JP2013078742A - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP2013078742A
JP2013078742A JP2011220861A JP2011220861A JP2013078742A JP 2013078742 A JP2013078742 A JP 2013078742A JP 2011220861 A JP2011220861 A JP 2011220861A JP 2011220861 A JP2011220861 A JP 2011220861A JP 2013078742 A JP2013078742 A JP 2013078742A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
heat exchanger
tank
wet desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011220861A
Other languages
Japanese (ja)
Inventor
Noriyuki Imada
典幸 今田
Atsushi Katagawa
篤 片川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011220861A priority Critical patent/JP2013078742A/en
Publication of JP2013078742A publication Critical patent/JP2013078742A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment apparatus capable of reducing makeup water supplied to a wet desulfurization apparatus with a simple structure.SOLUTION: In an exhaust gas treatment apparatus including a wet desulfurization apparatus 5 removing sulfur oxide by spraying absorption liquid to exhaust gas from a boiler 1, a heat recovery heat exchanger 45 is provided at an upstream side of the wet desulfurization apparatus 5, a reheating heat exchanger 46 heating the exhaust gas by a heat medium from the heat recovery heat exchanger 45 is provided at a downstream side of the wet desulfurization apparatus 5, and circulation piping 52 communicating with a heat transfer pipe between the heat recovery heat exchanger 45 and the reheating heat exchanger 46 is provided to circulate the heat medium therein. A heat removal heat exchanger 48 is provided at a heat medium flow passage of the circulation piping 52 from the reheating heat exchanger 46 to the heat recovery heat exchanger 45. By supplying drain water from a drain water recovery part 49 at a lower part of a gas duct of the heat recovery heat exchanger 45 to the wet desulfurization apparatus 5, exhaust gas temperature introduced to the wet desulfurization apparatus 5 is lowered to reduce makeup water, and the drain water is efficiently used as the makeup water of the wet desulfurization apparatus.

Description

本発明は、石炭焚ボイラから発生する排ガス中に含まれる硫黄酸化物を除去する湿式脱硫装置を備えた排ガス処理装置と排ガス処理方法に係わり、特に湿式脱硫装置に供給する水量を低減する技術に関するものである。   The present invention relates to an exhaust gas treatment apparatus and a waste gas treatment method provided with a wet desulfurization apparatus for removing sulfur oxides contained in exhaust gas generated from a coal fired boiler, and more particularly to a technique for reducing the amount of water supplied to the wet desulfurization apparatus. Is.

石炭焚火力発電プラントでは、石炭中に含まれる硫黄成分が排ガス中に二酸化硫黄(SO2)として存在し、それが大気に放出されると、酸性雨等の原因になる。そのため、一般的に湿式脱硫装置などで排ガス中のSO2を除去する方法が用いられている。従来の石炭焚排ガス処理装置の構成を図5に示す。 In a coal-fired thermal power plant, sulfur components contained in coal exist as sulfur dioxide (SO 2 ) in the exhaust gas, and when it is released into the atmosphere, it causes acid rain and the like. Therefore, generally, a method of removing SO 2 in exhaust gas with a wet desulfurization apparatus or the like is used. The structure of the conventional coal slag exhaust gas treatment apparatus is shown in FIG.

ボイラ1に石炭供給ライン21から石炭を、燃焼用空気供給ライン36から空気を供給し、石炭の燃焼反応によって発生した熱により、ボイラ熱交換器11で高圧蒸気を発生させる。そして、この高圧蒸気によりタービン12を回転させることで、タービン12と連結した発電機13により発電する。タービン12を出た蒸気は復水器14により除冷された後、再び昇圧ポンプ15で加圧され、ボイラ熱交換器11に送られる。   Coal is supplied to the boiler 1 from the coal supply line 21 and air is supplied from the combustion air supply line 36, and high-pressure steam is generated in the boiler heat exchanger 11 by heat generated by the combustion reaction of coal. Then, the turbine 12 is rotated by the high-pressure steam to generate power by the generator 13 connected to the turbine 12. The steam that has exited the turbine 12 is cooled by the condenser 14, is pressurized again by the booster pump 15, and is sent to the boiler heat exchanger 11.

一方、ボイラ1から排出される燃焼排ガスは、空気予熱器3(以下A/H、エアヒータと称すこともある。例えば再生式熱交換器を用いる)で燃焼用空気と熱交換した後、集塵機4において排ガス中の煤塵が除去される。一般的に集塵機4の出口のガス温度は130〜200℃程度である。集塵機4を出た排ガスは、湿式脱硫装置5に供給され、排ガス中のSO2が除去された後、煙突7から放出される。 On the other hand, the combustion exhaust gas discharged from the boiler 1 exchanges heat with combustion air in an air preheater 3 (hereinafter also referred to as A / H, air heater. For example, a regenerative heat exchanger is used), and then a dust collector 4. The dust in the exhaust gas is removed. Generally, the gas temperature at the outlet of the dust collector 4 is about 130 to 200 ° C. The exhaust gas that has exited the dust collector 4 is supplied to the wet desulfurization device 5, and after SO 2 in the exhaust gas is removed, it is discharged from the chimney 7.

湿式脱硫装置5では、スプレノズル27から微細な液滴として噴霧される石灰石または石灰を含むスラリなどの吸収剤の液滴と装置内を上昇する排ガスとを気液接触させることで、排ガス中の煤塵や塩化水素(HCl)、フッ化水素(HF)等の酸性ガスと共に、排ガス中のSO2がスプレノズル27の脱硫吸収液滴表面で化学的に吸収、除去される。 In the wet desulfurization apparatus 5, dust particles in the exhaust gas are brought into gas-liquid contact with absorbent droplets such as slurry containing limestone or lime sprayed as fine droplets from the spray nozzle 27 and the exhaust gas rising in the apparatus. In addition to acidic gas such as hydrogen chloride (HCl) and hydrogen fluoride (HF), SO 2 in the exhaust gas is chemically absorbed and removed on the surface of the desulfurization absorbing droplets of the spray nozzle 27.

SO2を吸収した脱硫吸収液28は湿式脱硫装置5下部のタンク30に貯留され、循環ポンプ26で昇圧されて吸収液循環配管25を経由して、再びスプレノズル27より噴霧される。また、脱硫吸収液28に吸収されたSO2は、炭酸カルシウム溶液供給装置44から供給される炭酸カルシウムと反応することで、石膏として系外に放出する。 The desulfurization absorption liquid 28 that has absorbed SO 2 is stored in a tank 30 below the wet desulfurization apparatus 5, is pressurized by a circulation pump 26, and sprayed from the spray nozzle 27 again via the absorption liquid circulation pipe 25. Further, SO 2 absorbed in the desulfurization absorbing liquid 28 reacts with calcium carbonate supplied from the calcium carbonate solution supply device 44 and is released out of the system as gypsum.

また、湿式脱硫装置5の内部では、脱硫吸収液28を噴霧するため、排ガスの温度は水分飽和温度まで低減される。一般的に石炭燃焼時の排ガス中の水分濃度は約10%(質量%であり、以下同様)であるため、湿式脱硫装置5の出口の排ガス温度は46℃程度になる。そのため、低温の排ガスをそのまま煙突7から放出すると、白煙が発生してしまう。   Further, since the desulfurization absorbing liquid 28 is sprayed inside the wet desulfurization apparatus 5, the temperature of the exhaust gas is reduced to the water saturation temperature. Generally, the moisture concentration in the exhaust gas during coal combustion is about 10% (mass%, the same applies hereinafter), so the exhaust gas temperature at the outlet of the wet desulfurization apparatus 5 is about 46 ° C. For this reason, when low-temperature exhaust gas is discharged from the chimney 7 as it is, white smoke is generated.

したがって、この白煙を防止するために、再加熱用熱交換器46により湿式脱硫装置5の出口の排ガス温度を上昇させる方法が用いられており、再加熱用熱交換器46の熱源として、熱媒体が通流される伝熱管を備えた熱回収用熱交換器45が用いられている。すなわち、集塵機4の出口に設置した熱回収用熱交換器45により排ガスの熱を回収し、回収した熱を再加熱用熱交換器46の熱源に使用することで、湿式脱硫装置5の出口の排ガスを加熱する。前記再加熱用熱交換器46は、熱回収用熱交換器45と同様に熱媒体が通流される伝熱管を備えた熱交換器である。   Therefore, in order to prevent the white smoke, a method of increasing the exhaust gas temperature at the outlet of the wet desulfurization apparatus 5 by the reheating heat exchanger 46 is used. As a heat source of the reheating heat exchanger 46, heat is used. A heat recovery heat exchanger 45 having a heat transfer tube through which a medium flows is used. That is, the heat of the exhaust gas is recovered by the heat recovery heat exchanger 45 installed at the outlet of the dust collector 4, and the recovered heat is used as the heat source of the reheating heat exchanger 46. Heat the exhaust gas. The reheating heat exchanger 46 is a heat exchanger provided with a heat transfer tube through which a heat medium flows, similarly to the heat recovery heat exchanger 45.

そして、熱回収用熱交換器45出口の排ガス温度は、排ガスと伝熱管内を流れる熱媒体との熱交換により、106℃まで低減されて湿式脱硫装置5に供給される。また、熱回収用熱交換器45と再加熱用熱交換器46の伝熱管は、熱媒体循環配管52によって連通され、熱媒体循環ポンプ47により熱回収用熱交換器45と再加熱用熱交換器46との間に熱媒体が循環されるようになっている。
各装置の入口や出口の排ガス温度の例を図5に記載しているが、集塵機4の出口の排ガス温度が130℃の場合、熱回収用熱交換器45によって、排ガス温度は106℃まで低減されて、湿式脱硫装置5に供給される。
The exhaust gas temperature at the outlet of the heat recovery heat exchanger 45 is reduced to 106 ° C. and supplied to the wet desulfurization apparatus 5 by heat exchange between the exhaust gas and the heat medium flowing in the heat transfer pipe. The heat transfer tubes of the heat recovery heat exchanger 45 and the reheating heat exchanger 46 are communicated with each other by a heat medium circulation pipe 52, and the heat recovery heat exchanger 45 and the reheating heat exchange are performed by a heat medium circulation pump 47. A heat medium is circulated between the container 46 and the container 46.
FIG. 5 shows an example of exhaust gas temperature at the inlet and outlet of each device. When the exhaust gas temperature at the outlet of the dust collector 4 is 130 ° C., the exhaust gas temperature is reduced to 106 ° C. by the heat recovery heat exchanger 45. And supplied to the wet desulfurization apparatus 5.

そして、湿式脱硫装置5の内部で脱硫吸収液28が噴霧されることで排ガス温度が水露点の46℃まで低減した後、排ガスは再加熱用熱交換器46に供給される。再加熱用熱交換器46では、熱回収用熱交換器45で加熱した熱媒体によって、排ガスを70℃まで加熱する。このとき、熱媒体の温度は、熱回収用熱交換器45の入口で80℃であり、集塵機4の出口の排ガスと熱交換することで93℃まで加熱され、再加熱用熱交換器46で湿式脱硫装置5の出口の排ガスを加熱することで、80℃まで温度が下がる。   After the desulfurization absorbing liquid 28 is sprayed inside the wet desulfurization apparatus 5, the exhaust gas temperature is reduced to a water dew point of 46 ° C., and then the exhaust gas is supplied to the reheating heat exchanger 46. In the reheating heat exchanger 46, the exhaust gas is heated to 70 ° C. by the heat medium heated by the heat recovery heat exchanger 45. At this time, the temperature of the heat medium is 80 ° C. at the inlet of the heat recovery heat exchanger 45, and is heated to 93 ° C. by exchanging heat with the exhaust gas at the outlet of the dust collector 4. By heating the exhaust gas at the outlet of the wet desulfurization apparatus 5, the temperature decreases to 80 ° C.

