WO2000040646A1 - Verfahren zur herstellung beladbarer kunststoffschäume - Google Patents

Verfahren zur herstellung beladbarer kunststoffschäume Download PDF

Info

Publication number
WO2000040646A1
WO2000040646A1 PCT/EP1999/010158 EP9910158W WO0040646A1 WO 2000040646 A1 WO2000040646 A1 WO 2000040646A1 EP 9910158 W EP9910158 W EP 9910158W WO 0040646 A1 WO0040646 A1 WO 0040646A1
Authority
WO
WIPO (PCT)
Prior art keywords
base polymer
extruder
chemical blowing
blowing agent
additives
Prior art date
Application number
PCT/EP1999/010158
Other languages
English (en)
French (fr)
Inventor
Bernhard Bartnick
Dieter Krampitz
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Publication of WO2000040646A1 publication Critical patent/WO2000040646A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition

Definitions

  • the invention relates to a process for producing loadable plastic foams, wherein a chemical blowing agent is added to at least one thermoplastic base polymer, the mass melts, mixed before and / or after melting, and the mixture is cooled to form a pourable, porous carrier material, with the proviso that one works in an extruder or multi-screw kneader extruder and at least occasionally introduces an inert gas into the melt of the base polymer and chemical blowing agent.
  • the extrusion is carried out in the presence of a nucleating agent.
  • Polymers consist of molecular chains with numerous, practically endlessly repeating building blocks, which differ in terms of the physical properties of low molecular weight compounds. For example, polymers have high tensile strengths and elasticity compared to low molecular weight compounds.
  • additives are mixed into polymerized plastic materials. That way you can Base polymers can be adapted to individual needs with regard to the desired properties.
  • a base polymer or a mixture of a plurality of base polymers with one or more additives is heated, melted, mixed and converted into a pourable form, for example into carrier materials loaded with additives in granular form. These are also called additive masterbatches.
  • thermoplastic base polymers mixes them with foaming aids, melts and mixes the mass and, after cooling, gives a pourable porous carrier material which is then loaded with a desired additive.
  • foaming aids Azodicarbonamides and citric acid derivatives are disclosed as suitable foaming aids.
  • an inert gas for example nitrogen, is introduced at least temporarily into the melt of base polymers and foaming aids in order to achieve particularly high porosities.
  • Plastic foams as is common in the art - are understood to mean plastics that can be loaded with additives due to the presence of internal cavities.
  • the loading should be possible in a simple manner in such a way that the plastic foam according to the invention, which is a porous carrier material, is mixed with at least one additive and with this one at below the melting point of the base polymers used to produce the plastic foam, but above that Melting point of the additive lying temperature is mixed; the additive flows into the inner cavities of the plastic foam, d. H. Due to its special structure, the plastic foam absorbs the liquid additives like a sponge.
  • additives are understood to mean plastic additives.
  • the present invention relates to a process for producing loadable plastic foams, a chemical blowing agent, the composition, being added to at least one thermoplastic base polymer melts, mixes before and / or after melting, and the mixture under
  • Forming a pourable, porous carrier material cools, with the proviso that one works in an extruder or multi-screw kneader-extruder and at least occasionally introduces an inert gas into the melt of the base polymer and chemical blowing agent and wherein the extrusion is carried out in the presence of a nucleating agent.
  • the products accessible by the process according to the present invention are pourable, porous carrier materials and are referred to below - as has also been done above - as plastic foams.
  • the plastic foams accessible by the process according to the invention have macro-pores which are interconnected. This can be demonstrated, for example, by scanning electron micrographs of longitudinal or cross sections of the plastic foams.
  • the pores have a diameter of the order of 100 ⁇ m and are ellipsoidal, the ratio of the longest to the shortest inner diameter being 2: 1 to 5: 1.
  • a nucleating agent is understood to mean a crystallization accelerator.
  • the term “nucleating agent” is also used synonymously for the term “nucleating agent” in the specialist literature.
