperature of the electrostatic dust collecting means 12 also decreases. If the inlet temperature of the electrostatic precipitator 12 is too low, ash sticks to the internal electrode plate, ash is clogged at the hopper of the precipitator 12, and stable operation becomes difficult. For this reason, in the case of a low boiler load, the opening amount of the first flow control valve 104 is reduced to reduce the circulation amount of the heat medium so that the outlet temperature of the heat exchanger 20a does not decrease too much. The inlet temperature of the means 12 can be maintained at a preset value (for example, 80 ° C.) or higher.
 このような第3実施形態の排ガス処理システム200によれば、排ガス温度を予め定めたガス温度の設定値に制御することができ、電気集塵手段12で効率よく除去することができる。 According to the exhaust gas treatment system 200 of the third embodiment, the exhaust gas temperature can be controlled to a preset value of the gas temperature, and can be efficiently removed by the electric dust collection means 12.
 図7は第4実施形態に係る排ガス処理システムの構成概略図である。
 図示のように第4実施形態に係る排ガス処理システム300は、第3実施形態の排ガス処理システム200を基本構成としている。第3実施形態に係る排ガス処理システム200では、電気集塵手段12の前段で排ガスと熱媒の熱交換を行っているため、排ガスの初期温度が低温の場合は、排ガス温度が下がりすぎてしまい電気集塵手段12のダストの除去効率が低下してしまう。よって排ガスを冷却する温度には限界がある。
FIG. 7 is a schematic configuration diagram of an exhaust gas treatment system according to the fourth embodiment.
As shown in the figure, an exhaust gas treatment system 300 according to the fourth embodiment has a basic configuration of the exhaust gas treatment system 200 of the third embodiment. In the exhaust gas treatment system 200 according to the third embodiment, the heat exchange between the exhaust gas and the heat medium is performed before the electric dust collecting means 12, and therefore the exhaust gas temperature is too low when the initial temperature of the exhaust gas is low. The dust removal efficiency of the electrostatic precipitator 12 is reduced. Therefore, there is a limit to the temperature for cooling the exhaust gas.
 そこで第4実施形態の排ガス処理システム300では、湿式脱硫手段40の吸収塔42内に第2熱交換器21を設けて熱媒を加温している。第2熱交換器21は循環ライン24に分岐した第2循環ライン25に接続させている。具体的に第2熱交換器21は、液溜部44に配置されている。吸収塔42内部で起こる吸収SOの酸化反応は発熱反応である。このため第2熱交換器21によって熱媒と吸収液との間で熱交換を行って熱媒を加熱させることができる。そして、この熱媒が第2循環ライン25を介して循環ライン24に導入されて、海水加熱器22で海水と熱交換を行うことができる。 Therefore, in the exhaust gas treatment system 300 of the fourth embodiment, the second heat exchanger 21 is provided in the absorption tower 42 of the wet desulfurization means 40 to heat the heat medium. The second heat exchanger 21 is connected to the second circulation line 25 branched to the circulation line 24. Specifically, the second heat exchanger 21 is disposed in the liquid reservoir 44. The oxidation reaction of absorbed SO 2 occurring inside the absorption tower 42 is an exothermic reaction. For this reason, the second heat exchanger 21 can heat the heat medium by exchanging heat between the heat medium and the absorbing liquid. Then, this heat medium is introduced into the circulation line 24 via the second circulation line 25, and heat exchange with the seawater can be performed by the seawater heater 22.
