JPH1176750A - Flue gas treating device - Google Patents

Flue gas treating device

Info

Publication number
JPH1176750A
JPH1176750A JP9259326A JP25932697A JPH1176750A JP H1176750 A JPH1176750 A JP H1176750A JP 9259326 A JP9259326 A JP 9259326A JP 25932697 A JP25932697 A JP 25932697A JP H1176750 A JPH1176750 A JP H1176750A
Authority
JP
Japan
Prior art keywords
heat
gas
desulfurization
flue gas
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9259326A
Other languages
Japanese (ja)
Inventor
Takeo Shinoda
岳男 篠田
Atsushi Yoshioka
篤 吉岡
Yoshiyuki Takeuchi
竹内  善幸
Susumu Okino
沖野  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9259326A priority Critical patent/JPH1176750A/en
Publication of JPH1176750A publication Critical patent/JPH1176750A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with steam to be supplied for evaporation and concentration by providing a heat exchanger for recovering heat from a heating medium on the midway to be fed to a heat recovering part from a re-heating part of a non-leak gas gas heater. SOLUTION: The heat exchanger 31 for recovering heat from the heating medium W to be fed to the heat recovering part 1a from the re-heating part 3 of the non-leak gas gas heater is provided. As a result, the heat exchanger 31 functions as a heater for a circulating slurry for the evaporation and concentration in an evaporator 13, a part of the heat energy of the flue gas is used for the evaporation and concentration and the requirement of the supply of steam is eliminated. That is, as the circulating quantity of the heating medium W is about 1,000 t/h and the temp. of the heating medium W is about 75-80 deg.C at the outlet in the case of a 100 MW thermal power plant, the circulating slurry composed of a desulfurization waste water is heated to about 59 deg.C and the temp. of the heat transfer surface is kept at <=70 deg.C to prevent the generation of gypsum scale.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、亜硫酸ガスを少な
くとも含有する排煙の脱硫処理を行うとともに、この脱
硫処理に伴い排出される脱硫排水の蒸発濃縮による処理
を行う排煙処理設備に係り、特に排煙の冷却及び再加熱
を行なうガスガスヒータとして熱媒循環式のノンリーク
ガスガスヒータを備えた排煙処理設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas treatment facility for performing desulfurization treatment of flue gas containing at least sulfur dioxide gas and performing treatment by evaporative concentration of desulfurization waste water discharged in connection with the desulfurization treatment. More particularly, the present invention relates to a flue gas treatment facility provided with a non-leak gas gas heater of a heat medium circulation type as a gas gas heater for cooling and reheating flue gas.

【0002】[0002]

【従来の技術】一般に、火力発電プラント等におけるボ
イラの排煙には、亜硫酸ガスを代表とする硫黄酸化物が
含まれるため、大気汚染防止のため脱硫処理した後に大
気中に放出する必要がある。そして従来、そのための脱
硫装置としては、例えば石灰石等のカルシウム化合物を
吸収剤として亜硫酸ガスを吸収し、工業的に有用な石膏
を副生する石灰石膏法による湿式の脱硫装置が広く普及
しており、またこの脱硫装置から排出されるいわゆる脱
硫排水の後処理を行う処理装置としては、蒸発缶による
蒸発濃縮により前記脱硫排水を処理することで、CO
D,重金属及び窒素処理を含む高度な排水処理を要する
放流液を排出しない排水処理装置(いわゆる無排水処理
装置)が知られている。
2. Description of the Related Art Generally, smoke from a boiler in a thermal power plant or the like contains sulfur oxides represented by sulfurous acid gas, and must be released into the atmosphere after desulfurization to prevent air pollution. . Conventionally, as a desulfurization apparatus therefor, for example, a wet desulfurization apparatus based on a lime gypsum method that absorbs sulfurous acid gas using a calcium compound such as limestone as an absorbent and produces industrially useful gypsum has been widely used. In addition, as a treatment apparatus for performing post-treatment of so-called desulfurization wastewater discharged from the desulfurization apparatus, the desulfurization wastewater is treated by evaporative concentration using an evaporator to reduce CO2.
2. Description of the Related Art A wastewater treatment apparatus that does not discharge a effluent requiring advanced wastewater treatment including D, heavy metal, and nitrogen treatment (a so-called non-wastewater treatment apparatus) is known.