  • Nucleating agents are particularly important in the processing of plastics because they influence the crystal growth rate of polymers. The number and size of the spherulites formed are determined by adding nucleating agents to the base polymer. The consequence of this is that nucleated polymers have a more fine-grained structure than non-nucleated ones, which is noticeable in their physicochemical properties; for example, roughly spherulitic plastics with the same crystalline fraction more brittle and less transparent or translucent than those with a fine spherulitic structure.
  • the nucleating agent which can consist of one or more compounds, also causes the lamella structure of the plastic foam obtainable by the process according to the invention to be particularly fine and uniform.
  • the nucleating agent is used in an amount of 0.001 to 5.0% by weight, based on the base polymers. The range from 0.1 to 0.8% by weight is particularly preferred.
  • the incorporation of the nucleating agent is preferably done before the extrusion, i. H. the nucleating agent is suspended in a melt of base polymers and chemical blowing agent and this mixture is then subjected to extrusion.
  • Suitable nucleating agents are, in particular, substances which are wettable or absorbable by the base polymer, are insoluble in the base polymer, have a melting point which is above the melting point of the base polymer and, moreover, also in the finest possible form - generally with Particle sizes in the range from about 1 to 10 ⁇ m - in which polymer melt are homogeneously dispersible.
  • inorganic substances such as talc, silica or kaolin are used as nucleating agents.
  • suitable organic compounds which are suitable as nucleating agents are salts of mono- or polycarboxylic acids.
  • the chemical blowing agent is used in an amount of 0.01 to 5% by weight and in particular in an amount of 0.1 to 2% by weight, based on the base polymers. You can either use one or more sub- use punching as a chemical blowing agent.
  • the chemical blowing agent is preferably selected from the group of the diazo compounds, N-nitroso compounds, sulfohydrazides, urea derivatives, guanidine derivatives, borohydride / water systems, citric acid and its esters, carbonates and hydrogen carbonates. In a preferred embodiment of the present invention, carbonates, hydrogen carbonates, citric acid and their esters or mixtures of these compounds are used as chemical blowing agents.
  • the extruder is operated in a temperature range from 100 to 265 ° C., a pressure range from 50 to 100 bar and a screw speed of 50 to 100 rpm.
  • the optimal extrusion temperatures depend essentially on the type of base polymers used, especially their melt flow indices (MFI). If an ethylene-vinyl acetate copolymer is used as the base polymer, a temperature in the range from 100 to 120 ° C. is preferably set in the feed zone of the extruder and a temperature in the range from 160 to 180 ° C. in the die area. If polypropylene is used as the base polymer, a temperature in the range of 130 to 150 ° C.
  • LDPE low density polyethylene
  • a temperature in the range of 120 to 140 ° C. is preferably set in the feed zone of the extruder and a temperature in the range of 180 to 210 ° C. in the nozzle area.
  • an inert gas is at least temporarily introduced into the melt of the base polymer and chemical blowing agent in the course of the process according to the invention.
  • the inert gas is fed into the extruder, in which the melt of the base polymer and chemical blowing agent takes place.
  • the introduction of the inert gas preferably takes place during the entire extrusion process.
  • the gas is introduced, in particular, as a fine spray, the amount of the gas depending in particular on the type of base polymer, the proportion of chemical blowing agent and the temperature and the total amount of the melt.
  • Gas pressures are preferably set to values which are 5 to 30 bar above the extrusion pressure.
  • the amount of gas is preferably set to a value in the range from 50 to 100% by volume, based on the volume of the extruded polymers; “Volume” means the throughput of the polymer per time (volume output in liters per hour).
  • the chemical blowing agents mentioned are compounds which split off gases by chemical reactions and can produce internal cavities in the polymer matrix of the base polymer or polymers.
  • the gases released are, for example, carbon dioxide or nitrogen and do not contain any explosive components.
  • the cleavage is preferably carried out in a relatively small temperature interval, namely the decomposition temperature range of the chemical blowing agent (s) used, and adapted to the processing temperature of the base polymer (s) used.
