WO2000040793A1 - Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung - Google Patents

Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung Download PDF

Info

Publication number
WO2000040793A1
WO2000040793A1 PCT/EP1999/008225 EP9908225W WO0040793A1 WO 2000040793 A1 WO2000040793 A1 WO 2000040793A1 EP 9908225 W EP9908225 W EP 9908225W WO 0040793 A1 WO0040793 A1 WO 0040793A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrim
layers
fibrous sheet
sheet material
nonwoven fabric
Prior art date
Application number
PCT/EP1999/008225
Other languages
English (en)
French (fr)
Inventor
Dieter Groitzsch
Gerhard Schaut
Hans-Jörg GRIMM
Original Assignee
Carl Freudenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg filed Critical Carl Freudenberg
Priority to EP99973581A priority Critical patent/EP1159478B1/de
Priority to JP2000592484A priority patent/JP4039809B2/ja
Priority to AU11574/00A priority patent/AU753366B2/en
Priority to DE59911856T priority patent/DE59911856D1/de
Priority to BRPI9916784-0A priority patent/BR9916784B1/pt
Priority to CA002357868A priority patent/CA2357868C/en
Priority to AT99973581T priority patent/ATE292206T1/de
Priority to US09/869,710 priority patent/US6723416B1/en
Priority to PL99350092A priority patent/PL190344B1/pl
Publication of WO2000040793A1 publication Critical patent/WO2000040793A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/38Meshes, lattices or nets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1039Surface deformation only of sandwich or lamina [e.g., embossed panels]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24636Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24636Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
    • Y10T428/24645Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.] with folds in parallel planes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/159Including a nonwoven fabric which is not a scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/159Including a nonwoven fabric which is not a scrim
    • Y10T442/16Two or more nonwoven layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the invention is concerned with three-dimensionally structured fiber sheets.
  • Three-dimensionally structured is used here to denote fiber sheet structures in which the orientation and spatial assignment of the individual fibers to one another in the plane in question in each case deviate from that in the closest plane of the plane.
  • the invention is concerned with fiber sheet structures which have at least one nonwoven layer which is connected to at least one layer of a scrim, grid or net.
  • a method of manufacture is given.
  • One or more layers of discontinuous, thermoplastic material are present.
  • Polymer fibers and one or more layers of an open mesh Networks of coarse, thermoplastic, continuous meltblown fibers, which cross each other at a predetermined angle, are connected to one another by thermal welding, either flat or point-shaped, to form a flat structure with a uniform thickness.
  • the tangled short fibers have diameters between 0.5 and 30 ⁇ m with a basis weight of 10 to 15 g / m 2 .
  • grating / microfiber layer / grating as well
  • a preferred material for both the microfibers and the filaments of the grid is polypropylene.
  • Such a flat structure has a very high tensile strength, coupled with a precisely adjustable porosity.
  • the meltblown microfiber layers determine the external appearance and, for example, the filter properties, while the thermoplastic network (s) reinforce, control the porosity and, if necessary, simulate the appearance of a woven fabric
  • the material is therefore not only suitable as a filter, but also as a sterile packaging material in surgery.
  • Other areas of application are chemically internal filter media or non-wettable, lightweight, thermal insulation layers for clothing, gloves or boots.
  • the layers are thermally bonded to one another under pressure, for example between heated rollers, the engravings of which correspond to the desired spot welding.
  • heat radiation can be applied between the rollers before heating. The degree of heat exposure is adjusted so that the fiber materials soften but do not experience an increase in temperature up to their crystalline melting point.
  • the object of the invention is to improve the described three-dimensionally structured fiber sheet of the prior art in such a way that, even at temperatures up to 60 ° C., it can withstand pressure peaks perpendicular to the surface plane up to 1 psi without destruction.
  • the invention is also intended to show a production method for such a fiber sheet.
  • At least one nonwoven layer is connected to one layer of scrim.
  • the nonwoven layers consist of mechanically and / or thermally bonded fibers and have a fold-like course in the surface direction in the form of geometric, repeating elevations or corrugations.
  • At least one thermoplastic scrim, grid or mesh layer with one another crossing and melting at the crossover points connected continuous filaments with a thickness of 150 to 2000 ⁇ m between their crossing points and thickening at the crossing points up to seven times these values is present in the structure according to the invention.
  • this layer will in the following always be referred to as a scrim, even if there are other structures with intersecting individual filaments.
  • the mesh size of the scrim i.e. the distance between two nearest filament crossing points in the longitudinal direction, multiplied by the corresponding distance in the transverse direction, is 0.01 to 9 cm 2 , with the proviso that the filament crossing points in the longitudinal and transverse directions are no less are spaced apart by 0.10 mm.
  • connection between the fiber layers and the laid layers can be full-surface, punctiform, linear or flat-pattern-like.
  • the continuous filaments of the scrim consist, for example, of polyethylene, polypropylene, polyamide-6, polyamide-6.6, polybutylene terephthalate, polyethylene terephthalate, polyester elastomers, copolyesters, copolymers of ethylene and vinyl acetate or of polyurethane.
  • the scrim consists of a biaxially stretched network.
  • the stretching in the direction of both filament courses takes place according to known methods in the longitudinal direction by passing the gap between a slower and a faster running roll, the speed ratio of the faster to the slower running roll determining the drawing ratio.
  • the stretching is carried out in the transverse direction by means of an expanding tenter. This known procedure results in a reduction in the thickness of the filaments between the mutual crossing points and thus a reduction in the basis weight by up to 95%.
  • the invention also relates to a one-sided or double-sided coating of hot-melt adhesive, which has a much lower melting point and adhesive point than the plastic of the filament, and laminated fabrics.
  • each nonwoven layer has different properties with regard to the configuration of its fold or with regard to its inherent properties, such as, for example, weight per unit area, type of fiber, fiber bond.
  • the expert in the selection of the parameters for the nonwovens with regard to the composition, type of fiber, fiber bond and fiber orientation depends on the properties known to him which these layers should have. In the interest of a high inherent rigidity of the elevations and corrugations, an intensive bonding of the nonwoven fibers to one another is necessary.
  • a hard grip is preferred, since this increases the inherent rigidity and mechanical resistance of the fiber sheet overall.
  • each of the nonwovens present can have layers of fused fibers, these melt surfaces being thermally connected to the scrim.
  • the distance from one filament crossing point to the next in the scrim as well as the degree of stretching and the filament thickness in the longitudinal and transverse directions are approximately the same, because this results in elevations with a circular base cross-section after the shrinking process. These have proven to be the most resistant to pressure loads perpendicular to the surface plane.
  • multilayer fibrous fabrics with weights of 20 to 3000 g / m 2 can be produced.
  • Products with low basis weights are suitable, for example, for liquid-absorbing and distributing layers in diapers, those with up to 3000 g / m 2 for high-volume filter mats with a high storage capacity for the filtrate.
  • Fig. 1 shows the subject of the invention in supervision
  • Fig. 2 shows a cross section along the line A-A of Fig. 1
  • Fig. 3 shows a cross section as in Fig. 2, but with different types of nonwoven layers.
  • the composite 1 is first considered: Here, one of the possible embodiments of the invention is shown in a top view.
  • the composite 1 is composed of the shrunk fabric 4 and the two nonwoven layers 2 and 3. These are bound to the shrunk fabric, but not to one another, in such a way that elevations 6 and depressions 7 are formed on the nonwovens on both sides of the fabric. Between the elevations and below them there are cavities 12, 13 which are permeable to fluid media and receive particles and dusts therefrom.
  • the fabric consists of intersecting monofilaments 5.
  • FIG. 2 shows a cross section along the line AA from FIG. 1; the nonwovens 2 and 3 are bound in the areas 8 of the recesses 7 to the monofilaments 5 of the scrim 4 with the aid of adhesive.
  • Fig. 3 shows a shrunk composite of nonwoven fabric and scrim, the distance between the filaments 5 of the scrim and the tips 9 of the elevations 6 is designated by 10.
  • the cross section shown, in contrast to FIG. 2, has an asymmetrical structure.
  • the non-woven material elevations 8 extend only in one direction perpendicular to the surface plane of the scrim.
  • the scrim filaments are coextruded on one side
  • Hot melt adhesive 11 with a significantly lower melting and softening point than the remaining mass of the scrim.
  • the nonwoven fabric is intensively bonded to the scrim by the hot melt adhesive 11, position 11 simultaneously representing the deepest point of the recess 7.
  • Position number 10 defines the distance between the lay plane and the tip 9 of the elevations 6. The latter result in a significant increase in surface area, which results in an increased absorption capacity for particles to be separated.
  • the cavities 12 between the elevations 6 of the nonwoven fabric, which are oriented perpendicular to the plane of the surface, and the layer of scrims, as well as the open spaces 13 between the depressions 7 and the tips 9 of the elevations 6, are large enough to contain low to medium-viscosity liquids and multidisperse systems from solid parts and absorb aqueous solutions spontaneously and possibly pass them on to the suction layers underneath.
  • Fibrous sheet material is carried out by covering a 3-300 g / m 2 heavy, unshrunk fabric, net or grid made of thermoplastic continuous filaments on one or both sides with a nonwoven fabric and connecting them to a flat nonwoven fabric using known laminating techniques.
  • the nonwoven fabric can have been produced using all known measures, i.e. dry by carding, carding or air laying technology, by wet deposition or also by fibers or continuous filaments spun from the melt.
  • the composite is then subjected to a thermal treatment which is sufficient for the fabric to suffer a surface shrinkage.
  • the nonwoven layers which either experience no surface shrinkage or a surface shrinkage that is significantly lower than that of the scrim, dodge perpendicular to the surface plane, forming elevations.
  • the nonwoven fabric can be self-contained over the entire surface or over part of the surface. Perforated nonwovens can also be used for the method according to the invention.
  • the fabric in the nonwoven fabric shrinks by further increasing the temperature.
  • the shrinking temperature depends on the softening and melting range of the thermoplastic on which the scrim is based. To initiate shrinkage, the temperature must lie between these two temperatures, the shrinkage amounts being higher the closer the temperature flow actually hitting the knitted fabric comes to the melting temperature of the thermoplastic. It is of course known to the person skilled in the art that the residence time at the given shrinking temperature also has an influence on the extent of the surface shrinkage.
  • the achievable amounts of shrinkage in the longitudinal and transverse directions or the ratio of the two amounts to one another can largely be predetermined by the choice of the fabric. Assuming non-contact, unimpeded shrinkage, the ratio of longitudinal and transverse shrinkage is 1: 1 if the monofilaments of the scrim have the same titer and the same in the longitudinal and transverse directions
  • the nonwoven bond and the lamination on the fabric can also be done in a single step.
  • the economy speaks for this process.
  • the fabric is positioned between two loose layers of fiber, then mechanically or with water jets into one
  • Aqueous plastic dispersions are used as non-fibrous binders, which are either printed on one or both sides of the composite, or there is a complete impregnation with a foamed mixture in a foam impregnation unit or with a non-foamed mixture through a full bath impregnation with the aqueous plastic dispersion carried out. It is then dried and the binder is crosslinked in the heat.
  • thermoplastic activation of adhesive fibers within the nonwovens can create additional internal strengthening.
  • the relationship between the longitudinal and transverse shrinkage determines the shape of the elevations in the nonwoven layers.
  • a longitudinal / transverse ratio of 1: 1 dome-shaped elevations are created with an idealized circular base.
  • a longitudinal / transverse ratio of not equal to 1 results in elevations with an idealized oval cross section parallel to the base. If, for example, the shrinkage is only completely prevented in the longitudinal direction, continuous, groove-shaped elevations are formed on the nonwoven in the longitudinal course, which ideally have the same amplitude over their entire length.
  • the scrim is covered on one or both sides with an unbound fiber web and subjected to thermal embossing calendering or ultrasound calendering.
  • the resulting flat, two- or three-layer fabric has sufficient bond strength.
  • the material is shrunk thermally or with steam.
  • Bicomponent fibers with side-by-side, eccentric or concentric core / sheath structure are used for this process variant.
  • the nonwoven cover (s) can consist of 100% of these bicomponent fibers or can be used in a blend with thermoplastic and / or non-thermoplastic homofil fibers. There are no restrictions on the choice of homofil fibers.
  • the melting point of the bicomponent fibers must be less than or equal to the melting point of the individual filaments of the scrim that trigger the shrinkage with respect to the lower-melting component.
  • the melting point difference should not be higher than 40 ° C in order to prevent strong embrittlement of the nonwoven layers.
  • thermoplastic polymer contributing to the melt bond is not critical, it has proven expedient in the case of one-sided nonwoven covering to use a melt component which has a chemical relationship to the thermoplastic polymer of the scrim. Otherwise there is a risk of poor bond strength after lamination.
  • polyester bicomponent fibers with copolyester melting at over 200 ° C. or polybutylene terephthalate as the sheath component, for example, for a scrim made of polyethylene terephthalate filaments in the nonwoven.
  • Embossing calendering or ultrasound bonding it is advantageous to cover the scrim on both sides with fiber pile. After calendering, both sheets are welded to one another in a pattern in the open areas above and below the scrim. The scrim is thus inseparably embedded in the composite. The number of thermal welding points between the nonwoven fabric and the scrim on this unshrunk semi-material is very low to negligible.
  • the engraving area of the embossing roller covers 4-30% of the total contact area.
  • Nonwoven for the most part or even completely, so that there is no resistance to the shrinkage of the scrim. Only when it cools down does the nonwoven fabric bond again.
  • the shrinkage is already triggered by a single thermal treatment. It is not possible to shrink the once shrunk and cooled laminate again by a second thermal treatment.
  • Fabric can alternately consist of nonwoven and scrim.
  • the nonwovens on both sides of the scrim can be the same or different in both structure and weight. In special cases, it is also possible to provide inner layers in succession from two nonwovens.
  • the structured fiber sheet can be used in all those areas in which there is a high specific surface area, a high fluid throughput with a large particle storage capacity or a high compression resistance under mechanical stress, in particular at elevated temperatures.
  • Examples are filters and hygiene or medical products.
  • the products according to the invention can also be used for decorative purposes in the household, for example wall coverings. example 1
  • the welded area of the engraved roller is 9.6% with an engraving depth of 0.73 mm.
  • Calendering is carried out at a temperature of 140 ° C and a line pressure of 30 kp / cm at a throughput speed of 6 m / min.
  • the width of the goods is 50 cm.
  • the nonwoven fabric consists of 90% core / sheath fibers with a core made of polyethylene terephthalate and a sheath made of copolyester, which melts at 120 ° C.
  • the rest is cellulose.
  • the titer of the core / sheath fiber is 4.8 dtex, its cutting length 55 mm.
  • the titer of the cellulose is 3.3 dtex with a cutting length of 60 mm.
  • the three-layer, flat fiber sheet with a total weight of 27.8 g / m 2 is then subjected to a thermal shrinking treatment in a belt dryer at 170 ° C. and a residence time of 2 min and 20 s.
  • the originally 50 cm wide semi-material has a width of only 16 cm and a weight per unit area of 20 g / m 2 . This results in a linear shrinkage in the transverse direction of 68%, a surface shrinkage of 76.8% and a linear shrinkage in the longitudinal direction of 27.6%.
  • the mathematical formulas for the shrinkage calculation are:
  • the following table shows the thicknesses measured under different loads at room temperature and after storage for 48 hours under a load of 1 psi.
  • the following formulas are used to calculate the compression resistance K, the recovery W and the creep resistance KB, each expressed in%.
  • the thickness measurement for the calculation of creep resistance takes place at 0.2 psi contact pressure.
  • the thickness measurements were carried out as follows: The sample was subjected to a contact pressure of 0.6205 kPa psi for 30 seconds and the thickness value was read off after these 30 seconds. Immediately afterwards, the contact pressure was changed by changing the weight Thickness gauge increased to 1, 3789 kPa and also read the thickness at the exact same measuring point after another 30 seconds.
  • the test specimen was subjected to a pressure of 1 psi at 60 ° C. for 48 hours and then the thickness was determined at a contact pressure of 1,379 kPa.
  • the value for KW is obtained by measuring the thickness at 6.8947 kPa
  • the value for W is obtained by reading the thickness at 6.8947 kPa
  • the value for KB is obtained by dividing the thickness of the test specimen pressed at 60 ° C for 48 hours at 6.8947 kPa by the thickness of the unpressed test specimen, each measured at 1.3789 kPa, and multiplying by 100 (in%) ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

Ein dreidimensional strukturiertes Faserflächengebilde aus senkrecht zur Flächenebene alternierend vorliegenden Endlosfilament-Schichten und damit flächen- oder punktförmig thermisch fest verbundenen, dichteren Kurzfaserschichten, wobei die weitmaschigen Endlosfilament-Schichten ein Gelege, Gitter oder Netz darstellen, weist auf den Kurzfaserschichten sich wiederholende, falten- oder wellenförmige Erhebungen auf. Im Herstellungsverfahren werden alle Schichten des Laminats zusammen einem Schrumpfungsprozeß bei einer Temperatur unterworfen, welche zwischen dem Erweichungs- und dem Schmelzbereich des Gelege-Werkstoffs liegt.

Description

Dreidimensional strukturiertes Faserflächengebilde und Verfahren zur
Herstellung
Beschreibung
Technisches Gebiet
Die Erfindung befaßt sich mit dreidimensional strukturierten Faserflächengebilden.
Mit „dreidimensional strukturiert" werden hier Faserflächengebilde bezeichnet, bei denen die Ausrichtung und räumliche Zuordnung der Einzelfasern zueinander in der jeweils betrachteten Flächenebene von derjenigen in der nächstliegenden Flächenebene abweichen.
Insbesondere befaßt sich die Erfindung mit Faserflächengebilden, welche mindestens eine Vliesstoffschicht besitzen, die mit mindestens einer Schicht aus einem Gelege, Gitter oder Netz verbunden ist.
Ein Verfahren zur Herstellung wird angegeben.
Stand der Technik
Aus USP 4,302,495 sind gattungsgemäße Faserflächengebilde bekannt.
Eine oder mehrer Schichten aus diskontinuierlichen, thermoplastischen
Polymerfasern und eine oder mehrere Schichten aus einem offenmaschigen Netzwerk aus groben, thermoplastischen, kontinuierlichen Meltblown-Fasem, welche einander in einem vorbestimmten Winkel kreuzen, sind miteinander durch thermische Verschweißung entweder flächig oder punktförmig zu einem Flächengebilde mit gleichmäßiger Dicke verbunden. Die wirr verlaufenden Kurzfasern besitzen Durchmesser zwischen 0,5 und 30 μm bei einem Flächengewicht von 10 bis 15 g/m2. Es werden sowohl Kombinationen Gitter/Mikrofaserschicht/Gitter als auch
Mikrofaserschicht/Gitter/Mikrofaserschicht beschrieben. Ein bevorzugter Werkstoff für sowohl die Mikrofasern als auch die Filamente des Gitters ist Polypropylen. Ein solches Flächengebilde besitzt eine sehr hohe Zugfestigkeit, gepaart mit einer präzise einstellbaren Porosität. Die Meltblown- Mikrofaserschichten bestimmen das äußere Erscheinungsbild und beispielsweise die Filtereigenschaften, während das oder die thermoplastische(n) Netz(e) der Verstärkung, der Kontrolle der Porosität und gegebenenfalls der Simulation des Erscheinungsbildes eines gewebten
Textilstoffes dienen. Das Material eignet sich daher nicht nur als Filter, sondern auch als steriles Verpackungsmaterial in der Chirurgie. Weitere Anwendungsgebiete sind chemisch innerte Filtermedien oder nicht benetzbare, leichtgewichtige, thermische Isolierschichten für Kleidungsstücke, Handschuhe oder Stiefel.
Die thermische Verbindung der Schichten untereinander erfolgt unter Druck, beispielsweise zwischen erhitzten Walzen, wobei deren eine bei gewünschter Punktverschweißung entsprechende Gravuren aufweist. Zusätzlich kann vor der Erhitzung zwischen den Walzen eine Wärmestrahlung aufgebracht werden. Der Grad der Hitzeeinwirkung wird so eingestellt, daß die Fasermaterialien erweichen, aber nicht eine Temperaturerhöhung bis zu ihrem kristallinen Schmelzpunkt erfahren.
Es wurde gefunden, daß solche Faserflächengebilde Druckspitzen oder anderen starken mechanischen Kräften nicht über einen längeren Zeitraum ohne deutliche Verdichtung widerstehen, wenn sie bei Verpackung, längerer Lagerung und Transport hohen Drücken und Temperaturen bis zu 60°C ausgesetzt werden, was beispielsweise bei einem Versand in heiße Länder durchaus üblich ist.
Aufgabe
Aufgabe der Erfindung ist es, das beschriebene dreidimensional strukturierte Faserflächengebilde des Standes der Technik dahingehend zu verbessern, daß es, auch bei Temperaturen bis zu 60°C, senkrecht zur Flächenebene einwirkenden Druckspitzen bis zu 1 psi zerstörungsfrei standhält.
Ferner soll die Erfindung eine Herstellungsverfahren für ein solches Faserflächengebilde aufzeigen.
Darstellung der Erfindung
Die Lösung dieser Aufgabe besteht in einem dreidimensional strukturierten Mehrschicht-Faserflächengebilde mit den Kennzeichen des ersten Patentanspruchs sowie in einem Verfahren gemäß dem ersten
Verfahrensanspruch. Vorteilhafte Ausgestaltungen sind jeweils in den Unteransprüche genannt.
Mindestens eine Vliesstoffschicht ist mit jeweils einer Gelege-Schicht verbunden. Die Vliesstoffschichten bestehen aus mechanisch und/oder thermisch miteinander verbundenen Fasern und besitzen in Flächenrichtung einen faltenartigen Verlauf in Form von geometrischen, sich wiederholenden Erhebungen oder Wellungen.
Mindestens eine thermoplastische Gelege-, Gitter- oder Netz-Schicht mit einander überkreuzenden und an den Kreuzungspunkten durch Anschmelzen verbundenen Endlosfilamenten mit einer Dicke von 150 bis 2000 μm zwischen ihren Kreuzungspunkten und Verdickungen an den Kreuzungspunkten bis zu dem Siebenfachen dieser Werte ist in der erfindungsgemäßen Struktur vorhanden. Diese Schicht wird im folgenden der Einfachheit halber stets als Gelege bezeichnet, auch wenn es sich um andere Strukturen mit sich überkreuzenden Einzelfilamenten handelt.
Die Maschengröße des Geleges, das ist der Abstand jeweils zweier nächstliegender Filament-Kreuzungspunkte in Längsrichtung, multipliziert mit dem entsprechenden Abstand in Querrichtung, beträgt 0,01 bis 9 cm2, mit der Maßgabe, daß die Filamentkreuzungspunkte in Längs- sowie in Querrichtung nicht weniger als 0,10 mm voneinander beabstandet sind.
Die jeweilige Verbindung zwischen den Faserschichten und den Gelegeschichten kann vollflächig, punktuell, linear- oder flächig-musterartig sein.
Die Endlosfilamente des Geleges bestehen zum Beispiel aus Polyethylen, Polypropylen, Polyamid-6, Polyamid-6.6, Polybutylenterephthalat, Polyethylenterephthalat, Polyesterelastomeren, Copolyestern, Copolymeren aus Ethylen und Vinylacetat oder aus Polyurethan.
In einer vorteilhaften Ausgestaltung der Erfindung besteht das Gelege aus einem biaxial gereckten Netz. Das Recken in Richtung beider Filamentverläufe geschieht nach bekannten Verfahren in Längsrichtung durch Passieren des Spaltes zwischen einer langsamer und einer schneller laufenden Walze, wobei das Geschwindigkeitsverhältnis der schnelleren zur langsamer laufenden Walze das Reckverhältnis bestimmt. In Querrichtung erfolgt das Recken mittels eines sich ausweitenden Spannrahmens. Diese bekannte Verfahrensweise bewirkt eine Dickenreduzierung der Filamente zwischen den gegenseitigen Kreuzungspunkten und somit eine Reduzierung des Flächengewichtes um bis zu 95%.
Auch mittels ein- oder beidseitiger Beschichtung aus Schmelzkleber, welcher einen wesentlich tieferen Schmelzpunkt und Klebepunkt besitzt als der Kunststoff des Filaments, laminierte Flächengebilde sind Gegenstand der Erfindung.
Im Rahmen der Erfindung ist es möglich, die ein- oder beidseitige Abdeckung des Geleges mit Vliesstoff auch dergestalt vorzunehmen, daß jede Vliesstoffschicht unterschiedliche Eigenschaften bezüglich der Ausgestaltung ihrer Faltung oder bezüglich ihrer inhärenten Eigenschaften besitzt, wie zum Beispiel Flächengewicht, Faserart, Faserbindung.
Generell richtet sich der Fachmann bei der Auswahl der Parameter für die Vliesstoffe bezüglich der Zusammensetzung, Faserart, Faserbindung und Faser-Ausrichtung nach den ihm bekannten Eigenschaften, welche diese Schichten besitzen sollen. Im Interesse einer hohen Eigensteifigkeit der Erhebungen und Wellungen ist eine intensive Bindung der Vliesstoff-Fasern untereinander notwendig.
Im Falle einer Fixierung der Fasern durch Bindemittel ist ein solches mit hartem Griff vorzuziehen, da hierdurch die Eigensteifigkeit und mechanische Resistenz des Faserflächengebildes insgesamt erhöht werden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann jede der vorhandenen Vliesstoff lagen flächenförmig verschmolzene Fasern aufweisen, wobei diese Schmelzflächen mit dem Gelege jeweils thermisch verbunden sind. Zweckmäßig sind der Abstand von einem Filamentkreuzungspunkt zum nächsten im Gelege sowie der Verstreckungsgrad und die Filamentstärke in Längs- und Querrichtung annähernd gleich, weil dadurch nach dem Schrumpfungsvorgang Erhebungen mit kreisrundem Basisquerschnitt entstehen. Diese haben sich als am widerstandsfähigsten gegen Druckbelastungen senkrecht zur Flächenebene erwiesen.
Je nach Wahl der Ausgangsmaterialien sind mehrschichtige Faserflächengebilde mit Gewichten von 20 bis 3000 g/m2 herstellbar. Produkte mit niedrigen Flächengewichten sind beispielsweise für Flüssigkeit aufnehmende und diese verteilende Schichten in Windeln geeignet, solche mit bis zu 3000 g/m2 für hochvoluminöse Filtermatten mit hohem Speicherungsvermögen für das Filtrat.
Die Erfindung wird anhand der Figuren näher erläutert:
Fig. 1 zeigt den erfindungsgemäßen Gegenstand in Aufsicht ; Fig. 2 zeigt einen Querschnitt entlang der Linie A-A aus Fig. 1 ; Fig. 3 zeigt einen Querschnitt wie in Fig. 2, jedoch mit unterschiedlich gearteten Vliesstoffschichten.
Zunächst sei Fig. 1 betrachtet: Hier ist eine der möglichen Ausführungsformen der Erfindung in Draufsicht wiedergegeben. Das Komposit 1 setzt sich aus dem geschrumpften Gelege 4 und den beiden Vliesstofflagen 2 und 3 zusammen. Diese sind an das geschrumpfte Gelege, jedoch nicht miteinander, derart gebunden, daß auf den Vliesstoffen, beidseitig des Geleges, Erhebungen 6 und Vertiefungen 7 ausgebildet sind. Zwischen den Erhebungen und unterhalb derselben befinden sich Hohlräume 12, 13, welche durchlässig für fluide Medien sind und Partikel und Stäube daraus aufnehmen. Das Gelege besteht aus sich kreuzenden Monofilamenten 5. In Fig. 2 ist ein Querschnitt entlang der Linie A-A aus Fig. 1 wiedergegeben; die Vliesstoffe 2 und 3 sind in den Bereichen 8 der Vertiefungen 7 an die Monofilamente 5 des Geleges 4 mit Hilfe von Klebstoff gebunden.
Fig. 3 zeigt ein geschrumpftes Komposit aus Vliesstoff und Gelege, wobei der Abstand zwischen den Filamenten 5 des Geleges und den Spitzen 9 der Erhebungen 6 mit 10 bezeichnet wird. Der dargestellte Querschnitt besitzt, im Gegensatz zu Fig. 2, einen asymmetrischen Aufbau. Die Vliesstoff-Erhebungen 8 erstrecken sich nur in einer Richtung senkrecht zur Flächenebene des Geleges. Die Gelege-Filamente tragen einseitig einen coextrudierten
Schmelzkleber 11 mit deutlich niedrigerem Schmelz- und Erweichungspunkt als die Restmasse des Geleges. Der Vliesstoff ist durch den Schmelzkleber 11 an das Gelege intensiv gebunden, wobei Position 11 gleichzeitig den tiefsten Punkt der Vertiefung 7 darstellt. Mit Positionsziffer 10 ist der Abstand zwischen der Gelegeebene und der Spitze 9 der Erhebungen 6 definiert. Letztere haben eine deutliche Oberflächenvergrößerung zur Folge, was eine erhöhte Aufnahmekapazität für abzuscheidene Partikel zur Folge hat. Die Hohlräume 12 zwischen den senkrecht zur Flächenebene ausgerichteten Erhebungen 6 des Vliesstoffs und der Gelege-Ebene sowie die offenen Räume 13 zwischen den Vertiefungen 7 und den Spitzen 9 der Erhebungen 6 sind groß genug, um niedrig- bis mittelviskose Flüssigkeiten sowie multidisperse Systeme aus Festteilen und wäßrigen Lösungen spontan aufzunehmen und eventuell an darunter liegende Saugschichten weiterzugeben.
Das Verfahren zur Herstellung des dreidimensional strukturierten
Faserflächengebildes wird durchgeführt, indem ein 3-300 g/m2 schweres, ungeschrumpftes Gelege, Netz oder Gitter aus thermoplastischen Endlosfilamenten ein- oder beidseitig mit einem Vliesstoff ebenflächig abdeckt und mit an sich bekannten Laminiertechniken zu einem flachen Vliesstoff verbunden wird. Der Vliesstoff kann mit allen bekannten Maßnahmen erzeugt worden sein, also trocken durch Krempeln, Kardieren oder Luftlegetechnik, durch Naßablage oder auch durch aus der Schmelze ersponnene Fasern oder Endlosfilamente. Anschließend wird der Verbund einer thermischen Behandlung unterzogen, welche ausreicht, daß das Gelege einen Flächenschrumpf erleidet. Die Vliesstofflagen, die selbst entweder keinen oder einen im Vergleich zum Gelege deutlich niedrigeren Flächenschrumpf erfahren, weichen unter Bildung von Erhebungen senkrecht zur Flächenebene aus. Der Vliesstoff kann ganzflächig oder teilflächig in sich gebunden sein. Auch perforierte Vliesstoffe können für das erfindungsgemäße Verfahren eingesetzt werden.
Durch weitere Temperaturerhöhung wird das Gelege in dem Vliesstoff zum Schrumpfen gebracht. Die Schrumpftemperatur richtet sich nach dem dem Gelege zugrundeliegenden Erweichungs- und Schmelzbereich des Thermoplasten. Zur Auslösung eines Schrumpfes muß die Temperatur zwischen diesen beiden Temperaturen liegen, wobei die Schrumpfbeträge um so höher ausfallen, je näher der tatsächlich auf das Gewirke auftreffende Temperaturstrom der Schmelztemperatur des Thermoplasten kommt. Dem Fachmann ist selbstverständlich bekannt, daß auch die Verweilzeit bei der vorgegebenen Schrumpftemperatur einen Einfluß auf das Ausmaß der Flächenschrumpfung nimmt. Die erreichbaren Beträge des Schrumpfes in Längs- und Querrichtung bzw. das Verhältnis beider Beträge zueinander können weitgehend durch die Wahl des Geleges vorbestimmt werden. Einen berührungsfreien, ungehinderten Schrumpf vorausgesetzt, ist das Verhältnis von Längs- und Querschrumpf dann 1 :1 , wenn die Monofilamente des Geleges in Längs- und Querrichtung den gleichen Titer und den gleichen
Verstreckungsgrad aufweisen. Wird ein unterschiedlicher Schrumpf in Längsund Querrichtung gewünscht, so werden Gewirke ausgewählt, deren Monofilamente in Längs- und Querrichtung unterschiedlich verstreckt worden sind bzw. deren Titer bei gleichem Verstreckungsgrad stark unterschiedlich ausfallen. Es können auch solche Gelege eingesetzt werden, deren Monofilamente in Längs- und Querrichtung aus unterschiedlichen Thermoplasten aufgebaut sind. In diesem Fall wird der Schrumpfbetrag und die Schrumpfrichtung von der tiefer erweichenden Komponente des Geleges bestimmt, wobei eine Schrumpftemperatur gewählt wird, welche zwischen der Erweichungs- und der Schmelztemperatur der niedriger schmelzenden Komponente des Geleges liegt.
Die Vliesstoff-Bindung und die Laminierung auf das Gelege können auch in einem einzigen Schritt erfolgen. Die Wirtschaftlichkeit spricht für dieses Verfahren. In diesem Fall wird das Gelege zwischen zwei losen Faserflorlagen positioniert, anschließend mechanisch oder mit Wasserstrahlen zu einem
Verbund vernadelt und mit Hilfe bekannter Imprägniertechniken mit Bindemittel beaufschlagt.
Als nicht faserige Bindemittel werden wäßrige Kunststoff-Dispersionen verwendet, die entweder ein- oder beidseitig auf den Verbund aufgedruckt werden, oder es wird eine vollständige Tränkung mit einer aufgeschäumten Mischung in einem Schaumimprägnierwerk oder mit einer ungeschäumten Mischung durch eine Vollbadtränkung mit der wäßrigen Kunststoff-Dispersion durchgeführt. Anschließend wird getrocknet und das Bindemittel in der Wärme vernetzt.
Durch die thermoplastische Aktivierung klebender Fasern innerhalb der Vliesstoffe kann eine zusätzliche innere Verfestigung erzeugt werden.
Im Falle einer Hochdruck-Wasserstrahlvernadelung besteht in einer besondern Ausgestaltungsform der Erfindung die Möglichkeit, auch gleichzeitig Perforationen im Vliesstoff zu erzeugen.
Das Verhältnis zwischen Längs- und Querschrumpf bestimmt die Form der Erhebungen in den Vliesstofflagen. Bei einem Längs-/Querverhältnis von 1 :1 entstehen kuppenförmige Erhebungen mit idealisiert kreisrunder Basis. Bei einem Längs-/Querverhältnis von ungleich 1 entstehen Erhebungen mit idealisiert ovalem Querschnitt parallel zur Basis. Wird der Schrumpf beispielsweise nur in Längsrichtung vollständig verhindert, bilden sich im Längsverlauf durchgehende, rillenförmige Erhebungen auf dem Vliesstoff aus, welche idealisiert die gleich Amplitude über ihre gesamte Länge besitzen.
Es war überraschend, daß Gelege mit Gewichten unter 10 g/m2 trotz beidseitiger Vliesstoffabdeckung mit Gewichten von mindestens 7 g/m2 bis zu 80% der Ausgangslänge geschrumpft werden können. Man hätte vielmehr erwartet, daß die Vliesstoffe den Schrumpf des Geleges verhindern, insbesondere bei den niedrigen Ausgangs-Flächengewichten des Geleges. Dies ist jedoch nicht der Fall.
Als besonders vorteilhaft wegen seiner Einfachheit hat sich die folgende Verfahrensvariante erwiesen:
Das Gelege wird ein- oder beidseitig mit einem ungebundenen Faserflor abgedeckt und einer thermischen Prägekalandrierung oder Ultraschallkalandrierung unterzogen. Das daraus resultierende, flache, zwei- oder dreilagige Flächengebilde weist eine ausreichende Verbundfestigkeit auf. Anschließend wird, ohne Bindemittel einzusetzen, thermisch oder mit Wasserdampf geschrumpft. Für diese Verfahrensvariante werden Bikomponentenfasern mit Seite-an-Seite, exzentrischer oder kozentrischer Kern-/Mantel-Struktur eingesetzt. Die Vliesstoff-Abdeckung(en) können aus 100% dieser Bikomponenten-Fasern bestehen oder im Verschnitt mit thermoplastischen und/oder nicht thermoplastischen Homofilfasern eingesetzt werden. Hinsichtlich der Wahl an Homofilfasern sind keine Beschränkungen notwendig.
Der Schmelzpunkt der Bikomponenten-Fasern muß bezüglich der niedriger schmelzenden Komponente kleiner oder gleich dem Schmelzpunkt der den Schrumpf auslösenden Einzelfilamente des Geleges sein. Zweckmäßig sollte die Schmelzpunktdifferenz nicht höher als 40°C sein, um eine starke Verspröduπg der Vliesstofflagen zu verhindern.
Auch wenn der Einsatz des zur Schmelzbindung beitragenden thermoplastischen Polymers unkritisch ist, hat es sich bei einseitiger Vliesstoffabdeckung als zweckmäßig erwiesen, eine Schmelzkomponente einzusetzen, die eine chemische Verwandschaft zu dem thermoplastischen Polymer des Geleges aufweist. Ansonsten besteht die Gefahr einer schlechten Verbundfestigkeit nach der Laminierung. In diesem Zusammenhang ist es zweckmäßig, beispielsweise für ein Gelege aus Polyethylenterephthalat- Filamenten im Vliesstoff Polyester-Bikomponentenfasem mit über 200°C schmelzendem Copolyester oder Polybutylenterephthalat als Mantelkomponente einzusetzen.
Insbesondere dann, wenn Gelege und Vliesstoff durch thermische
Prägekalandrierung oder Ultraschallverfestigung verbunden werden sollen, ist es vorteilhaft, das Gelege beidseitig mit Faserfloren abzudecken. Nach der Kalandrierung sind beide Flore ober- und unterhalb des Geleges an dessen offenen Bereichen musterförmig miteinander verschweißt. Das Gelege ist dadurch untrennbar in das Komposit eingelagert. Die Anzahl thermischer Verschweißungspunkte zwischen Vliesstoff und Gelege an diesem ungeschrumpften Halbmaterial ist sehr niedrig bis vernachlässigbar. Die Gravurfläche der Prägewalze umfaßt 4-30% der gesamten Auflagefläche.
Insbesondere für den Fall einer geringen Differenz der Schmelztemperatur zwischen dem Gelege und der Mantelkomponente der Bikomponente-Fasern verwendet man zweckmäßig Gravurwalzen mit einer Verschweißfläche von nur 4 -14% der Gesamtfläche. Die Herstellung des ungeschrumpften Schichtstoffs aus Faserflor, Gelege und weiterem Faserflor kann auch zwischen zwei aufgeheizten, glatten Stahlwalzen unter Druck durchgeführt werden.
Während des Schrumpfens lösen sich die ursprünglichen Bindungen im
Vliesstoff zum größten Teil bis sogar vollständig, so daß der Schrumpfung des Geleges kein Widerstand entgegengesetzt wird. Erst beim Abkühlen erfolgt eine erneute Bindung zwischen den Vliesstoffasem.
Der Schrumpf wird bereits durch eine nur einmalige thermische Behandlung ausgelöst. Es ist nicht möglich, das einmal geschrumpfte und abgekühlte Laminat durch eine zweite thermische Behandlung erneut zum Schrumpfen zu bringen.
Das erfindungsgemäße, mehrschichtige, dreidimensional strukturierte
Flächengebilde kann alternierend aus Vliesstoff und Gelege bestehen. Die Vliesstoffe beidseitig des Geleges können sowohl im Aufbau als auch im Gewicht gleich oder ungleich sein. In speziellen Fällen ist es auch möglich, innere Lagen aufeinanderfolgend aus zwei Vliesstoffen vorzusehen.
Das strukturierte Faserflächengebilde kann in allen solchen Bereichen eingesetzt werden, bei denen eine hohe spezifische Oberfläche, eine hoher Fluid-Durchsatz bei einem großen Partikel-Speichervermögen oder eine hohe Kompressions-Beständigkeit bei mechanischer Belastung, insbesondere bei erhöhten Temperaturen, vorliegen. Beispiele sind Filter sowie Hygiene- oder Medikaiprodukte. Auch für dekorative Zwecke im Haushalt, wie zum Beispiel Wandabdeckungen, können die erfindungsgemäßen Produkte verwendet werden. Beispiel 1
Eine biaxial gerecktes Plastiknetz aus Polypropylen-Endlosfilamenten, mit einem Gewicht von 7,8 g/m2 und einer Maschenweite von 7,6 mm • 7,6 mm, wird zwischen zwei quergelegten, losen Stapelfaserfloren mit einem Gewicht von jeweils 10 g/m2 positioniert und einer Punktschweißverfestigung durch Kalandrierung zwischen einer glatten und einer gravierten Stahlwalze zugeführt. Die Verschweißfläche der gravierten Walze beträgt 9,6% bei einer Gravurtiefe von 0,73 mm. Kaland ert wird bei einer Temperatur von 140°C und einem Liniendruck von 30 kp/cm bei einer Durchlaufgeschwindigkeit von 6 m/min. Die Warenbreite ist 50 cm.
Der Vliesstoff besteht aus 90% Kern-/Mantel-Fasem mit einem Kern aus Polyethylenterephthalat und einem Mantel aus Copolyester, welcher bei 120°C schmilzt. Der Rest ist Zellwolle. Der Titer der Kern-/Mantel-Faser beträgt 4,8 dtex, ihre Schnittlänge 55 mm. Der Titer der Zellwolle beträgt 3,3 dtex bei einer Schnittlänge von 60 mm.
Das dreilagige, ebene Faserflächengebilde mit einem Gesamtgewicht von 27,8 g/m2 wird anschließend einer thermischen Schrumpfbehandlung in einem Bandtrockner bei 170°C und einer Verweilzeit von 2 min und 20 s unterzogen. Das ursprünglich 50 cm breite Halbmaterial weist nach der Schrumpfung und Abkühlung eine Breite von nur noch 16 cm und ein Flächengewicht von 20 g/m2 auf. Daraus errechnen sich ein linearer Schrumpf in Querrichtung von 68%, ein Flächenschrumpf von 76,8% und ein linearer Schrumpf in Längasrichtung von 27,6%. ie mathematischen Formeln für die Schrumpfberechnung sind:
So = l - ^j . l Oθ [%]
Figure imgf000016_0001
Gv Flächengewicht vor dem Schrumpf in g/m2
Gn Flächengewicht nach dem Schrumpf in g/m2 bv Warenbreite vor dem Schrumpf in m bn Warenbreite nach dem Schrumpf in m SD Flächenschrumpf in %
Sq linearer Schrumpf in Querrichtung in %
Sι linearer Schrumpf in Längsrichtung in %
In der folgenden Tabelle sind die Dicken, gemessen unter unterschiedlichen Belastungen bei Raumtemperatur und nach einer Lagerung über 48 Stunden bei einer Belastung von 1 psi, wiedergegeben. Mit den nachfolgend aufgeführten Formeln errechnen sich der Kompressionswiderstand K, die Wiedererholung W und die Kriechbeständigkeit KB, jeweils ausgedrückt in %. Die Dickenmessung für die Berechnung der Kriechbeständigkeit erfolgt bei 0,2 psi Auflagedruck.
Die Dickenmessungen wurden wie folgt durchgeführt: Die Probe wurde 30 Sekunden lang mit einem Auflagedruck von 0,6205 kPa psi belastet und der Dickenwert nach Ablauf dieser 30 Sekunden abgelesen. Unmittelbar danach wurde der Auflagedruck durch Gewichtswechsel an dem Dickenmeßgerät auf 1 ,3789 kPa erhöht und ebenfalls nach weiteren 30 Sekunden an der exakt gleichen Meßstelle die Dicke abgelesen.
Derselbe Vorgang wurde nochmals bei in der Reihenfolge der Auflagedrücke 3,4473, 6,8947 und wieder 0,6205 kPa über jeweils 30 Sekunden wiederholt.
Zur Bestimmung der Kriechbeständigkeit KB wurde der Prüfling 48 Stunden lang bei einem Druck von 1 psi bei 60°C belastet und danach die Dicke bei 1 ,3789 kPa Auflagedruck bestimmt.
KW, W und KB berechnen sich wie folgt:
Man erhält den Wert für KW, indem man die Dicke bei 6,8947 kPa durch die
Dicke bei 0,6205 kPa teilt und mit 100 multipliziert (Angabe in %).
Man erhält den Wert für W, indem man die Dicke bei 6,8947 kPa nach
Durchlauf des Meßzykluses durch den zuerst gemessenen Wert bei 6,8947 kPa teilt und mit 100 multipliziert (Angabe in %).
Man erhält den Wert für KB, indem man die Dicke des bei 60°C über 48 Stunden bei 6,8947 kPa gepreßten Prüflings durch die Dicke des ungepreßten Prüflings, jeweils gemessen bei 1 ,3789 kPa, teilt und mit 100 multipliziert (Angabe in %).
Figure imgf000018_0001
Figure imgf000018_0002

Claims

Patentansprüche
1. Dreidimensional strukturiertes Faserflächengebilde aus senkrecht zur Flächenebene alternierend vorliegenden Endlosfilament-Schichten mit einer Maschengröße von 0,01 bis 9 cm2 und damit flächen- oder punktförmig thermisch fest verbundenen, dichteren Kurzfaserschichten, wobei die weitmaschigen Endlosfilament-Schichten ein Gelege, Gitter oder Netz darstellen, bei welchem sich überkreuzende, 150 bis 2000 μm dicke Filamente aus thermoplastischem Kunststoff an ihren Berührungspunkten jeweils thermisch miteinander verschweißt sind und wobei die Filamentekreuzungspunkte in Längs- und Querrichtung nicht weniger als 0,10 mm voneinander entfernt sind, dadurch gekennzeichnet, daß die Kurzfaserschichten sich wiederholende, falten- oder wellenförmige Erhebungen aufweisen.
2. Faserflächengebilde nach Anspruch 1 , dadurch gekennzeichnet, daß in Querschnittsrichtung alternierend ein Vliesstoff und ein Gelege aufeinanderfolgen.
3. Faserflächengebilde nach Anspruch 1 , dadurch gekennzeichnet, daß mindestens zwei aufeinanderfolgende Innenlagen aus Vliesstoff bestehen.
4. Faserflächengebilde nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Filamente der Gelegeschicht(en) an den
Kreuzungspunkten eine Dickenerhöhung bis zum Siebenfachen ihrer Dicke zwischen den Kreuzungspunkten besitzen.
5. Faserflächengebilde nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sich ein- oder beidseitig des Geleges eine
Schmelzklebemasse befindet.
6. Faserflächengebilde nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Einzelfasern des Vliesstoffs durch ein Bindemittel mit hartem Griff miteinander verbunden sind.
7. Faserflächengebilde nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Vliesstoff lagen aus Kern-/Mantel- oder Seite-an-Seite-Bikomponentenfasem bestehen, wobei sich die Komponenten jeder Faser bezüglich ihres Erweichungspunktes unterscheiden.
8. Faserflächengebilde nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Vliesstoff flächenförmig verschmolzene Fasern aufweist, wobei die Schmelzfläche jeweils thermisch mit dem Gelege verbunden sind.
9. Verfahren zur Herstellung eines dreidimensional strukturierten Faserflächengebildes in der Ausgestaltung gemäß Anspruch 1 , bei dem man mindestens ein 3 bis 300 g/m2 schweres Gitter, Gelege oder Netz aus Kunststoff-Endlosfilamenten mit einer Maschengröße von 0,01 bis
9 cm2, bei Abständen der benachbarten Filament-Kreuzungspunkte von nicht unter 0,01 mm, mit einem Vliesstoff ein- oder beidseitig abdeckt und alle Schichten mit an sich bekannten Laminiertechniken flächig miteinander verbindet, dadurch gekennzeichnet, daß daß man anschließend alle Schichten des Laminats zusammen einem
Schrumpfungsprozeß unterwirft bei einer Temperatur, welche zwischen dem Erweichungs- und dem Schmelzbereich des Gelege-Werkstoffs liegt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man gleichzeitig mit der Laminierung der Schichten aufeinander die innere
Faserbindung in der oder den Vliesstoff-Schicht(en) erzeugt, indem man das Gelege zwischen lose Faserflor-Lagen positioniert, anschließend das Ganze mechanisch oder mit Wasserstrahlen vernadelt und mit Bindemittel versieht, wonach man das Trocknen und den Schrumpfungsprozeß anschließt.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß man mit der Wasserstrahl-Vemadelung gleichzeitig Perforationen im Vliesstoff erzeugt.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man ein oder mehrere Gelege ein- oder beidseitig mit einem ungebundenen Faserflor, welcher zumindest zum Teil aus Bikomponentenfasem mit einer höher und einer niedriger schmelzenden Komponente besteht, abdeckt, wobei letztere Komponente einen Schmelzpunkt aufweist, welcher höchstens gleich demjenigen der schrumpffähigen Komponente des Geleges ist, daß das man das Ganze einer thermischen Präge-Kalandrierung oder einer Ultraschall-Kalandrierung unterzieht und daß man anschließend durch Wärmeeinwirkung oder mittels Wasserdampf die Schrumpfung durchführt.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß man das oder die Gelege vor dem Verarbeiten zu dem Mehrschicht- Fllächengebilde in Längsrichtung zwischen unterschiedlich schnell zueinander verlaufenden Walzen und in Querrichtung mittels eines sich erweiternden Spannrahmens reckt.
14. Verfahren nach Anspruch 9 oder 13, dadurch gekennzeichnet, daß man ein ein- oder beidseitig mit einem Schmelzkleber beschichtetes Gelege mit den Vliesstoffen beschichtet und das Ganze unter Hitzeeinwirkung schrumpft, wobei man den Schmelzkleber so wählt, daß er einen niedrigeren Schmelz- und Klebepunkt besitzt als der Werkstoff der
Gelege-Filamente.
5. Verfahren nach einem der Ansprüche 9 oder 12 bis 14, dadurch gekennzeichnet, daß man vor dem Schrumpfen, zur Verbindung jeweils einer Faservliesschicht und eines Geleges, durch Ultraschall oder mittels thermischer Prägung die Vliesstoffasern in bestimmten Bereichen flächig anschmilzt und gleichzeitig diese Schmelzflächen an das Gelege andrückt.
PCT/EP1999/008225 1999-01-08 1999-10-29 Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung WO2000040793A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP99973581A EP1159478B1 (de) 1999-01-08 1999-10-29 Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung
JP2000592484A JP4039809B2 (ja) 1999-01-08 1999-10-29 三次元構造化された繊維平面形成物およびその製造方法
AU11574/00A AU753366B2 (en) 1999-01-08 1999-10-29 Flat nonwoven fiber aggregate with three-dimensional structure and method for its production
DE59911856T DE59911856D1 (de) 1999-01-08 1999-10-29 Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung
BRPI9916784-0A BR9916784B1 (pt) 1999-01-08 1999-10-29 agregado superficial de fibras com estrutura tridimensional, livre, com panos não tecidos e processo para a sua produção.
CA002357868A CA2357868C (en) 1999-01-08 1999-10-29 Three dimensionally structured non-woven fiber aggregate and process for its manufacture
AT99973581T ATE292206T1 (de) 1999-01-08 1999-10-29 Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung
US09/869,710 US6723416B1 (en) 1999-01-08 1999-10-29 Flat nonwoven fiber aggregate with three-dimensional structure and method for its production
PL99350092A PL190344B1 (pl) 1999-01-08 1999-10-29 Włóknisty wytwór powierzchniowy o trójwymiarowej strukturze i sposób wytwarzania włóknistego wytworu powierzchniowego o trójwymiarowej strukturze

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19900424.2 1999-01-08
DE19900424A DE19900424B4 (de) 1999-01-08 1999-01-08 Dreidimensional strukturiertes Faserflächengebilde und Verfahren zur Herstellung

Publications (1)

Publication Number Publication Date
WO2000040793A1 true WO2000040793A1 (de) 2000-07-13

Family

ID=7893761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008225 WO2000040793A1 (de) 1999-01-08 1999-10-29 Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung

Country Status (17)

Country Link
US (1) US6723416B1 (de)
EP (1) EP1159478B1 (de)
JP (1) JP4039809B2 (de)
KR (1) KR100404344B1 (de)
CN (1) CN1107754C (de)
AR (1) AR017000A1 (de)
AT (1) ATE292206T1 (de)
AU (1) AU753366B2 (de)
BR (1) BR9916784B1 (de)
CA (1) CA2357868C (de)
DE (2) DE19900424B4 (de)
ES (1) ES2241376T3 (de)
HU (1) HUP0105462A2 (de)
PL (1) PL190344B1 (de)
TR (1) TR200101896T2 (de)
TW (1) TW552331B (de)
WO (1) WO2000040793A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262587A1 (de) * 2001-05-30 2002-12-04 Carl Freudenberg KG Schichtstoff und Verfahren zu seiner Herstellung
EP1277866A2 (de) * 2001-07-16 2003-01-22 Carl Freudenberg KG Vliesstoffe mit hoher Flüssigkeitsaufnahme und dreidimensionaler regelmässiger Struktur, Verfahren zu deren Herstellung und deren Verwendung
EP1277865A1 (de) * 2001-07-16 2003-01-22 Carl Freudenberg KG Dreidimensionale regelmässig strukturierte Vliesstoffe, Verfahren zu deren Herstellung und deren Verwendung
US7282251B2 (en) 2001-06-12 2007-10-16 Vekro Industries B.V. Loop materials for touch fastening
WO2013174943A1 (de) 2012-05-25 2013-11-28 Lanxess Deutschland Gmbh Verfahren zur herstellung eines faserverbundwerkstoffs
EP2818297A1 (de) 2013-06-25 2014-12-31 LANXESS Deutschland GmbH Spritzgießverfahren
US9078793B2 (en) 2011-08-25 2015-07-14 Velcro Industries B.V. Hook-engageable loop fasteners and related systems and methods
US9119443B2 (en) 2011-08-25 2015-09-01 Velcro Industries B.V. Loop-engageable fasteners and related systems and methods

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10110115A1 (de) * 2001-03-02 2002-09-05 Audi Ag Verfahren zur Herstellung einer Sandwich-Struktur
FR2821787B1 (fr) * 2001-03-07 2003-06-20 A Chomarat Cie Ets Fils D Complexe en forme generale de plaque utilisable pour la constitution de structures
JP2003001028A (ja) * 2001-06-22 2003-01-07 Bridgestone Corp フィルター材
DE102004009244B4 (de) * 2003-09-18 2009-09-24 Polytec Automotive Gmbh & Co. Kg Kunststoffformteil mit einer Dekorschicht, seine Herstellung und Verwendung
JP3989468B2 (ja) * 2004-06-14 2007-10-10 花王株式会社 立体賦形不織布
US20070049169A1 (en) * 2005-08-02 2007-03-01 Vaidya Neha P Nonwoven polishing pads for chemical mechanical polishing
US20070256261A1 (en) * 2006-05-04 2007-11-08 Benitez Israel Jr Cleaning cloth assembly
DE102006034730A1 (de) 2006-07-27 2008-01-31 Carl Freudenberg Kg Aufgussbeutel
KR100811328B1 (ko) * 2007-02-23 2008-03-07 심재원 부직포 후가공장치 및 그 후가공방법, 이에 의해 제조된부직포
JP5497987B2 (ja) * 2007-06-22 2014-05-21 ユニ・チャーム株式会社 不織布およびその製造方法
PT104843A (pt) 2009-11-27 2011-05-27 Univ Do Minho Estruturas de n?o-tecido tridimensionais com forma para isolamento ac?stico e m?todo de produ??o associado
US9187902B2 (en) 2011-11-01 2015-11-17 Cortex Composites, Llc Nonwoven cementitious composite for in-situ hydration
US10221569B2 (en) 2011-11-01 2019-03-05 Cortex Composites, Inc. Cementitious composite constituent relationships
US10167635B2 (en) 2011-11-01 2019-01-01 Cortex Composites, Inc. Nonwoven cementitious composite for In-Situ hydration
US11090900B2 (en) * 2012-02-22 2021-08-17 The Procter & Gamble Company Embossed fibrous structures and methods for making same
JP5918081B2 (ja) 2012-06-27 2016-05-18 株式会社finetrack 生地の積層体および衣類、寝具
US20160368249A1 (en) 2012-12-19 2016-12-22 Matthew J. SCHWAB Three dimensional single-layer fabric and assembly methods therefor
EP3043760A1 (de) * 2013-09-10 2016-07-20 The Procter & Gamble Company Saugfähige artikel mit dehnbaren auxetischen strukturen mit endmasszunahme
WO2017079661A1 (en) 2015-11-05 2017-05-11 Cortex Composites, Inc. Cementitious composite mat
SI3192910T1 (sl) * 2016-01-15 2019-10-30 Reifenhaeuser Masch Postopek za proizvodnjo laminata in laminat
DE102016209482A1 (de) * 2016-05-31 2017-11-30 Mahle International Gmbh Verfahren zur Herstellung eines Filtermediums sowie Filtermedium
WO2018148645A1 (en) * 2017-02-13 2018-08-16 The Procter & Gamble Company Methods and tooling for making three-dimensional substrates for absorbent articles
EP3579800B1 (de) 2017-02-13 2020-11-04 The Procter and Gamble Company Laminate für saugfähige artikel und verfahren zur herstellung davon
EP3618789A1 (de) 2017-05-03 2020-03-11 The Procter and Gamble Company Saugfähiger artikel mit mehreren zonen
JP6594936B2 (ja) * 2017-08-31 2019-10-23 花王株式会社 不織布
JP2021500173A (ja) 2017-11-06 2021-01-07 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 結節点及び支柱を有する構造体
BE1030500B1 (nl) * 2022-05-06 2023-12-04 Conteyor Int Nv Recyclebaar textiel voor het verpakken, vervoeren en/of opslaan van artikelen

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1331817A (en) * 1970-01-26 1973-09-26 Johnson & Johnson Crupled laminated fabrics and methods of making the same
US4302495A (en) * 1980-08-14 1981-11-24 Hercules Incorporated Nonwoven fabric of netting and thermoplastic polymeric microfibers
EP0106604A2 (de) * 1982-09-30 1984-04-25 Chicopee Durch geprägtes Band gebundenes Material und Verfahren zur Herstellung desselben
US4522863A (en) * 1984-06-21 1985-06-11 Kimberly-Clark Corporation Soft nonwoven laminate bonded by adhesive on reinforcing scrim
EP0482918A2 (de) * 1990-10-24 1992-04-29 Amoco Corporation Selbstklebendes Vlies und netzartige Vliesverbundstoffe
DE4130343A1 (de) * 1991-09-12 1993-03-18 Corovin Gmbh Verbundvliesmaterial und verfahren zur herstellung eines verbundvliesmaterials
US5393599A (en) * 1992-01-24 1995-02-28 Fiberweb North America, Inc. Composite nonwoven fabrics
US5525397A (en) * 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
US5733826A (en) * 1995-07-15 1998-03-31 Firma Carl Freudenberg Inner sole for shoes and process for its manufacture
WO1998052458A1 (en) * 1997-05-23 1998-11-26 The Procter & Gamble Company Three-dimensional structures useful as cleaning sheets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787947A (en) * 1982-09-30 1988-11-29 Chicopee Method and apparatus for making patterned belt bonded material
US5334446A (en) * 1992-01-24 1994-08-02 Fiberweb North America, Inc. Composite elastic nonwoven fabric
JP3657700B2 (ja) * 1996-06-18 2005-06-08 新日本石油化学株式会社 カサ高性不織布の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1331817A (en) * 1970-01-26 1973-09-26 Johnson & Johnson Crupled laminated fabrics and methods of making the same
US4302495A (en) * 1980-08-14 1981-11-24 Hercules Incorporated Nonwoven fabric of netting and thermoplastic polymeric microfibers
EP0106604A2 (de) * 1982-09-30 1984-04-25 Chicopee Durch geprägtes Band gebundenes Material und Verfahren zur Herstellung desselben
US4522863A (en) * 1984-06-21 1985-06-11 Kimberly-Clark Corporation Soft nonwoven laminate bonded by adhesive on reinforcing scrim
EP0482918A2 (de) * 1990-10-24 1992-04-29 Amoco Corporation Selbstklebendes Vlies und netzartige Vliesverbundstoffe
DE4130343A1 (de) * 1991-09-12 1993-03-18 Corovin Gmbh Verbundvliesmaterial und verfahren zur herstellung eines verbundvliesmaterials
US5393599A (en) * 1992-01-24 1995-02-28 Fiberweb North America, Inc. Composite nonwoven fabrics
US5525397A (en) * 1993-12-27 1996-06-11 Kao Corporation Cleaning sheet comprising a network layer and at least one nonwoven layer of specific basis weight needled thereto
US5733826A (en) * 1995-07-15 1998-03-31 Firma Carl Freudenberg Inner sole for shoes and process for its manufacture
WO1998052458A1 (en) * 1997-05-23 1998-11-26 The Procter & Gamble Company Three-dimensional structures useful as cleaning sheets

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262587A1 (de) * 2001-05-30 2002-12-04 Carl Freudenberg KG Schichtstoff und Verfahren zu seiner Herstellung
US7008685B2 (en) 2001-05-30 2006-03-07 Carl Freudenberg Kg Laminated material and method for its production
US7282251B2 (en) 2001-06-12 2007-10-16 Vekro Industries B.V. Loop materials for touch fastening
EP1277866A2 (de) * 2001-07-16 2003-01-22 Carl Freudenberg KG Vliesstoffe mit hoher Flüssigkeitsaufnahme und dreidimensionaler regelmässiger Struktur, Verfahren zu deren Herstellung und deren Verwendung
EP1277865A1 (de) * 2001-07-16 2003-01-22 Carl Freudenberg KG Dreidimensionale regelmässig strukturierte Vliesstoffe, Verfahren zu deren Herstellung und deren Verwendung
EP1277866A3 (de) * 2001-07-16 2003-01-29 Carl Freudenberg KG Vliesstoffe mit hoher Flüssigkeitsaufnahme und dreidimensionaler regelmässiger Struktur, Verfahren zu deren Herstellung und deren Verwendung
US7763339B2 (en) 2001-07-16 2010-07-27 Carl Freudenberg Kg Nonwoven fabrics with high fluid absorption capacity and a regular structure, process for their production, and their use
US9078793B2 (en) 2011-08-25 2015-07-14 Velcro Industries B.V. Hook-engageable loop fasteners and related systems and methods
US9119443B2 (en) 2011-08-25 2015-09-01 Velcro Industries B.V. Loop-engageable fasteners and related systems and methods
US9872542B2 (en) 2011-08-25 2018-01-23 Velcro BVBA Loop-engageable fasteners and related systems and methods
WO2013174943A1 (de) 2012-05-25 2013-11-28 Lanxess Deutschland Gmbh Verfahren zur herstellung eines faserverbundwerkstoffs
EP2818297A1 (de) 2013-06-25 2014-12-31 LANXESS Deutschland GmbH Spritzgießverfahren

Also Published As

Publication number Publication date
HUP0105462A2 (en) 2002-05-29
EP1159478B1 (de) 2005-03-30
EP1159478A1 (de) 2001-12-05
BR9916784B1 (pt) 2009-05-05
JP2002534616A (ja) 2002-10-15
PL190344B1 (pl) 2005-11-30
DE19900424B4 (de) 2006-04-06
KR100404344B1 (ko) 2003-11-05
JP4039809B2 (ja) 2008-01-30
PL350092A1 (en) 2002-11-04
CA2357868A1 (en) 2000-07-13
CA2357868C (en) 2005-02-22
AR017000A1 (es) 2001-08-01
DE59911856D1 (de) 2005-05-04
TW552331B (en) 2003-09-11
AU1157400A (en) 2000-07-24
CN1107754C (zh) 2003-05-07
TR200101896T2 (tr) 2001-10-22
ES2241376T3 (es) 2005-10-16
KR20010101427A (ko) 2001-11-14
BR9916784A (pt) 2001-10-23
AU753366B2 (en) 2002-10-17
US6723416B1 (en) 2004-04-20
DE19900424A1 (de) 2000-07-13
ATE292206T1 (de) 2005-04-15
CN1333849A (zh) 2002-01-30

Similar Documents

Publication Publication Date Title
EP1159478B1 (de) Dreidimensional strukturiertes faserflächengebilde und verfahren zur herstellung
DE60016268T2 (de) Verbessertes vlies mit nicht-symmetrischer bindungskonfiguration
DE69711616T2 (de) Dauerhafte, wasserstrahlenverfestigte vliesstoffe
EP1277865B1 (de) Dreidimensionale regelmässig strukturierte Vliesstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE68915314T2 (de) Nicht elastischer, nicht gewebter, blattartiger Verbundwerkstoff und Verfahren zu dessen Herstellung.
DE10232147B4 (de) Thermobondiertes und perforertes Vlies
EP3423269B1 (de) Mehrlagiger akustik- und/oder versteifungsvliesstoff
DE3132068A1 (de) Nicht-gewebtes tuchartiges material
DE10135111C2 (de) Verbundstoff, Verfahren zu dessen Herstellung und dessen Verwendung
ZA200105559B (en) Absorbent articles having reduced rewet with distribution materials positioned underneath storage material.
DE19806530B4 (de) Laminat und daraus hergestellte Hygieneartikel, Verpackungsmaterialien und Baumembrane
EP3192910B1 (de) Verfahren zur herstellung eines laminates und laminat
EP1262587A1 (de) Schichtstoff und Verfahren zu seiner Herstellung
DE10133772B4 (de) Dreidimensional strukturiertes Faserflächengebilde mit hoher Flüssigkeitsaufnahme und Verfahren zu dessen Herstellung und dessen Verwendung
DE2201105A1 (de) Verfahren zur Herstellung eines boucleartige Noppen,Rippen od.dgl. aufweisenden textilen Verbundstoffes
DE102019134100A1 (de) Dehnbares Windelelement
DE2107887A1 (de) Verfahren zur Herstellung eines reliefartig strukturierten Faserverbund stoffes und nach dem Verfahren herge stellter Faserverbundstoff
EP2639063A1 (de) Stoffmaterial mit Prägungen
DE102007050874A1 (de) Textiles Laminat aus einer elastischen Trägerschicht und zumindest einer Vliesstoffschicht, Bandmaterial aus dem Laminat, Windelverschluss, sowie Verfahren zum Herstellen des Bandmaterials
EP1658970B1 (de) Laminat aus zumindest drei Schichten und Verfahren zur Herstellung eines zumindest dreischichtigen Laminates
DE2461053A1 (de) Faservlies aus thermoplastischem material, und verfahren zu dessen herstellung
DD247710A1 (de) Textiles flaechengebilde aus mehreren schichten und verfahren zu seiner herstellung
DE8916134U1 (de) Unelastisches Verbundvliesmaterial

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815459.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2357868

Country of ref document: CA

Ref document number: 2357868

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2000 11574

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999973581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/006587

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001/01896

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2000 592484

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001/05559

Country of ref document: ZA

Ref document number: 200105559

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1020017008638

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11574/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09869710

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017008638

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999973581

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 11574/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020017008638

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999973581

Country of ref document: EP