このような従来技術の排ガス処理装置においては、湿式脱硫装置の内部で水が蒸発するために、湿式脱硫装置に連続的に水を供給する必要がある。
この補給水の低減を図る技術として、以下の特許文献がある。
In such a conventional exhaust gas treatment apparatus, water evaporates inside the wet desulfurization apparatus, and therefore it is necessary to continuously supply water to the wet desulfurization apparatus.
There are the following patent documents as techniques for reducing the makeup water.

下記特許文献1には、湿式脱硫装置の排ガスダクトの上流に熱交換器(第1ガスガスヒータ)を設け、熱交換チューブをカーボンチューブにすることで、湿式脱硫装置入口の排ガス温度を50℃程度にしても腐食を防止でき、補給水の低減を図る構成が開示されている。また、熱交換器と再加熱器(第2ガスガスヒータ)の熱交換媒体である水の流路に脱硫処理後のガスの加熱に必要な熱分以外の熱分を回収して補給水を約70℃まで加温する第3の熱交換器を設けている。補給水は石膏の回収に使用された後、湿式脱硫装置に供給される。   In Patent Document 1 below, a heat exchanger (first gas gas heater) is provided upstream of the exhaust gas duct of the wet desulfurization apparatus, and the heat exchange tube is a carbon tube, so that the exhaust gas temperature at the inlet of the wet desulfurization apparatus is about 50 ° C. However, a configuration that can prevent corrosion and reduce makeup water is disclosed. In addition, the heat flow other than the heat necessary for heating the gas after the desulfurization treatment is collected in the flow path of water, which is the heat exchange medium of the heat exchanger and the reheater (second gas gas heater), and the replenishment water is reduced. A third heat exchanger that warms up to 70 ° C. is provided. The make-up water is used for recovery of gypsum and then supplied to a wet desulfurization apparatus.

また、下記特許文献2には、湿式脱硫装置内の吸収剤スラリを抜き出して蒸発缶により蒸発濃縮して処理する排水処理装置と、湿式脱硫装置の排ガスダクトの上流に設けた熱回収器と湿式脱硫装置の排ガスダクトの下流に設けた再加熱器とを有する排ガス処理設備において、蒸発缶における蒸発のために脱硫排水を加熱する加熱器として、再加熱器から熱回収器に送られる途上の熱媒から熱回収する熱交換器を設けた構成が開示されている。熱交換器を蒸発缶における蒸発濃縮のための加熱器として使用することで蒸気使用量を低減すると共に、熱回収器出口側、すなわち湿式脱硫装置入口側の排ガス温度を110℃から105℃程度に低下させることで湿式脱硫装置における補給水の低減を図っている。   Further, Patent Document 2 below discloses a wastewater treatment apparatus that extracts an absorbent slurry in a wet desulfurization apparatus, evaporates and concentrates it in an evaporator, and a heat recovery device provided upstream of an exhaust gas duct of the wet desulfurization apparatus. In the exhaust gas treatment facility having a reheater provided downstream of the exhaust gas duct of the desulfurization device, heat that is being sent from the reheater to the heat recovery device as a heater for heating the desulfurization wastewater for evaporation in the evaporator A configuration provided with a heat exchanger for recovering heat from the medium is disclosed. By using the heat exchanger as a heater for evaporation and concentration in the evaporator, the amount of steam used is reduced, and the exhaust gas temperature at the outlet side of the heat recovery unit, that is, at the inlet side of the wet desulfurization apparatus is reduced from 110 ° C to 105 ° C. By reducing the amount, make-up water in the wet desulfurization apparatus is reduced.

更に、下記特許文献3には、湿式脱硫装置の排ガスダクトの上流に設けた第1の熱交換器と湿式脱硫装置との間に更に第2の熱交換器を設け、第2の熱交換器によって排ガス温度を40〜45℃にして、40〜45℃に冷却された排ガスを湿式脱硫装置に導入することで、補給水の低減を図った構成が開示されている。   Further, in Patent Document 3 below, a second heat exchanger is further provided between the first heat exchanger provided upstream of the exhaust gas duct of the wet desulfurization apparatus and the wet desulfurization apparatus, and the second heat exchanger is provided. The structure which aimed at reduction of make-up water by making exhaust gas temperature into 40-45 degreeC by this and introduce | transducing the exhaust gas cooled to 40-45 degreeC into a wet desulfurization apparatus is disclosed.

特開平8−21618号公報JP-A-8-21618 特開平11−76750号公報Japanese Patent Laid-Open No. 11-76750 特開2008−212891号公報JP 2008-212891 A

前記従来技術においては、湿式脱硫装置内部で水が蒸発するために、湿式脱硫装置に連続的に水を供給する必要があった。特に多量の工業用水を確保することが困難な地域においては、湿式脱硫装置に供給する水を確保するために、海水淡水化装置などの設備を別途設ける必要があり、その設備費や維持費には多大なエネルギーやコストが必要となる。
特許文献1〜3に記載の構成によれば、湿式脱硫装置に導入する排ガス温度を低下させることで補給水の低減を図っている。
In the prior art, since water evaporates inside the wet desulfurization apparatus, it is necessary to continuously supply water to the wet desulfurization apparatus. Especially in areas where it is difficult to secure a large amount of industrial water, it is necessary to install a separate facility such as a seawater desalination unit to secure the water to be supplied to the wet desulfurization unit. Requires a lot of energy and cost.
According to the configurations described in Patent Documents 1 to 3, the makeup water is reduced by lowering the exhaust gas temperature introduced into the wet desulfurization apparatus.

特許文献1では、熱交換器と再加熱器との間に設けた第3の熱交換器により補給水を約70℃に加温して石膏を洗浄することで石膏の含水率を下げているが、熱交換器から再加熱器に流れる熱媒体のうち、再加熱器による加熱に必要な分を確保して、それ以外の熱を補給水の加温に用いた構成である。したがって、再加熱器から熱交換器に流れる熱媒体の温度は比較的高く保たれること、また、補給水の供給が常に必要であることに変わりはないため、あまり有効な方法とは言えない。   In Patent Document 1, the water content of gypsum is lowered by heating the makeup water to about 70 ° C. and washing the gypsum with a third heat exchanger provided between the heat exchanger and the reheater. However, in the heat medium flowing from the heat exchanger to the reheater, the amount necessary for heating by the reheater is ensured, and the other heat is used for heating the makeup water. Therefore, the temperature of the heat medium flowing from the reheater to the heat exchanger is kept relatively high, and the supply of make-up water is always necessary, so it is not a very effective method. .

また、特許文献2では、湿式脱硫装置入口側の排ガス温度を110℃から105℃程度に低下させているが、熱交換器を設けた目的はそもそも蒸気使用量の低減であり、この程度の温度低下では、補給水の低減効果もあまり見込めない。
更に、特許文献3では、湿式脱硫装置の排ガスダクトの上流に第1の熱交換器と第2の熱交換器を設け、更に湿式脱硫装置の排ガスダクトの下流に再加熱器を設けた大規模な構成であり、第2の熱交換器の設置コストや設置スペースなどの問題やボイラと第2の熱交換器間の熱媒体を冷却するための冷却器の設置(コストやスペース)等の問題もある。
In Patent Document 2, the exhaust gas temperature at the inlet side of the wet desulfurization apparatus is lowered from about 110 ° C. to about 105 ° C., but the purpose of providing the heat exchanger is to reduce the amount of steam used in the first place. If it drops, the effect of reducing makeup water is not expected.
Furthermore, in Patent Document 3, a first heat exchanger and a second heat exchanger are provided upstream of the exhaust gas duct of the wet desulfurization apparatus, and a reheater is further provided downstream of the exhaust gas duct of the wet desulfurization apparatus. Problems such as the installation cost and installation space of the second heat exchanger, and the installation (cost and space) of the cooler for cooling the heat medium between the boiler and the second heat exchanger. There is also.

本発明の課題は、簡易な構成で、湿式脱硫装置に供給する補給水の低減を図ることが可能な排ガス処理装置と排ガス処理方法の提供である。   An object of the present invention is to provide an exhaust gas treatment device and an exhaust gas treatment method capable of reducing the makeup water supplied to the wet desulfurization device with a simple configuration.

上記課題は、湿式脱硫装置の排ガスダクトの上流に熱回収用熱交換器を設置すると共に湿式脱硫装置の排ガスダクトの下流に再加熱用熱交換器を設置し、熱回収用熱交換器で加熱した熱媒体を再加熱用熱交換器で冷却するように熱回収用熱交換器と再加熱用熱交換器の伝熱管を熱媒体循環配管で接続し、更に熱媒体循環配管の途中に除熱用熱交換器を設置して、熱回収用熱交換器の排ガスダクト下部のドレン水を湿式脱硫装置に供給することで解決できる。また、除熱用熱交換器の熱媒体にはボイラに供給する給水又は海水を使用すると良い。   The above problem is that a heat recovery heat exchanger is installed upstream of the exhaust gas duct of the wet desulfurization device, and a reheating heat exchanger is installed downstream of the exhaust gas duct of the wet desulfurization device, and is heated by the heat recovery heat exchanger. The heat recovery heat exchanger and the heat transfer pipe of the reheating heat exchanger are connected by a heat medium circulation pipe so that the heat medium is cooled by the reheating heat exchanger, and heat is removed in the middle of the heat medium circulation pipe. This can be solved by installing a heat exchanger and supplying drain water in the lower part of the exhaust gas duct of the heat recovery heat exchanger to the wet desulfurization apparatus. Moreover, it is good to use the feed water or seawater supplied to a boiler for the heat medium of the heat exchanger for heat removal.

具体的に本発明の課題は、次の手段により解決することができる。
請求項1記載の発明は、石炭を燃料としたボイラから発生する排ガスに吸収液を噴霧して排ガス中の硫黄酸化物を除去する湿式脱硫装置を備えた排ガス処理装置において、前記湿式脱硫装置の上流側の排ガスダクトに、排ガスの熱を熱媒体に回収する伝熱管を備えた熱回収用熱交換器を設け、前記湿式脱硫装置の下流側の排ガスダクトに、排ガスを前記熱回収用熱交換器から供給される熱媒体で加熱する伝熱管を備えた再加熱用熱交換器を設け、更に熱回収用熱交換器と再加熱用熱交換器にそれぞれ設けられた伝熱管を連通し、その内部に熱媒体を循環させる熱媒体循環配管を設け、該熱媒体循環配管の前記再加熱用熱交換器から熱回収用熱交換器への熱媒体の流路に、熱媒体から除熱する除熱用熱交換器を設け、該熱回収用熱交換器の排ガスダクトの下部にドレン水回収部を設け、該ドレン水回収部内のドレン水を前記湿式脱硫装置に供給するドレン水供給部を設けた排ガス処理装置である。
Specifically, the problems of the present invention can be solved by the following means.
The invention according to claim 1 is an exhaust gas treatment apparatus including a wet desulfurization apparatus that removes sulfur oxides in exhaust gas by spraying an absorption liquid on exhaust gas generated from a coal-fired boiler. A heat recovery heat exchanger provided with a heat transfer tube for recovering heat of exhaust gas to a heat medium is provided in the exhaust gas duct on the upstream side, and the exhaust gas is exchanged in the exhaust gas duct on the downstream side of the wet desulfurization apparatus A heat exchanger for reheating provided with a heat transfer tube for heating with a heat medium supplied from the heater, and further communicating with the heat transfer tubes respectively provided for the heat exchanger for heat recovery and the heat exchanger for reheating, A heat medium circulation pipe that circulates the heat medium is provided inside, and a heat medium is removed from the heat medium in the heat medium flow path from the reheating heat exchanger to the heat recovery heat exchanger of the heat medium circulation pipe. A heat exchanger for heat is provided, and the heat recovery heat exchanger exhaust The drain water recovery section provided in the lower portion of the duct, an exhaust gas treatment apparatus of the drain water provided drain water supply unit for supplying to the wet desulfurization system in the drain water recovery unit.

請求項2記載の発明は、前記湿式脱硫装置は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備え、更に前記ドレン水供給部は、ドレン水回収部内のドレン水を前記タンクに供給する構成である請求項1記載の排ガス処理装置である。   According to a second aspect of the present invention, the wet desulfurization apparatus includes a tank that stores an absorbing liquid that has absorbed sulfur oxide, and a spray nozzle that is provided above the tank and sprays the absorbing liquid on the exhaust gas in a plurality of stages in the exhaust gas flow direction. An installed spray section, an absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up the absorption liquid in the tank to the spray nozzle, and a carbonic acid for converting the sulfur dioxide in the absorption liquid in the tank into gypsum. 2. The exhaust gas treatment apparatus according to claim 1, further comprising a calcium carbonate supply device that supplies a calcium solution, wherein the drain water supply unit supplies drain water in a drain water recovery unit to the tank.

請求項3記載の発明は、前記湿式脱硫装置は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備え、更に前記ドレン水供給部は、ドレン水回収部内のドレン水を前記炭酸カルシウム供給装置に供給する構成である請求項1記載の排ガス処理装置である。   According to a third aspect of the present invention, the wet desulfurization apparatus includes a tank that stores an absorbing liquid that has absorbed sulfur oxide, and a spray nozzle that is provided above the tank and sprays the absorbing liquid on the exhaust gas in a plurality of stages in the exhaust gas flow direction. An installed spray section, an absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up the absorption liquid in the tank to the spray nozzle, and a carbonic acid for converting the sulfur dioxide in the absorption liquid in the tank into gypsum. 2. The exhaust gas treatment device according to claim 1, further comprising a calcium carbonate supply device that supplies a calcium solution, wherein the drain water supply unit supplies drain water in a drain water recovery unit to the calcium carbonate supply device. .

請求項4記載の発明は、前記熱回収用熱交換器の伝熱管の表面がフッ素樹脂を含む耐食材でコーティングされている請求項1から請求項3のいずれか1項に記載の排ガス処理装置である。
請求項5記載の発明は、前記除熱用熱交換器に冷媒を供給し、再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を冷却することで熱回収用熱交換器出口の排ガス温度を前記冷媒の温度以上排ガスの水分飽和温度以下とする冷媒供給部を設けた請求項1から請求項3のいずれか1項に記載の排ガス処理装置である。
According to a fourth aspect of the present invention, there is provided the exhaust gas treatment apparatus according to any one of the first to third aspects, wherein the surface of the heat transfer tube of the heat recovery heat exchanger is coated with a corrosion-resistant material containing a fluororesin. It is.
According to a fifth aspect of the present invention, a heat recovery heat exchanger is provided by supplying a refrigerant to the heat removal heat exchanger and cooling a heat medium flowing from the reheating heat exchanger into the heat recovery heat exchanger. The exhaust gas treatment apparatus according to any one of claims 1 to 3, further comprising a refrigerant supply unit configured to set an exhaust gas temperature at an outlet to a temperature equal to or higher than the temperature of the refrigerant and equal to or lower than a water saturation temperature of the exhaust gas.

請求項6記載の発明は、前記ボイラに給水するボイラ給水部を設け、該ボイラ給水部の給水を前記冷媒供給部の冷媒とした請求項5記載の排ガス処理装置である。
請求項7記載の発明は、海水を前記冷媒供給部の冷媒とした請求項5記載の排ガス処理装置である。
請求項8記載の発明は、前記湿式脱硫装置のタンク内の吸収液を前記熱回収用熱交換器に供給する吸収液供給部を設けた請求項5記載の排ガス処理装置である。
A sixth aspect of the present invention is the exhaust gas processing apparatus according to the fifth aspect, wherein a boiler water supply section for supplying water to the boiler is provided, and the water supply of the boiler water supply section is used as the refrigerant of the refrigerant supply section.
The invention according to claim 7 is the exhaust gas treatment apparatus according to claim 5, wherein seawater is used as a refrigerant of the refrigerant supply unit.
The invention according to claim 8 is the exhaust gas treatment apparatus according to claim 5, further comprising an absorption liquid supply section for supplying the absorption liquid in the tank of the wet desulfurization apparatus to the heat recovery heat exchanger.

請求項9記載の発明は、石炭を燃料としたボイラから発生する排ガスに吸収液を噴霧する構成を備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法において、前記湿式脱硫装置による脱硫前の排ガスから熱を回収するための熱媒体を内部に有する伝熱管を備えた熱回収用熱交換器によって排ガスの熱を回収し、湿式脱硫装置による脱硫処理後の排ガスを加熱するための熱媒体を内部に有する伝熱管を備えた再加熱用熱交換器に前記熱回収用熱交換器から前記熱媒体を循環供給し、前記再加熱用熱交換器から熱回収用熱交換器へ供給される熱媒体から除熱すると共に前記熱回収用熱交換器の下部に溜まるドレン水を前記湿式脱硫装置に供給する排ガス処理方法である。   The invention according to claim 9 is an exhaust gas treatment method in which sulfur oxides in exhaust gas are removed by a wet desulfurization device having a configuration in which an absorbing liquid is sprayed on exhaust gas generated from a boiler using coal as a fuel. In order to heat the exhaust gas after the desulfurization treatment by the wet desulfurization equipment, by recovering the heat of the exhaust gas by the heat recovery heat exchanger equipped with a heat transfer tube having a heat medium for recovering heat from the exhaust gas before the desulfurization by The heat medium is circulated and supplied from the heat recovery heat exchanger to a reheating heat exchanger having a heat transfer tube having a heat transfer tube therein, and the reheating heat exchanger is transferred to the heat recovery heat exchanger. It is an exhaust gas treatment method for removing heat from a supplied heat medium and supplying drain water accumulated in a lower portion of the heat recovery heat exchanger to the wet desulfurization apparatus.

請求項10記載の発明は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法であって、前記熱回収用熱交換器の下部に溜まるドレン水を前記タンクに供給する請求項9記載の排ガス処理方法である。   The invention according to claim 10 is a tank that stores an absorbing liquid that has absorbed sulfur oxides, and a spray part that is provided above the tank and has a plurality of spray nozzles that spray the absorbing liquid on the exhaust gas in the exhaust gas flow direction, An absorption liquid circulation pipe for supplying an absorption liquid provided with a circulation pump for sucking the absorption liquid in the tank to the spray nozzle, and a carbonic acid solution for supplying a calcium carbonate solution for converting the sulfur dioxide in the absorption liquid in the tank into gypsum. 10. An exhaust gas treatment method for removing sulfur oxides in exhaust gas by a wet desulfurization device including a calcium supply device, wherein drain water accumulated in a lower portion of the heat recovery heat exchanger is supplied to the tank. This is an exhaust gas treatment method.

請求項11記載の発明は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法であって、前記熱回収用熱交換器の下部に溜まるドレン水を前記炭酸カルシウム供給装置に供給する請求項9記載の排ガス処理方法である。   The invention according to claim 11 is a tank that stores an absorbing liquid that has absorbed sulfur oxides, and a spray part that is provided above the tank and has a plurality of spray nozzles that spray the absorbing liquid on the exhaust gas in the exhaust gas flow direction. An absorption liquid circulation pipe for supplying an absorption liquid provided with a circulation pump for sucking the absorption liquid in the tank to the spray nozzle, and a carbonic acid solution for supplying a calcium carbonate solution for converting the sulfur dioxide in the absorption liquid in the tank into gypsum. An exhaust gas treatment method for removing sulfur oxides in exhaust gas by a wet desulfurization device including a calcium supply device, wherein drain water accumulated in a lower portion of the heat recovery heat exchanger is supplied to the calcium carbonate supply device. Item 10. The exhaust gas treatment method according to Item 9.

請求項12記載の発明は、前記熱回収用熱交換器の伝熱管として、その表面がフッ素樹脂を含む耐食材でコーティングされた伝熱管を用いる請求項9から請求項11のいずれか1項に記載の排ガス処理方法である。
請求項13記載の発明は、前記再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を冷媒により冷却することで除熱し、熱回収用熱交換器出口の排ガス温度を前記冷媒の温度以上排ガスの水分飽和温度以下とする請求項9から請求項11のいずれか1項に記載の排ガス処理方法である。
The invention described in claim 12 is the heat transfer tube of the heat recovery heat exchanger, wherein a heat transfer tube whose surface is coated with a corrosion-resistant material containing a fluororesin is used. The exhaust gas treatment method described.
The invention according to claim 13 removes heat by cooling the heat medium flowing into the heat recovery heat exchanger from the reheating heat exchanger with the refrigerant, and sets the exhaust gas temperature at the heat recovery outlet to the refrigerant. The exhaust gas treatment method according to any one of claims 9 to 11, wherein the exhaust gas treatment temperature is set to a temperature equal to or higher than a water saturation temperature of the exhaust gas.

請求項14記載の発明は、前記冷媒として、ボイラに給水するボイラ給水を使用する請求項13記載の排ガス処理方法である。
請求項15記載の発明は、前記冷媒として、海水を使用する請求項13記載の排ガス処理方法である。
請求項16記載の発明は、前記湿式脱硫装置のタンク内の吸収液を前記熱回収用熱交換器に供給する請求項13記載の排ガス処理方法である。
The invention described in claim 14 is the exhaust gas treatment method according to claim 13, wherein boiler supply water for supplying water to the boiler is used as the refrigerant.
The invention according to claim 15 is the exhaust gas treatment method according to claim 13, wherein seawater is used as the refrigerant.
A sixteenth aspect of the present invention is the exhaust gas treatment method according to the thirteenth aspect of the present invention, wherein the absorption liquid in the tank of the wet desulfurization apparatus is supplied to the heat recovery heat exchanger.

(作用)
熱媒体循環配管の再加熱用熱交換器から熱回収用熱交換器への熱媒体の流路に除熱用熱交換器を設け、除熱用熱交換器にボイラ給水又は海水を冷媒として供給することで、熱回収用熱交換器に供給する熱媒体の温度を冷媒の温度程度まで低減することが可能となる。そして、熱回収用熱交換器に冷媒の温度程度の熱媒体を供給することで、集塵機から排出される排ガス温度を排ガスの水分飽和温度以下に低減できる。排ガス温度を水分飽和温度(例えば水分濃度10%の時、46℃)以下にすることで、排ガス中の水分がドレン水として回収できるようになる。このドレン水を回収し、湿式脱硫装置に供給することで湿式脱硫装置の補給水を大幅に低減できる。
(Function)
A heat removal heat exchanger is provided in the heat medium flow path from the reheating heat exchanger to the heat recovery heat exchanger in the heat medium circulation piping, and boiler feed water or seawater is supplied as a refrigerant to the heat removal heat exchanger. By doing so, it becomes possible to reduce the temperature of the heat medium supplied to the heat recovery heat exchanger to about the temperature of the refrigerant. And the exhaust gas temperature discharged | emitted from a dust collector can be reduced below to the moisture saturation temperature of waste gas by supplying the heat medium about the temperature of a refrigerant | coolant to the heat exchanger for heat recovery. By setting the exhaust gas temperature to a water saturation temperature (for example, 46 ° C. when the water concentration is 10%) or less, the water in the exhaust gas can be recovered as drain water. By collecting this drain water and supplying it to the wet desulfurization apparatus, the makeup water of the wet desulfurization apparatus can be greatly reduced.

具体的に、請求項1又は請求項9記載の発明によれば、再加熱用熱交換器から熱回収用熱交換器へ流れる熱媒体から除熱することで熱媒体の温度が低減する。そして、この低温の熱媒体により排ガスの熱回収の効率が向上し、熱回収用熱交換器に導入される排ガスの温度を低減できるため、湿式脱硫装置に導入する排ガス温度が低下して補給水の低減を図ることが可能となる。そして、熱回収用熱交換器のドレン水を湿式脱硫装置に供給することで、ドレン水を湿式脱硫装置の補給水として有効利用できる。   Specifically, according to the first or ninth aspect of the invention, the temperature of the heat medium is reduced by removing heat from the heat medium flowing from the reheating heat exchanger to the heat recovery heat exchanger. This low temperature heat medium improves the efficiency of heat recovery of the exhaust gas and can reduce the temperature of the exhaust gas introduced into the heat recovery heat exchanger. Can be reduced. And by supplying the drain water of the heat exchanger for heat recovery to the wet desulfurization apparatus, the drain water can be effectively used as the makeup water for the wet desulfurization apparatus.

また、請求項2又は請求項10記載の発明によれば、上記請求項1又は請求項9に記載の発明の作用に加えて、熱回収用熱交換器のドレン水を湿式脱硫装置のタンクに供給することで、ドレン水をタンクに貯留でき、容易にドレン水を湿式脱硫装置の補給水として有効利用できる。   According to the invention of claim 2 or claim 10, in addition to the action of the invention of claim 1 or claim 9, the drain water of the heat exchanger for heat recovery is supplied to the tank of the wet desulfurization apparatus. By supplying, drain water can be stored in a tank, and drain water can be easily effectively used as makeup water for a wet desulfurization apparatus.

そして、請求項3又は請求項11記載の発明によれば、上記請求項1又は請求項9に記載の発明の作用に加えて、熱回収用熱交換器のドレン水を炭酸カルシウム供給装置に供給することで、ドレン水を炭酸カルシウム供給装置に貯留でき、容易にドレン水を湿式脱硫装置の補給水として有効利用できる。また、熱回収用熱交換器のドレン水には、排ガス中のSO2が含まれているため強酸性であるが、ドレン水を炭酸カルシウム供給装置に供給することで、酸が中和される。そして、余剰の炭酸カルシウムは湿式脱硫装置に供給されることでドレン水を無駄なく有効利用できる。 And according to invention of Claim 3 or Claim 11, in addition to the effect | action of the invention of the said Claim 1 or Claim 9, the drain water of the heat exchanger for heat recovery is supplied to a calcium carbonate supply apparatus. By doing so, the drain water can be stored in the calcium carbonate supply device, and the drain water can be easily effectively used as makeup water for the wet desulfurization device. The drain water of the heat exchanger for heat recovery is strongly acidic because it contains SO 2 in the exhaust gas, but the acid is neutralized by supplying the drain water to the calcium carbonate supply device. . And surplus calcium carbonate can use drain water effectively without wasting by being supplied to a wet desulfurization apparatus.

請求項4又は請求項12記載の発明によれば、上記請求項1から請求項3のいずれか1項、請求項9から請求項11のいずれか1項に記載の発明の作用に加えて、熱回収用熱交換器のドレン水が、排ガス中のSO2によって強酸性でも、熱回収用熱交換器の伝熱管表面がフッ素樹脂等の耐食材によってコーティングされていることで、伝熱管表面の腐食を防止できる。 According to the invention of claim 4 or claim 12, in addition to the action of the invention of any one of claims 1 to 3, or claims 9 to 11, Even if the drain water of the heat exchanger for heat recovery is strongly acidic due to SO 2 in the exhaust gas, the heat transfer tube surface of the heat recovery heat exchanger is coated with a corrosion-resistant material such as fluororesin, Corrosion can be prevented.

請求項5又は請求項13記載の発明によれば、上記請求項1から請求項3のいずれか1項、請求項9から請求項11のいずれか1項に記載の発明の作用に加えて、熱回収用熱交換器の出口排ガスの温度を、再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を除熱する冷媒の温度以上排ガスの水分飽和温度以下とすることで、湿式脱硫装置入口の排ガス温度も同程度となり、湿式脱硫装置の内部における水の蒸発がほとんどなくなるため、水分の損失も大幅に低減できる。また、熱回収用熱交換器の出口排ガスの温度を排ガスの水分飽和温度以下とすることで、排ガス中に含まれていた水の一部がドレン水となって溜まりやすくなるため、ドレン水を湿式脱硫装置のタンク又は炭酸カルシウム供給装置などに供給することで、補給水の大幅な低減を図ることが可能となる。   According to the invention of claim 5 or claim 13, in addition to the action of the invention of any one of claims 1 to 3 and claims 9 to 11, By setting the temperature of the exhaust gas at the outlet of the heat recovery heat exchanger to be equal to or higher than the temperature of the refrigerant removing heat from the heat medium flowing into the heat recovery heat exchanger from the reheating heat exchanger to the moisture saturation temperature of the exhaust gas, Since the exhaust gas temperature at the inlet of the wet desulfurization apparatus is about the same and the evaporation of water inside the wet desulfurization apparatus is almost eliminated, the loss of moisture can be greatly reduced. In addition, by setting the temperature of the exhaust gas at the outlet of the heat recovery heat exchanger to be equal to or lower than the moisture saturation temperature of the exhaust gas, a portion of the water contained in the exhaust gas becomes easy to accumulate as drain water. By supplying it to a tank of a wet desulfurization device or a calcium carbonate supply device, it becomes possible to significantly reduce makeup water.

請求項6又は請求項14記載の発明によれば、上記請求項5又は請求項13に記載の発明の作用に加えて、除熱用熱交換器の冷媒にボイラ給水を利用することで、補給水の増加を防止できる。また、除熱用熱交換器の冷媒に用いる水の設備を別に設ける必要がないため、簡易な構成で除熱用熱交換器を設置できる。   According to the invention described in claim 6 or claim 14, in addition to the operation of the invention described in claim 5 or claim 13, replenishment is achieved by using boiler feed water as the refrigerant of the heat exchanger for heat removal. Can prevent increase of water. In addition, since it is not necessary to provide a separate facility for water used for the refrigerant of the heat removal heat exchanger, the heat removal heat exchanger can be installed with a simple configuration.

請求項7又は請求項15記載の発明によれば、上記請求項5又は請求項13に記載の発明の作用に加えて、除熱用熱交換器の冷媒に海水を利用することで、工業用水の使用を抑えることができる。   According to invention of Claim 7 or Claim 15, in addition to the effect | action of the invention of Claim 5 or Claim 13, by using seawater for the refrigerant | coolant of the heat exchanger for heat removal, industrial water The use of can be suppressed.

請求項8又は請求項16記載の発明によれば、上記請求項5又は請求項13に記載の発明の作用に加えて、湿式脱硫装置のタンク内の吸収液を熱回収用熱交換器に供給することで、タンク内の吸収液には炭酸カルシウムが含まれているため、強酸性のドレン水が中和される。   According to the invention described in claim 8 or claim 16, in addition to the action of the invention described in claim 5 or claim 13, the absorption liquid in the tank of the wet desulfurization apparatus is supplied to the heat recovery heat exchanger. By doing so, since the absorption liquid in the tank contains calcium carbonate, the strongly acidic drain water is neutralized.

本発明によれば、排ガス中の水分を排ガスの吸収液として使用することが可能になると共に、湿式脱硫装置への補給水を大幅に低減できる。したがって、水が不足する地域等で用いられていた水製造のための設備費用やコスト等を大幅に低減できる。   According to the present invention, it becomes possible to use the moisture in the exhaust gas as an absorbing solution for the exhaust gas, and greatly reduce the makeup water to the wet desulfurization apparatus. Accordingly, it is possible to greatly reduce the facility costs and costs for water production used in areas where water is insufficient.

具体的に、請求項1又は請求項9記載の発明によれば、熱回収用熱交換器に導入される排ガスの温度を低減することで湿式脱硫装置に導入する排ガス温度が低下するため、補給水の低減を図ることが可能となる。また、熱回収用熱交換器のドレン水を湿式脱硫装置の補給水として有効利用でき、経済的である
また、請求項2又は請求項10記載の発明によれば、上記請求項1又は請求項9に記載の発明の効果に加えて、熱回収用熱交換器のドレン水を湿式脱硫装置のタンクに貯留することで、容易にドレン水を湿式脱硫装置の補給水として有効利用でき、経済的である。
Specifically, according to the invention described in claim 1 or claim 9, since the exhaust gas temperature introduced into the wet desulfurization apparatus is lowered by reducing the temperature of the exhaust gas introduced into the heat recovery heat exchanger, replenishment It becomes possible to reduce water. Further, the drain water of the heat exchanger for heat recovery can be effectively used as make-up water for the wet desulfurization apparatus and is economical. According to the invention of claim 2 or claim 10, the invention of claim 1 or claim In addition to the effects of the invention described in 9, the drain water of the heat recovery heat exchanger is stored in the tank of the wet desulfurization device, so that the drain water can be easily effectively used as make-up water for the wet desulfurization device. It is.

そして、請求項3又は請求項11記載の発明によれば、上記請求項1又は請求項9に記載の発明の効果に加えて、熱回収用熱交換器のドレン水を炭酸カルシウム供給装置に貯留することで、容易にドレン水を湿式脱硫装置の補給水として有効利用でき、経済的である。また、強酸性のドレン水は炭酸カルシウムによって中和されるため、熱回収用熱交換器の伝熱管の腐食を防止できる。また、余剰の炭酸カルシウムは湿式脱硫装置に供給されることで、ドレン水を無駄なく有効利用できる。   And according to invention of Claim 3 or Claim 11, in addition to the effect of the invention of Claim 1 or Claim 9, the drain water of the heat exchanger for heat recovery is stored in the calcium carbonate supply device. By doing so, drain water can be easily effectively used as make-up water for the wet desulfurization apparatus, which is economical. Moreover, since strongly acidic drain water is neutralized with calcium carbonate, corrosion of the heat transfer tube of the heat exchanger for heat recovery can be prevented. Further, excess calcium carbonate can be effectively used without waste by supplying it to the wet desulfurization apparatus.

請求項4又は請求項12記載の発明によれば、上記請求項1から請求項3のいずれか1項、請求項9から請求項11のいずれか1項に記載の発明の効果に加えて、熱回収用熱交換器の表面を耐食材によってコーティングすることで、伝熱管表面の腐食を防止できる。   According to the invention of claim 4 or claim 12, in addition to the effect of the invention of any one of claims 1 to 3 and claims 9 to 11, By coating the surface of the heat exchanger for heat recovery with a corrosion resistant material, corrosion of the heat transfer tube surface can be prevented.

請求項5又は請求項13記載の発明によれば、上記請求項1から請求項3のいずれか1項、請求項9から請求項11のいずれか1項に記載の発明の効果に加えて、湿式脱硫装置入口の排ガス温度が、再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を除熱する冷媒の温度以上排ガスの水分飽和温度以下となるため、湿式脱硫装置の内部における水の蒸発がほとんどなくなって、水分の損失も大幅に低減できる。また、排ガス中に含まれていた水の一部がドレン水となって溜まりやすくなるため、ドレン水を湿式脱硫装置のタンク又は炭酸カルシウム供給装置などに供給することで、補給水の大幅な低減を図ることができる。   According to the invention of claim 5 or claim 13, in addition to the effect of the invention of any one of claims 1 to 3 and claims 9 to 11, Since the exhaust gas temperature at the inlet of the wet desulfurization device is not less than the temperature of the refrigerant that removes heat from the heat medium flowing into the heat recovery heat exchanger from the reheating heat exchanger and below the moisture saturation temperature of the exhaust gas, Water evaporation is almost eliminated and water loss can be greatly reduced. In addition, since some of the water contained in the exhaust gas tends to accumulate as drain water, drastic reduction of makeup water can be achieved by supplying drain water to a tank of a wet desulfurization unit or a calcium carbonate supply unit. Can be achieved.

請求項6又は請求項14記載の発明によれば、上記請求項5又は請求項13に記載の発明の効果に加えて、除熱用熱交換器の冷媒にボイラ給水を利用することで、補給水の増加を防止でき、また大規模な設備を必要とせず、簡易な構成で除熱用熱交換器を設置できる。   According to the invention of claim 6 or claim 14, in addition to the effect of the invention of claim 5 or claim 13, replenishment is achieved by using boiler feed water as the refrigerant of the heat exchanger for heat removal. An increase in water can be prevented, and a heat exchanger for heat removal can be installed with a simple configuration without requiring large-scale equipment.

請求項7又は請求項15記載の発明によれば、上記請求項5又は請求項13に記載の発明の効果に加えて、除熱用熱交換器の冷媒に海水を利用することで、工業用水の使用を抑えた節水型の設備となる。   According to the invention of claim 7 or claim 15, in addition to the effect of the invention of claim 5 or claim 13, by using seawater as the refrigerant of the heat exchanger for heat removal, industrial water It will be a water-saving facility that uses less water.

請求項8又は請求項16記載の発明によれば、上記請求項5又は請求項13に記載の発明の効果に加えて、湿式脱硫装置のタンク内の吸収液を熱回収用熱交換器に供給することで、強酸性のドレン水が中和されるため、熱回収用熱交換器の伝熱管の腐食を防止できる。   According to the invention described in claim 8 or claim 16, in addition to the effect of the invention described in claim 5 or claim 13, the absorption liquid in the tank of the wet desulfurization apparatus is supplied to the heat recovery heat exchanger. By doing so, since strongly acidic drain water is neutralized, corrosion of the heat exchanger tube of the heat exchanger for heat recovery can be prevented.

本発明の実施例1の排ガス処理装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the waste gas processing apparatus of Example 1 of this invention. 本発明の実施例2の排ガス処理装置の全体構成図である。It is a whole block diagram of the exhaust gas processing apparatus of Example 2 of this invention. 本発明の実施例3の排ガス処理装置の全体構成図である。It is a whole block diagram of the exhaust gas processing apparatus of Example 3 of this invention. 本発明の実施例4の排ガス処理装置の全体構成図である。It is a whole block diagram of the exhaust gas processing apparatus of Example 4 of this invention. 従来技術の排ガス処理装置の全体構成図である。It is a whole block diagram of the exhaust gas processing apparatus of a prior art.

本発明の排ガス処理装置の実施例を図面と共に説明する。   An embodiment of the exhaust gas treatment apparatus of the present invention will be described with reference to the drawings.

本発明の実施例1の排ガス処理装置の全体構成図を図1に示す。
この排ガス処理装置が図5に示した従来技術の排ガス処理装置と異なる点は、熱回収用熱交換器45と再加熱用熱交換器46との熱媒体循環配管52に除熱用熱交換器48を設け、この除熱用熱交換器48に、ボイラ給水の一部を供給する構成とした点である。除熱用熱交換器48に常温(20〜30℃)のボイラ給水を冷媒として供給することで、熱回収用熱交換器45に供給する熱媒体の温度を20〜30℃程度まで低減することが可能となる。
FIG. 1 shows an overall configuration diagram of an exhaust gas treatment apparatus according to Embodiment 1 of the present invention.
This exhaust gas treatment device differs from the prior art exhaust gas treatment device shown in FIG. 5 in that a heat removal heat exchanger is provided in the heat medium circulation pipe 52 between the heat recovery heat exchanger 45 and the reheating heat exchanger 46. 48 is provided, and a part of boiler feed water is supplied to the heat removal heat exchanger 48. The temperature of the heat medium supplied to the heat recovery heat exchanger 45 is reduced to about 20 to 30 ° C. by supplying boiler feed water at room temperature (20 to 30 ° C.) as a refrigerant to the heat removal heat exchanger 48. Is possible.

そして、熱回収用熱交換器45に20〜30℃の熱媒体を供給することで、集塵機4から排出される排ガス温度を30℃程度まで低減できる。排ガス温度を水分飽和温度(例えば水分濃度10%の時、46℃)以下にすることで、排ガス中の水分がドレン水として回収できるようになる。すなわち、石炭焚ボイラの排ガス中には10%の水分が含まれるため、排ガス温度を30℃まで下げることで排ガス中の水分の一部がドレン水となる。特に46℃よりも10℃以上低い30℃にすれば、より確実にドレン水にすることができる。そして、このドレン水を回収し、湿式脱硫装置に供給することで湿式脱硫装置の補給水を大幅に低減できる。   And the exhaust gas temperature discharged | emitted from the dust collector 4 can be reduced to about 30 degreeC by supplying a heat medium of 20-30 degreeC to the heat exchanger 45 for heat recovery. By setting the exhaust gas temperature to a water saturation temperature (for example, 46 ° C. when the water concentration is 10%) or less, the water in the exhaust gas can be recovered as drain water. That is, since 10% of moisture is contained in the exhaust gas of the coal fired boiler, a part of the moisture in the exhaust gas becomes drain water by lowering the exhaust gas temperature to 30 ° C. In particular, if the temperature is set to 30 ° C., which is 10 ° C. or more lower than 46 ° C., the drain water can be more reliably obtained. Then, the drain water is recovered and supplied to the wet desulfurization apparatus, so that the makeup water in the wet desulfurization apparatus can be greatly reduced.

また、熱回収用熱交換器45の内部には、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂のコーティングを施した伝熱管を使用する。これは、熱回収用熱交換器45の表面で凝縮した水分に排ガス中のSO2が吸収されることで生じる伝熱管表面の腐食を防止するためである。各種フッ素樹脂としては、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)などがある。伝熱管表面の腐食防止のためには、この他にエナメル塗料、シリコーン樹脂(ケイ素樹脂)、エポキシ樹脂等の耐食材によるコーティングが考えられるが、いずれも同等の効果がある。 A heat transfer tube coated with a fluororesin such as polytetrafluoroethylene (PTFE) is used in the heat recovery heat exchanger 45. This is to prevent corrosion of the heat transfer tube surface caused by the absorption of SO 2 in the exhaust gas by the moisture condensed on the surface of the heat recovery heat exchanger 45. Various fluororesins include tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), and polyvinylidene fluoride. Ride (PVDF), polychlorotrifluoroethylene (PCTFE), and the like. In order to prevent corrosion of the surface of the heat transfer tube, coating with a corrosion resistant material such as enamel paint, silicone resin (silicon resin), and epoxy resin can be considered, but all have the same effect.

本実施例の運転例を以下に示す。
ボイラ1に石炭供給ライン21から石炭を、燃焼用空気供給ライン36から空気を供給し、石炭の燃焼反応によって発生した熱により、ボイラ熱交換器11で高圧蒸気を発生させる。そして、この高圧蒸気によりタービン12を回転させることで、タービン12と連結した発電機13により発電する。タービン12を出た蒸気は復水器14により除冷された後、再び昇圧ポンプ15で加圧され、ボイラ熱交換器11に送られる。
An operation example of this embodiment is shown below.
Coal is supplied to the boiler 1 from the coal supply line 21 and air is supplied from the combustion air supply line 36, and high-pressure steam is generated in the boiler heat exchanger 11 by heat generated by the combustion reaction of coal. Then, the turbine 12 is rotated by the high-pressure steam to generate power by the generator 13 connected to the turbine 12. The steam that has exited the turbine 12 is cooled by the condenser 14, is pressurized again by the booster pump 15, and is sent to the boiler heat exchanger 11.

一方、ボイラ1から排出される燃焼排ガスは、A/H3で燃焼用空気と熱交換した後、集塵機4において排ガス中の煤塵が除去される。その後、本実施例に基づく熱回収用熱交換器45により、排ガス温度を30℃まで冷却した後、湿式脱硫装置5に供給される。   On the other hand, the combustion exhaust gas discharged from the boiler 1 exchanges heat with combustion air at A / H 3, and then dust in the exhaust gas is removed by the dust collector 4. Thereafter, the exhaust gas temperature is cooled to 30 ° C. by the heat exchanger 45 for heat recovery based on the present embodiment, and then supplied to the wet desulfurization apparatus 5.

湿式脱硫装置5では、スプレノズル27から微細な液滴として噴霧される石灰石または石灰を含むスラリなどの吸収剤の液滴と装置内を上昇する排ガスとを気液接触させることで、排ガス中の煤塵や塩化水素、フッ化水素等の酸性ガスと共に、排ガス中のSO2がスプレノズル27の脱硫吸収液滴表面で化学的に吸収、除去される。 In the wet desulfurization apparatus 5, dust particles in the exhaust gas are brought into gas-liquid contact with absorbent droplets such as limestone or slurry containing lime sprayed as fine droplets from the spray nozzle 27 and exhaust gas rising in the apparatus. SO 2 in the exhaust gas is chemically absorbed and removed on the surface of the desulfurization absorbing droplets of the spray nozzle 27 together with acidic gas such as hydrogen chloride, hydrogen chloride and hydrogen fluoride.

SO2を吸収した吸収液は湿式脱硫装置5下部のタンク30に貯留され、循環ポンプ26で昇圧されて吸収液循環配管25を経由して、再びノズル27より噴霧される。また、脱硫吸収液28に吸収されたSO2は、炭酸カルシウム溶液供給装置44から供給される炭酸カルシウムと反応することで、石膏として系外に放出する。 The absorbing solution that has absorbed SO 2 is stored in a tank 30 below the wet desulfurization device 5, is pressurized by the circulation pump 26, and sprayed from the nozzle 27 again via the absorbing solution circulation pipe 25. Further, SO 2 absorbed in the desulfurization absorbing liquid 28 reacts with calcium carbonate supplied from the calcium carbonate solution supply device 44 and is released out of the system as gypsum.

湿式脱硫装置5における処理後の排ガスは、再加熱用熱交換器46で70℃まで加熱されて煙突7から放出される。熱回収用熱交換器45と再加熱用熱交換器46の伝熱管は、熱媒体循環配管52によって連通され、熱媒体循環ポンプ47により熱回収用熱交換器45と再加熱用熱交換器46との間に熱媒体が循環されるようになっている。   The exhaust gas after the treatment in the wet desulfurization apparatus 5 is heated to 70 ° C. by the heat exchanger 46 for reheating and discharged from the chimney 7. The heat transfer pipes of the heat recovery heat exchanger 45 and the reheating heat exchanger 46 are communicated with each other by a heat medium circulation pipe 52, and the heat recovery heat exchanger 45 and the reheating heat exchanger 46 are heated by a heat medium circulation pump 47. The heat medium is circulated between the two.

ここで、本実施例に基づく湿式脱硫装置5の入口排ガス温度を30℃まで低減する部分について詳細に述べる。
まず、熱媒体循環ポンプ47で約20℃の熱媒体を湿式脱硫装置5の排ガスダクトの上流に設置した熱回収用熱交換器45に供給し、排ガスの温度を約30℃まで低減する。このとき、熱媒体は排ガスの熱を受け取り、93℃まで昇温される。次に高温となった熱媒体は、湿式脱硫装置5の排ガスダクトの下流に設置した再加熱用熱交換器46に供給され、湿式脱硫装置5から排出される排ガスの温度を70℃まで昇温する。このとき、熱媒体の温度は72℃まで低下する。
Here, the part which reduces the inlet exhaust gas temperature of the wet desulfurization apparatus 5 based on a present Example to 30 degreeC is described in detail.
First, the heat medium circulation pump 47 supplies a heat medium of about 20 ° C. to the heat recovery heat exchanger 45 installed upstream of the exhaust gas duct of the wet desulfurization apparatus 5 to reduce the temperature of the exhaust gas to about 30 ° C. At this time, the heat medium receives the heat of the exhaust gas and is heated to 93 ° C. Next, the heated heat medium is supplied to a reheating heat exchanger 46 installed downstream of the exhaust gas duct of the wet desulfurization device 5, and the temperature of the exhaust gas discharged from the wet desulfurization device 5 is raised to 70 ° C. To do. At this time, the temperature of the heat medium decreases to 72 ° C.

そして、再加熱用熱交換器46を出た熱媒体は、除熱用熱交換器48に供給される。除熱用熱交換器48には、ボイラに供給するボイラ給水の一部がボイラ給水ライン16から冷媒として供給されており、この冷媒により、熱媒体の温度が20℃まで低減する。除熱用熱交換器48に供給する冷媒にボイラ給水を利用することで、補給水の増加を防止でき、また除熱用熱交換器48の冷媒に用いる水の設備を別に設ける必要がないため、大規模な設備を必要とせず、簡易な構成で除熱用熱交換器48を設置できる。   The heat medium exiting the reheating heat exchanger 46 is supplied to a heat removal heat exchanger 48. A part of boiler feed water supplied to the boiler is supplied to the heat removal heat exchanger 48 as a refrigerant from the boiler feed water line 16, and the temperature of the heat medium is reduced to 20 ° C. by this refrigerant. By using boiler feed water as the refrigerant to be supplied to the heat removal heat exchanger 48, it is possible to prevent an increase in makeup water, and it is not necessary to provide a separate water facility for the refrigerant of the heat removal heat exchanger 48. The heat exchanger 48 for heat removal can be installed with a simple configuration without requiring large-scale equipment.

除熱用熱交換器48は、例えばコンパクトで熱効率の高いプレート型熱交換器を使用し、熱媒体(液体)と冷媒(液体)との間で熱を交換するもので良い。
仮に低温の排ガスダクト内に除熱用熱交換器48を設置すると、排ガスと熱媒体(液体)との間で熱を交換することになり、大規模な熱交換器を設置する必要が生じるが、本実施例によれば、熱媒体循環配管52に除熱用熱交換器48を設置するため、コンパクトな装置を低コストで製作できるという利点がある。
The heat removal heat exchanger 48 may be, for example, a compact and highly heat efficient plate type heat exchanger that exchanges heat between the heat medium (liquid) and the refrigerant (liquid).
If the heat removal heat exchanger 48 is installed in the low-temperature exhaust gas duct, heat is exchanged between the exhaust gas and the heat medium (liquid), and a large-scale heat exchanger needs to be installed. According to this embodiment, since the heat removal heat exchanger 48 is installed in the heat medium circulation pipe 52, there is an advantage that a compact device can be manufactured at low cost.

次に湿式脱硫装置5における水の挙動について説明する。
湿式脱硫装置5の排ガスダクトの上流に設置した熱回収用熱交換器45で排ガス温度が30℃まで低減されると、排ガス中に含まれていた水分の一部がドレン水となって、熱回収用熱交換器45の下部に設置したドレン水回収部49に集められる。このドレン水はドレン水供給配管50によりタンク30に供給されることで、脱硫吸収液28の量が増え、水分の補給を低減することが可能となる。
Next, the behavior of water in the wet desulfurization apparatus 5 will be described.
When the exhaust gas temperature is reduced to 30 ° C. by the heat recovery heat exchanger 45 installed upstream of the exhaust gas duct of the wet desulfurization apparatus 5, a part of the water contained in the exhaust gas becomes drain water, It is collected in a drain water recovery unit 49 installed at the bottom of the recovery heat exchanger 45. By supplying this drain water to the tank 30 through the drain water supply pipe 50, the amount of the desulfurization absorbing liquid 28 increases, and it becomes possible to reduce the replenishment of moisture.

また、湿式脱硫装置5に導入される排ガスの温度が30℃に低減されるため、湿式脱硫装置5内部における水の蒸発がほとんどなくなり、水分の損失も大幅に低減できる。したがって、湿式脱硫装置5に補給する水量を大幅に低減することが可能となる。   Moreover, since the temperature of the exhaust gas introduced into the wet desulfurization apparatus 5 is reduced to 30 ° C., the evaporation of water in the wet desulfurization apparatus 5 is almost eliminated, and the loss of moisture can be greatly reduced. Therefore, the amount of water supplied to the wet desulfurization apparatus 5 can be significantly reduced.

本発明の実施例2の排ガス処理装置の全体構成図を図2に示す。
この実施例では、熱回収用熱交換器45の下部に設置したドレン水回収部49で回収したドレン水を脱流剤である炭酸カルシウム溶液の供給装置44に接続する構成としたもので、それ以外は図1の構成と同様であるため、説明は省略する。
FIG. 2 shows an overall configuration diagram of an exhaust gas treatment apparatus according to Embodiment 2 of the present invention.
In this embodiment, the drain water recovered by the drain water recovery unit 49 installed in the lower part of the heat recovery heat exchanger 45 is connected to the supply device 44 of the calcium carbonate solution as the deflowing agent. Other than this, the configuration is the same as that of FIG.

熱回収用熱交換器45のドレン水を炭酸カルシウム供給装置44に供給することで、ドレン水を湿式脱硫装置5の補給水として有効利用でき、上記実施例1と同等の効果を得ることができる。
また、熱回収用熱交換器45のドレン水には、排ガス中のSO2が含まれているため強酸性であるが、ドレン水を炭酸カルシウム供給装置44に供給することで、酸が中和される。余剰の炭酸カルシウムは湿式脱硫装置5に供給されることでドレン水を無駄なく有効利用できる。
By supplying the drain water of the heat exchanger 45 for heat recovery to the calcium carbonate supply device 44, the drain water can be effectively used as make-up water for the wet desulfurization device 5, and the same effect as in the first embodiment can be obtained. .
Further, the drain water of the heat recovery heat exchanger 45 is strongly acidic because SO 2 in the exhaust gas is contained, but the acid is neutralized by supplying the drain water to the calcium carbonate supply device 44. Is done. Excess calcium carbonate can be effectively used without waste by supplying it to the wet desulfurization apparatus 5.

本発明の実施例3の排ガス処理装置の全体構成図を図3に示す。
実施例1と実施例2に示す排ガス処理装置の除熱用熱交換器48には、ボイラ給水の一部がボイラ給水ライン16から除熱用熱交換器48に冷媒として供給されているが、この実施例では、海水供給ライン38を設け、除熱用熱交換器48に供給する冷媒として、海水を用いた例を示している。したがって、除熱用熱交換器48に供給する冷媒が海水である以外は、上記実施例1の構成と同様であるため、説明は省略する。
The whole block diagram of the exhaust gas treatment apparatus of Example 3 of the present invention is shown in FIG.
In the heat removal heat exchanger 48 of the exhaust gas treatment apparatus shown in the first and second embodiments, a part of boiler feed water is supplied as a refrigerant from the boiler feed water line 16 to the heat removal heat exchanger 48. In this embodiment, seawater supply line 38 is provided, and seawater is used as a refrigerant to be supplied to heat removal heat exchanger 48. Therefore, since the refrigerant supplied to the heat removal heat exchanger 48 is the same as that of the first embodiment except that it is seawater, the description thereof is omitted.

除熱用熱交換器48に常温(20〜30℃)の海水を冷媒として供給することで、熱回収用熱交換器45に供給する熱媒体の温度を20〜30℃程度まで低減することが可能となる。そして、熱回収用熱交換器45に20〜30℃の熱媒体を供給することで、集塵機4から排出される排ガス温度を30℃程度まで低減でき、本実施例においても、上記実施例1と同等の効果を得ることが可能である。   It is possible to reduce the temperature of the heat medium supplied to the heat recovery heat exchanger 45 to about 20 to 30 ° C. by supplying normal temperature (20 to 30 ° C.) seawater as a refrigerant to the heat removal heat exchanger 48. It becomes possible. And by supplying a heat medium of 20-30 degreeC to the heat exchanger 45 for heat recovery, the exhaust gas temperature discharged | emitted from the dust collector 4 can be reduced to about 30 degreeC, and also in a present Example, said Example 1 and It is possible to obtain an equivalent effect.

また、除熱用熱交換器48の冷媒に海水を利用することで、工業用水の使用を抑えることができ、更なる節水が実現できる。
そして、本実施例においても、実施例2のように熱回収用熱交換器45のドレン水を炭酸カルシウム供給装置44に供給する構成としても良い。
Further, by using seawater as the refrigerant of the heat removal heat exchanger 48, the use of industrial water can be suppressed, and further water saving can be realized.
In this embodiment, the drain water of the heat recovery heat exchanger 45 may be supplied to the calcium carbonate supply device 44 as in the second embodiment.

本発明の実施例4の排ガス処理装置の全体構成図を図4に示す。
この実施例では、湿式脱硫装置5のタンク30内の脱硫吸収液28を熱回収用熱交換器45の下部に設置したドレン水回収部49に供給する構成としたもので、それ以外は図1の構成と同様であるため、説明は省略する。
The whole block diagram of the exhaust gas treatment apparatus of Example 4 of the present invention is shown in FIG.
In this embodiment, the desulfurization absorption liquid 28 in the tank 30 of the wet desulfurization apparatus 5 is supplied to the drain water recovery unit 49 installed in the lower part of the heat exchanger 45 for heat recovery. Since this is the same as the configuration of, the description is omitted.

燃料である石炭中に含まれる硫黄成分が多い場合は、ボイラ1から発生する排ガス中のSO2濃度が高くなる。石炭の産地によっては、2〜3%の硫黄が含まれていることがあり、排ガス中のSO2濃度は1500〜2500ppmと高い値となる。
湿式脱硫装置5の排ガスダクトの上流に設けた熱回収用熱交換器45においては、発生したドレン水に排ガス中のSO2が多量に吸収されて、強酸性となり、排ガスダクトや配管が腐食する原因となる場合がある。
When there are many sulfur components contained in coal which is a fuel, the concentration of SO 2 in the exhaust gas generated from the boiler 1 becomes high. Depending on the coal production area, 2 to 3% of sulfur may be contained, and the SO 2 concentration in the exhaust gas is as high as 1500 to 2500 ppm.
In the heat recovery heat exchanger 45 provided upstream of the exhaust gas duct of the wet desulfurization apparatus 5, a large amount of SO 2 in the exhaust gas is absorbed by the generated drain water and becomes strongly acidic, and the exhaust gas duct and piping are corroded. It may be a cause.

特に、従来技術を示す図5の場合と比べて排ガス温度を約70〜80℃低い30℃まで低減する本実施例では、水露点以下となる範囲が大きいので、この問題が顕著となりやすい。
このような場合の対策として、図4に示すように、湿式脱硫装置5のタンク30内の脱硫吸収液28を熱回収用熱交換器45の伝熱管表面やドレン水回収部49に供給する吸収液ポンプ51を介した吸収液供給配管53(供給系統)を設けることが有効である。
In particular, in this embodiment in which the exhaust gas temperature is reduced to 30 ° C., which is approximately 70 to 80 ° C. lower than that in the case of FIG.
As a countermeasure in such a case, as shown in FIG. 4, the desulfurization absorption liquid 28 in the tank 30 of the wet desulfurization apparatus 5 is absorbed into the heat transfer tube surface of the heat recovery heat exchanger 45 and the drain water recovery unit 49. It is effective to provide an absorption liquid supply pipe 53 (supply system) via the liquid pump 51.

脱硫吸収液28中には、炭酸カルシウムが含まれているため、熱回収用熱交換器45の伝熱管表面で発生した強酸性のドレン水を中和することができる。したがって、熱回収用熱交換器45の伝熱管の腐食を防止できる。
また、余剰の炭酸カルシウムは、ドレン水供給配管50を通じてドレン水とともに湿式脱硫装置5に供給されるので、無駄なく有効利用される。
Since the desulfurization absorption liquid 28 contains calcium carbonate, it is possible to neutralize the strongly acidic drain water generated on the heat transfer tube surface of the heat recovery heat exchanger 45. Therefore, corrosion of the heat transfer tube of the heat recovery heat exchanger 45 can be prevented.
Moreover, since excess calcium carbonate is supplied to the wet desulfurization apparatus 5 with drain water through the drain water supply piping 50, it is effectively used without waste.

なお、本実施例においても、実施例2のように熱回収用熱交換器45のドレン水を炭酸カルシウム供給装置44に供給する構成としても良いし、実施例3のように除熱用熱交換器48の冷媒に海水を利用しても良い。
本実施例は、排ガス中のSO2濃度が高い場合に好適である。
In this embodiment, the drain water of the heat recovery heat exchanger 45 may be supplied to the calcium carbonate supply device 44 as in the second embodiment, or the heat removal heat exchange as in the third embodiment. Seawater may be used as the refrigerant of the vessel 48.
This example is suitable when the SO 2 concentration in the exhaust gas is high.

本発明によれば、石炭焚ボイラに限らず、他の燃焼装置から発生する排ガス中に含まれる硫黄酸化物を除去する湿式脱硫装置を備えた排ガス処理装置や排ガス処理方法においても、湿式脱硫装置に供給する水量を低減する技術として、利用可能性がある。   According to the present invention, not only in a coal fired boiler, but also in an exhaust gas treatment device and an exhaust gas treatment method provided with a wet desulfurization device that removes sulfur oxides contained in exhaust gas generated from other combustion devices, the wet desulfurization device As a technique for reducing the amount of water supplied to the water, it can be used.

1 ボイラ
3 空気予熱器(A/H;エアヒータ)
4 集塵機
5 脱硫装置
7 煙突
11 ボイラ熱交換器
12 タービン
13 発電機
14 復水器
15 昇圧ポンプ
16 ボイラ給水ライン
21 石炭供給ライン
25 吸収液循環配管
26 吸収液循環ポンプ
27 スプレノズル
28 脱硫吸収液
30 タンク
36 燃焼用空気供給ライン
38 海水供給ライン
44 炭酸カルシウム溶液供給装置
45 熱回収用熱交換器
46 再加熱用熱交換器
47 熱媒体循環ポンプ
48 除熱用熱交換器
49 ドレン水回収部
50 ドレン水供給配管
51 吸収液ポンプ
52 熱媒体循環配管
53 吸収液供給配管
1 Boiler 3 Air preheater (A / H; Air heater)
DESCRIPTION OF SYMBOLS 4 Dust collector 5 Desulfurization device 7 Chimney 11 Boiler heat exchanger 12 Turbine 13 Generator 14 Condenser 15 Booster pump 16 Boiler feed line 21 Coal supply line 25 Absorption liquid circulation piping 26 Absorption liquid circulation pump 27 Spray nozzle 28 Desulfurization absorption liquid 30 Tank 36 Combustion Air Supply Line 38 Seawater Supply Line 44 Calcium Carbonate Solution Supply Device 45 Heat Recovery Heat Exchanger 46 Reheating Heat Exchanger 47 Heat Medium Circulation Pump 48 Heat Removal Heat Exchanger 49 Drain Water Recovery Unit 50 Drain Water Supply piping 51 Absorption liquid pump 52 Heat medium circulation piping 53 Absorption liquid supply piping

Claims (16)

石炭を燃料としたボイラから発生する排ガスに吸収液を噴霧して排ガス中の硫黄酸化物を除去する湿式脱硫装置を備えた排ガス処理装置において、
前記湿式脱硫装置の上流側の排ガスダクトに、排ガスの熱を熱媒体に回収する伝熱管を備えた熱回収用熱交換器を設け、
前記湿式脱硫装置の下流側の排ガスダクトに、排ガスを前記熱回収用熱交換器から供給される熱媒体で加熱する伝熱管を備えた再加熱用熱交換器を設け、
更に熱回収用熱交換器と再加熱用熱交換器にそれぞれ設けられた伝熱管を連通し、その内部に熱媒体を循環させる熱媒体循環配管を設け、
該熱媒体循環配管の前記再加熱用熱交換器から熱回収用熱交換器への熱媒体の流路に、熱媒体から除熱する除熱用熱交換器を設け、
該熱回収用熱交換器の排ガスダクトの下部にドレン水回収部を設け、該ドレン水回収部内のドレン水を前記湿式脱硫装置に供給するドレン水供給部を設けたことを特徴とする排ガス処理装置。
In an exhaust gas treatment apparatus equipped with a wet desulfurization apparatus that removes sulfur oxides in exhaust gas by spraying an absorbing liquid on exhaust gas generated from a coal-fired boiler,
The exhaust gas duct on the upstream side of the wet desulfurization apparatus is provided with a heat recovery heat exchanger provided with a heat transfer tube that recovers the heat of the exhaust gas into a heat medium,
In the exhaust gas duct on the downstream side of the wet desulfurization apparatus, a reheating heat exchanger provided with a heat transfer tube for heating the exhaust gas with a heat medium supplied from the heat recovery heat exchanger is provided,
Further, the heat transfer pipes provided in the heat exchanger for heat recovery and the heat exchanger for reheating are connected to each other, and a heat medium circulation pipe for circulating the heat medium is provided therein,
A heat exchanger for removing heat from the heat medium is provided in a flow path of the heat medium from the heat exchanger for reheating to the heat exchanger for heat recovery of the heat medium circulation pipe;
An exhaust gas treatment characterized in that a drain water recovery unit is provided at a lower part of an exhaust gas duct of the heat recovery heat exchanger, and a drain water supply unit for supplying drain water in the drain water recovery unit to the wet desulfurization apparatus is provided. apparatus.
前記湿式脱硫装置は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備え、
更に前記ドレン水供給部は、ドレン水回収部内のドレン水を前記タンクに供給する構成であることを特徴とする請求項1記載の排ガス処理装置。
The wet desulfurization apparatus includes a tank that stores an absorbing liquid that has absorbed sulfur oxides, a spray unit that is provided above the tank and has spray nozzles that spray the absorbing liquid on the exhaust gas in a plurality of stages in the exhaust gas flow direction, and the tank. An absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up the absorption liquid in the spray nozzle, and a calcium carbonate supply for supplying a calcium carbonate solution for making the sulfur dioxide in the absorption liquid in the tank into gypsum With the device,
2. The exhaust gas treatment apparatus according to claim 1, wherein the drain water supply unit is configured to supply drain water in a drain water recovery unit to the tank.
前記湿式脱硫装置は、硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備え、
更に前記ドレン水供給部は、ドレン水回収部内のドレン水を前記炭酸カルシウム供給装置に供給する構成であることを特徴とする請求項1記載の排ガス処理装置。
The wet desulfurization apparatus includes a tank that stores an absorbing liquid that has absorbed sulfur oxides, a spray unit that is provided above the tank and has spray nozzles that spray the absorbing liquid on the exhaust gas in a plurality of stages in the exhaust gas flow direction, and the tank. An absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up the absorption liquid in the spray nozzle, and a calcium carbonate supply for supplying a calcium carbonate solution for making the sulfur dioxide in the absorption liquid in the tank into gypsum With the device,
Furthermore, the said drain water supply part is the structure which supplies the drain water in a drain water collection | recovery part to the said calcium carbonate supply apparatus, The exhaust gas processing apparatus of Claim 1 characterized by the above-mentioned.
前記熱回収用熱交換器の伝熱管の表面がフッ素樹脂を含む耐食材でコーティングされていることを特徴とする請求項1から請求項3のいずれか1項に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to any one of claims 1 to 3, wherein a surface of a heat transfer tube of the heat recovery heat exchanger is coated with a corrosion-resistant material containing a fluororesin. 前記除熱用熱交換器に冷媒を供給し、再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を冷却することで熱回収用熱交換器出口の排ガス温度を前記冷媒の温度以上排ガスの水分飽和温度以下とする冷媒供給部を設けたことを特徴とする請求項1から請求項3のいずれか1項に記載の排ガス処理装置。   The refrigerant is supplied to the heat removal heat exchanger, and the heat medium flowing into the heat recovery heat exchanger from the reheating heat exchanger is cooled, whereby the exhaust gas temperature at the heat recovery heat exchanger outlet is reduced. The exhaust gas treatment apparatus according to any one of claims 1 to 3, further comprising a refrigerant supply unit configured to set the temperature to a temperature equal to or lower than a water saturation temperature of the exhaust gas. 前記ボイラに給水するボイラ給水部を設け、
該ボイラ給水部の給水を前記冷媒供給部の冷媒としたことを特徴とする請求項5記載の排ガス処理装置。
A boiler water supply unit for supplying water to the boiler is provided,
6. The exhaust gas treatment apparatus according to claim 5, wherein water supplied from the boiler water supply unit is used as a refrigerant in the refrigerant supply unit.
海水を前記冷媒供給部の冷媒としたことを特徴とする請求項5記載の排ガス処理装置。   6. The exhaust gas treatment apparatus according to claim 5, wherein seawater is used as a refrigerant of the refrigerant supply unit. 前記湿式脱硫装置のタンク内の吸収液を前記熱回収用熱交換器に供給する吸収液供給部を設けたことを特徴とする請求項5記載の排ガス処理装置。   6. The exhaust gas treatment apparatus according to claim 5, further comprising an absorption liquid supply unit that supplies an absorption liquid in a tank of the wet desulfurization apparatus to the heat recovery heat exchanger. 石炭を燃料としたボイラから発生する排ガスに吸収液を噴霧する構成を備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法において、
前記湿式脱硫装置による脱硫前の排ガスから熱を回収するための熱媒体を内部に有する伝熱管を備えた熱回収用熱交換器によって排ガスの熱を回収し、湿式脱硫装置による脱硫処理後の排ガスを加熱するための熱媒体を内部に有する伝熱管を備えた再加熱用熱交換器に前記熱回収用熱交換器から前記熱媒体を循環供給し、
前記再加熱用熱交換器から熱回収用熱交換器へ供給される熱媒体から除熱すると共に前記熱回収用熱交換器の下部に溜まるドレン水を前記湿式脱硫装置に供給することを特徴とする排ガス処理方法。
In the exhaust gas treatment method of removing sulfur oxides in the exhaust gas by a wet desulfurization apparatus having a configuration in which an absorption liquid is sprayed on the exhaust gas generated from a coal-fired boiler,
The heat of the exhaust gas is recovered by a heat recovery heat exchanger having a heat transfer tube having a heat medium for recovering heat from the exhaust gas before desulfurization by the wet desulfurization apparatus, and the exhaust gas after desulfurization treatment by the wet desulfurization apparatus Circulating the heat medium from the heat recovery heat exchanger to a reheating heat exchanger having a heat transfer tube having a heat medium for heating
Removing heat from the heat medium supplied from the reheating heat exchanger to the heat recovery heat exchanger and supplying drain water accumulated in a lower portion of the heat recovery heat exchanger to the wet desulfurization apparatus, Exhaust gas treatment method.
硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法であって、
前記熱回収用熱交換器の下部に溜まるドレン水を前記タンクに供給することを特徴とする請求項9記載の排ガス処理方法。
A tank for storing an absorbing solution that has absorbed sulfur oxide, a spray unit that is provided above the tank and that sprays the absorbing solution on the exhaust gas in a plurality of stages in the exhaust gas flow direction, and the absorbing solution in the tank is spray nozzle A wet type equipped with an absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up and a calcium carbonate supply device for supplying a calcium carbonate solution for making sulfur dioxide in the absorption liquid in the tank into gypsum An exhaust gas treatment method for removing sulfur oxides in exhaust gas by a desulfurization device,
The exhaust gas treatment method according to claim 9, wherein drain water accumulated in a lower portion of the heat recovery heat exchanger is supplied to the tank.
硫黄酸化物を吸収した吸収液を溜めるタンクと、該タンクの上方に設けられ、排ガスに吸収液を噴霧するスプレノズルを排ガス流れ方向に複数段設置したスプレ部と、前記タンク内の吸収液をスプレノズルに吸い上げるための循環ポンプを設けた吸収液を送る吸収液循環配管と、前記タンク内の吸収液中の二酸化硫黄を石膏にするための炭酸カルシウム溶液を供給する炭酸カルシウム供給装置とを備えた湿式脱硫装置により排ガス中の硫黄酸化物を除去する排ガス処理方法であって、
前記熱回収用熱交換器の下部に溜まるドレン水を前記炭酸カルシウム供給装置に供給することを特徴とする請求項9記載の排ガス処理方法。
A tank for storing an absorbing solution that has absorbed sulfur oxide, a spray unit that is provided above the tank and that sprays the absorbing solution on the exhaust gas in a plurality of stages in the exhaust gas flow direction, and the absorbing solution in the tank is spray nozzle A wet type equipped with an absorption liquid circulation pipe for sending an absorption liquid provided with a circulation pump for sucking up and a calcium carbonate supply device for supplying a calcium carbonate solution for making sulfur dioxide in the absorption liquid in the tank into gypsum An exhaust gas treatment method for removing sulfur oxides in exhaust gas by a desulfurization device,
The exhaust gas treatment method according to claim 9, wherein drain water accumulated in a lower portion of the heat recovery heat exchanger is supplied to the calcium carbonate supply device.
前記熱回収用熱交換器の伝熱管として、その表面がフッ素樹脂を含む耐食材でコーティングされた伝熱管を用いることを特徴とする請求項9から請求項11のいずれか1項に記載の排ガス処理方法。   The exhaust gas according to any one of claims 9 to 11, wherein a heat transfer tube whose surface is coated with a corrosion-resistant material containing a fluororesin is used as the heat transfer tube of the heat recovery heat exchanger. Processing method. 前記再加熱用熱交換器から熱回収用熱交換器に流入する熱媒体を冷媒により冷却することで除熱し、熱回収用熱交換器出口の排ガス温度を前記冷媒の温度以上排ガスの水分飽和温度以下とすることを特徴とする請求項9から請求項11のいずれか1項に記載の排ガス処理方法。   The heat medium flowing into the heat recovery heat exchanger from the reheating heat exchanger is cooled by the refrigerant to remove heat, and the exhaust gas temperature at the outlet of the heat recovery heat exchanger is equal to or higher than the refrigerant temperature and the moisture saturation temperature of the exhaust gas. The exhaust gas treatment method according to any one of claims 9 to 11, wherein: 前記冷媒として、ボイラに給水するボイラ給水を使用することを特徴とする請求項13記載の排ガス処理方法。   14. The exhaust gas treatment method according to claim 13, wherein boiler supply water for supplying water to the boiler is used as the refrigerant. 前記冷媒として、海水を使用することを特徴とする請求項13記載の排ガス処理方法。   The exhaust gas treatment method according to claim 13, wherein seawater is used as the refrigerant. 前記湿式脱硫装置のタンク内の吸収液を前記熱回収用熱交換器に供給することを特徴とする請求項13記載の排ガス処理方法。   The exhaust gas treatment method according to claim 13, wherein the absorption liquid in the tank of the wet desulfurization apparatus is supplied to the heat recovery heat exchanger.
JP2011220861A 2011-10-05 2011-10-05 Exhaust gas treatment apparatus and exhaust gas treatment method Pending JP2013078742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220861A JP2013078742A (en) 2011-10-05 2011-10-05 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220861A JP2013078742A (en) 2011-10-05 2011-10-05 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2013078742A true JP2013078742A (en) 2013-05-02

Family

ID=48525578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220861A Pending JP2013078742A (en) 2011-10-05 2011-10-05 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2013078742A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489604B1 (en) 2013-11-25 2015-02-06 두산중공업 주식회사 Exhaust gas treatment device having non-leakage type reheater and exhaust gas treatment method, system for sensing abnormal of exhaust gas treatment device, control method thereof and wanning system for abnormal
CN105642064A (en) * 2016-03-22 2016-06-08 福建永林家居有限公司 Fiber drying exhaust treatment device
WO2016175163A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Method and device for treating wastewater from gas-cooler cleaning
JP2018028415A (en) * 2016-08-19 2018-02-22 中興化成工業株式会社 Heat transfer pipe for heat exchanger, and heat exchanger with heat transfer pipe and holding member for holding the same
KR20180132194A (en) * 2017-06-01 2018-12-12 한국생산기술연구원 Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489604B1 (en) 2013-11-25 2015-02-06 두산중공업 주식회사 Exhaust gas treatment device having non-leakage type reheater and exhaust gas treatment method, system for sensing abnormal of exhaust gas treatment device, control method thereof and wanning system for abnormal
WO2016175163A1 (en) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 Method and device for treating wastewater from gas-cooler cleaning
JP2016203121A (en) * 2015-04-27 2016-12-08 三菱日立パワーシステムズ株式会社 Cleaning wastewater treatment method and apparatus for gas cooler
CN107530621A (en) * 2015-04-27 2018-01-02 三菱日立电力系统株式会社 The cleaning method of wastewater treatment and device of gas cooler
CN105642064A (en) * 2016-03-22 2016-06-08 福建永林家居有限公司 Fiber drying exhaust treatment device
JP2018028415A (en) * 2016-08-19 2018-02-22 中興化成工業株式会社 Heat transfer pipe for heat exchanger, and heat exchanger with heat transfer pipe and holding member for holding the same
KR20180132194A (en) * 2017-06-01 2018-12-12 한국생산기술연구원 Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
KR102021983B1 (en) * 2017-06-01 2019-09-19 한국생산기술연구원 Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same

Similar Documents

Publication Publication Date Title
CN101063527B (en) Process for controlling the moisture concentration of a combustion flue gas
CN109045976A (en) A kind of ammonia process of desulfurization flue gas disappears white waste heat depth recovery system and application
US10350542B2 (en) Wet flue gas desulfurization system with zero waste water liquid discharge
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
JP2012239958A (en) Wet type flue gas desulfurizing apparatus and method
JP4841065B2 (en) Smoke removal device for SO3
CN110240212A (en) A kind of waste water evaporation concentration system and technique based on low temperature spray desulfurization
CN102980198B (en) Washing condensing smoke triple recovery device
JP2013078742A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US9650269B2 (en) System and method for reducing gas emissions from wet flue gas desulfurization waste water
CN108970370A (en) It is a kind of low cost flue gas device for deep cleaning and its purification receive water eliminating white smoke technique
JP2012179521A5 (en)
JP2015000360A (en) Exhaust gas treatment device and exhaust gas treatment method
JP4606651B2 (en) Smoke removal device for SO3
CN104089430A (en) Sprinkling open type absorption heat pump system capable of recycling waste heat of airflow containing moisture
CN108800975A (en) A kind of flue gas cooling heat exchanger of the desulfurization duct mouth with refrigerating plant
JP2015073955A (en) Exhaust gas treatment method, and exhaust gas treatment device
US20130283796A1 (en) APPLYING OZONE NOx CONTROL TO AN HRSG FOR A FOSSIL FUEL TURBINE APPLICATION
CN202942807U (en) Water-washing condensing-type smoke triple-recovery device
CN110848721A (en) Fluorine plastic steel low temperature flue gas advanced treatment device
CN209034090U (en) A kind of ammonia process of desulfurization flue gas disappears white waste heat depth recovery system
JP3251883B2 (en) Exhaust gas desulfurization method and apparatus
AU2011364094A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JP5524909B2 (en) Power generation system and power generation method
JP2010281525A (en) Exhaust gas heat recovery system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616