 このような構成の第4実施形態に係る排ガス処理システム300によれば、電気集塵手段12のダストの除去効率を低下させることなく、熱媒と吸収液との間で熱交換を行って熱媒を加熱させることができる。従って、排ガス温度が低温の場合であっても、熱媒を加熱することができ、淡水化手段の蒸気使用量を低減でき、システム全体の低コスト化、省エネルギー化を図ることができる。 According to the exhaust gas treatment system 300 according to the fourth embodiment having such a configuration, heat is exchanged between the heat medium and the absorbing liquid without reducing the dust removal efficiency of the electrostatic precipitator 12. The medium can be heated. Therefore, even when the exhaust gas temperature is low, the heating medium can be heated, the amount of steam used in the desalination means can be reduced, and the cost of the entire system and energy saving can be achieved.
 図8は第5実施形態に係る排ガス処理システムの構成概略図である。
 図示のように第5実施形態に係る排ガス処理システム400は、第1実施形態に係る熱交換器20を第1ミストエリミネータ48aの後段に設けている。そして熱交換器20bの後段に第2ミストエリミネータ48bを配置している。また第2ミストエリミネータ48bは、湿式脱硫手段40の補給水の供給ラインに接続させている。その他の構成は第1実施形態と同様の構成であり、詳細な説明は省略する。
FIG. 8 is a schematic configuration diagram of an exhaust gas treatment system according to the fifth embodiment.
As shown in the figure, the exhaust gas treatment system 400 according to the fifth embodiment is provided with the heat exchanger 20 according to the first embodiment in the subsequent stage of the first mist eliminator 48a. And the 2nd mist eliminator 48b is arrange | positioned in the back | latter stage of the heat exchanger 20b. The second mist eliminator 48b is connected to a makeup water supply line of the wet desulfurization means 40. Other configurations are the same as those of the first embodiment, and detailed description thereof is omitted.
 上記構成による第5実施形態に係る排ガス処理システム400によれば、第1ミストエリミネータ48aには、硫黄酸化物等の成分が除去された排ガスと、高温の排ガスによって蒸気化されたミストが導入される。第1ミストエリミネータ48aを通過したミストを含む排ガスは熱交換器20bの熱媒と熱交換される。熱媒は循環ライン24を介して海水加熱器22で海水との間で熱交換を行っている。熱交換器20bで熱媒と熱交換してガス温度が低下した水分飽和状態となった排ガスは、第2ミストエリミネータ48bで水分を凝縮させて回収することができる。回収した水分は吸収塔42の吸収液の補給水として利用することができる。 According to the exhaust gas treatment system 400 according to the fifth embodiment having the above-described configuration, the first mist eliminator 48a is introduced with exhaust gas from which components such as sulfur oxide have been removed and mist vaporized by high-temperature exhaust gas. The The exhaust gas containing the mist that has passed through the first mist eliminator 48a is heat-exchanged with the heat medium of the heat exchanger 20b. The heat medium exchanges heat with the seawater by the seawater heater 22 via the circulation line 24. The exhaust gas that has become a water saturated state in which the gas temperature has decreased due to heat exchange with the heat medium in the heat exchanger 20b can be recovered by condensing the water in the second mist eliminator 48b. The recovered moisture can be used as makeup water for the absorption liquid in the absorption tower 42.
 このような第5実施形態に係る排ガス処理システムによれば、脱硫処理を経て水分飽和状態となった排ガスを熱交換器の熱媒との熱交換によって水分飽和状態のガス温度を冷却することにより、水分を凝縮させ回収することができる。また、淡水化手段の海水の加熱に排ガスの熱を利用することにより、蒸気使用量を低減でき、システム全体の低コスト化、省エネルギー化を図ることができる。 According to such an exhaust gas treatment system according to the fifth embodiment, the exhaust gas that has been saturated with water through the desulfurization process is cooled to the gas temperature in the saturated state by heat exchange with the heat medium of the heat exchanger. Water can be condensed and recovered. Further, by using the heat of the exhaust gas for heating the seawater of the desalination means, the amount of steam used can be reduced, and the overall cost of the system can be reduced and the energy can be saved.