【0003】図2は、上述したような石灰石膏法による
湿式の脱硫装置や、蒸発濃縮を行う排水処理装置を含む
排煙処理設備の従来例を示す図であり、以下この設備を
説明する。火力発電設備のボイラから排出され図示省略
したエアヒータを経て導入された未処理排煙Aは、通常
130〜150℃であり、まず熱媒循環式のノンリーク
型ガスガスヒータ(GGH)の熱回収部1に導入されて
熱回収され、例えば90〜110℃の温度に冷却された
後、排煙A1として脱硫装置2に導入される。なお、ノ
ンリーク型ガスガスヒータとは、排煙が系外或いは熱媒
中に漏れない構造のものである。
FIG. 2 is a diagram showing a conventional example of a flue gas treatment facility including a wet desulfurization apparatus based on the lime-gypsum method as described above and a wastewater treatment apparatus for evaporating and concentrating, and this facility will be described below. The untreated flue gas A discharged from the boiler of the thermal power generation equipment and introduced through an air heater (not shown) is usually 130 to 150 ° C., and firstly, the heat recovery unit 1 of a non-leak gas gas heater (GGH) of a heat medium circulation type. And is cooled to a temperature of, for example, 90 to 110 ° C., and then introduced into the desulfurization device 2 as flue gas A1. The non-leak type gas heater has a structure in which smoke is not leaked outside the system or into the heat medium.

【0004】脱硫装置2では、図示省略した吸収塔にお
いて例えば吸収剤として石灰石を含む吸収剤スラリと排
煙Aとが気液接触して、排煙中から少なくとも亜硫酸ガ
ス(SO2)が除去される。またここで排煙は、前記気液
接触により水の露点まで冷却され、通常50℃程度とな
る。次いで排煙は、ガスガスヒータ(GGH)の再加熱
部3に送られ、ここでより大気放出に好ましい高温(通
常90℃程度)となるように加熱されて、処理後排煙B
として図示省略した煙突から大気中に放出される。
[0004] In the desulfurization device 2, an absorbent slurry containing, for example, limestone as an absorbent, and flue gas A come into gas-liquid contact in an absorption tower (not shown), so that at least sulfur dioxide (SO 2 ) is removed from the flue gas. You. Here, the flue gas is cooled to the dew point of water by the gas-liquid contact, and usually has a temperature of about 50 ° C. Next, the flue gas is sent to a reheating unit 3 of a gas gas heater (GGH), where the flue gas is heated to a high temperature (usually about 90 ° C.) which is more preferable for atmospheric release.
From the chimney not shown.

【0005】なお脱硫装置2において、亜硫酸ガスを吸
収した吸収剤スラリは、吸収塔底部に形成された図示し
ないタンク内において酸化され、さらに中和反応を起こ
して石膏を含む石膏スラリとなる。そしてこの石膏スラ
リは、前記タンクから抜き出されて、脱硫装置2の石膏
分離用の固液分離手段(例えば、真空式ベルトフィル
タ)によって、石膏固形分を分離される。この際、固液
分離手段から排出されるろ液は、一部が吸収剤スラリを
構成する液分として再使用され、残りが脱硫排水C1と
して不純物蓄積防止のために系外に排出される。
[0005] In the desulfurization unit 2, the absorbent slurry that has absorbed the sulfurous acid gas is oxidized in a tank (not shown) formed at the bottom of the absorption tower, and further causes a neutralization reaction to become a gypsum slurry containing gypsum. The gypsum slurry is extracted from the tank, and gypsum solid content is separated by a gypsum separation solid-liquid separation unit (for example, a vacuum belt filter) of the desulfurization apparatus 2. At this time, a part of the filtrate discharged from the solid-liquid separation means is reused as a liquid component constituting the absorbent slurry, and the remainder is discharged out of the system as desulfurization wastewater C1 to prevent accumulation of impurities.

【0006】また、熱媒循環ポンプ4により循環するガ
スガスヒータの熱媒W(通常は、水)は、この場合熱媒
ヒータ5においても蒸気Dの熱で加熱され、処理後排煙
A2を十分に加熱するようになっている。また、熱媒循
環ポンプ4の吸込み側には、熱媒Wを貯留するリザーバ
ータンク(図示略)が接続され、熱媒循環系の圧力変動
が吸収されるよう構成されている。
In this case, the heat medium W (usually water) of the gas gas heater circulated by the heat medium circulation pump 4 is also heated by the heat of the steam D in the heat medium heater 5 in this case. To be heated. Further, a reservoir tank (not shown) for storing the heat medium W is connected to the suction side of the heat medium circulation pump 4 so as to absorb pressure fluctuations of the heat medium circulation system.

【0007】なお、例えば1000MWの火力発電設備
用の場合には、熱媒の定常時の循環流量は1000t/
h程度であり、また循環する熱媒の温度は、再加熱部3
の出口又は熱回収部1の入口で75〜80℃程度、熱回
収部1の出口又は再加熱部3の入口で115〜125℃
程度である。
For example, in the case of a 1000 MW thermal power generation facility, the steady-state circulation flow rate of the heat medium is 1000 t /
h and the temperature of the circulating heat medium is
About 75 to 80 ° C. at the outlet of the heat recovery unit 1 or at the inlet of the reheating unit 3
It is about.

【0008】次に、脱硫排水C1の後処理は、前処理装
置11を含む排水処理装置によりこの場合放流液を出す
ことなく行われる。即ち、脱硫排水C1は、まず前処理
装置11に導入され、ここで凝集沈殿処理等を含む前処
理が実施され、懸濁する固形分の除去等がなされた脱硫
排水C2として、蒸発濃縮循環ライン12に送られる。
蒸発濃縮循環ライン12は、蒸発缶13の底部に溜まっ
たスラリC3の一部が蒸発缶循環ポンプ14により強制
循環する配管ラインである。そして、送られた脱硫排水
C2は、前記スラリC3の一部とともに、この蒸発濃縮
循環ライン12を介して加熱器15(熱交換器)を経て
蒸発缶13内のノズル16に送られ、蒸発缶13内に噴
霧されてその水分が蒸発する。
Next, post-treatment of the desulfurization waste water C1 is performed by a waste water treatment device including a pre-treatment device 11 without discharging a discharged liquid in this case. That is, the desulfurization effluent C1 is first introduced into the pretreatment device 11, where pretreatment including coagulation sedimentation and the like is performed, and as a desulfurization effluent C2 from which suspended solids are removed, the evaporative concentration circulation line is used. 12 is sent.
The evaporating and condensing circulation line 12 is a piping line in which a part of the slurry C3 collected at the bottom of the evaporator 13 is forcibly circulated by the evaporator circulation pump 14. Then, the sent desulfurization wastewater C2 is sent to a nozzle 16 in an evaporator 13 through a heater 15 (heat exchanger) via the evaporative concentration circulation line 12 together with a part of the slurry C3, 13 and the water evaporates.

【0009】ここで、加熱器15は、いわゆるシェルア
ンドチューブ構造の熱交換器であり、供給された高温蒸
気Eにより脱硫排水C2よりなる循環スラリを加熱する
ものである。例えば1000MWの火力発電設備用の場
合には、蒸発缶循環ポンプ14による定常時の循環流量
は1000m3/h程度であり、循環スラリの温度は、加
熱器15の入口で55℃程度、加熱器15の出口で59
℃程度である。また、蒸発缶13の上部は、凝縮器17
を経て真空ポンプ18に接続されており、前述の55℃
程度から59℃程度への加熱により水分の蒸発が起こる
ように負圧(0.2ata程度)とされている。
Here, the heater 15 is a so-called shell-and-tube heat exchanger for heating the circulating slurry composed of the desulfurization wastewater C2 by the supplied high-temperature steam E. For example, in the case of a thermal power generation facility of 1000 MW, the circulating flow rate at steady state by the evaporator circulation pump 14 is about 1000 m 3 / h, the temperature of the circulation slurry is about 55 ° C. at the inlet of the heater 15, Exit 15 at 59
It is about ° C. The upper part of the evaporator 13 is provided with a condenser 17.
And connected to the vacuum pump 18 at 55 ° C.
The pressure is set to a negative pressure (about 0.2 ata) so that the water evaporates by heating from about 30 ° C. to about 59 ° C.

【0010】なお、脱硫排水C2は、石膏の飽和溶液で
あるため、加熱器15における伝熱面において石膏の固
形分が析出しスケールとなって固着する恐れがあるが、
出願人の研究によれば以下のような運用により、このよ
うなスケールの発生が防止できることが分っている。即
ち、蒸発缶13のスラリC3内における石膏の晶析を促
進させるいわゆる種晶として、例えば脱硫装置2で回収
された石膏が脱硫排水C2中に少なくとも4000pp
m含まれるようにするとともに、加熱器15における伝
熱面の温度が70℃以下となるように、蒸気Eの温度を
管理すればよい。
[0010] Since the desulfurization wastewater C2 is a gypsum saturated solution, the solid content of gypsum may precipitate on the heat transfer surface of the heater 15 and form a scale, which may be fixed.
According to the applicant's research, it has been found that such a scale can be prevented by the following operations. That is, as a so-called seed crystal for promoting crystallization of gypsum in the slurry C3 of the evaporator 13, for example, gypsum recovered by the desulfurization unit 2 is at least 4000 pp in the desulfurization wastewater C2.
m, and the temperature of the steam E may be controlled so that the temperature of the heat transfer surface in the heater 15 is 70 ° C. or less.

【0011】そして、蒸発缶13において蒸発したスラ
リC3の水分C4(蒸気)は、凝縮器17において冷却
水Fにより冷却されて凝縮し、石膏等をほとんど含まな
い高純度な水C5となって回収タンク19に貯留され
る。なお、この回収タンク19内の水C5は、例えば脱
硫装置2の吸収剤スラリを構成する補給水として再利用
される。
The water C4 (steam) of the slurry C3 evaporated in the evaporator 13 is cooled by the cooling water F in the condenser 17 and condensed, and recovered as high-purity water C5 containing almost no gypsum. It is stored in a tank 19. The water C5 in the recovery tank 19 is reused, for example, as makeup water constituting the absorbent slurry of the desulfurization device 2.

【0012】一方、蒸発缶13内底部に溜まるスラリC
3は、水分の蒸発により析出した溶解塩類を多量に含む
濃縮スラリとなり、この濃縮スラリの一部は順次スラリ
ポンプ20により抜出され、この場合乾燥器21により
さらに水分を除去されて固形分Gとして回収される。な
お、この場合乾燥器21としては、ドラムドライア型乾
燥器が用いられる。また、蒸発缶13の底部から抜出し
たスラリC3は、例えば図示省略した除塵装置により排
煙から捕集されたフライアッシュ等の粉塵やセメントと
混合し固化処理することもできる。
On the other hand, the slurry C collected at the bottom of the evaporator 13
Reference numeral 3 denotes a concentrated slurry containing a large amount of dissolved salts precipitated by the evaporation of water, and a part of the concentrated slurry is sequentially drawn out by a slurry pump 20. In this case, the water is further removed by a dryer 21 to remove solids G. Will be collected as In this case, a drum dryer type dryer is used as the dryer 21. Further, the slurry C3 extracted from the bottom of the evaporator 13 can be mixed with dust or cement such as fly ash collected from flue gas by a dust remover (not shown) and solidified.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記従来の
排煙処理設備は、前述したように脱硫排水を蒸発缶によ
って蒸発濃縮することにより放流液を出さないですむ点
において優れたものであるが、さらなる経済性の向上を
図る観点においては、以下のような改善すべき問題があ
った。
By the way, the above-mentioned conventional flue gas treatment equipment is excellent in that the desulfurization wastewater is evaporated and concentrated by the evaporator to eliminate the discharge liquid as described above. However, from the viewpoint of further improving economic efficiency, there are the following problems to be improved.

【0014】すなわち、蒸発缶13において水分を蒸発
させるためにはその潜熱に応じた多大な熱エネルギーが
必要であり、蒸気Eが多量に必要となるため、近年益々
要求される運転コストの低減化にとって大きな障害とな
っていた。例えば1000MWの火力発電設備用の場合
には、加熱器15に供給する蒸気Eが10t/h程度必
要であった。
That is, in order to evaporate water in the evaporator 13, a large amount of heat energy corresponding to the latent heat is required, and a large amount of steam E is required. Was a major obstacle for For example, in the case of a 1000 MW thermal power generation facility, about 10 t / h of steam E to be supplied to the heater 15 is required.

【0015】そこで本発明は、脱硫装置と、この脱硫装
置の脱硫排水を蒸発濃縮して処理する排水処理装置と、
熱媒循環式のノンリークガスガスヒータとを含む排煙処
理設備であって、蒸発濃縮のために従来供給していた蒸
気が不要となる排煙処理設備を提供することを目的とし
ている。
Accordingly, the present invention provides a desulfurization apparatus, a wastewater treatment apparatus for evaporating and condensing desulfurization wastewater from the desulfurization apparatus,
It is an object of the present invention to provide a flue gas treatment facility including a heat medium circulation type non-leak gas gas heater, which eliminates the need for steam conventionally supplied for evaporation and concentration.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明の排煙処理設備は、排煙を吸収剤スラリと気
液接触させて排煙中の少なくとも亜硫酸ガスを吸収する
脱硫装置と、この脱硫装置の吸収剤スラリを構成する液
の一部を抜き出してなる脱硫排水を蒸発缶により蒸発濃
縮して処理する排水処理装置と、前記脱硫装置の前流に
設けた熱回収部により排煙から熱回収し、この回収した
熱によって前記脱硫装置の後流に設けた再加熱部により
脱硫処理後の排煙を再加熱する熱媒循環式のノンリーク
ガスガスヒータとを有する排煙処理設備において、前記
蒸発缶における蒸発のために脱硫排水を加熱する加熱器
として、前記ノンリークガスガスヒータの再加熱部から
熱回収部に送られる途上の熱媒から熱回収する熱交換器
を設けたことを特徴とする。
In order to achieve the above object, a flue gas treatment facility of the present invention comprises a desulfurization device for bringing flue gas into gas-liquid contact with an absorbent slurry to absorb at least sulfur dioxide in the flue gas. A desulfurization treatment system that evaporates and concentrates a desulfurization wastewater obtained by extracting a part of the liquid constituting the absorbent slurry of the desulfurization device with an evaporator, and a heat recovery unit provided upstream of the desulfurization device. A flue gas treatment facility having a heat medium circulation type non-leak gas gas heater for recovering heat from smoke and reheating flue gas after desulfurization processing by a reheating unit provided downstream of the desulfurization device with the recovered heat; In the above, a heat exchanger for recovering heat from a heating medium being sent from a reheating unit to a heat recovery unit of the non-leak gas gas heater is provided as a heater for heating the desulfurization wastewater for evaporation in the evaporator. Features To.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図面に基づいて説明する。図1は、本例の排煙処理設
備の構成を示す図である。なお、図2に示す従来の構成
と同様の要素には、同符号を付して重複する説明を省略
する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of the smoke exhaust treatment facility of the present embodiment. The same elements as those in the conventional configuration shown in FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.

【0018】本例の特徴は、従来の加熱器15の代り
に、ノンリークガスガスヒータの再加熱部3から熱回収
部1aに送られる途上の熱媒Wから熱回収する熱交換器
31を設けたことを特徴とする。なお、ノンリークガス
ガスヒータの熱回収部1aは、後述するように従来より
も若干容量(伝熱面積)を大型化させたものとするのが
好ましい。またこの場合、熱交換器31を経由しないバ
イパスラインが設けられて、ここに流量調整弁32が接
続されている。
The present embodiment is characterized in that a heat exchanger 31 for recovering heat from the heating medium W being sent from the reheating unit 3 of the non-leak gas gas heater to the heat recovery unit 1a is provided instead of the conventional heater 15. It is characterized by having. In addition, it is preferable that the capacity (heat transfer area) of the heat recovery unit 1a of the non-leak gas gas heater be slightly larger than that of the conventional heat recovery unit, as described later. In this case, a bypass line that does not pass through the heat exchanger 31 is provided, and the flow control valve 32 is connected to the bypass line.

【0019】上記本例の排煙脱硫設備では、熱交換器3
1が蒸発缶13における蒸発濃縮のための循環スラリの
加熱器として十分機能し、結果的に排煙の熱エネルギー
(脱硫装置における気液接触の際の水分の蒸発に従来費
やされていたもの)の一部が蒸発濃縮のための加熱に使
用されることになって、従来のように蒸気Eを供給する
必要がなくなり、設備全体としての蒸気使用量が大幅に
削減できる。
In the flue gas desulfurization facility of the present embodiment, the heat exchanger 3
1 sufficiently functions as a heater for a circulating slurry for evaporating and condensing in the evaporator 13 and consequently heat energy of flue gas (which has been conventionally used for evaporating water during gas-liquid contact in a desulfurizer). ) Is used for heating for evaporative concentration, so that there is no need to supply steam E as in the conventional case, and the amount of steam used as a whole equipment can be greatly reduced.

【0020】すなわち、例えば1000MWの火力発電
設備用の場合には熱媒Wの循環流量は1000t/h程
度であり、また熱媒Wの温度は、再加熱部3の出口で7
5〜80℃程度であるため、熱交換器31では、脱硫排
水よりなる循環スラリを前述の温度(59℃程度)まで
十分に加熱できるとともに、また熱伝達面の温度を70
℃以下に維持して前述した石膏スケールの発生を防止す
ることもできる。
That is, for example, in the case of a thermal power generation facility of 1000 MW, the circulation flow rate of the heat medium W is about 1000 t / h, and the temperature of the heat medium W
Since the temperature is about 5 to 80 ° C., the heat exchanger 31 can sufficiently heat the circulating slurry composed of the desulfurization wastewater to the above-mentioned temperature (about 59 ° C.) and raise the temperature of the heat transfer surface to 70 ° C.
It is also possible to prevent the above-mentioned gypsum scale from being generated by maintaining the temperature below ℃.

【0021】そして、ガスガスヒータの熱回収部1aの
入口での熱媒Wの温度は、熱交換器31における吸熱に
より70〜75℃程度まで従来よりも低下するため、結
果的に熱回収部1aの容量がたとえ従来と同じでもその
熱回収効果(冷却性能)が増加して、熱回収部1aの排
煙出口での排煙温度は従来の110℃程度から105℃
程度まで低下する。
The temperature of the heat medium W at the inlet of the heat recovery unit 1a of the gas gas heater is reduced to about 70 to 75 ° C. by heat absorption in the heat exchanger 31 as a result, and as a result, the heat recovery unit 1a Even if the capacity of the heat recovery unit is the same as the conventional one, the heat recovery effect (cooling performance) increases, and the smoke discharge temperature at the smoke discharge outlet of the heat recovery unit 1a increases from approximately 110 ° C. to 105 ° C.
To a degree.

【0022】一方、熱回収部1aの出口での熱媒Wの温
度は、前記熱回収部1aにおける熱回収効果の増加によ
り、従来より若干低下するだけで、ほとんど問題となら
ない。また、脱硫装置2では排煙が吸収剤スラリの水分
が蒸発してなる水蒸気で飽和するまで(即ち、水の露点
まで)冷却されるため、熱回収部1aの排煙出口(即
ち、脱硫装置2の入口側)での排煙温度が従来の110
℃程度から105℃程度まで低下しても、脱硫装置2の
出口側の温度はほとんど変化せずこれも問題とならな
い。
On the other hand, the temperature of the heat medium W at the outlet of the heat recovery unit 1a is slightly lower than the conventional one due to the increase of the heat recovery effect in the heat recovery unit 1a, and hardly causes any problem. In addition, in the desulfurization device 2, the flue gas is cooled until it is saturated with water vapor generated by evaporating the moisture of the absorbent slurry (that is, to the dew point of water), so the flue gas outlet of the heat recovery unit 1a (that is, the desulfurization device) (Inlet side 2), the flue gas temperature is 110
Even if the temperature is lowered from about ℃ to about 105 ℃, the temperature on the outlet side of the desulfurization apparatus 2 hardly changes, which is not a problem.

【0023】またなお、脱硫装置2の入口側での排煙温
度が従来の110℃程度から105℃程度まで低下する
ことは、脱硫装置2における亜硫酸ガスの吸収反応を却
って促進し脱硫処理の性能を向上させるとともに、排煙
と吸収剤スラリの気液接触に伴う水分の蒸発量を低減す
る作用があるため、脱硫装置2における補給水の減量
(工業用水等の使用量低減)が実現できる。
In addition, the fact that the exhaust gas temperature at the inlet side of the desulfurization unit 2 drops from about 110 ° C. to about 105 ° C. in the desulfurization unit 2 rather accelerates the absorption reaction of the sulfur dioxide gas in the desulfurization unit 2 and improves the performance of the desulfurization treatment. And the effect of reducing the amount of evaporation of water due to the gas-liquid contact between the smoke exhaust and the absorbent slurry, so that the amount of makeup water in the desulfurization apparatus 2 can be reduced (the amount of industrial water used can be reduced).

【0024】したがって、本例の構成によれば、結果的
に排煙の熱エネルギーが蒸発缶13における蒸発濃縮の
ための加熱に有効に使用されることになって、しかもガ
スガスヒータ等の熱バランスや脱硫処理の性能にほとん
ど影響を与えないばかりか、却って脱硫性能を向上させ
るため、従来の設備に対して、蒸発濃縮のための従来の
加熱器15の代りに熱媒Wを高温側流体とする熱交換器
31を設けて、そこに熱媒Wを流すための配管ラインを
追加するといった程度の極めて簡単な設計変更或いは改
造を行なうことによって、従来よりも格段に少ない使用
蒸気量で、従来とほぼ同様あるいはそれ以上の性能の脱
硫処理及びそれに伴う排水処理を行なうことができると
いう実用上極めて優れた効果が得られる。
Therefore, according to the configuration of this embodiment, the heat energy of the exhaust gas is effectively used for heating for evaporative concentration in the evaporator 13 and the heat balance of the gas gas heater and the like is obtained. In addition to having little effect on the performance of the desulfurization treatment and improving the desulfurization performance, instead of the conventional heater 15 for evaporative concentration, the heating medium W is replaced with the high-temperature side fluid in the conventional equipment. By performing a very simple design change or modification such as adding a pipe line for flowing the heat medium W through the heat exchanger 31 to be used, the amount of steam used is significantly smaller than before, The practically excellent effect that desulfurization treatment having substantially the same or higher performance and wastewater treatment associated therewith can be performed can be obtained.

【0025】なお、ガスガスヒータの再加熱部3の入口
における熱媒Wの温度を従来に比し全く変化させないよ
うにするためには、熱回収部1aの容量(伝熱面積)を
若干増やすか、熱媒ヒータ5における蒸気Dの流量を若
干増やせばよい。このようにすれば、処理後排煙Bの温
度を従来と全く同じに維持でき、しかもこの場合でも、
排煙からの熱回収量が増える分だけやはり全体として使
用蒸気量の大幅な削減が実現される。
In order to keep the temperature of the heat medium W at the inlet of the reheating unit 3 of the gas gas heater unchanged at all compared with the conventional case, it is necessary to increase the capacity (heat transfer area) of the heat recovery unit 1a slightly. The flow rate of the steam D in the heating medium heater 5 may be slightly increased. In this way, the temperature of the exhaust gas B after treatment can be maintained exactly the same as before, and in this case,
As a whole, the amount of heat recovered from the flue gas is increased, so that a large reduction in the amount of used steam is realized.

【0026】また、この場合脱硫排水C1の排出量の変
動に伴う蒸発缶13における蒸発量の制御は、前述のバ
イパスラインに設けた流量調整弁の開度を操作して熱交
換器31に流れる熱媒Wの流量を調整することで容易に
可能である。
In this case, the amount of evaporation in the evaporator 13 due to the variation in the amount of the desulfurized wastewater C1 is controlled by operating the opening of the flow rate control valve provided in the bypass line to the heat exchanger 31. It is easily possible by adjusting the flow rate of the heat medium W.

【0027】[0027]

【発明の効果】本発明の排煙処理設備では、熱交換器が
蒸発缶における蒸発濃縮のための加熱器として十分機能
し、結果的に排煙の熱エネルギー(脱硫装置における気
液接触の際の水分の蒸発に従来費やされていたもの)の
一部が蒸発濃縮のための加熱に使用されることになっ
て、従来のように蒸発濃縮のために蒸気を供給する必要
がなくなり、設備全体としての蒸気使用量が大幅に削減
できる。
In the flue gas treatment equipment of the present invention, the heat exchanger functions sufficiently as a heater for evaporative concentration in the evaporator, and as a result, the heat energy of the flue gas (at the time of gas-liquid contact in the desulfurization unit). A part of the water used for evaporation of water) is used for heating for evaporative concentration, eliminating the need to supply steam for evaporative concentration as in the past. Overall steam usage can be significantly reduced.

【0028】また、脱硫装置の入口側での排煙温度が従
来より低下するため、脱硫装置における亜硫酸ガスの吸
収反応を却って促進し脱硫処理の性能が向上するととも
に、排煙と吸収剤スラリの気液接触に伴う水分の蒸発量
を低減する作用があるため、脱硫装置における補給水の
減量(工業用水等の使用量低減)も実現できる。
Further, since the temperature of the flue gas at the inlet side of the desulfurization unit is lower than before, the absorption reaction of the sulfur dioxide gas in the desulfurization unit is rather accelerated to improve the performance of the desulfurization treatment. Since it has the effect of reducing the amount of evaporation of water due to gas-liquid contact, it is possible to realize a reduction in the amount of makeup water in the desulfurization device (a reduction in the amount of industrial water used).

【0029】したがって本発明によれば、従来の設備に
対して、蒸発濃縮のための従来の加熱器の代りにガスガ
スヒータの熱媒を高温側流体とする熱交換器を設けて、
そこにガスガスヒータの熱媒を流すための配管ラインを
追加するといった極めて簡単な設計変更或いは改造を行
なうことによって、従来よりも格段に少ない使用蒸気量
で、従来とほぼ同様あるいはそれ以上の性能の脱硫処理
及びそれに伴う排水処理を行なうことができるという実
用上極めて優れた効果が得られる。
Therefore, according to the present invention, a heat exchanger using a heat medium of a gas gas heater as a high-temperature side fluid is provided in place of the conventional heater for evaporative concentration with respect to the conventional equipment,
By making a very simple design change or modification, such as adding a piping line for flowing the heat medium of the gas gas heater, the amount of steam used is much smaller than before, and the performance is almost the same as or higher than the conventional one. A practically excellent effect that desulfurization treatment and accompanying wastewater treatment can be performed is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例である排煙処理設備の全体構成を
示す図である。
FIG. 1 is a diagram showing an entire configuration of a flue gas treatment facility as an example of the present invention.

【図2】従来の排煙処理設備の全体構成を示す図であ
る。
FIG. 2 is a diagram showing an entire configuration of a conventional smoke exhaust treatment facility.

【符号の説明】[Explanation of symbols]

1a ガスガスヒータの熱回収部 2 脱硫装置 3 ガスガスヒータの再加熱部 13 蒸発缶 31 熱交換器 C1 脱硫排水 W 熱媒 1a Heat recovery unit of gas gas heater 2 Desulfurization unit 3 Reheating unit of gas gas heater 13 Evaporator 31 Heat exchanger C1 Desulfurization wastewater W Heat medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖野 進 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Susumu Okino 4-6-22 Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Inside Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排煙を吸収剤スラリと気液接触させて排
煙中の少なくとも亜硫酸ガスを吸収する脱硫装置と、こ
の脱硫装置の吸収剤スラリを構成する液の一部を抜き出
してなる脱硫排水を蒸発缶により蒸発濃縮して処理する
排水処理装置と、前記脱硫装置の前流に設けた熱回収部
により排煙から熱回収し、この回収した熱によって前記
脱硫装置の後流に設けた再加熱部により脱硫処理後の排
煙を再加熱する熱媒循環式のノンリークガスガスヒータ
とを有する排煙処理設備において、 前記蒸発缶における蒸発のために脱硫排水を加熱する加
熱器として、前記ノンリークガスガスヒータの再加熱部
から熱回収部に送られる途上の熱媒から熱回収する熱交
換器を設けたことを特徴とする排煙処理設備。
1. A desulfurization apparatus for bringing flue gas into gas-liquid contact with an absorbent slurry to absorb at least sulfur dioxide in the flue gas, and desulfurization by extracting a part of a liquid constituting the absorbent slurry of the desulfurization apparatus. A wastewater treatment device for evaporating and condensing wastewater by an evaporator and a heat recovery unit provided upstream of the desulfurization device recovers heat from the flue gas, and the recovered heat is provided downstream of the desulfurization device. In a flue gas treatment facility having a heat medium circulation type non-leak gas gas heater for reheating flue gas after desulfurization treatment by a reheating unit, as a heater for heating desulfurization waste water for evaporation in the evaporator, A flue gas treatment facility comprising a heat exchanger for recovering heat from a heat medium being sent from a reheating section of a non-leak gas gas heater to a heat recovery section.
JP9259326A 1997-09-08 1997-09-08 Flue gas treating device Withdrawn JPH1176750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259326A JPH1176750A (en) 1997-09-08 1997-09-08 Flue gas treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259326A JPH1176750A (en) 1997-09-08 1997-09-08 Flue gas treating device

Publications (1)

Publication Number Publication Date
JPH1176750A true JPH1176750A (en) 1999-03-23

Family

ID=17332544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259326A Withdrawn JPH1176750A (en) 1997-09-08 1997-09-08 Flue gas treating device

Country Status (1)

Country Link
JP (1) JPH1176750A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088610C (en) * 1999-11-10 2002-08-07 山东电力建设第三工程公司 Flue gas desulfurating dust-removing device
CN105967253A (en) * 2016-05-23 2016-09-28 南京奥能科技有限公司 Evaporation process and device of desulfurized wastewater cooling tower
CN107143841A (en) * 2017-05-22 2017-09-08 大唐(北京)能源管理有限公司 The comprehensive improvement system of desulfurization wastewater and thermal flue gas under a kind of running on the lower load
JP2017196616A (en) * 2016-04-29 2017-11-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Wet flue gas desulfurization system with use of null waste liquid discharge
JP2017196617A (en) * 2016-04-29 2017-11-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Apparatus and method for reducing acid gas discharge by evaporating waste water
CN107619077A (en) * 2016-07-15 2018-01-23 钟方明 A kind of steam heating desulfurization wastewater spray cooling tower evaporation technology and device
JP2019155213A (en) * 2018-03-07 2019-09-19 オルガノ株式会社 Gas detoxification system and method and evaporation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088610C (en) * 1999-11-10 2002-08-07 山东电力建设第三工程公司 Flue gas desulfurating dust-removing device
JP2017196616A (en) * 2016-04-29 2017-11-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Wet flue gas desulfurization system with use of null waste liquid discharge
JP2017196617A (en) * 2016-04-29 2017-11-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Apparatus and method for reducing acid gas discharge by evaporating waste water
CN105967253A (en) * 2016-05-23 2016-09-28 南京奥能科技有限公司 Evaporation process and device of desulfurized wastewater cooling tower
CN107619077A (en) * 2016-07-15 2018-01-23 钟方明 A kind of steam heating desulfurization wastewater spray cooling tower evaporation technology and device
CN107143841A (en) * 2017-05-22 2017-09-08 大唐(北京)能源管理有限公司 The comprehensive improvement system of desulfurization wastewater and thermal flue gas under a kind of running on the lower load
JP2019155213A (en) * 2018-03-07 2019-09-19 オルガノ株式会社 Gas detoxification system and method and evaporation device

Similar Documents

Publication Publication Date Title
JP4688842B2 (en) Wastewater treatment method
CN105217702B (en) A kind of desulfurization wastewater treatment system
CN108117122B (en) Treatment method and treatment device for sodium-method flue gas desulfurization wastewater
KR101860295B1 (en) Treatment Apparatus of FGD Wastewater by using Vacuum Evaporation and Method Thereof
CN109019734B (en) Desulfurization waste water zero release&#39;s system
CN111056584A (en) Desulfurization wastewater zero-discharge treatment system and method
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
CN108117210B (en) Treatment method and treatment device for flue gas desulfurization waste liquid
EP0768108B1 (en) Boiler flue gas desulfuriser with heat recovery means
CN109879343A (en) A kind of processing system and processing method of catalytic cracking and desulfurizing waste water
CN108314119B (en) Desulfurization wastewater phase-change flash crystallization zero-emission system and desulfurization wastewater treatment method
JP2005098552A5 (en)
JPH1176750A (en) Flue gas treating device
CN112875785A (en) Deep treatment system and method for wet desulphurization wastewater of coal-fired boiler
CN106007142A (en) Desulfurization wastewater zero discharge treatment system
JP2001179047A (en) Wastewater treatment facility
AU2011364094B2 (en) Exhaust gas treatment system and exhaust gas treatment method
CN208440312U (en) A kind of processing system of desulfurization wastewater
CN115893559A (en) Desulfurization wastewater zero-discharge system and desulfurization wastewater zero-discharge process
CN113683143A (en) Desulfurization wastewater treatment system and method
JPH02198613A (en) Method for wet-desulfurizing exhaust gas
CN212609637U (en) Boiler flue gas desulfurization effluent disposal system
JPH09103641A (en) Flue gas desulfurization facility and boiler equipment
CN113003637A (en) System for flue gas waste heat utilization and desulfurization waste water zero release coupling
JP2805497B2 (en) Treatment of wet flue gas desulfurization wastewater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207