  • the chemical blowing agents can basically be divided into two groups. Blowing agents with an endothermic decomposition reaction require a constant supply of heat for decomposition and gas elimination. Depending on the type of blowing agent, decomposition starts relatively early at 85 ° C and proceeds slowly and evenly. It is ended as soon as heat is no longer applied and the foamed molded part has cooled below the decomposition temperature of the blowing agent.
  • the gas pressure of endothermic blowing agents is usually in the range of about 8 to 10 bar. Examples of endothermic blowing agents are mixtures of carbonates and hydrogen carbonates. A particularly attractive representative of this type of blowing agent is sodium hydrogen carbonate.
  • Blowing agents with an exothermic decomposition reaction require starting energy in order to quasi-explosively release gas when the decomposition temperature is reached.
  • the gas pressure of exothermic blowing agents is usually around 12 to 15 bar.
  • exothermic blowing agents are sulfohydrazides and semicarbazides. 4,4-Oxybis-benzenesulfohydrazide and toluene-4-sulfonohydrazide may be mentioned as examples in this connection.
  • the plastic foam produced by the method according to the invention i. H. the porous extrudate is converted into granular or pellet-shaped carrier material using suitable devices known per se, for example by strand granulation.
  • base polymers to be used in the course of the method according to the invention which are thermoplastic materials, can in themselves be chosen as desired.
  • suitable base polymers are:
  • Homopolymers of an ⁇ -olefin with two to eight carbon atoms copolymers of two corresponding olefins, preferably copolymers of ethylene, ethylene homopolymers such as HDPE (high density polyethylene), LDPE (low density polyethylene), VLDPE (very low density polyethylene) ), LLEPE (linear low density polyethylene), MDPE (medium density polyethylene), UHMPE (ultra high molecular polymer) lyethylene), VPE (cross-linked polyethylene), HPPE (high pressure polyethylene), isotactic polypropylene, syndiotactic polypropylene, metallocene-catalyzed polypropylene, impact-modified polypropylene, random copolymers based on ethylene and propylene, block copolymers based on ethylene and propylene, homopolymers based on 1-butylene, 1-pentylene, 1-hexylene, 1-octylene, isobutylene, 2-
  • EPDM Ethylene propylene rubber
  • EPR diene
  • SBS styrene-butadiene-styrene copolymers
  • SEBS styrene-ethylene-butylene-styrene copolymers
  • the base polymers which are used in the course of the process according to the invention are in the form of granules or pellets in practice. They are easy to stir and pour and are therefore well suited for mixing with chemical blowing agents.
  • the plastic foam produced according to the invention is characterized to a large extent by elliptical macro-pores which are interconnected, it is understandable that loading of the plastic foams with any additives is possible in a simple manner.
  • the plastic foam produced according to the invention is mixed with at least one additive and mixed with this at a temperature below the melting point of the base polymer used in the production of the plastic foam, but above the melting point of the additive.
  • the additives can be chosen as desired from the additives known per se to those skilled in the art for processing thermoplastic materials.
  • suitable additives are: antistatic agents, antifoggants, antioxidants, UV stabilizers, adhesives, calendering aids, mold release agents, lubricants, release agents, lubricants, plasticizers, fragrances, flame retardants, fillers, crosslinking agents and agents for increasing the thermostability.
  • additive-loaded plastic foams are also known as additive masterbatches. These additive masterbatches can be used in the processing of bulk plastics. These bulk plastics can be processed in any way per se; extrusion, calendering, injection molding and blow molding processes are particularly mentioned here.
  • the present invention furthermore relates to the use of the plastic foams produced by the process of the present invention for the additization of bulk plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung beladbarer Kunststoffschäume, wobei man zu wenigstens einem thermoplastischen Basispolymeren ein chemisches Treibmittel gibt, die Masse schmilzt, vor und/oder nach dem Schmelzen mischt, und die Mischung unter Bildung eines schüttfähigen, porösen Trägermaterials abkühlt, mit der Massgabe, dass man in einem Extruder oder einem mehrwelligen Kneter-Extruder arbeitet und wenigstens zeitweise ein inertes Gas in die Schmelze von Gasispolymer und chemischem Treibmittel einleitet und wobei man die Extrusion in Gegenwart eines Nukleierungsmittels durchführt.

Description

'Verfahren zur Herstellung beladbarer Kunststoffschäume"
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Herstellung beladbarer Kunststoffschäume, wobei man zu wenigstens einem thermoplastischen Basispolymeren ein chemisches Treibmittel gibt, die Masse schmilzt, vor und/oder nach dem Schmelzen mischt, und die Mischung unter Bildung eines schüttfähigen, porösen Trägermaterials abkühlt, mit der Maßgabe, daß man in einem Extruder oder mehrwelligen Kneter-Extruder arbeitet und wenigstens zeitweise ein inertes Gas in die Schmelze von Basispolymer und chemischem Treibmittel einleitet. Dabei führt man die Extrusion in Gegenwart eines Nu- kleierungsmittels durch.
Stand der Technik
Polymere bestehen aus Molekülketten mit zahlreichen, sich praktisch endlos wiederholenden Bausteinen, welche sich in bezug auf die physikalischen Eigenschaften von niedermolekularen Verbindungen unterscheiden. So weisen Polymere im Vergleich zu niedermolekularen Verbindungen beispielsweise hohe Zugfestigkeiten und Elastizität auf.
In polymerisierte Kunststoff massen werden im Zuge der industriellen Verarbeitung - je nach Weiterverarbeitung und Zweckbestimmung - geeignete Zusatzstoffe, sogenannte Additive, eingemischt. Auf diese Weise können Basispoiymere an individuelle Bedürfnisse hinsichtlich der gewünschten Eigenschaften angepaßt werden.
In der Regel bestehen zwischen Basispolymeren einerseits und flüssigen oder leicht schmelzbaren Additiven andererseits relativ große Viskositätsunterschiede, die zu Unverträglichkeiten führen können. Aufgrund dieser Tatsache lassen sich meist nur geringe Anteile von Additiven in Basispolymere einmischen, sofern nicht spezielle Maßnahmen getroffen werden.
Zur Vermeidung von Dosierproblemen und zum Erreichen einer homogeneren Verteilung bevorzugen viele Kunststoffverarbeiter ein Konzentrat des jeweiligen Additivs in den Basispolymeren. Dabei wird jeweils ein Basispolymer bzw. eine Mischung mehrerer Basispolymere mit einem oder mehreren Additiven erwärmt, aufgeschmolzen, gemischt und in eine schüttfähige Form überführt, beispielsweise in mit Additiven beladene Trägermaterialien in Granulatform. Diese werden auch Additivmasterbatches genannt.
Zur Erzielung poröser oder mikroporöser Polymerstrukturen sind dem Fachmann zahlreiche Herstellverfahren bekannt, beispielsweise die Phaseninversion, ein Nuklearbeschuß zur Einlagerung mikroporöser Festteilchen und die Zusammensinterung von kleinen mikroporösen Partikeln.
Ein besonders attraktives Verfahren zur Herstellung additiv beladener, poröser Trägermaterialien ist aus EP-A-657 489 bekannt. Bei diesem Verfahren geht man von thermoplastischen Basispolymeren aus, versetzt sie mit Aufschäumhilfen, schmilzt und mischt die Masse und erhält nach dem Abkühlen ein schüttfähiges poröses Trägermaterial, das anschließend mit einem gewünschten Additiv beladen wird. Als geeignete Aufschäumhilfen sind dazu Azodicarbonamide und Zitronensäurederivate offenbart. In einer bevorzug- ten Ausführungsform wird in die Schmelze von Basispolymeren und Aufschäumhilfen wenigstens zeitweise zusätzlich ein inertes Gas, beispielsweise Stickstoff, eingeleitet, um besonders hohe Porositäten zu erzielen.
Beschreibung der Erfindung
Die Aufgabe der vorliegenden Erfindung bestand in der Entwicklung eines verbesserten Verfahrens zur Herstellung beladbarer Kunststoffschäume. Unter "Kunststoffschäumen" sind - wie in der Fachwelt allgemein üblich - Kunststoffe zu verstehen, die aufgrund vorhandener innerer Hohlräume mit Additiven beladen werden können. Die Beladung sollte dabei in einfacher Weise derart möglich sein, daß der erfindungsgemäße Kunststoffschaum, der ein poröses Trägermaterial darstellt, mit wenigstens einem Additiv versetzt wird und mit diesem bei einer unter dem Schmelzpunkt der Basispolymeren, die zur Herstellung des Kunststoffschaums eingesetzt wurden, jedoch über dem Schmelzpunkt des Additivs liegenden Temperatur gemischt wird; dabei fließt das Additiv in die inneren Hohlräume des Kunststoffschaumes, d. h. der Kunststoffschaum nimmt aufgrund seiner speziellen Struktur die flüssigen Additive quasi wie ein Schwamm auf. Unter Additiven werden im Rahmen der vorliegenden Erfindung Kunststoffadditive verstanden. Dem Fachmann ist klar, was unter Kunststoffadditiven zu verstehen ist. Es existiert hierzu eine umfangreiche Literatur, darunter eine Reihe von speziellen Monographien. Lediglich beispielhaft sei auf das Buch „Taschenbuch der Kunststoff-Additive" von R. Gächter und H. Müller (München 1983) verwiesen.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung beladbarer Kunststoffschäume, wobei man zu wenigstens einem thermoplastischen Basispolymeren ein chemisches Treibmittel gibt, die Masse schmilzt, vor und/oder nach dem Schmelzen mischt, und die Mischung unter
Bildung eines schüttfähigen, porösen Trägermaterials abkühlt, mit der Maßgabe, daß man in einem Extruder oder mehrwelligen Kneter-Extruder arbeitet und wenigstens zeitweise ein inertes Gas in die Schmelze von Basispolymer und chemischem Treibmittel einleitet und wobei man die Extrusion in Gegenwart eines Nukleierungsmittels durchführt.
Die durch das Verfahren gemäß der vorliegenden Erfindung zugänglichen Produkte stellen schüttfähige, poröse Trägermaterialien dar und werden im folgenden - wie auch bereits oben geschehen - als Kunststoffschäume bezeichnet. Die gemäß dem erfindungsgemäßen Verfahren zugänglichen Kunststoffschäume weisen Makro-Poren auf, die untereinander verbunden sind. Dies läßt sich beispielsweise durch rasterelektronenmikroskopische Aufnahmen von Längs- bzw. Querschnitten der Kunststoffschäume nachweisen. Die Poren weisen Durchmesser in der Größenordnung von 100 μm auf und sind ellipsoid, wobei das Verhältnis des längsten zum kürzesten Innendurchmesser bei 2:1 bis 5:1 liegt.
Unter einem Nukleierungsmittel wird ein Kristallisationsbeschleuniger verstanden. Synonym für den Begriff des Nukleierungsmittels wird in der Fachliteratur auch der Begriff des Keimbildners verwendet. Nukleierungsmittel sind bei der Verarbeitung von Kunststoffen insbesondere deshalb von Bedeutung, weil sie die Kristallwachstumsgeschwindigkeit von Polymeren beeinflussen. Durch den Zusatz von Nukleierungsmitteln zum Basispolymer werden Zahl und Größe der entstehenden Sphärolithe bestimmt. Dies hat zur Folge, daß nukleierte Polymere ein feinkörnigeres Gefüge aufweisen als nicht nukleierte, was sich in ihren physikalisch-chemischen Eigenschaften bemerkbar macht; so sind beispielsweise grob sphärolithische Kunststoffe bei gleichem kristallinen Anteil spröder und weniger transparent bzw. trans- luzent als solche mit fein sphärolitischer Struktur.
Im Rahmen der vorliegenden Erfindung wird durch das Nukleierungsmittel, das aus ein oder mehreren Verbindungen bestehen kann, darüber hinaus bewirkt, daß die Lamellenstruktur des nach dem erfindungsgemäßen Verfahren erhältlichen Kunststoffschaumes besonders fein und gleichmäßig ist. In einer Ausführungsform setzt man das Nukleierungsmittel in einer Menge von 0,001 bis 5,0 Gew.% - bezogen auf die Basispolymeren - ein. Dabei ist der Bereich von 0,1 bis 0,8 Gew.% besonders bevorzugt. Die Einarbeitung des Nukleierungsmittels geschieht vorzugsweise vor der Extrusion, d. h. man suspendiert das Nukleierungsmittel in einer Schmelze aus Basispolymeren und chemischem Treibmittel und unterwirft dieses Gemisch anschließend der Extrusion.
Als Nukleierungsmittel kommen insbesondere solche Stoffe in Betracht, die durch das Basispolymer benetzbar bzw. absorbierbar sind, im Basispolymer unlöslich sind, einen Schmelzpunkt aufweisen, der oberhalb des Schmelzpunktes des Basispolymeren liegt und die darüber hinaus in möglichst fein- teiliger Form - in der Regel mit Teilchengrößen im Bereich von etwa 1 bis 10 μm - in der Polymerschmelze homogen dispergierbar sind. In einer bevorzugten Ausführungsform setzt man als Nukleierungsmittel anorganische Stoffe wie Talkum, Kieselsäure oder Kaolin ein. Beispiele für geeignete organische Verbindungen, die sich als Nukleierungsmittel eignen, sind Salze von Mono- oder Polycarbonsäuren.
Das chemische Treibmittel wird in einer Menge von 0,01 bis 5 Gew.% und insbesondere in einer Menge von 0,1 bis 2 Gew.% - bezogen auf die Basispolymeren - eingesetzt. Dabei kann man entweder ein oder mehrere Sub- stanzen als chemisches Treibmittel einsetzen. Vorzugsweise wählt man das chemische Treibmittel aus der Gruppe der Diazoverbindungen, N-Ni- trosoverbindungen, Sulfohydrazide, Harnstoffderivate, Guanidinderivate, Borhydrid/Wasser-Systeme, Zitronensäure und deren Ester, Carbonate und Hydrogencarbonate aus. In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt man als chemisches Treibmittel Carbonate, Hydrogencarbonate, Zitronensäure und deren Ester oder Gemische dieser Verbindungen ein.
In einer Ausführungsform wird der Extruder in einem Temperaturbereich von 100 bis 265°C, einem Druckbereich von 50 bis 100 bar und einer Schnek- kendrehzahl von 50 bis 100 U/min betrieben. Dabei richten sich die optimalen Extrusionstemperaturen im wesentlichen nach der Art der eingesetzten Basispolymeren, insbesondere deren Melt Flow Indices (MFI). Sofern als Basispolymer ein Ethylen-Vinylacetat-Copolymer eingesetzt wird, stellt man in der Einzugszone des Extruders vorzugsweise eine Temperatur im Bereich von 100 bis 120°C und im Düsenbereich eine Temperatur im Bereich von 160 bis 180°C ein. Sofern als Basispolymer Polypropylen eingesetzt wird, stellt man in der Einzugszone des Extruders vorzugsweise eine Temperatur im Bereich von 130 bis 150°C und im Düsenbereich eine Temperatur im Bereich von 235 bis 265°C ein. Sofern man als Basispolymer LDPE (low density polyethylene) einsetzt, stellt man in der Einzugszone des Extruders vorzugsweise eine Temperatur im Bereich von 120 bis 140°C und im Düsenbereich eine Temperatur im Bereich von 180 bis 210°C ein.
Wie bereits gesagt leitet man im Zuge des erfindungsgemäßen Verfahrens wenigstens zeitweise ein inertes Gas in die Schmelze von Basispolymer und chemischem Treibmittel ein. Dabei wird das inerte Gas in den Extruder, in dem sich die Schmelze von Basispolymer und chemischem Treibmittel be- findet, eingeleitet. Vorzugsweise geschieht das Einleiten des inerten Gases während des gesamten Extrusionsvorganges. Das Gas wird insbesondere fein versprüht eingeleitet, wobei sich die Menge des Gases insbesondere nach der Art der Basispolymeren, dem Anteil an chemischem Treibmittel sowie der Temperatur und der Gesamtmenge der Schmelze richtet. Vorzugsweise stellt man Gasdrucke auf Werte ein, die 5 bis 30 bar oberhalb des Extrusionsdruckes liegen. Die Menge des Gases wird vorzugsweise auf einen Wert im Bereich von 50 bis 100 Volumen-% - bezogen auf das Volumen der extrudierten Polymere - eingestellt; unter „Volumen" ist dabei der Durchsatz des Polymeren pro Zeit (Volumenausstoß in Litern pro Stunde) zu verstehen.
Bei den genannten chemischen Treibmitteln handelt es sich um Verbindungen, die durch chemische Reaktionen Gase abspalten und in der polymeren Matrix des oder der Basispolymeren innere Hohlräume erzeugen können. Die freiwerdenden Gase sind beispielsweise Kohlendioxid oder Stickstoff und enthalten keine explosiven Bestandteile. Die Abspaltung wird vorzugsweise in einem relativ kleinen Temperaturintervall, nämlich dem Zersetzungstemperaturbereich des/der jeweils eingesetzten chemischen Treibmittel, durchgeführt und der Verarbeitungstemperatur des/der eingesetzten Basispolymeren angepaßt.
Die chemischen Treibmittel lassen sich prinzipiell in zwei Gruppen einteilen. Treibmittel mit endothermer Zersetzungsreaktion benötigen eine ständige Wärmezufuhr zur Zersetzung und Gasabspaltung. Die Zersetzung beginnt je nach Art des Treibmittels relativ früh schon bei 85 °C und verläuft langsam und gleichmäßig. Sie wird beendet, sobald keine Wärmezufuhr mehr erfolgt und das geschäumte Formteil unterhalb der Zersetzungstemperatur des Treibmittels abgekühlt ist. Der Gasdruck endothermer Treibmittel liegt üblicherweise im Bereich von etwa 8 bis 10 bar. Beispiele für endotherme Treibmittel sind etwa Mischungen aus Carbonaten und Hydrogencarbona- ten. Ein besonders attraktiver Vertreter dieser Art von Treibmitteln ist Natri- umhydrogencarbonat.
Treibmittel mit exothermer Zersetzungsreaktion benötigen eine Startenergie, um beim Erreichen der Zersetzungstemperatur quasi explosionsartig Gas freizusetzen. Der Gasdruck exothermer Treibmittel beträgt in der Regel etwa 12 bis 15 bar. Beispiele exothermer Treibmittel sind Sulfohydrazide und Semicarbazide. Exemplarisch sei in diesem Zusammenhang 4,4-Oxybis- benzolsulfohydrazid und Toluol-4-Sulfonohydrazid genannt.
Der nach dem erfindungsgemäßen Verfahren hergestellte Kunststoffschaum, d. h. das poröse Extrudat, wird mit an sich bekannten geeigneten Einrichtungen in granulat- oder pelletförmiges Trägermaterial überführt, beispielsweise durch Stranggranulation.
Die im Zuge des erfindungsgemäßen Verfahrens einzusetzenden Basispolymere, bei denen es sich um thermoplastische Kunststoffe handelt, können an sich beliebig gewählt werden. Beispiele für geeignete Basispolymere sind:
1 ) Homopolymere aus einem α-Olefin mit zwei bis acht Kohlenstoffatomen, Copoiymerisate von zwei entsprechenden -Olefinen, vorzugsweise Copolymerisate aus Ethyien, Ethylen-Homopolymerisate wie HDPE (high density polyethylene), LDPE (low density polyethylene), VLDPE (very low density polyethylene), LLEPE (linear low density polyethylene), MDPE (medium density polyethylene), UHMPE (ultra high molecular po- lyethylene), VPE (vernetztes Polyethylen), HPPE (high pressure polyethylene), isotaktisches Polypropylen, syndiotaktisches Polypropylen, Metallocen-kataiysiert hergestelltes Polypropylen, schlagzäh-modi- fiziertes Polypropylen, Random-Copoiymere auf Basis Ethylen und Pro- pyien, Blockcopoiymere auf Basis Ethylen und Propylen, Homopolymere auf Basis 1-Butylen, 1-Pentylen, 1-Hexylen, 1-Octylen, Isobutylen, 2- Methyl-1-Butylen, 3-Methyl-1-Pentyien, 4-Methyl-1-Pentylen, 2, 3-Di- methyl-1-Butylen, 2-Ethyl-1-Butylen sowie Mischungen davon.
2) Copolymerisate von Ethylen mit 1-Butylen, 1-Hexylen, 1-Octylen und 4- Methyl-1-Pentylen.
3) Ethylen-Vinylacetat-Copolymerisate, Ethylenethylacetat-Copolymerisate, Ethylenacrylsäure-Copolymerisate und Mischungen davon.
4) Ethylenpropylengummi (EPDM), auch Dien-modifiziert (EPR), Styrol-But- adien-Styrol-Copolymerisate (SBS), Styrol-Ethylen-Butylen-Styrol-Co- polymerisate (SEBS) und Mischungen davon.
Die Basispolymere, die im Zuge des erfindungsgemäßen Verfahrens eingesetzt werden, liegen in der Praxis granalien- oder pelletförmig vor. Sie sind gut schürt- und rieselfähig und daher zum Mischen mit chemischen Treibmitteln gut geeignet.
Da die Struktur der erfindungsgemäß hergestellten Kunststoffschäume in hohem Maße durch elliptische untereinander verbundene Makro-Poren charakterisiert ist, ist verständlich, daß eine Beladung der Kunststoffschäume mit beliebigen Additiven in einfacher Weise möglich ist. Hierzu wird der erfindungsgemäß hergestellte Kunststoffschaum mit wenigstens einem Additiv versetzt und mit diesem bei einer unter dem Schmelzpunkt des bei der Herstellung des Kunststoffschaumes eingesetzten Basispolymeren, jedoch über dem Schmelzpunkt des Additiv liegenden Temperatur gemischt. Die Additive können im Rahmen der vorliegenden Erfindung aus den dem Fachmann einschlägig bekannten Additiven zur Verarbeitung von thermoplastischen Kunststoffen an sich beliebig gewählt werden. Beispiele für geeignete Additive sind: Antistatika, Antischleiermittel, Antioxidantien, UV- Stabilisatoren, Haftmittel, Kalandrierhilfen, Formtrennmittel, Gleitmittel, Trennmittel, Schmiermittel, Weichmacher, Duftmittel, Flammschutzmittel, Füllstoffe, Vernetzungsmittel und Mittel zur Erhöhung der Thermostabilität.
Die Additiv-beladenen Kunststoffschäume werden auch als Additiv-Master- batches bezeichnet. Diese Additiv-Masterbatches können bei der Verarbeitung von Massenkunststoffen eingesetzt werden. Dabei kann die Verarbeitung dieser Massenkunststoffe auf an sich beliebige Art erfolgen; insbesondere seien hier Extrusions-, Kalandrier-, Spritzguß- und Blasformverfahren genannt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist dementsprechend die Verwendung der nach dem Verfahren der vorliegenden Erfindung hergestellten Kunststoffschäume zur Additivierung von Massenkunststoffen.

Claims

Patentansprüche
1. Verfahren zur Herstellung beladbarer Kunststoffschäume, wobei man zu wenigstens einem thermoplastischen Basispoiymeren ein chemisches Treibmittel gibt, die Masse schmilzt, vor und/oder nach dem Schmelzen mischt, und die Mischung unter Bildung eines schüttfähigen, porösen Trägermaterials abkühlt, mit der Maßgabe, daß man in einem Extruder oder mehrwelligen Kneter-Extruder arbeitet und wenigstens zeitweise ein inertes Gas in die Schmelze von Basispolymer und chemischem Treibmittel einleitet, dadurch gekennzeichnet, daß man die Extrusion in Gegenwart eines Nukleierungsmittels durchführt.
2. Verwendung von Kunststoffschäumen hergestellt gemäß dem Verfahren nach Anspruch 1 zur Additivierung von Massenkunststoffen.
PCT/EP1999/010158 1999-01-08 1999-12-21 Verfahren zur herstellung beladbarer kunststoffschäume WO2000040646A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19900488.9 1999-01-08
DE1999100488 DE19900488A1 (de) 1999-01-08 1999-01-08 Verfahren zur Herstellung beladbarer Kunststoffschäume

Publications (1)

Publication Number Publication Date
WO2000040646A1 true WO2000040646A1 (de) 2000-07-13

Family

ID=7893799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/010158 WO2000040646A1 (de) 1999-01-08 1999-12-21 Verfahren zur herstellung beladbarer kunststoffschäume

Country Status (2)

Country Link
DE (1) DE19900488A1 (de)
WO (1) WO2000040646A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331776A (en) * 1978-10-05 1982-05-25 Rhone-Poulenc Industries Polyamide masterbatches
JPS61168634A (ja) * 1985-01-21 1986-07-30 Furukawa Electric Co Ltd:The プロピレン−エチレン共重合体発泡体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331776A (en) * 1978-10-05 1982-05-25 Rhone-Poulenc Industries Polyamide masterbatches
JPS61168634A (ja) * 1985-01-21 1986-07-30 Furukawa Electric Co Ltd:The プロピレン−エチレン共重合体発泡体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 377 (C - 392) 16 December 1986 (1986-12-16) *

Also Published As

Publication number Publication date
DE19900488A1 (de) 2000-07-13

Similar Documents

Publication Publication Date Title
DE102015225454B4 (de) Polyolefinharzzusammensetzung mit einem ausgezeichneten Expansionsvermögen und ausgezeichneten Eigenschaften für eine Direktmetallisierung, und spritzgegossener Artikel, hergestellt durch Schaumspritzgiessen derselben.
EP0657489B1 (de) Additivbeladenes, poröses Trägermaterial
EP1857242B1 (de) Verfahren zum herstellen von expandierfähigem styrolkunststoff-granulat
DE10358786A1 (de) Partikelschaumformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten
EP2519569B1 (de) Expandierbare polymerisate aus celluloseacetatbutyrat
EP1204700B1 (de) Biologisch abbaubare schaumstoffpartikel
EP2452969A1 (de) Verfahren zur Herstellung von expandierbaren thermoplastischen Partikeln durch Nachimprägnierung
EP2504385B1 (de) Verfahren zur herstellung eines pet-granulats sowie pet-granulat
WO2000040644A2 (de) Verfahren zur herstellung beladbarer kunststoffschäume
DE60217950T2 (de) Physikalisch geschäumter feinzelliger Polyethylenschaumstoff
EP1702945B2 (de) Füllstoffhaltige Polyolefinpartikelschaumstoffe
DE10358804A1 (de) Expandierbare Styrolpolymergranulate mit bi- oder multimodaler Molekulargewichtsverteilung
WO2000040645A1 (de) Verfahren zur herstellung beladbarer kunststoffschäume
DE2019945A1 (de) Formmassen zur Herstellung von Schaumstoff-Formkoerpern aus Styrolpolymerisaten
WO2000040646A1 (de) Verfahren zur herstellung beladbarer kunststoffschäume
EP0335191A2 (de) Treibmittel-Masterbatch für die Herstellung von Polystyrolschaumstoffen
WO2000040643A1 (de) Verfahren zur herstellung beladbarer kunststoffschäume
EP1228126B1 (de) Verwendung von additiv-masterbatches bei der herstellung von massenkunststoffen
EP3730543B1 (de) Verfahren zur herstellung von expandierbaren oder zumindest teilweise expandierten polymerpartikeln auf der basis von polylactid und danach hergestellte polymerpartikel
WO2001092385A1 (de) Verfahren zur herstellung geschäumter bauteile vermischt mit pflanzlichem trägermaterial
DE10039340A1 (de) Verfahren zur Herstellung geschäumter thermoplastischer Formteile und thermoplastische Formteile
EP1242533B1 (de) Verwendung von substituierten polyethyleniminen zur dauerhaften verbesserung der klebstoff- und/oder beschichtungs-kompatibilität von polyolefin-basierten formkörpern, fasern und folien
DE1669998C3 (de) Selbstlöschende Äthylenmischpolymerisatschäume
DE102004010698A1 (de) Expandierbare Harzmasse und Harzschaum auf Propylenbasis
DE1902326A1 (de) Geschaeumte,thermoplastische Harze und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase