JPH09103641A - Flue gas desulfurization facility and boiler equipment - Google Patents

Flue gas desulfurization facility and boiler equipment

Info

Publication number
JPH09103641A
JPH09103641A JP7265287A JP26528795A JPH09103641A JP H09103641 A JPH09103641 A JP H09103641A JP 7265287 A JP7265287 A JP 7265287A JP 26528795 A JP26528795 A JP 26528795A JP H09103641 A JPH09103641 A JP H09103641A
Authority
JP
Japan
Prior art keywords
flue gas
heat
absorption tower
heat recovery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7265287A
Other languages
Japanese (ja)
Inventor
Atsushi Tatani
淳 多谷
Kazuaki Kimura
和明 木村
Koichiro Iwashita
浩一郎 岩下
Satoshi Yajima
智 矢島
Toru Takashina
徹 高品
Susumu Okino
沖野  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7265287A priority Critical patent/JPH09103641A/en
Priority to US08/696,317 priority patent/US5878675A/en
Priority to ES96610039T priority patent/ES2171217T3/en
Priority to DK96610039T priority patent/DK0768108T3/en
Priority to EP96610039A priority patent/EP0768108B1/en
Publication of JPH09103641A publication Critical patent/JPH09103641A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To recover the heat energy of flue gas effectively and to reduce the quantity of water used for absorbent slurry by installing a heat recovery means for recovering heat from flue gas before gas-liquid contact which passes through the flue gas introduction part of an absorption column. SOLUTION: Absorbent slurry S1 is supplied from the tank 22 in a bottom part to the header pipe 25 of the flue gas introduction part 21a of an absorption column 21 by a circulating pump 23, sulfur dioxide gas in flue gas is absorbed and removed, and the flue gas is discharged from a flue gas discharge part 21b. A heat exchanger which exchanges heat between a circulating heating medium E and the flue gas of the absorption column 21 of a flue gas desulfurization facility and/or absorbent slurry is used as a heat recovery means. The heat exchanger comprises a heat exchanger tube 31 located upstream from a pipe header 25 in the flue gas introduction part 21a and a heat exchanger tube 32 located downstream from the pipe header 25 (for example, in a filler 26). In this way, the heat energy of flue gas from a boiler is recovered to be used effectively. Besides, the quantity of water used in the desulfurizer can be reduced remarkably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ設備等に付
設する排煙脱硫装置及び回収熱を低熱利用設備で活用す
るボイラ設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas desulfurization apparatus attached to a boiler facility and the like and a boiler facility for utilizing recovered heat in low heat utilization facilities.

【0002】[0002]

【従来の技術】一般に、ボイラ設備からの排煙中の硫黄
酸化物(SOx )等を除去して清浄なガスとして大気に
放出するために、排煙脱硫装置が用いられる。図3は、
この種の排煙処理装置を備えたボイラ設備の代表的な構
成と、各箇所における排煙温度及び水分率を示した図で
ある。
2. Description of the Related Art Generally, a flue gas desulfurization device is used to remove sulfur oxides (SO x ) and the like in flue gas from a boiler facility and release it into the atmosphere as clean gas. FIG.
It is a figure showing the typical composition of the boiler equipment provided with this type of flue gas treatment equipment, and the flue gas temperature and the moisture content in each place.

【0003】ボイラ1から排出された排煙は、ボイラ1
に付設された脱硝装置2で窒素酸化物(NOx )が除去
され、エアヒータ3(AH)及びガスガスヒータ(GG
H)の熱回収部4を通過した後、電気集塵機5(EP)
に導入されてフライアッシュ等の粉塵が取り除かれる。
次いで、排煙は、前流ファン6(IDF)により脱硫装
置7に導かれ、硫黄酸化物(主に亜硫酸ガス)を除去し
た後、ガスガスヒータ(GGH)の再加熱部8を通過し
て後流ファン9(BUF)により煙突10に送られ、大
気中に放出される。ここで用いる排煙脱硫装置7は、排
煙を吸収剤スラリと気液接触させて、排煙中の亜硫酸ガ
スを吸収除去する湿式吸収方式が、脱硫率等の点で優れ
ているため、近年広く普及している。
The smoke emitted from the boiler 1 is the smoke emitted from the boiler 1.
Nitrogen oxides (NO x ) are removed by the denitration device 2 attached to the air heater 3 (AH) and the gas gas heater (GG).
After passing through the heat recovery section 4 of (H), the electrostatic precipitator 5 (EP)
Introduced into the to remove dust such as fly ash.
Next, the flue gas is guided to the desulfurization device 7 by the upstream fan 6 (IDF) to remove the sulfur oxides (mainly sulfur dioxide gas), and then passes through the reheating section 8 of the gas gas heater (GGH). It is sent to the chimney 10 by the flow fan 9 (BUF) and discharged into the atmosphere. In the flue gas desulfurization apparatus 7 used here, the wet absorption method in which the flue gas is brought into gas-liquid contact with the absorbent slurry to absorb and remove the sulfurous acid gas in the flue gas is excellent in terms of desulfurization rate, etc. Widely used.

【0004】排煙温度は、エアヒータ3(AH)の直後
で通常135℃程度であり、燃料が石炭の場合には、そ
の水分率は8%程度となる。排煙脱硫装置7の入口直前
では、熱回収部4の冷却等により温度が90℃程度まで
下げられ、排煙脱硫装置7では、吸収剤スラリとの接触
によりさらに降下して、石炭焚きボイラの場合、通常4
8℃程度となる。なお、排煙脱硫装置7の出口における
排煙温度は、排煙脱硫装置7で特に熱回収等をしない限
り、導入される排煙の流量及び温度と排煙脱硫装置7に
おける気液接触容量等により決まり、この気液接触容量
等は、排煙の性状(亜硫酸ガス濃度等)に対して設定さ
れるので、結局のところ、排煙脱硫装置7の出口の排煙
温度は、燃料の性状により略一義的に決まる。例えば、
石炭の場合では通常48℃程度である。
The flue gas temperature is usually about 135 ° C. immediately after the air heater 3 (AH), and when the fuel is coal, the moisture content is about 8%. Immediately before the inlet of the flue gas desulfurization apparatus 7, the temperature is lowered to about 90 ° C. by cooling the heat recovery unit 4, etc., and in the flue gas desulfurization apparatus 7, the temperature is further lowered by contact with the absorbent slurry, and the temperature of the coal burning boiler is reduced. Usually 4
It will be about 8 ° C. The flue gas temperature at the outlet of the flue gas desulfurization device 7 is the flow rate and temperature of the flue gas desulfurization introduced, the gas-liquid contact capacity in the flue gas desulfurization device 7, etc., unless heat recovery is performed in the flue gas desulfurization device 7. Since the gas-liquid contact capacity and the like are set according to the nature of the flue gas (sulfurous acid gas concentration, etc.), the flue gas temperature at the outlet of the flue gas desulfurization device 7 depends on the nature of the fuel. Determined almost uniquely. For example,
In the case of coal, it is usually about 48 ° C.

【0005】排煙の水分濃度は、排煙脱硫装置7におい
て飽和状態になるまで吸収剤スラリ中の水分が蒸発する
ため、排煙脱硫装置7の出口では48℃で飽和する水分
濃度(約11%)となる。なお、排煙脱硫装置7の吸収
塔における蒸発水量は、1000MWクラスの石炭焚き
ボイラの場合、約75t/h程度となる。なお、排煙は
最後に再加熱部8で加熱されて90℃程度まで昇温し、
煙突10から放出される。
The moisture concentration of the flue gas is saturated at 48 ° C. at the outlet of the flue gas desulfurization device 7 (about 11 because the moisture in the absorbent slurry evaporates until it becomes saturated in the flue gas desulfurization device 7). %). The amount of evaporated water in the absorption tower of the flue gas desulfurization device 7 is about 75 t / h in the case of a 1000 MW class coal-fired boiler. In addition, the flue gas is finally heated by the reheating unit 8 to raise its temperature to about 90 ° C.,
Emitted from the chimney 10.

【0006】なお、熱回収部4において、排煙温度を9
0℃以下に冷却してさらに熱回収することは、電気集塵
機5自体の性能は向上するものの、実用上不可能であ
る。即ち、排煙温度が90℃以下になると、局部的に飽
和温度となり、凝縮水が発生する恐れがある。その結
果、電気集塵機5で回収する灰が湿ったものとなり、再
利用がほとんど困難になる。また、凝縮水に対する耐腐
食性をもたせるために、熱回収部4から排煙脱硫装置7
までのダクトや前流ファン6等の構成部材についても高
価な耐食性材料を使用する必要が生ずる。
In the heat recovery section 4, the flue gas temperature is set to 9
Although it is possible to improve the performance of the electrostatic precipitator 5 itself, it is practically impossible to further cool it by cooling it to 0 ° C. or less. That is, when the smoke exhaust temperature is 90 ° C. or lower, the saturated temperature is locally reached and condensed water may be generated. As a result, the ash collected by the electrostatic precipitator 5 becomes moist, making reuse almost difficult. In addition, in order to provide corrosion resistance to condensed water, the heat recovery section 4 is connected to the flue gas desulfurization device 7
It is necessary to use expensive corrosion-resistant materials also for the components such as the duct and the front fan 6 up to.

【0007】また、再加熱部8では排煙温度を90℃程
度まで昇温しなければならない。その理由は、後流機器
の腐食防止、さらには大気放出される排煙の白煙化防止
及び拡散性確保のためである。即ち、90℃程度以上に
昇温しなければ、凝縮水が発生する恐れがあり、煙突1
0までのダクトや後流ファン9等の構成部材に高価な耐
食性材料を用いる必要が生じ、また、大気放出される排
煙が白煙化し易くなるとともに、所定の拡散性が得られ
ない。したがって、排煙温度が低くて十分な拡散性が得
られないときには、煙が高くたちのぼらないので、排出
規制を満すように、煙突自体を高く大型にする必要があ
る。
Further, in the reheating section 8, the flue gas temperature must be raised to about 90.degree. The reason for this is to prevent the corrosion of the downstream equipment, to prevent the smoke emitted from the atmosphere from becoming white smoke, and to ensure the diffusion. That is, unless the temperature is raised to about 90 ° C. or higher, condensed water may be generated, and the chimney 1
It becomes necessary to use an expensive corrosion-resistant material for the components such as the ducts up to 0 and the wake fan 9, and the flue gas emitted to the atmosphere tends to turn into white smoke, and a predetermined diffusivity cannot be obtained. Therefore, when the smoke exhaust temperature is low and sufficient diffusivity cannot be obtained, the smoke does not rise high. Therefore, it is necessary to make the chimney itself high and large so as to satisfy the emission regulation.

【0008】[0008]

【発明が解決しようとする課題】ところで、火力発電設
備等のボイラを使用する設備においては、資源の有効利
用を図る観点から、ボイラで発生する熱エネルギーをも
れなく利用することが近年益々要求され、余熱により温
室、温水プール、地域暖房等の熱利用システムを稼働す
ることが望ましい。ところが、従来より、さらなる高効
率化を求めて各種の改善がなされてきたが、ボイラ設備
から熱回収を行うことは極めて困難なことであった。
By the way, in equipment using a boiler such as thermal power generation equipment, in recent years, it has been increasingly demanded to fully utilize the thermal energy generated in the boiler from the viewpoint of effectively utilizing resources. It is desirable to operate heat utilization systems such as greenhouses, hot water pools, and district heating systems with residual heat. However, conventionally, various improvements have been made in order to further improve efficiency, but it has been extremely difficult to recover heat from the boiler equipment.

【0009】一方、排煙処理システムにおいても、上記
のように、例えばボイラの出口側で排煙を現行以上に冷
却することには実用上問題があり、従来、熱回収は困難
であると考えられていた。また、排煙脱硫装置において
は、蒸発して排煙に持ち去られる分だけ、吸収剤スラリ
の水分を補給する必要があり、工業用水の用水量が多い
という問題や、この水蒸気の分だけ排煙の総量が増加し
て、後流ファンの動力増や煙突までのダクトを大型化す
る必要があった。
In the flue gas treatment system, on the other hand, as described above, there is a practical problem in cooling the flue gas at the outlet side of the boiler beyond the current level, and it is considered difficult to recover heat conventionally. It was being done. Also, in the flue gas desulfurization device, it is necessary to replenish the water content of the absorbent slurry as much as it is evaporated and carried away into the flue gas, which causes a problem that the amount of industrial water used is large, and the flue gas is exhausted by this amount of steam. It was necessary to increase the total amount of the fan, increase the power of the wake fan, and enlarge the duct to the chimney.

【0010】そこで、本発明は、上記の欠点を解消し、
排煙脱硫装置やボイラ設備の主要構成を変更せずに、排
煙の熱エネルギーを有効に回収し、有効利用を可能に
し、しかも、吸収剤スラリに使用する用水量を低減する
ことのできる排煙脱硫装置、及び、ボイラ設備を提供し
ようとするものである。
Therefore, the present invention solves the above drawbacks,
Exhaust gas that can effectively recover the thermal energy of flue gas and enable effective use without changing the main components of flue gas desulfurization equipment and boiler equipment, and reduce the amount of water used for the absorbent slurry. It is intended to provide a smoke desulfurization device and a boiler facility.

【0011】[0011]

【課題を解決するための手段】本発明は、以下の構成を
採用することにより、上記の課題を解決しようとするも
のである。 (1) 未処理排煙と吸収剤スラリとを吸収塔内で気液接触
させる排煙脱硫装置において、前記吸収塔の排煙導入部
に通過する気液接触前の排煙から熱回収する熱回収手段
を設けたことを特徴とする排煙脱硫装置。
The present invention is intended to solve the above problems by adopting the following configurations. (1) In a flue gas desulfurization device that brings untreated flue gas and absorbent slurry into gas-liquid contact in the absorption tower, heat that recovers heat from the flue gas that has passed through the flue gas introduction section of the absorption tower before it comes into contact with gas-liquid. A flue gas desulfurization device characterized by having a recovery means.

【0012】(2) 前記吸収塔において循環する吸収剤ス
ラリから熱回収する熱回収手段を設けたことを特徴とす
る上記(1) 記載の排煙脱硫装置。 (3) 未処理排煙と吸収剤スラリとを吸収塔内で気液接触
させる排煙脱硫装置において、前記吸収塔の排煙導出部
から流出する処理後排煙の温度が、未処理排煙中の水分
濃度に対する飽和温度以下になるように、前記熱回収手
段の熱回収量を設定したことを特徴とする上記(1) 又は
(2) 記載の排煙脱硫装置。
(2) The flue gas desulfurization apparatus according to (1) above, further comprising heat recovery means for recovering heat from the absorbent slurry circulating in the absorption tower. (3) In the flue gas desulfurization device that brings untreated flue gas and absorbent slurry into gas-liquid contact in the absorption tower, the temperature of the treated flue gas flowing out from the flue gas outlet of the absorption tower is untreated flue gas. The heat recovery amount of the heat recovery means is set so as to be equal to or lower than the saturation temperature for the water concentration in the above (1) or
(2) The flue gas desulfurization equipment described.

【0013】(4) ボイラで発生する排煙と吸収剤スラリ
とを吸収塔内で気液接触させる排煙脱硫装置を備えたボ
イラ設備において、前記吸収塔を通過する排煙及び/又
は前記吸収塔を循環する吸収剤スラリから熱回収する熱
回収手段と、前記熱回収手段により回収された熱を熱利
用設備に送熱手段と、前記送熱手段により送られた熱を
熱利用設備のエネルギー源として放熱する放熱手段とを
備えたことを特徴とするボイラ設備。
(4) In a boiler facility equipped with a flue gas desulfurization device for bringing the smoke emitted from the boiler and the absorbent slurry into gas-liquid contact in the absorption tower, the flue gas passing through the absorption tower and / or the absorption Heat recovery means for recovering heat from the absorbent slurry circulating through the tower, heat recovery means for recovering the heat recovered by the heat recovery means to heat utilization equipment, and heat transferred by the heat transmission means for energy of the heat utilization equipment. A boiler facility characterized by comprising a heat radiation means for radiating heat as a source.

【0014】(5) 前記熱回収手段は、少なくとも前記吸
収塔の排煙導入部を通過する気液接触前の排煙から熱回
収するものであることを特徴とする上記(4) 記載のボイ
ラ設備。 (6) 前記吸収塔の排煙導出部から流出する処理後排煙の
温度が、未処理排煙中の水分濃度に対する飽和温度以下
になるように、前記熱回収手段の熱回収量を設定したこ
とを特徴とする上記(4) 又は(5) 記載のボイラ設備。
(5) The boiler according to (4) above, characterized in that the heat recovery means recovers heat from at least the exhaust gas passing through the exhaust gas introduction part of the absorption tower before the gas-liquid contact. Facility. (6) The heat recovery amount of the heat recovery means is set so that the temperature of the treated flue gas flowing out from the flue gas outlet of the absorption tower is equal to or lower than the saturation temperature for the moisture concentration in the untreated flue gas. The boiler equipment according to (4) or (5) above, which is characterized in that

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。図1は、本発明を適用した、排煙脱
硫装置からの回収熱を低熱利用設備11に供給するボイ
ラ設備の一部を示した図であり、各箇所における排煙温
度と水分率を併記した。また、図2は、本発明を適用し
た排煙脱硫装置の要部構成の一例を示した図であり、各
種の熱回収手段を併記した。なお、図3の従来例と同様
の構成要素については、同じ符号を付し、特に必要のな
い限りその説明を省略した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a part of a boiler facility to which the present invention is applied and which supplies heat recovered from a flue gas desulfurization unit to a low heat utilization facility 11, and the flue gas temperature and moisture content at each location are shown together. . In addition, FIG. 2 is a diagram showing an example of a main part configuration of a flue gas desulfurization apparatus to which the present invention is applied, and various heat recovery means are also shown. The same components as those in the conventional example of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted unless particularly necessary.

【0016】本発明の回収熱利用設備では、図1に示す
ように、例えば、温室、温水プール、地域暖房システム
等の低熱利用設備11に対し、そのエネルギー源として
排煙脱硫装置7から回収された熱エネルギーを供給して
利用する。即ち、排煙脱硫装置7には、熱回収手段12
が設けられ、低熱利用設備11に送熱する送熱手段13
と、送熱された熱を低熱利用設備11のエネルギー源と
して放熱する放熱手段14とを備えている。また、ボイ
ラ設備からの余剰の蒸気や流出した蒸気を上記熱エネル
ギーとして併用することも可能である。
In the heat recovery utilization facility of the present invention, as shown in FIG. 1, the low heat utilization facility 11 such as a greenhouse, a hot water pool, and a district heating system is recovered from the flue gas desulfurization device 7 as its energy source. It supplies and uses heat energy. That is, in the flue gas desulfurization device 7, the heat recovery means 12
And a heat transfer means 13 for supplying heat to the low heat utilization facility 11.
And heat radiating means 14 for radiating the transferred heat as an energy source of the low heat utilization equipment 11. It is also possible to use surplus steam from the boiler equipment or steam that has flowed out as the heat energy.

【0017】排煙脱硫装置7は、図2に示すように、タ
ンク酸化方式のもので、吸収剤スラリS1(例えば、石
灰石スラリ)は、循環ポンプ23で底部のタンク22か
ら吸収塔21の排煙導入部21aのヘッダーパイプ25
に供給され、未処理排煙A中に噴射され、排煙中の亜硫
酸ガスを吸収除去する。排煙は、排煙導出部21bから
処理済排煙Bとして排出される。また、ヘッダーパイプ
25から噴射された吸収剤スラリは、吸収塔21の充填
材26中を流下しながら、さらに亜硫酸ガスを吸収し、
タンク22に貯留される。タンク22には、アーム回転
式エアスパージャ24が設けられ、水平に回転してスラ
リを攪拌しながら、空気Cをタンク22内に微細な気泡
で吹き込まれ、亜硫酸ガスを吸収した吸収剤スラリと前
記空気とを効率的に接触させて中和反応を起こし、全量
酸化して石膏を生成する。
As shown in FIG. 2, the flue gas desulfurization apparatus 7 is of a tank oxidation type, and the absorbent slurry S1 (for example, limestone slurry) is discharged from the tank 22 at the bottom of the absorption tower 21 by the circulation pump 23. Header pipe 25 of smoke introducing section 21a
And is injected into the untreated flue gas A to absorb and remove the sulfurous acid gas in the flue gas. The flue gas is discharged as treated flue gas B from the flue gas outlet 21b. The absorbent slurry injected from the header pipe 25 further flows through the filler 26 of the absorption tower 21 and further absorbs sulfurous acid gas,
It is stored in the tank 22. The tank 22 is provided with an arm rotating air sparger 24, which is rotated horizontally and agitates the slurry, while air C is blown into the tank 22 with fine bubbles to absorb the sulfur dioxide gas and the absorbent slurry. Efficiently contact with air to cause a neutralization reaction, and the entire amount is oxidized to produce gypsum.

【0018】排煙脱硫装置における主な反応は次のとお
りである。 (吸収塔) SO2 +H2 O → H+ +HSO3 - (1) (タンク) H+ +HSO3 - +(1/2)O2 → 2H+ +SO4 2- (2) 2H+ +SO4 2- +CaCO3 +H2 O → CaSO4 ・2H2 O+CO2 (3)
The main reactions in the flue gas desulfurization apparatus are as follows. (Absorption tower) SO 2 + H 2 O → H + + HSO 3 - (1) ( Tank) H + + HSO 3 - + (1/2) O 2 → 2H + + SO 4 2- (2) 2H + + SO 4 2- + CaCO 3 + H 2 O → CaSO 4・ 2H 2 O + CO 2 (3)

【0019】このようにして、石膏と吸収剤である少量
の石灰石とを懸濁したスラリS2はタンク22からスラ
リポンプ(図示せず)で搬出され、固液分離機(図示せ
ず)に供給され、ろ過して水分の少ない石膏(副生品)
として回収される。なお、吸収塔21の排煙排出部21
bには、導出される処理後の排煙Bからミストを取り除
くためにミストエリミネータ27が設けられ、ミストは
回収水Dとしてタンク22に戻される。
In this way, the slurry S2 in which the gypsum and a small amount of limestone as the absorbent are suspended is carried out from the tank 22 by a slurry pump (not shown) and supplied to a solid-liquid separator (not shown). Gypsum with low water content after filtering (by-product)
Will be collected as In addition, the flue gas discharge part 21 of the absorption tower 21
A mist eliminator 27 is provided in b for removing mist from the discharged flue gas B after treatment, and the mist is returned to the tank 22 as recovered water D.

【0020】また、前記固液分離機で分離された水は、
吸収剤スラリS1のタンク(図示せず)に送られ、吸収
剤スラリを構成する水として循環使用される。この循環
水中に、亜硫酸ガスの吸収反応や石膏の生成反応に悪影
響を与える不純物(例えば塩素)が蓄積されないよう
に、通常、循環水の一部を適宜導出して排出処理する。
また、循環水には、必要に応じて適宜工業用水が補給さ
れる。本発明において、後記するように、吸収塔で蒸発
して持ち去られる水分量が、従来法に比べて格段に少な
いので、この補給水も大幅に低減される。
The water separated by the solid-liquid separator is
It is sent to a tank (not shown) of the absorbent slurry S1 and is circulated and used as water that constitutes the absorbent slurry. In order to prevent impurities (for example, chlorine) that adversely affect the sulfurous acid gas absorption reaction and the gypsum production reaction from being accumulated in this circulating water, a portion of the circulating water is usually appropriately extracted and discharged.
Further, the circulating water is appropriately supplemented with industrial water as necessary. In the present invention, as will be described later, the amount of water evaporated and carried away in the absorption tower is remarkably smaller than that of the conventional method, so that this make-up water is also greatly reduced.

【0021】次に、排煙脱硫装置7の熱回収手段12を
図2で詳細に説明する。熱回収手段12は、例えば、循
環する熱媒体Eと、排煙脱硫装置7の吸収塔21の排煙
及び/又は吸収剤スラリとの間で熱交換を行う熱交換器
を使用することができる。ここで、熱媒体としては、例
えば、腐食防止や凍結防止のための薬剤が添加された工
業用水等を用いることにより、コストの低減を図ること
ができる。
Next, the heat recovery means 12 of the flue gas desulfurization apparatus 7 will be described in detail with reference to FIG. The heat recovery means 12 can use, for example, a heat exchanger that exchanges heat between the circulating heat medium E and the flue gas of the absorption tower 21 of the flue gas desulfurization device 7 and / or the absorbent slurry. . Here, as the heat medium, for example, the cost can be reduced by using, for example, industrial water to which a chemical agent for preventing corrosion or freezing is added.

【0022】また、熱回収手段としては、例えば図2に
示すように、吸収塔21の排煙導入部21aにおける
ヘッダパイプ25より上流側に伝熱管31よりなる熱交
換器を配設し、吸収剤スラリと接触する前の高温の未処
理排煙Aから熱回収するもの、吸収塔21のヘッダパ
イプ25より下流側(例えば充填材26内部)に伝熱管
32よりなる熱交換器を配設し、気液接触した後の排煙
とスラリから熱を回収するもの、吸収塔21のタンク
22内のスラリ中に伝熱管33よりなる熱交換器を配設
し、スラリから熱を回収するもの、吸収剤スラリをタ
ンク22からヘッダーパイプ25に送る循環ポンプ23
の吐出配管及び/又は吸い込み配管の途上に伝熱管35
よりなる熱交換器34を配設し、吸収剤スラリから熱回
収するもの、吸収塔21の排煙導出部21b(例えば
ミストエリミネータ27の上流側、又はミストエリミネ
ータ27のエレメント内)に伝熱管36よりなる熱交換
器36を配設し、排煙導出部21bを通過する排煙から
熱回収するものなどを使用することができる。
As the heat recovery means, for example, as shown in FIG. 2, a heat exchanger composed of a heat transfer pipe 31 is arranged upstream of the header pipe 25 in the smoke introducing portion 21a of the absorption tower 21 to absorb the heat. A heat exchanger consisting of a heat transfer tube 32 is provided downstream of the header pipe 25 of the absorption tower 21 (for example, inside the filler 26) for recovering heat from the high temperature untreated flue gas A before coming into contact with the agent slurry. , That recovers the heat from the smoke and the slurry after the gas-liquid contact, that that disposes the heat from the slurry by disposing the heat exchanger consisting of the heat transfer tube 33 in the slurry in the tank 22 of the absorption tower 21, Circulation pump 23 that sends absorbent slurry from tank 22 to header pipe 25
Of the heat transfer pipe 35 on the way of the discharge pipe and / or the suction pipe of
A heat exchanger 34 including a heat exchanger 34 for recovering heat from the absorbent slurry, and a heat transfer pipe 36 to the smoke exhausting section 21b of the absorption tower 21 (for example, the upstream side of the mist eliminator 27 or the element of the mist eliminator 27). It is possible to use, for example, one that is provided with the heat exchanger 36 and that recovers heat from the flue gas passing through the flue gas outlet 21b.

【0023】なお、熱回収手段12は、上記の熱交換器
のうちいずれか一つで構成してもよいし、複数種を例え
ば直列に組み合わせてもよい。ただし、比較的高温度の
熱回収を実現するためには、吸収剤スラリと接触する前
の未処理排煙Aから熱回収する熱交換器(伝熱管31)
を含むことが好ましい。
The heat recovery means 12 may be composed of any one of the above heat exchangers, or a plurality of kinds may be combined in series, for example. However, in order to realize heat recovery at a relatively high temperature, a heat exchanger (heat transfer tube 31) that recovers heat from the untreated flue gas A before contact with the absorbent slurry.
It is preferable to include

【0024】また、熱回収手段12の熱回収量は、最終
的に吸収塔21から流出する処理後排煙Bの温度が、未
処理排煙A中の水分濃度に対する飽和温度以下になるよ
うに設定することが好ましい。例えば、未処理排煙Aの
水分濃度が8%である場合には、約40℃以下になるよ
うに、熱交換器の仕様を設定し、熱媒体Eの循環量を制
御することが好ましい。
The heat recovery amount of the heat recovery means 12 is set so that the temperature of the treated flue gas B finally flowing out from the absorption tower 21 is equal to or lower than the saturation temperature with respect to the water concentration in the untreated flue gas A. It is preferable to set. For example, when the water concentration of the untreated flue gas A is 8%, it is preferable to set the specifications of the heat exchanger and control the circulation amount of the heat medium E so that the temperature is about 40 ° C. or lower.

【0025】そして、この熱回収手段12に対して、そ
の熱回収量を上記目標値に自動制御する制御手段(図示
せず)を設けてもよい。例えば、この制御手段は、未処
理排煙Aの水分濃度を検出する濃度センサと、吸収塔2
1の排煙導出部21aから流出する処理後排煙Bのガス
温度を検出する温度センサと、前記熱媒体Eの流量を調
整する流量調節弁と、前記濃度センサの検出値から調整
すべき目標温度を演算し、前記温度センサの検出値がこ
の目標温度近傍に保持されるように前記流量調節弁の開
度を制御するコントローラとで構成することができる。
Further, the heat recovery means 12 may be provided with a control means (not shown) for automatically controlling the heat recovery amount to the target value. For example, this control means includes a concentration sensor for detecting the water concentration of the untreated flue gas A and the absorption tower 2
No. 1 temperature sensor for detecting the gas temperature of the post-treatment flue gas B flowing out from the flue gas discharge section 21a, a flow rate control valve for adjusting the flow rate of the heat medium E, and a target to be adjusted from the detection value of the concentration sensor. The controller may be configured to calculate the temperature and control the opening of the flow rate control valve so that the detected value of the temperature sensor is maintained near the target temperature.

【0026】前記回収熱を低熱利用設備11に送る送熱
手段13は、例えば、熱媒体Eを外界に対して断熱状態
で送給する配管と送給ポンプで構成することができる。
また、放熱手段14は、熱媒体Eの熱を低熱利用設備1
1において放熱する熱交換器、例えば、温室内の空気を
加熱するもの、あるいは、プールの水を加熱する熱交換
器等である。
The heat feeding means 13 for feeding the recovered heat to the low heat utilization equipment 11 can be constituted by, for example, a pipe and a feed pump for feeding the heat medium E to the outside in an adiabatic state.
Further, the heat radiating means 14 uses the heat of the heat medium E for low heat utilization equipment 1
1 is a heat exchanger that radiates heat, for example, one that heats the air in the greenhouse, or a heat exchanger that heats the water in the pool.

【0027】以上のように構成された排煙脱硫装置又は
ボイラ設備では、熱回収手段12により吸収塔21を通
過する排煙及び/又は吸収塔21を循環する吸収剤スラ
リから熱回収され、この熱により低熱利用設備11を有
効に稼働させることができる。なお、ボイラ設備からの
余剰の蒸気や流出する蒸気を、排煙脱硫装置の回収熱と
併用して低熱利用設備11を稼働させることも可能であ
る。
In the flue gas desulfurization apparatus or the boiler equipment configured as described above, the heat recovery means 12 recovers heat from the flue gas passing through the absorption tower 21 and / or the absorbent slurry circulating through the absorption tower 21. The low heat utilization facility 11 can be effectively operated by heat. In addition, it is also possible to operate the low heat utilization facility 11 by using the excess steam from the boiler facility or the steam that flows out together with the recovered heat of the flue gas desulfurization device.

【0028】熱回収手段12として、吸収剤スラリと接
触する前の未処理排煙Aから熱回収する熱交換器(伝熱
管31)を採用するときには、ここで排煙が冷却される
分だけ、その後の気液接触部における蒸発量を抑制する
ことができ、かつ、定常的な吸収塔内スラリの温度や処
理後排煙Bの温度もその分だけ低減することができる。
特に、排煙脱硫装置の排煙導出部の排煙温度が、未処理
排煙Aの水分濃度に対する飽和温度以下(例えば40℃
以下)に設定される場合には、後流の気液接触部での蒸
発量は理論的にゼロとなり、また、定常的な吸収塔内ス
ラリの温度や処理後排煙Bの温度もその飽和温度以下で
均衡する。なお、実際には、タンク22内の反応により
発生する熱の影響があるが、これは極めて僅かであるの
で、ほとんど問題にならない。
When a heat exchanger (heat transfer tube 31) for recovering heat from the untreated flue gas A before contact with the absorbent slurry is adopted as the heat recovery means 12, only the amount of flue gas cooled here is used. The amount of evaporation in the gas-liquid contact portion thereafter can be suppressed, and the steady temperature of the slurry in the absorption tower and the temperature of the treated flue gas B can be reduced accordingly.
In particular, the flue gas temperature of the flue gas outlet of the flue gas desulfurization device is equal to or lower than the saturation temperature with respect to the water concentration of the untreated flue gas A (for example, 40 ° C).
(Below), the amount of evaporation at the gas-liquid contact portion of the wake is theoretically zero, and the steady temperature of the slurry in the absorption tower and the temperature of the treated flue gas B are also saturated. Equilibrate below temperature. Actually, there is an influence of heat generated by the reaction in the tank 22, but since this is extremely small, it hardly causes a problem.

【0029】また、熱交換手段12として、ヘッダパイ
プ25よりも後流側(例えば、充填材26の部分)の排
煙及び吸収剤スラリから熱回収する熱交換器(伝熱管3
2)を採用する場合や、タンク22内の吸収剤スラリか
ら熱回収する熱交換器(伝熱管33)や、吸収剤スラリ
を循環する配管途上のスラリから熱回収する熱交換器
(伝熱管35)を採用する場合でも、排煙からスラリ側
に加えられようとする熱又は加えられた熱が連続的に回
収されるため、定常状態においては冷却された分だけ気
液接触部での蒸発量が抑制され、また、定常的な吸収塔
内スラリの温度や処理後の排煙Bの温度もその分だけ低
下させることができる。そして、この場合も熱交換器の
熱回収量の設定によって、吸収塔内スラリや排煙の温度
を未処理排煙Aの水分濃度に対する飽和温度以下(例え
ば40℃以下)に調整すれば、気液接触部での蒸発量は
理論的にゼロとなる。
As the heat exchanging means 12, a heat exchanger (heat transfer tube 3) for recovering heat from the smoke exhausted on the downstream side of the header pipe 25 (for example, the portion of the filler 26) and the absorbent slurry.
2) is adopted, a heat exchanger (heat transfer tube 33) for recovering heat from the absorbent slurry in the tank 22, or a heat exchanger (heat transfer tube 35 for recovering heat from a slurry on the way of circulating the absorbent slurry). Even when) is adopted, the heat that is about to be added to the slurry side or the heat that is added is continuously collected from the flue gas, so in the steady state, the amount of evaporation at the gas-liquid contact part is only the amount cooled. In addition, the temperature of the slurry in the absorption tower and the temperature of the flue gas B after the treatment can be reduced by that amount. Also in this case, if the temperature of the slurry in the absorption tower and the flue gas is adjusted to the saturation temperature or lower (for example, 40 ° C. or lower) with respect to the water concentration of the untreated flue gas A by setting the heat recovery amount of the heat exchanger, The amount of evaporation at the liquid contact part is theoretically zero.

【0030】また、熱交換手段12として、吸収塔21
の排煙導出部21bを通過する排煙から熱回収する熱交
換器(伝熱管36)を採用する場合には、吸収塔21の
排煙導入部21aでは、未処理排煙Aとスラリとの気液
接触により一旦蒸気が発生し、吸収塔内部のスラリや排
煙の温度は、他の熱交換器を設けない限り、従来と同じ
温度(例えば48℃)になり、水分濃度も従来と同様
(例えば11%)となる。しかし、排煙導出部21bに
おいて、この排煙が冷却され、その分だけ一旦蒸発した
水分が排煙導出部21bで凝縮し、ミストエリミネータ
27で回収されることになり、結局、吸収塔スラリ中か
ら蒸発により持ち去られる水分量は格段に低減される。
特に、この熱交換器の出口側の温度(処理後排煙Bの温
度)が、未処理排煙Aの水分濃度(例えば8%)に対す
る飽和温度以下(例えば40℃以下)に設定される場合
には、一旦蒸発した分の水分が理論的に全て凝縮水とし
て回収され、吸収塔スラリから蒸発により持ち去られる
水分量はゼロとなる。なお、熱交換手段12として、上
記の各種熱交換器を組み合わせた場合でも、全体的に
は、熱回収により冷却された分だけ蒸発量(スラリから
蒸発して持ち去られる水分量)を低減することができ、
熱回収量の設定によっては理論的にゼロにすることがで
きる。
As the heat exchange means 12, the absorption tower 21 is used.
When adopting a heat exchanger (heat transfer tube 36) for recovering heat from the flue gas passing through the flue gas discharge portion 21b, the untreated flue gas A and the slurry are mixed in the flue gas introduction portion 21a of the absorption tower 21. Steam is once generated by gas-liquid contact, and the temperature of the slurry and smoke in the absorption tower will be the same temperature as before (eg 48 ° C) unless the other heat exchanger is installed, and the water concentration will be the same as before. (For example, 11%). However, in the smoke exhaust lead-out section 21b, the exhaust smoke is cooled, and the water that has once evaporated is condensed in the smoke exhaust lead-out section 21b and is collected by the mist eliminator 27, and eventually, in the absorption tower slurry. The amount of water taken away by evaporation is significantly reduced.
In particular, when the temperature on the outlet side of this heat exchanger (the temperature of the treated flue gas B) is set to be equal to or lower than the saturation temperature (for example, 40 ° C. or less) with respect to the water concentration of the untreated flue gas A (for example, 8%). In theory, all the water that has once evaporated is theoretically recovered as condensed water, and the amount of water carried away from the absorption tower slurry by evaporation becomes zero. Even when the above-mentioned various heat exchangers are combined as the heat exchanging means 12, the evaporation amount (the amount of water evaporated from the slurry and carried away) is reduced as a whole by the amount of cooling by the heat recovery. Can
It can theoretically be set to zero depending on the setting of the heat recovery amount.

【0031】[0031]

【発明の効果】本発明は、上記の構成を採用することに
より、次のような各種の効果が奏される。 (1)現行のボイラやその付帯機器等の設備の主要構成
を変更することなく、ボイラからの排煙の熱エネルギー
を回収し、有効利用を図ることができる。特に、熱回収
手段12として、吸収剤スラリと接触する前の未処理排
煙Aから熱回収する熱交換器を採用するときには、最も
温度の高い未処理排煙Aとの熱交換により高温度の熱回
収が可能となる。
The present invention has the following various effects by adopting the above-mentioned structure. (1) It is possible to recover the thermal energy of smoke emitted from the boiler and make effective use of it without changing the main configuration of the existing boiler and its associated equipment. In particular, when a heat exchanger that recovers heat from the untreated flue gas A before contact with the absorbent slurry is adopted as the heat recovery means 12, heat exchange with the untreated flue gas A having the highest temperature causes high temperature. Heat recovery is possible.

【0032】例えば、1000MWクラスの石炭焚きボ
イラで、熱回収手段12として吸収剤スラリと接触する
前の未処理排煙A(温度約90℃)から熱回収する熱交
換器を採用するときには、流量700t/h程度の熱媒
体(水)を循環させて飽和温度40℃程度まで冷却する
構成であれば、計算上放熱手段14における熱媒体の温
度は70℃程度となり(図1参照)、温室や温水プール
等の熱源としては十分なものである。
For example, in a 1000 MW class coal-fired boiler, when the heat recovery means 12 employs a heat exchanger for recovering heat from untreated flue gas A (temperature of about 90 ° C.) before contact with the absorbent slurry, the flow rate is With a configuration in which a heat medium (water) of about 700 t / h is circulated and cooled to a saturation temperature of about 40 ° C., the temperature of the heat medium in the heat radiating means 14 becomes about 70 ° C. in calculation (see FIG. 1), and the It is sufficient as a heat source for hot water pools.

【0033】(2)吸収塔において吸収剤スラリから蒸
発する水分の蒸発量が格段に減るため、脱硫装置におけ
る 給水即ち用水量を大幅に低減することができる。特
に、処理後排煙Bの温度が、未処理排煙Aの水分濃度に
対する飽和温度以下になるように熱回収量を設定する場
合は、処理後排煙Bの水分濃度が未処理排煙Aと同じか
それ以下になり、吸収塔における蒸発量(厳密には、蒸
発により吸収塔のスラリから持ち去られる水分量)はゼ
ロになる。このため、例えば、1000MWクラスの石
炭焚きボイラの場合、75t/h程度の水が節約でき
る。
(2) Since the amount of water evaporated from the absorbent slurry in the absorption tower is remarkably reduced, the amount of water supplied, that is, the amount of water used in the desulfurizer can be greatly reduced. In particular, when the heat recovery amount is set so that the temperature of the treated flue gas B is equal to or lower than the saturation temperature with respect to the moisture concentration of the untreated flue gas A, the moisture concentration of the treated flue gas B is untreated. Becomes equal to or less than, and the evaporation amount in the absorption tower (strictly speaking, the amount of water carried away from the slurry in the absorption tower due to evaporation) becomes zero. Therefore, for example, in the case of a 1000 MW class coal-fired boiler, about 75 t / h of water can be saved.

【0034】(3)吸収塔における吸収剤スラリの水分
の蒸発量が格段に減るため、吸収塔から導出されて煙突
から大気放出しなければならないガス(処理後排煙B)
の総量を大幅に低減することができる。このため、吸収
塔内やミストエリミネータ27、さらには再加熱部8や
煙突10までのダクトの流路断面積を現行のまま維持す
れば、圧力損失が格段に低減されるため、後流ファン9
の容量(消費動力)を大幅に減らすことができる。ま
た、後流ファン9の容量(消費動力)を現行のまま維持
すれば、上記吸収塔等の流路断面積を大幅に縮小するこ
とができ、装置の小型化を可能にする。例えば、100
0MWクラスの石炭焚きボイラの場合、処理後排煙の温
度を従来の48℃から40℃以下にすることで、水分濃
度が11%から8%以下へと低減され、処理後排煙の総
量が3%以上も減ることになる。
(3) Since the evaporation amount of water in the absorbent slurry in the absorption tower is remarkably reduced, the gas that must be discharged from the absorption tower and released from the chimney to the atmosphere (processed flue gas B)
The total amount of can be significantly reduced. For this reason, if the flow path cross-sectional area of the absorption tower, the mist eliminator 27, and the duct to the reheating unit 8 and the chimney 10 is maintained as it is, the pressure loss is significantly reduced.
The capacity (power consumption) of can be significantly reduced. Further, if the capacity (power consumption) of the downstream fan 9 is maintained as it is, the flow passage cross-sectional area of the absorption tower or the like can be greatly reduced, and the device can be downsized. For example, 100
In the case of a 0 MW class coal-fired boiler, the moisture concentration after treatment is reduced from 11% to 8% or less by reducing the temperature of post-treatment flue gas from 48 ° C to 40 ° C or less, and the total amount of post-treatment flue gas is reduced. It will be reduced by more than 3%.

【0035】(4)熱回収手段12として、吸収塔21
の充填材26の内部に配設された伝熱管32よりなる熱
交換器を採用する場合には、充填材26の温度がここを
通過するスラリや排煙の温度より低く抑えることがで
き、充填材26の表面において水分がほとんど蒸発しな
くなる。このため、蒸発によりスラリ中の可溶成分が析
出してスケールを発生することがなく、スケールが充填
材26に付着するという不具合を回避することができ
る。
(4) Absorption tower 21 as heat recovery means 12
When a heat exchanger composed of the heat transfer tubes 32 arranged inside the filling material 26 is used, the temperature of the filling material 26 can be suppressed to be lower than the temperature of the slurry or the flue gas passing therethrough. Almost no water evaporates on the surface of the material 26. For this reason, the soluble component in the slurry does not deposit due to evaporation to generate scale, and it is possible to avoid the problem that the scale adheres to the filler 26.

【0036】(5)また、熱回収手段12を、循環ポン
プ23の吐出配管又は吸い込み配管の途上に設けた熱交
換器を採用するときには、例えば、既製の熱交換器を配
管途中に接続するという簡単な改造作業で、現行の脱硫
装置から熱回収することができる。
(5) When the heat recovery means 12 is a heat exchanger provided in the middle of the discharge pipe or the suction pipe of the circulation pump 23, for example, a ready-made heat exchanger is connected in the middle of the pipe. Heat can be recovered from existing desulfurization equipment with a simple modification work.

【0037】(6)熱回収手段12として、吸収塔21
の排煙導出部21b(ミストエリミネータ27の上流
側、又はミストエリミネータ27のエレメント内)に配
設した伝熱管36よりなる熱交換器を採用する場合は、
この排煙導出部21bを通過する処理後の排煙B中に残
留する微小な粉塵をさらに除去することができる。
(6) Absorption tower 21 as heat recovery means 12
When a heat exchanger including a heat transfer tube 36 disposed in the smoke exhaust leading portion 21b (upstream side of the mist eliminator 27 or in the element of the mist eliminator 27) is adopted,
It is possible to further remove the fine dust remaining in the flue gas B after passing through the flue gas discharge portion 21b.

【0038】即ち、吸収塔21の排煙導入部21aで
は、未処理排煙Aとスラリとの気液接触により一旦蒸気
が発生し、吸収塔内部のスラリや排煙の温度は、他の熱
交換器が設けられていない場合には、従来と同じ温度
(例えば48℃)になり、水分濃度も従来と同様(例え
ば11%)となる。そして、排煙導出部21bにおいて
この排煙が冷却され、最終的に未処理排煙Aの水分濃度
(例えば8%)に対する飽和温度以下(例えば40℃以
下)とされる。このため、一旦蒸発した水分が、排煙導
出部21bにおいて凝縮されることになり、その際、前
記微小な粉塵がこの凝縮水滴の核となり捕捉される。
That is, in the flue gas introduction section 21a of the absorption tower 21, steam is once generated due to the gas-liquid contact between the untreated flue gas A and the slurry, and the temperature of the slurry and the flue gas inside the absorption tower is When the exchanger is not provided, the temperature becomes the same as the conventional one (for example, 48 ° C.), and the water concentration becomes the same as the conventional one (for example, 11%). Then, the flue gas is cooled in the flue gas deriving section 21b, and finally brought to a saturation temperature (for example, 40 ° C. or lower) with respect to the moisture concentration (for example, 8%) of the untreated flue gas A. Therefore, the water that has once evaporated is condensed in the smoke exhaust lead-out section 21b, and at that time, the fine dust is captured as the core of the condensed water droplets.

【0039】(7)熱回収手段12として、吸収塔21
の排煙導出部21bを除く部分で熱回収する熱交換器を
配設するときには、吸収塔21において気液接触するス
ラリ温度が従来よりも定常的に低くなり、亜硫酸ガスの
吸収反応、即ち、上記の反応式(1) の反応が促進され、
脱硫性能が向上する。
(7) As the heat recovery means 12, the absorption tower 21
When a heat exchanger for recovering heat is disposed in the portion excluding the smoke exhaust lead-out portion 21b, the temperature of the slurry in gas-liquid contact in the absorption tower 21 is constantly lower than in the conventional case, and the absorption reaction of sulfurous acid gas, that is, The reaction of the above reaction formula (1) is promoted,
Desulfurization performance is improved.

【0040】(8)また、熱回収量の調整により、最終
的に導出される処理後排煙Bの温度を、未処理排煙Aの
水分濃度に対する飽和温度よりも低い温度(例えば38
℃)に設定した場合には、蒸発により持ち去られる水分
がゼロになるばかりでなく、未処理排煙A中の水分が凝
縮により吸収塔内のスラリ中に逆に取り込むことができ
る。このため、前記の不純物除去のために排出される水
分量も補給する必要がなくなり、さらなる用水量の低減
を可能にする。
(8) Further, the temperature of the treated flue gas B finally derived by adjusting the heat recovery amount is lower than the saturation temperature with respect to the water concentration of the untreated flue gas A (for example, 38).
When the temperature is set to (° C.), not only the water content carried away by evaporation becomes zero, but also the water content in the untreated flue gas A can be conversely taken into the slurry in the absorption tower by condensation. Therefore, it is not necessary to replenish the amount of water discharged for removing the impurities, and the amount of water used can be further reduced.

【0041】なお、本発明は、上記の実施の形態に限ら
れず、各種の態様があり得る。例えば、本発明は、ボイ
ラを使用する設備や排煙脱硫装置を必要とする設備であ
ればいかなるものにも適用できる。例えば、ゴミ処理設
備、船舶の蒸気機関等に適用しても同様の効果が得られ
る。また、熱回収手段としては、前記のような伝熱管よ
りなる熱交換器のみならず、例えば、吸収塔に設けたジ
ャケットに熱媒体を通水するものであってもよい。ま
た、送熱手段は、例えばヒートパイプにより構成するこ
ともできる。
The present invention is not limited to the above-mentioned embodiment, but may have various modes. For example, the present invention can be applied to any equipment that uses a boiler or equipment that requires a flue gas desulfurization device. For example, the same effect can be obtained even when applied to a waste treatment facility, a steam engine of a ship, and the like. Further, as the heat recovery means, not only the heat exchanger including the heat transfer tube as described above but also a means for passing a heat medium through a jacket provided in the absorption tower may be used. Further, the heat feeding means may be constituted by, for example, a heat pipe.

【0042】本発明の効果を要約すると、排煙脱硫装置
の吸収塔の排煙導入部を通過する、気液接触前の排煙か
ら熱回収する手段を設けるときには、高温度の熱回収が
可能となるとともに、吸収塔における蒸気発生量を低減
させることができ、用水量の低減及び吸収塔の後流ファ
ンの消費動力の低減、又は、吸収塔後流側機器の小型化
等を実現することができる。また、吸収等における吸収
剤スラリの温度が定常的に低下するため、硫黄酸化物の
吸収反応の反応性が高まり、脱硫性能が向上する。
To summarize the effects of the present invention, when a means for recovering heat from the flue gas that has passed through the flue gas introduction portion of the absorption tower of the flue gas desulfurization apparatus before contact with gas and liquid is provided, high temperature heat recovery is possible. In addition, it is possible to reduce the amount of steam generated in the absorption tower, reduce the amount of water used, reduce the consumption power of the downstream fan of the absorption tower, or downsize the downstream equipment of the absorption tower. You can In addition, since the temperature of the absorbent slurry during absorption and the like constantly decreases, the reactivity of the sulfur oxide absorption reaction increases, and the desulfurization performance improves.

【0043】排煙脱硫装置の吸収塔を通過する排煙及び
/又は吸収塔のスラリから熱回収するときに、吸収塔の
出口から流出する処理後排煙の温度を、未処理排煙中の
水分濃度に対する飽和温度以下になるように、前記熱回
収手段の熱回収量を設定することにより、吸収塔のスラ
リから蒸発により排煙中に持ち去られる水分がほとんど
なくなり、用水量の大幅な低減を可能にした。
When heat is recovered from the flue gas passing through the absorption tower of the flue gas desulfurization apparatus and / or the slurry of the absorption tower, the temperature of the treated flue gas flowing out from the outlet of the absorption tower is set to the temperature of the untreated flue gas. By setting the heat recovery amount of the heat recovery means so that the temperature becomes equal to or lower than the saturation temperature with respect to the water concentration, almost no water is carried away from the slurry of the absorption tower into the smoke exhaust by evaporation, and the amount of water used is greatly reduced. Made possible

【0044】排煙脱硫装置で回収された排煙の熱エネル
ギーを低熱利用設備の熱エネルギー源として利用するこ
とができる。このため、ボイラ側の機器等を変更するこ
となく、実用上容易に熱エネルギーの有効利用が図られ
る。例えば、吸収塔から熱回収するときには、ボイラ容
量の増加などの改造を何ら伴うことなく、温室、温水プ
ール、地域暖房等の熱利用システムの増設や新設を可能
にする。また、従来これ以上実用的にエネルギー回収が
不可能であると考えられてきた火力発電設備等において
も、さらなる余熱回収が可能となる。しかも、このよう
に熱回収しても、ボイラ設備や排煙処理装置の運転に何
ら支障を来すことがないばかりでなく、脱硫装置の用水
量の低減等にも有効である。
The heat energy of the flue gas recovered by the flue gas desulfurization device can be used as the heat energy source of the low heat utilization facility. For this reason, it is possible to effectively use the thermal energy practically without changing the equipment on the boiler side. For example, when recovering heat from an absorption tower, it is possible to add or install a heat utilization system such as a greenhouse, hot water pool, district heating, etc. without any modification such as increase in boiler capacity. Further, even in a thermal power generation facility or the like, which has conventionally been considered to be practically impossible to recover energy, further residual heat can be recovered. Moreover, such heat recovery not only causes no hindrance to the operation of the boiler equipment and the flue gas treatment device, but is also effective in reducing the amount of water used in the desulfurization device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したボイラ設備の要部構成の一例
を示した図であり、1000MWベースの蒸発水量を前
提するときの、各箇所における排煙温度と水分率を併記
したものである。
FIG. 1 is a diagram showing an example of a configuration of a main part of a boiler facility to which the present invention is applied, in which a flue gas temperature and a moisture content at each location are shown together on the assumption of an amount of evaporated water of 1000 MW base. .

【図2】本発明を適用した排煙脱硫装置の要部構成の一
例を示した図であり、熱回収手段の各種態様を併記した
ものである。
FIG. 2 is a diagram showing an example of a configuration of a main part of a flue gas desulfurization apparatus to which the present invention is applied, in which various aspects of heat recovery means are also shown.

【図3】従来の、排煙処理装置を備えたボイラ設備の代
表的な構成を示した図であり、各箇所における排煙温度
と水分率を併記したものである。
FIG. 3 is a diagram showing a typical configuration of a conventional boiler equipment provided with a flue gas treatment device, in which flue gas temperature and moisture content at each location are shown together.

フロントページの続き (72)発明者 矢島 智 東京都千代田区丸の内二丁目5番地1 三 菱重工業株式会社内 (72)発明者 高品 徹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 沖野 進 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Front Page Continuation (72) Inventor Satoshi Yajima 2-5-5 Marunouchi, Chiyoda-ku, Tokyo San Sanbyo Heavy Industries Co., Ltd. Hiroshima Research Institute Co., Ltd. (72) Inventor Susumu Okino 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 未処理排煙と吸収剤スラリとを吸収塔内
で気液接触させる排煙脱硫装置において、前記吸収塔の
排煙導入部に通過する気液接触前の排煙から熱回収する
熱回収手段を設けたことを特徴とする排煙脱硫装置。
1. In a flue gas desulfurization device for bringing untreated flue gas and absorbent slurry into gas-liquid contact in an absorption tower, heat is recovered from the flue gas that has passed through the flue gas introduction section of the absorption tower before the gas-liquid contact. A flue gas desulfurization apparatus, characterized in that it is provided with a heat recovery means.
【請求項2】 前記吸収塔において循環する吸収剤スラ
リから熱回収する熱回収手段を設けたことを特徴とする
請求項1記載の排煙脱硫装置。
2. The flue gas desulfurization apparatus according to claim 1, further comprising heat recovery means for recovering heat from the absorbent slurry circulating in the absorption tower.
【請求項3】 未処理排煙と吸収剤スラリとを吸収塔内
で気液接触させる排煙脱硫装置において、前記吸収塔の
排煙導出部から流出する処理後排煙の温度が、未処理排
煙中の水分濃度に対する飽和温度以下になるように、前
記熱回収手段の熱回収量を設定したことを特徴とする請
求項1又は2記載の排煙脱硫装置。
3. In a flue gas desulfurization device in which untreated flue gas and absorbent slurry are brought into gas-liquid contact in the absorber, the temperature of the treated flue gas flowing out from the flue gas outlet of the absorber is untreated. The flue gas desulfurization apparatus according to claim 1 or 2, wherein the heat recovery amount of the heat recovery means is set so as to be equal to or lower than a saturation temperature with respect to a moisture concentration in the flue gas.
【請求項4】 ボイラで発生する排煙と吸収剤スラリと
を吸収塔内で気液接触させる排煙脱硫装置を備えたボイ
ラ設備において、前記吸収塔を通過する排煙及び/又は
前記吸収塔を循環する吸収剤スラリから熱回収する熱回
収手段と、前記熱回収手段により回収された熱を熱利用
設備に送熱手段と、前記送熱手段により送られた熱を熱
利用設備のエネルギー源として放熱する放熱手段とを備
えたことを特徴とするボイラ設備。
4. A boiler facility provided with a flue gas desulfurization device for bringing the flue gas generated in a boiler and an absorbent slurry into gas-liquid contact in the absorber, the flue gas passing through the absorber and / or the absorber. Heat recovery means for recovering heat from the absorbent slurry that circulates, heat transfer means for transferring the heat recovered by the heat recovery means to heat utilization equipment, and the heat sent by the heat supply means for the energy source of the heat utilization equipment. Boiler equipment characterized in that it is provided with a heat radiating means for radiating heat.
【請求項5】 前記熱回収手段は、少なくとも前記吸収
塔の排煙導入部を通過する気液接触前の排煙から熱回収
するものであることを特徴とする請求項4記載のボイラ
設備。
5. The boiler equipment according to claim 4, wherein the heat recovery means recovers heat at least from the flue gas that has passed through the flue gas introduction portion of the absorption tower before being in contact with gas and liquid.
【請求項6】 前記吸収塔の排煙導出部から流出する処
理後排煙の温度が、未処理排煙中の水分濃度に対する飽
和温度以下になるように、前記熱回収手段の熱回収量を
設定したことを特徴とする請求項4又は5記載のボイラ
設備。
6. The amount of heat recovered by the heat recovery means is adjusted so that the temperature of the treated flue gas flowing out from the flue gas outlet of the absorption tower is equal to or lower than the saturation temperature with respect to the water concentration in the untreated flue gas. The boiler equipment according to claim 4 or 5, wherein the boiler equipment is set.
JP7265287A 1995-10-13 1995-10-13 Flue gas desulfurization facility and boiler equipment Withdrawn JPH09103641A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7265287A JPH09103641A (en) 1995-10-13 1995-10-13 Flue gas desulfurization facility and boiler equipment
US08/696,317 US5878675A (en) 1995-10-13 1996-08-12 Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
ES96610039T ES2171217T3 (en) 1995-10-13 1996-10-11 COMBUSTION GAS DESULFURATOR WITH HEAT RECOVERY DEVICE.
DK96610039T DK0768108T3 (en) 1995-10-13 1996-10-11 Boiler flue gas desulphurisation plant with heat recovery means
EP96610039A EP0768108B1 (en) 1995-10-13 1996-10-11 Boiler flue gas desulfuriser with heat recovery means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7265287A JPH09103641A (en) 1995-10-13 1995-10-13 Flue gas desulfurization facility and boiler equipment

Publications (1)

Publication Number Publication Date
JPH09103641A true JPH09103641A (en) 1997-04-22

Family

ID=17415125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7265287A Withdrawn JPH09103641A (en) 1995-10-13 1995-10-13 Flue gas desulfurization facility and boiler equipment

Country Status (1)

Country Link
JP (1) JPH09103641A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235864A (en) * 2013-06-13 2014-12-24 烟台龙源电力技术股份有限公司 Flue gas moisture recovery system and method
CN105289232A (en) * 2015-10-23 2016-02-03 深圳市广鸿海建筑工程有限公司 Equipment capable of preparing gypsum while performing desulfurizing
CN107519757A (en) * 2017-10-17 2017-12-29 华北电力大学 A kind of unpowered cooling cigarette tower apparatus of wet flue gas
CN111365727A (en) * 2020-03-23 2020-07-03 山东省科学院能源研究所 Flue gas waste heat recovery and purification device of small household biomass boiler
CN113371772A (en) * 2021-07-01 2021-09-10 燕山大学 Concentration desulfurization wastewater system with flue gas waste heat recovery function
WO2023097891A1 (en) * 2021-11-30 2023-06-08 中国华能集团清洁能源技术研究院有限公司 Desulfurization slurry flash evaporation system using segmented heat exchange
WO2023097893A1 (en) * 2021-11-30 2023-06-08 中国华能集团清洁能源技术研究院有限公司 Vertically integrated desulfurization slurry flash evaporation heat extraction system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235864A (en) * 2013-06-13 2014-12-24 烟台龙源电力技术股份有限公司 Flue gas moisture recovery system and method
CN105289232A (en) * 2015-10-23 2016-02-03 深圳市广鸿海建筑工程有限公司 Equipment capable of preparing gypsum while performing desulfurizing
CN107519757A (en) * 2017-10-17 2017-12-29 华北电力大学 A kind of unpowered cooling cigarette tower apparatus of wet flue gas
CN111365727A (en) * 2020-03-23 2020-07-03 山东省科学院能源研究所 Flue gas waste heat recovery and purification device of small household biomass boiler
CN113371772A (en) * 2021-07-01 2021-09-10 燕山大学 Concentration desulfurization wastewater system with flue gas waste heat recovery function
WO2023097891A1 (en) * 2021-11-30 2023-06-08 中国华能集团清洁能源技术研究院有限公司 Desulfurization slurry flash evaporation system using segmented heat exchange
WO2023097893A1 (en) * 2021-11-30 2023-06-08 中国华能集团清洁能源技术研究院有限公司 Vertically integrated desulfurization slurry flash evaporation heat extraction system

Similar Documents

Publication Publication Date Title
US7776141B2 (en) Methods and apparatus for performing flue gas pollution control and/or energy recovery
TWI276460B (en) Exhaust smoke-processing system
US20210285637A1 (en) Method and system for improving boiler effectiveness
KR101521622B1 (en) System to removing a white smoke
EP3238811A1 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
US9650269B2 (en) System and method for reducing gas emissions from wet flue gas desulfurization waste water
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
CA2596127A1 (en) Integrated lime kiln process
KR101892887B1 (en) Heat exchanger and method for controlling heat exchanger
KR102548290B1 (en) Apparatus for waste heat recovery and abatement of white plume of exhaust gas with pre-cooler
US20040047773A1 (en) So3 separating and removing equipment for flue gas
CN108800975A (en) A kind of flue gas cooling heat exchanger of the desulfurization duct mouth with refrigerating plant
JPH09103641A (en) Flue gas desulfurization facility and boiler equipment
JP2013078742A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US9724638B2 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
CN102512910A (en) Smoke heat exchange process for recycling evaporated water of gas desulfurization system
CN104154553A (en) Flue gas treatment device
JP6740185B2 (en) Exhaust gas desulfurization method in pressurized fluidized-bed reactor system and pressurized fluidized-bed reactor system
CN203571777U (en) Flue gas treatment device
CN110433635A (en) A kind of high-efficiency desulfurization eliminating white smoke device and technique
JPH1176750A (en) Flue gas treating device
JP2002250514A (en) Exhaust gas disposer, and its operation method
JP2011220545A (en) Method and device for exchanging heat of sox-containing combustion exhaust gas
CN101298021B (en) Gas-liquid contact type non-phase-change middle medium heat exchange wet-type desulfuration method and apparatus
KR102558302B1 (en) Apparatus for waste heat recovery and abatement of white plume of exhaust gas with rear stage heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107