 なお熱交換器の設置箇所としては、この他、吸収液循環配管52の吸収塔液循環ポンプ54の入口側又は出口側に設置してもよい。また海水加熱器22を淡水化手段80の海水入口側に設置してもよい。 In addition, the heat exchanger may be installed on the inlet side or the outlet side of the absorption tower liquid circulation pump 54 of the absorption liquid circulation pipe 52. The seawater heater 22 may be installed on the seawater inlet side of the desalination means 80.
 本発明の排ガス処理システム及び排ガス処理方法は、排ガス中に硫黄酸化物を含む火力発電所など各種のプラントの排ガス処理に適用可能である。 The exhaust gas treatment system and exhaust gas treatment method of the present invention can be applied to exhaust gas treatment of various plants such as thermal power plants that contain sulfur oxide in the exhaust gas.
10,100,200,300,400………排ガス処理システム、12………電気集塵手段、14………排ガスファン、20,20a,20b………熱交換器、21………第2熱交換器、22………海水加熱器、24………循環ライン、25………第2循環ライン、26………循環ポンプ、40………脱硫手段、41………ガス流入部、42………吸収塔、44………液溜部、46………吸収部、48………ミストエリミネータ、50………供給部、52………吸収液循環配管、54………吸収液循環ポンプ、56………スプレヘッダ、58………スプレノズル、59………脱硫手段ガス出口部、60………酸化用空気ブロワ、62………酸化用撹拌機、64………石膏脱水手段、65………石膏、66………吸収液抜出しポンプ、67………ろ液回収タンク、68………ろ液ポンプ、80………淡水化手段、82………プレヒータ、84………効用缶、86………エジェクタ、88………凝縮器、90………淡水ポンプ、92………濃縮水ポンプ、93………蒸発室、94………排熱部、95………熱回収部、96………凝縮器、97………濃縮水溜、98………供給ポンプ、102………海水温度測定手段、102a………ガス温度測定手段、104………第1流量制御弁、106………バイパスライン、108………第2流量制御弁、110………制御手段。 10, 100, 200, 300, 400 ......... Exhaust gas treatment system, 12 ......... Electric dust collecting means, 14 ......... Exhaust gas fan, 20, 20a, 20b ......... Heat exchanger, 21 ......... Second Heat exchanger, 22 ......... Seawater heater, 24 ......... Circulation line, 25 ......... Second circulation line, 26 ......... Circulation pump, 40 ......... Desulfurization means, 41 ......... Gas inlet, 42 ......... Absorption tower, 44 ......... Liquid reservoir, 46 ......... Absorber, 48 ......... Mist eliminator, 50 ......... Supply section, 52 ......... Absorbing liquid circulation piping, 54 ......... Absorption Liquid circulation pump 56 ... Spray header 58 ... Spray nozzle 59 ... Desulfurization means gas outlet, 60 ... Air blower for oxidation, 62 ... Stirrer for oxidation, 64 ... Gypsum dehydration Means, 65 ... gypsum, 66 ... absorption pump, 67 ... ... Filtrate recovery tank, 68 ... ... Filtrate pump, 80 ... ... Desalination means, 82 ... ... Preheater, 84 ... ... Effect can, 86 ... ... Ejector, 88 ... ... Condenser, 90 ... ...... Fresh water pump, 92 ......... Concentrated water pump, 93 ......... Evaporation chamber, 94 ......... Exhaust heat section, 95 ...... Heat recovery section, 96 ......... Condenser, 97 ......... Concentrated water reservoir, 98 ......... Supply pump, 102 ......... Seawater temperature measuring means, 102a ......... Gas temperature measuring means, 104 ......... First flow control valve, 106 ......... Bypass line, 108 ......... Second flow control Valve, 110... Control means.

Claims (10)

  1.  排ガス中の硫黄酸化物を除去する湿式脱硫手段と、
     海水から淡水を製造して前記湿式脱硫手段に供給する淡水化手段と、
     前記湿式脱硫手段の前段で前記排ガスによって熱媒を加熱させる熱交換器と、
     前記淡水化手段の海水加熱器と、
     前記熱交換器を前記海水加熱器と接続させて前記熱媒を循環させる熱媒循環ラインと、
     を有することを特徴とする排ガス処理システム。
    Wet desulfurization means for removing sulfur oxides in exhaust gas;
    Desalination means for producing fresh water from seawater and supplying the wet desulfurization means;
    A heat exchanger that heats the heat medium with the exhaust gas before the wet desulfurization means;
    A seawater heater of the desalination means;
    A heating medium circulation line for connecting the heat exchanger to the seawater heater and circulating the heating medium;
    An exhaust gas treatment system characterized by comprising:
  2.  前記循環ラインの送り配管と戻り配管を繋ぐバイパスラインと、
     前記循環ラインと前記バイパスラインに設けて前記熱媒の流量を調節する流量制御弁と、
     前記流量制御弁と接続して前記海水加熱器への熱媒供給量を制御する制御手段と、
     を備えたことを特徴とする請求項1に記載の排ガス処理システム。
    A bypass line connecting the feed pipe and return pipe of the circulation line;
    A flow rate control valve for adjusting the flow rate of the heat medium provided in the circulation line and the bypass line;
    Control means for controlling the supply amount of the heat medium to the seawater heater connected to the flow rate control valve,
    The exhaust gas treatment system according to claim 1, comprising:
  3.  前記海水加熱器の出口温度を検出する海水温度測定手段を備え、
     前記制御手段は、前記海水加熱器の出口温度が予め定めた温度となるように前記温度測定手段の測定値に基づいて前記海水加熱器への熱媒供給量を制御することを特徴とする請求項2に記載の排ガス処理システム。
    Sea water temperature measuring means for detecting the outlet temperature of the sea water heater,
    The said control means controls the supply amount of the heat medium to the said seawater heater based on the measured value of the said temperature measurement means so that the exit temperature of the said seawater heater may become predetermined temperature. Item 3. The exhaust gas treatment system according to Item 2.
  4.  前記熱交換器の前段に電気集塵手段を設けたことを特徴とする請求項1乃至3のいずれか1項に記載の排ガス処理システム。 The exhaust gas treatment system according to any one of claims 1 to 3, wherein an electrostatic precipitator is provided in front of the heat exchanger.
  5.  前記熱交換器と前記湿式脱硫手段の間に電気集塵手段を設けたことを特徴とする請求項2に記載の排ガス処理システム。 The exhaust gas treatment system according to claim 2, wherein an electrostatic dust collecting means is provided between the heat exchanger and the wet desulfurization means.
  6.  前記制御手段は、前記流量制御弁と接続して前記熱交換器への熱媒供給量を制御することを特徴とする請求項5に記載の排ガス処理システム。 The exhaust gas treatment system according to claim 5, wherein the control means is connected to the flow rate control valve to control a supply amount of the heat medium to the heat exchanger.
  7.  前記電気集塵手段に導入する前記排ガスの温度を検出するガス温度測定手段を備え、
     前記制御手段は、前記電気集塵手段に導入する前記排ガスの温度が予め定めた温度となるように前記ガス温度測定手段の測定値に基づいて前記熱交換器への熱媒供給量を制御することを特徴とする請求項6に記載の排ガス処理システム。
    Comprising gas temperature measuring means for detecting the temperature of the exhaust gas introduced into the electric dust collecting means,
    The control means controls the heat medium supply amount to the heat exchanger based on the measured value of the gas temperature measuring means so that the temperature of the exhaust gas introduced into the electric dust collecting means becomes a predetermined temperature. The exhaust gas treatment system according to claim 6.
  8.  前記湿式脱硫手段の液留部に第2の熱交換器を設けて前記循環ラインに接続し、
     前記熱媒は、前記熱交換器と前記第2の熱交換器を循環させたことを特徴とする請求項5乃至7のいずれか1項に記載の排ガス処理システム。
    A second heat exchanger is provided in the liquid distillation part of the wet desulfurization means and connected to the circulation line,
    The exhaust gas treatment system according to any one of claims 5 to 7, wherein the heat medium circulates between the heat exchanger and the second heat exchanger.
  9.  排ガス中の硫黄酸化物を除去する湿式脱硫手段と、
     海水から淡水を製造して前記湿式脱硫手段に供給する淡水化手段と、
     前記湿式脱硫手段の後段で前記排ガスによって熱媒を加熱させる熱交換器と、
     前記淡水化手段の海水加熱器と、
     前記熱交換器を前記海水加熱器と接続させて前記熱媒を循環させる熱媒循環ラインと、
     前記排ガス中に含まれるミストを除去するミストエリミネータと、
     を有することを特徴とする排ガス処理システム。
    Wet desulfurization means for removing sulfur oxides in exhaust gas;
    Desalination means for producing fresh water from seawater and supplying the wet desulfurization means;
    A heat exchanger that heats the heat medium with the exhaust gas after the wet desulfurization means;
    A seawater heater of the desalination means;
    A heating medium circulation line for connecting the heat exchanger to the seawater heater and circulating the heating medium;
    A mist eliminator for removing mist contained in the exhaust gas;
    An exhaust gas treatment system characterized by comprising:
  10.  排ガス中に含まれる硫黄酸化物を除去する排ガス処理方法において、
     脱硫処理する前の前記排ガスと熱媒を熱交換して前記排ガスのガス温度を低下させて前記熱媒を加熱する工程と、
     前記ガス温度が低下した排ガスを脱硫処理する工程と、
     加熱した前記熱媒を海水加熱器に循環させる工程と、
     加熱した前記熱媒と海水を熱交換する工程と、
     前記加熱した海水から淡水を製造する工程と、
     前記加熱した海水温度を測定して前記熱媒の循環量を制御する工程と、
     からなることを特徴とする排ガス処理方法。
    In the exhaust gas treatment method for removing sulfur oxides contained in the exhaust gas,
    Heat exchange of the exhaust gas and the heat medium before desulfurization treatment to lower the gas temperature of the exhaust gas and heating the heat medium;
    A step of desulfurizing the exhaust gas whose gas temperature has decreased;
    Circulating the heated heating medium to a seawater heater;
    Heat exchange between the heated heating medium and seawater;
    Producing fresh water from the heated seawater;
    Measuring the heated seawater temperature to control the circulation amount of the heating medium;
    An exhaust gas treatment method comprising:
PCT/JP2011/058313 2011-03-31 2011-03-31 Exhaust gas treatment system and exhaust gas treatment method WO2012132003A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/058313 WO2012132003A1 (en) 2011-03-31 2011-03-31 Exhaust gas treatment system and exhaust gas treatment method
AU2011364094A AU2011364094B2 (en) 2011-03-31 2011-03-31 Exhaust gas treatment system and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058313 WO2012132003A1 (en) 2011-03-31 2011-03-31 Exhaust gas treatment system and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
WO2012132003A1 true WO2012132003A1 (en) 2012-10-04

Family

ID=46929823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058313 WO2012132003A1 (en) 2011-03-31 2011-03-31 Exhaust gas treatment system and exhaust gas treatment method

Country Status (2)

Country Link
AU (1) AU2011364094B2 (en)
WO (1) WO2012132003A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523027A (en) * 2014-06-30 2017-08-17 上海伏波▲環▼保▲設備▼有限公司 Indirect low-temperature multi-effect seawater desalination system using exhaust heat from ship engines
CN108264181A (en) * 2018-01-12 2018-07-10 佛山市伊清环保工程技术有限公司 A kind of equipment for preventing desulfurated circulating water saturated crystallization
CN113501612A (en) * 2021-07-30 2021-10-15 成都市蜀科科技有限责任公司 Energy-concerving and environment-protective type desulfurization waste water zero release processing system
WO2022036890A1 (en) * 2020-08-18 2022-02-24 西安西热锅炉环保工程有限公司 Flue gas extracting and mixing device and method for wastewater treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230530A (en) * 1985-07-31 1987-02-09 Kawasaki Heavy Ind Ltd Method and apparatus for wet treatment of flue gas accompanying electrodialysis
JP2006070889A (en) * 2004-08-02 2006-03-16 Jgc Corp Method and device for power generation and desalination
WO2008078722A1 (en) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230530A (en) * 1985-07-31 1987-02-09 Kawasaki Heavy Ind Ltd Method and apparatus for wet treatment of flue gas accompanying electrodialysis
JP2006070889A (en) * 2004-08-02 2006-03-16 Jgc Corp Method and device for power generation and desalination
WO2008078722A1 (en) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523027A (en) * 2014-06-30 2017-08-17 上海伏波▲環▼保▲設備▼有限公司 Indirect low-temperature multi-effect seawater desalination system using exhaust heat from ship engines
CN108264181A (en) * 2018-01-12 2018-07-10 佛山市伊清环保工程技术有限公司 A kind of equipment for preventing desulfurated circulating water saturated crystallization
WO2022036890A1 (en) * 2020-08-18 2022-02-24 西安西热锅炉环保工程有限公司 Flue gas extracting and mixing device and method for wastewater treatment
CN113501612A (en) * 2021-07-30 2021-10-15 成都市蜀科科技有限责任公司 Energy-concerving and environment-protective type desulfurization waste water zero release processing system

Also Published As

Publication number Publication date
AU2011364094B2 (en) 2014-05-15
AU2011364094A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CN103982903B (en) System and method for treating tail end waste water by using smoke waste heat
CN101417827B (en) Technique method for processing desulphurization waste water
CN101417826B (en) Method and system for processing desulphurization waste water
JP5913369B2 (en) Non-contact exhaust residual heat sludge drying system
CN106268198A (en) A kind of desulfurization fume dehumidifying and water reclamation system and method
US10859257B2 (en) Advanced flash exhaust heat recovery
CN105217702B (en) A kind of desulfurization wastewater treatment system
US20170227287A1 (en) Dryer exhaust heat recovery
CN107162084A (en) A kind of salt water treating system and its method with preposition heat exchanger and rear end deduster
CN202927864U (en) Waste-heat utilization system for desulfuration smoke dehumidification
CN107739119A (en) - kind of cascade utilization power-plant flue gas waste heat realizes the device of desulfurization wastewater zero-emission
CN107986365A (en) A kind of fluoroplastics falling film evaporator that desulfurization wastewater concentration is carried out using fume afterheat
CN107777820A (en) The technique that Air-Cooling Island exhaust steam residual heat is used for Waste Water From Fire Power Plant zero discharge treatment
CN109485114A (en) A kind of processing unit and method of catalytic cracking unit desulfurization wastewater and flue gas thermal coupling
CN105536484A (en) Pollutant pretreating tower condensing based on flue gas
WO2012132003A1 (en) Exhaust gas treatment system and exhaust gas treatment method
RU2762755C2 (en) Method for increasing concentration of sulfuric acid and equipment for use in this method
CN210559480U (en) Waste water evaporation and concentration device based on low-temperature spray desulfurization
CN205115086U (en) Handle device of desulfurization waste water
CN109879343A (en) A kind of processing system and processing method of catalytic cracking and desulfurizing waste water
CN110526318A (en) A kind of flue gas disappears the total energy approach method and system of white coupling sea water desalination
CN208599449U (en) A kind of flue gas of refuse burning ultrapurification disappears white imperial system
CN103539215B (en) Sewage treatment systems and technique
KR101678425B1 (en) The apparatus and method of waste heat recovery and abatement of white plume of exhaust gas in the chimney
CN211971805U (en) Zero discharge system for concentrating desulfurization wastewater by flash evaporation with ultralow energy consumption and industrial salt-containing wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011364094

Country of ref document: AU

Date of ref document: 20110331

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP