WO2000038261A1 - Ensamblaje de membrana-electrodo y procedimiento para su producción - Google Patents

Ensamblaje de membrana-electrodo y procedimiento para su producción Download PDF

Info

Publication number
WO2000038261A1
WO2000038261A1 PCT/ES1998/000351 ES9800351W WO0038261A1 WO 2000038261 A1 WO2000038261 A1 WO 2000038261A1 ES 9800351 W ES9800351 W ES 9800351W WO 0038261 A1 WO0038261 A1 WO 0038261A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation exchange
mea
fluorocopolymer
electrocatalyst
membrane
Prior art date
Application number
PCT/ES1998/000351
Other languages
English (en)
French (fr)
Inventor
Alfonso Carlos CADAVAL FERNÁNDEZ DE LECETA
Ricardo Blach Vizoso
Timofeev Sergei
Bobrova Lyubov
Fateev Vladimir
Porembsky Vladimir
Original Assignee
David Systems Technology S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems Technology S.L. filed Critical David Systems Technology S.L.
Priority to ES98961260T priority Critical patent/ES2195427T3/es
Priority to JP2000590239A priority patent/JP2002533877A/ja
Priority to EP98961260A priority patent/EP1176655B1/en
Priority to PCT/ES1998/000351 priority patent/WO2000038261A1/es
Priority to AT98961260T priority patent/ATE235110T1/de
Priority to PT98961260T priority patent/PT1176655E/pt
Priority to CA002356293A priority patent/CA2356293A1/en
Priority to AU16729/99A priority patent/AU770055B2/en
Priority to US09/868,796 priority patent/US6685806B1/en
Priority to DE69812444T priority patent/DE69812444T2/de
Priority to CN98814396A priority patent/CN1337072A/zh
Priority to KR10-2001-7008035A priority patent/KR100472779B1/ko
Priority to BR9816109-1A priority patent/BR9816109A/pt
Priority to DK98961260T priority patent/DK1176655T3/da
Publication of WO2000038261A1 publication Critical patent/WO2000038261A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8857Casting, e.g. tape casting, vacuum slip casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the electrochemical industry in general, and more particularly, to the membrane-electrode assembly (MEA) based on fluorine-containing ion exchange membranes and the process for their manufacture.
  • MEA membrane-electrode assembly
  • Said MEA is widely used in combustible cells, in water electrolysers and in other electrochemical procedures.
  • MEAs consisting of ion exchange membranes that contain fluoride MF4-SK ( Russian trademark [RTM]) and in the layers of an electrode material (electrode composition) located on both sides.
  • the electrode composition consists of mixing of the electrocatalyst and of the ion exchange polymer [USSR Patent No. 1,285,095 IPC S25V 11/10, 1990]
  • As an ion exchange polymer in the composition of the electrode is used inorganic proton conducting electrolyte (polyanimonic acid, acid zirconium phosphate) in electrode composition
  • the electrocatalyst is platinum, palladium black or rhodium.
  • the MF-4 SK membrane is a 300 ⁇ m thick cation exchange membrane [EMC] made of tetrafluoroethylene hydrolyzed copolymer with vinyl ether containing fluorosulfide groups with the following structural formula:
  • the MEA is produced by application of the electrode composition on both sides of the CEM (the sedimentation method is used).
  • the electrode composition consists of the mixture of electrocatalyst and ion exchange polymer powders (polyanimonic acid).
  • the composition is fixed by treatment with electric current in water at 90 ° C, the density of the current is 0.5-1 A / cm 2 .
  • the MEA produced consists, for example, of the CEM, MF-4SK and the layers of the electrode composition on both sides thereof with electrocatalyst (platinum black, particle size 0.01 ⁇ ) on both sides, cathode and anode . It has the following characteristics for electrolysis of deionized water: the voltage is 2.2 V when the current density is 1 A / cm 2 and the temperature is 100 ° C. The voltage does not change for 1000 hours.
  • the MEA described has the following advantage: it can work in a stable state for 1000 hours.
  • the disadvantage of the MEA is the impossibility of obtaining high adhesion between the layers of the electrode composition and the EMC because the ion exchange polymer (polyanimonic acid) gradually dissolves after a long (more than 1000 hours) of water electrolysis and, consequently, with a prolonged work of the MEA a tendency to exfoliation of the electrode composition can be observed.
  • the production method of the MEA does not allow precise regulation of the composition and quantity of electrode material applied to the CEM. The method is complicated because the layers of The electrode composition (electrocatalytic layers) is applied by the sedimentation method, which requires the following processing with electric current to fix the layers on the EMC.
  • the electrocatalyst charge required for the manufacture of electrocatalytic layers is quite high: 1-2 mg / cm 2 on the cathode and 4-6 mg / cm 2 on the anode.
  • MEA with porous cathode is also known.
  • Said MEA consists of a polymeric ion exchange membrane of the Nafion type (trademark of CEM of DuPont) and a porous layer of electrode material - mixing of electrocatalyst particles with binder ( Russian Federation patent [RF] ns 2.015.207, CPI S25V 11/20, 1994), deposited on the cathode side of the CEM.
  • the porous cathode layer of the electrode composition is made of a mixture of electrocatalytic particles with polytetrafluoroethylene binder.
  • the membrane (Nafion trademark) is produced from hydrolyzed tetrafluoroethylene copolymer with perfluorinated vinyl ethers containing ion exchange groups.
  • EMC from Du Pont
  • Nafion (R) 120 with ion exchange groups - S0 3 H see patent H
  • RF patent for tetrafluoroethylene with perfluorinated vinyl ethers containing ion exchange groups.
  • EMF from Du Pont
  • the membrane (trademark Nafion) is produced from hydroll248, American Chemical Society, Washington DC].
  • the above-mentioned MEA is produced by applying a mixture of electrocatalytic particles and inactive conductive material with the binder (polytetrafluoroethylene) and aluminum powder on the aluminum sheet (by technique A). After drying for example at 105 ° C, sintering is performed at 325 ° C for 10 minutes. The aluminum foil with the electrode layer is then placed on the surface of the EMC cathode and pressed at 175 ° C and at a pressure of 50-60 kg / cm 2 . After pressing the MEA it is taken to a caustic soda solution to dissolve the aluminum foil and the aluminum powder (the latter is used as a porosity promoter). After this the layer of the electrode material becomes porous.
  • the advantage of the MEA of the Russian Federation (RF) patent ns 2,015,207 is that the duration of the MEA is longer because the binder (polytetrafluoroethylene) does not dissolve during electrolysis.
  • the cell voltage is 1.8-1.9 V.
  • the disadvantage of the MEA described is that the adhesion between the porous layer of electrode material and the surface of the CEM is not as strong as required. During the long-term MEA test, the porous layer of the electrode material is exfoliated and the gases released are deposited on the surface between the EMF and the porous layer. This produces an increase in the voltage of the MEA. Also, as seen in the RF patent (example 4), the disadvantage of the described MEA is a comparatively high electrocatalyst charge due to its particular capping by polytetrafluoroethylene during production (pressing at 325 ° C and with a pressure of 50- 60 kg / cm ⁇ )
  • the volume of the porosity of the electrocatalytic layer of the electrode material is uncontrollable since the transport of gases and liquids in the reaction zone is impeded, worsening the electrochemical properties of the MEA.
  • the production form of the MEA described is quite complicated, because a high sintering temperature (> 300 ° C) and leaching of aluminum is required to form the porous layer of an electrode material.
  • the production of the MEA by compression at 175 ° C results in the particular destruction of the cation exchange groups, which worsens the electrochemical characteristics of the CEM, and can cause the destruction of the entire MEA.
  • the essential set of attributes closest to the claimed MEA and its production method is the MEA and its production method described in U.S. Patent No. 5,399,184, HOIM 8/10, 1995.
  • the MEA, in accordance with U.S. Patent No. 5,399,184 consists of a fluorine-containing cation exchange membrane made of hydrolyzed tetrafluoroethylene copolymer with vinyl ether containing fluorosulfide groups, with an exchange capacity of 0.33-1.43 ⁇ g equivalent / g [ ⁇ g-eq / g ] (according to the text in the specification of the invention for the patent) or 1.12-1.43 ⁇ g-eq / g (according to the examples and the patent claims) corresponding to document EW 900 -1300 and the porous layers of an electrode material located on both sides of its surface.
  • the fluoropolymer binder is a cation exchange fluoropolymer with a composition identical to the membrane polymer or may be polytetrafluoroethylene.
  • the CEM is made of tetrafluoroethylene hydrolyzed copolymer with vinyl ether containing perfluoro ⁇ ulfide. Its structural formula is:
  • Nafion 117 This membrane is made of a copolymer with a degree of crystallinity of 12%. [ACS Symposium Perfluorinated Ionomer Membranes, Lake Buena Vista, Florida February 23-26, 1982, Series 180, p. 217-248, American Chemical Society, Washington D.C.].
  • the MEA specified by prototype is produced by application of the electrode material paste on both surfaces of the CEM.
  • the latter consists of the hydrolyzed copolymer of tetrafluoroethylene with vinyl ether containing perfluoro (PE 900-1300).
  • the paste is made of a mixture of inactive electroconductive material (carbon) and electrocatalyst (platinum) with fluorine-containing copolymer binder (with a 5% solution of cation exchange fluorocopolymer having a composition similar to fluorocopolymer ero , whose EMC is made of a 50% dispersion of polytetrafluoroethylene in aliphatic alcohol).
  • the paste is applied on one of the surfaces of the CEM and then on the other surface (with subsequent heat treatment).
  • a 5% solution of a cation exchange fluoropolymer "Nafion Solution” is used as a binder with -S0 3 H ion exchange groups (example 1, U.S. Patent No. 5,399,184)
  • the paste is treated with a solution of water to 5% potassium hydroxide before application to the CEM to transform the ion exchange groups into -S0 3 K.
  • the paste is spread over one of the surfaces of the CEM (with -S0 3 K groups) so that the The layer of an electrode material after drying will not have a thickness greater than 10 ⁇ m.
  • the paste is then dried at room temperature for 10 minutes and then the solvent is removed in vacuo for 30 minutes.
  • the EMF with the paste is then placed between sheets of polytetrafluoroethylene and pressed at 190 ° C at a pressure of 50 kg / cm 2 .
  • a layer of material analogous to an electrode material is placed on the other surface of the membrane in the same way.
  • the MEA is brought to a 5% sulfuric acid solution at room temperature for 16 h to convert the ion exchange groups -S0 3 K to -S0 3 H.
  • the electrode material paste is applied to a sheet of carbon material, then the sheet is heated at a temperature of 325 ° C for 10 minutes under pressure. The second sheet is produced in the same way.
  • the layers of the electrode material, which were applied to the sheets of the carbon material, are then coated with a 5% solution of "Nafion Solution" containing -S0 3 H groups and then dried.
  • the carbon sheets are then placed on the surface of the CEM (with sides, which are covered with an electrode material facing the CEM) and pressed at a temperature of 135 ° C with a pressure of 140 kg / cm 2 for 60 minutes
  • the MEA produced by the mentioned method has porous layers of electrode material on the surfaces of the CEM.
  • the MEA produced by prototype (US Patent No. 5,399,184) is pressed with a carbon fabric of paper saturated with polytetrafluoroethylene on both sides and inserted into a fuel cell.
  • the fuel cell voltage of example 1 is 0.75-0.77 V, current density 0.5 A / cm 2 , in example 5 the voltage is 0.75-0.8 V, density of the current 0.5 A / cm 2 .
  • the MEA produced can be used not only in fuel cells but also in water electrolysis.
  • Non-adhesion between the catalytic layer and the EMC reduces the duration of the MEA.
  • the reason is the long processing of the MEA with the sulfuric acid solution, which causes a swelling of the layers of catalytic material and due to the different degree of swelling of the catalytic porous layer and of the MEA. All this results in the exfoliation of the layers of catalytic material when the MEA operates for a long time [Journal of Applied Electrochemistry 22 (1992) p. 1-7].
  • Said sulfuric acid processing is necessary if the same cation exchange copolymer (with S0 3 K groups) is used as the fluoropolymer binder as the EMC copolymer.
  • the disadvantage of the MEA produced by prototype is the multistage production process (6-7 steps) and the long duration of the process, since only the processing of the MEA with sulfuric acid lasts approximately 16 hours.
  • the technical result obtained with the claimed MEA includes the improvement of the electrochemical characteristics of the MEA (especially with a low catalyst load), increased efficiency of the use of the electrocatalyst and the duration of the MEA.
  • the claimed method of MEA production allows the procedure to be simpler, reducing its duration and ensuring the production of MEA with high electrochemical characteristics.
  • the mentioned technical result is obtained using a fluorine-containing cation exchange membrane made of hydrolyzed tetrafluoroethylene copolymer with vinyl ester containing perfluorosulfide and probably with the third modifying comonomer, which has a degree of crystallinity between 2 and 8%, the porous layers of electrode material being produced with a porosity between 40 and 70%, decreasing in the direction of the EMF surface with a porosity gradient between 5 and 15% by 1 ⁇ .
  • the MEA consists of a CEM containing fluorine made of hydrolyzed copolymer of tetrafluoroethylene with vinyl ether containing perfluorosulphide having a PE of 900-1300 and porous layers of the electrode material made of a mixture containing an inactive electroconductive and polymer material fluoropolymeric located on both surfaces of the CEM.
  • EMC can be made from hydrolytic copolymer. Tetrafluoroethylene with vinyl ether containing perfluorosulfide and the third modifying comonomer that can be chosen from ethylene, perfluor-2-methylene-4-methyl-l, 3- dioxolane and perfluoroalkylated vinyl ether with a C-alkyl group., - C 3 .
  • the porous layers of the electrode material are made of a mixture containing (in% by mass): electrocatalyst -20-85% inactive electroconductive material -10-60% cation exchange fluorocopolymer identical to the fluorocopolymer from which EMC -2 is made - 8% polytetrafluoroethylene 3 - 15% or layers of electrode material are produced from a mixture containing (in% by mass): electrocatalyst -65 - 95% inactive electroconductive material -1 - 35% cation exchange fluorocopolymer identical to fluorocopolymer from which EMC is made -1 - 9%
  • Simplification of the process and reduction of its duration is achieved by using the EMF made of hydrolyzed tetrafluoroethylene copolymer containing perfluorosulfide with a degree of crystallinity between 2 and 8% for the production of MEA.
  • the mixture of the electrocatalyst, the inactive electroconductive material and between 1 and 5% of solution of the cation exchange fluorocopolymer identical to the fluorocopolymer from which the CEM is made, is applied in a mixture of organic solvents on both surfaces of the CEM.
  • Heat treatment is carried out by gradually increasing the temperature: from 20-35 ° C to 80-100 ° C.
  • EMC can be used, for example the EMF produced made of hydrolyzed copolymer of tetrafluoroethylene with vinyl ether containing perfluorosulfide and the third modifying comonomer, which can be chosen from ethylene, perfluor-2-methylene-4-methyl-1, 3 -dioxolane and perfluoroalkylated vinyl ester with a C., - C 3 alkyl group.
  • a mixture of electrocatalyst, inactive electroconductive material and between 1 and 5% of a cation exchange fluorocopolymer solution identical to the fluorocopolymer whose EMC can be applied in a mixture of organic solvents can be applied to both surfaces of the EMC.
  • the authors of the present invention saw that a degree of crystallinity of the hydrolyzed cation exchange fluorocopolymer (from which the cation exchange membrane is made) has a great influence on the electrochemical characteristics of the MEA.
  • the degree of crystallinity of the fluorocopolymer is equal to 2-8% there is such a water balance in the volume of the MEA that provides the necessary reagent entry into the MEA and the output of reaction products. This causes optimal electrochemical characteristics of the MEA.
  • the degree of crystallinity of the fluorocopolymer used in the MEA can be controlled by the conditions of its synthesis, by the addition of the third comonomer or by the conditions of hydrolysis when the copolymer is transformed from the nonionic to cationic exchange form. Both the increase in the degree of crystallinity from more than 8% as the decrease to less than 2% causes the deterioration of the electrochemical characteristics of the MEA.
  • the formation of the layer with porosity that decreases in the direction of the cation exchange membrane with a porosity gradient between 5 and 15% by 1 ⁇ contributes to obtaining the high electrochemical characteristics of the MEA.
  • the authors saw that precisely that porosity is achieved when the layers of an electrode material that are applied to the membrane surface contain a fluorine-containing binder dissolved in a mixture of organic solvents with different boiling points (preferably as a solution 1 -5%) .
  • the binder is a fluorocopolymer that is identical to the fluorocopolymer from which the membrane is made.
  • Said combination of the fluorocopolymer with the solvent mixture together with the removal of the solvents during the multistage process with a temperature increase from 20 and 35 ° C to 80-100 ° C provides the necessary porosity gradient with a general porosity preferably between 40 and 70% without using any special method to achieve it.
  • the cation exchange membrane of the claimed MEA can be made of tetrafluoroethylene hydrolyzed copolymer with perfluorosulphide-containing vinyl ethers with the following structural formula:
  • the third modifying comonomer in the aforementioned fluorocopolymer could be ethylene, perfluoro-2-methylene-4- methyl-1, 3-dioxolane, perfluoroalkyl vinyl ether (with C., -C 3 in the alkyl), etc.
  • the modifying comonomer is added to the copolymer during the synthesis in an amount of between 1 and 15% mol (ethylene 3-5% mol, perfluor-2-methylene-4-methyl- 1,3-dioxolane 1-4% mol, ethers of perfluoroalkyl with C 1 -C 3 in 2-5% alkyl).
  • the layer of an electrode material that is applied on the anode surface of the EMC as an electrocatalyst may contain platinum, iridium, Ir0 2 , oxides mixture Ir0 2 + Ru0 2 , Ir0 2 + Ru0 2 + Ti ⁇ 2 , Ir0 2 + Ru0 2 + Sn0 2 , Pb0 2 + Ir0 2 and others.
  • the layer of an electrode material that is applied on the cathodic surface of the EMC as an electrocatalyst may contain platinum, palladium or platinum with ruthenium etc.
  • the layer of the electrode material may contain carbon, lead, lead dioxide, etc.
  • the fluoropolymer binder in the composition of an electrode material is a fluorocopolymer with a composition identical to the fluorocopolymer from which the EMC is made.
  • the binder is used as a 1-5% solution in a mixture of organic solvents with different boiling points.
  • the composition of the mixture depends on the composition of the copolymer, its equivalent weight and the type of cation exchange group (-S0 3 H, -S0 3 K, -S0 3 Na, -S0 3 Li) that is included in the same.
  • the mixture must contain solvents such that they do not produce any coagulation of the system when the solution of the cation exchange fluorocopolymer is combined with the electrocatalyst and the inactive electroconductive material.
  • the organic solvent mixture must include solvents with a low boiling point of 20-60 ° C [1, 1, 2-trifluor-1, 2-dichlor- roethane (freon 123a); pentane, 1, 1-difluoro-1, 2-dichloroethane (freon-132B), 1, 1, 2-trifluorotricloroethane (freon 113), 1, 1, 1-trichlorobromodiethane (freon-123B), acetone, etc.], solvents with an average boiling point of 60-100 ° C [1,1-difluoro-l, 2,2-trichloroethane (freon 122), ethanol, hexane, methyl ethyl ketone, benzene, isopropanol
  • the fluorocopolymer contains cation exchange groups such as the -S0 3 H group
  • the mixture of ethanol with freon-113 and methyl ethyl ketone and heptane can preferably be used.
  • S0 3 K groups exist, then dimethylformamide mixed with ethanol and heptane can preferably be used.
  • the copolymer with -S0 3 Li groups the mixture of isopropanol with acetone and freon 123B can be used.
  • the cation exchange fluorocopolymer solution is obtained by dissolving the cation exchange fluorocopolymer powder in the organic solvent mixture and then heating and stirring the solution.
  • the dissolution temperature depends on the composition and equivalent weight of the copolymer and also on the boiling points of the solvents used.
  • the composition of the fluorocopolymer was determined by infrared spectroscopy using the Perkin-Elmer spectrometer, 1750. 2.
  • the exchange capacity was determined by titration [RNS 17552-72 and technical conditions (TU) 6.06-041-969-89].
  • the degree of crystallinity was determined by the X-ray method using a KRM-1 X-ray spectrometer.
  • the thickness of the membrane and the thickness of the layers of an electrode material were determined using the MK 25-1 micrometer (RNS 6507-78).
  • the general porosity and the porosity gradient were determined by the method of porometry with etalone (standard).
  • CPL-1 perfluorosulfide containing vinyl ether
  • an electrode material 0.24 g of electrocatalyst (platinum) deposited on the surface of 0.58 g of inactive electroconductive material [acetylene black with a particle size of 0.01 ⁇ m (TU 14-7-24-80)] is mixed in a glass vessel, with 0.1 g of polytetrafluoroethylene and 0.08 g of CPL-1 fluorocopolymer in the form of a 3% solution in the ethanol mixture, Freon-13 and methyl ethyl ketone (mass ratio 5: 2: 3).
  • the fluorocopolymer contains cation exchange groups -S0 3 H and is identical to the EMC copolymer.
  • the viscous compound obtained is applied on an air-dried surface of the EMF by spraying a layer of such thickness that, after drying, the electrocatalyst charge is not greater than 0.3 ⁇ g / cm 2 .
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: 20sc for 10 minutes, then 602C for 40 minutes and 80ec for 20 minutes. Then, the EMC is removed from the thermostat, cooled to room temperature and the same electrode material is applied to another EMC surface in the same way.
  • the MEA produced contains CEM of CPL-1 with a thickness of 170 ⁇ m, with the layers of an electrode material located on its two sides.
  • the electrocatalyst charge is 0.3 mg / cm 2 .
  • the layers of the electrode material contain (% by mass): electrocatalyst -24% inactive electroconductive material -58% cation exchange fluorocopolymer CPL-1 -8% tetrafluoroethylene -10% general porosity is 40% with a porosity gradient of the 5% for 1 ⁇ m.
  • the MEA produced is tested in a fuel cell as follows: on the two surfaces of the electrode layers of the produced MEA, the saturated TMP-5 (RTM) carbon fabric with polytetrafluoroethylene dispersion (TU 6-05) is applied -1246-81) and then compressed. Next, the aggregate is placed in the fuel cell. The test is carried out at 80 ⁇ C and the following gases are added to the fuel cell: hydrogen in the anode compartment with a pressure of 2.5 atmospheres and oxygen in the cathode compartment with a pressure of 5 atmospheres.
  • RTM saturated TMP-5
  • TU 6-05 polytetrafluoroethylene dispersion
  • the fuel cell was operated stably for 3000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the electrode material layer was observed by visual inspection. When the MEA was put back into the fuel cell, the parameters did not change.
  • Electrode material 0.85 g of electrocatalyst (platinum, with a particle size of 0.05 ⁇ m) and 0.1 g of inactive electroconductive material (acetylene black with a particle size of
  • the EMC is then placed in a thermostat and heated with the following temperature increase in multiple phases: 20-352C for 10 minutes, then 502C for 30 minutes and loosed for 30 minutes. Then, the EMC is removed from the thermostat, cooled to room temperature and the same electrode material is applied to another EMC surface in the same way.
  • the MEA produced contains CEM of CPL-8 with a thickness of 100 ⁇ m, with the layers of an electrode material located on its two sides. The electrocatalyst charge is 0.3 mg / cm 2 .
  • the layers of the electrode material contain (% by mass): electrocatalyst -85% inactive electroconductive material -10% cation exchange fluorocopolymer CPL-8 -2% tetrafluoroethylene -3% general porosity is 50% with a porosity gradient of the 12% for 1 ⁇ m.
  • the MEA produced is tested in a fuel cell as follows: on the two surfaces of the electrode layers of the produced MEA, the saturated carbon fabric with polytetrafluoroethylene dispersion is applied.
  • the fuel cell was operated stably for 3000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the electrode material layer was observed by visual inspection. When the MEA was put back in the fuel cell, its parameters did not change.
  • an electrode material 0.95 g of the electrocatalyst (platinum, with particle size of 0.05 ⁇ m) and 0.01 g of negative electroconductive material (acetylene black with a particle size of 0.01 ⁇ ) are mixed in a glass container . Then, 0.04 g of TM-4 fluorocopolymer in the form of a 1% solution in a mixture of dimethylformamide with ethanol and acetone (mass ratio 1: 7: 2) are added to the obtained mixture of particles.
  • the fluorocopolymer contains -S0 3 Na cation exchange groups.
  • the viscous composition obtained is applied on one of the air-dried surfaces of the EMF extending a layer of such thickness that, after drying, the electrocatalyst charge is not greater than 0.15 ⁇ g / cm 2 .
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: 20-40 ⁇ C for 15 minutes, then 70 2 C for 40 minutes and IOO ⁇ C for 30 minutes.
  • the EMC is then removed from the thermostat, cooled to room temperature and another mixture is applied to another surface of the EMC in the same way.
  • the last mixture contains 0.95 g of electrocatalyst (iridium, with a particle size of 0.01 ⁇ ), 0.01 g of lead with oxidized surface (particle size of 0.3 ⁇ ) and 0.04 g of CPL-4 fluorocopolymer in form of a 1% solution in the mixture of dimethylformamide with ethanol and acetone (mass ratio 1: 7: 2).
  • the fluorocopolymer contains -S0 3 Na cation exchange groups.
  • the MEA produced contains CEM of CPL-4 with a thickness of 230 ⁇ m with the layers of an electrode material located on its two sides.
  • the anode electrocatalyst charge is 0.45 mg / cm 2 .
  • the layers of the electrode material contain (% by mass): electrocatalyst -95% inactive electroconductive material -1% cation exchange fluorocopolymer CPL-4 -4% the general porosity is 45% with a porosity gradient of 8% by 1 ⁇ m.
  • the MEA produced is tested in a water electrolysis as follows. Current collectors made of porous titanium (porosity of 26%) are applied to both sides of the MEA. The assembly is consolidated using two metal plates, pressed together with screws, immersed in the water container and treated by means of a current of 0.5-1 A / cm 2 at 902C for 1 hour. The MEA produced is placed in a cell for electrolysis of deionized water. The voltage in the cell was 1.71 V, the current density of 1 A / cm 2 and the temperature of 1002C.
  • the device was operated stably for 2000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the electrode material layer was observed by visual inspection. When the MEA was put back in the cell, its parameters did not change. Ex emplo 4
  • an electrode material 0.65 g of electrocatalyst (platinum) is deposited on the surface of 0.18 g of negative electroconductive material (acetylene black with a particle size of 0.01 ⁇ m) and particles They are mixed in a glass bowl. Then 0.15 g of polytetrafluoroethylene and 0.02 g of CPL-2 fluorocopolymer are added as a 2.7% solution in the mixture of isopropanol, freon-123a and cyclohexane (mass ratio 7: 4: 1) to the mixture of particles obtained.
  • the fluorocopolymer contains -S0 3 K cation exchange groups and is identical to the EMC copolymer.
  • the viscous composition obtained is applied on an air-dried surface of the EMF, spraying a layer of such thickness that, after drying, an electrocatalyst charge of 0.3 ⁇ g / cm 2 is obtained .
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: 25ec for 15 minutes, then 702C for 40 minutes and 95 ⁇ C for 20 minutes.
  • the EMC is then removed from the thermostat, cooled to room temperature and the same electrode material is applied to another EMC surface in the same way.
  • the MEA produced contains CEM of CPL-2 with a thickness of 200 ⁇ m, with the layers of an electrode material located on its two sides.
  • the electrocatalyst charge is 0.3 mg / cm.
  • the layers of the electrode material contain (% by mass): electrocatalyst -65% inactive electroconductive material -18% cation exchange fluorocopolymer CPL-2 -2% polytetrafluoroethylene -15 the general porosity is 70% with a porosity gradient of 15 % by 1 ⁇ m.
  • the MEA produced is tested in a fuel cell as follows: it is applied on the two surfaces of the electrode layers of the produced MEA, the saturated carbon fabric with polytetrafluoroethylene dispersion (TU 6-05-1246-81) and Then it compresses. Then, the aggregate is put in the fuel cell.
  • the test is carried out at 80SC and the following gases are added to the fuel cell: hydrogen in the anode compartment with a pressure of 2.5 atmospheres, and oxygen in the cathode compartment with a pressure of 5 atmospheres.
  • the fuel cell was operated stably for 3000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the electrode material layer was observed by visual inspection. When the MEA was returned to the fuel cell, its parameters did not change.
  • EMC with a diameter of 50 mm and with a thickness of 150 ⁇ m is used, made of tetrafluoroehydrolyzed copolymer.
  • the electrode material For the production of the electrode material, 0.1 g of electrocatalyst (platinum) is deposited on the surface of 0.3 g of negative electroconductive material (acetylene black with a particle size of 0.01 ⁇ ) and the particles are Mix in a glass bowl. Then, 0.06 g of polytetrafluoroethylene (RNS 1496-77) and 0.04 g of CPL-3 fluorocopolymer are added as a 5% solution in a mixture of pentane, N-propanol and N-butane (ratio of 1: 1: 1 masses) to the particles obtained.
  • the fluorocopolymer contains -S0 3 H cation exchange groups and is identical to the EMC copolymer.
  • the viscous composition obtained is applied on one of the air-dried surfaces of the EMF, extending a layer of such thickness that, after drying, the electrocatalyst charge is 0.3 ⁇ g / cm 2 .
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: 30 ⁇ c for 20 minutes, then 55 ⁇ c for 30 minutes and 902C for 20 minutes. After the EMC is removed from the thermostat, it is cooled to room temperature and the same electrode material is applied to another surface of the EMC in the same way.
  • the MEA produced contains CEM of CPL-3 with a thickness of 150 ⁇ m, with the layers of an electrode material located on its two sides.
  • the electrocatalyst charge is 0.3 mg / cm 2 .
  • the layers of the electrode material contain (% by mass): electrocatalyst -20% inactive electroconductive material -60% Cation exchange fluorocopolymer CPL-3 -82% polytetrafluoroethylene -12%
  • the general porosity is 45% with a porosity gradient of 10% by 1 ⁇ m.
  • the produced MEA is tested in a fuel cell as follows: on the two surfaces of the MEA electrode layers, saturated carbon sheets with polytetrafluoroethylene dispersion (TU 6- 05-1246-81) are placed and then compress The assembly is put in the fuel cell.
  • the MEA test is performed at 80 ⁇ C and the following gases are applied to the fuel cell: hydrogen - to the anodic chamber at a pressure of 5 atm, and oxygen to the cathodic chamber at a pressure of 25 atmospheres.
  • the following characteristics are obtained: voltage in the cell, V -0.77 -0.80 current density, A / cm 2 -0.5
  • the fuel cell was operated stably for 3000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the EMC electrode material was observed by visual inspection. When the MEA was put back in the fuel cell, its parameters did not change.
  • CPL-4 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfide containing vinyl ester and ethylene
  • CPL-4 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfide containing vinyl ester and ethylene
  • CPL-4 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfide containing vinyl ester and ethylene
  • CPL-4 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfide containing vinyl ester and ethylene
  • CPL-4 fluorocopolymer
  • RTM freon-123V
  • isobutylene mass ratio 2: 5: 5
  • the viscous composition obtained from the electrode material is applied to an air-dried surface of the EMF by the method of pouring the composition so thick that the electrocatalyst charge is 0.3 ⁇ g / cm 2 .
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: 3ose for 20 minutes, then 50se for 30 minutes and 1002C for 15 minutes.
  • the EMC is then removed from the thermostat, cooled to room temperature and another surface is covered in the same way with the anode material produced as in Example 3. Then, the EMC is placed in a thermostat and thermally treated in the manner mentioned.
  • the MEA produced contains EMF (CPL-4) with a thickness of 170 ⁇ m, both sides are covered with layers of electrode material with an electrocatalyst charge of 0.15 mg / cm 2 at the cathode and 0.45 mg / ⁇ M in the anode.
  • These layers consist of (mass%): electrocatalyst -65 inactive electroconductive material -34 cation exchange fluorocopolymer CPL-4 -1 and its general porosity is 63% with a porosity gradient of 13% by 1 ⁇ m.
  • the MEA produced is tested in an electrolysis of deionized water.
  • the MEA produced is adjusted in the cell to perform electrolysis of deionized water.
  • the cell voltage in the cells is 1.73-1.75 V and the current density of 1 A / cm 2 at a temperature of 1002C.
  • the electrolyzer was operated stably for 2000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the EMF electrode material was observed by visual inspection. When the MEA was put back in the cell, the parameters did not change.
  • CPL-6 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfo groups containing vinyl ether and perfluorooxalate
  • CPL-6 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfo groups containing vinyl ether and perfluorooxalate
  • CPL-6 hydrolyzed tetrafluoroethylene copolymer with perfluorosulfo groups containing vinyl ether and perfluorooxalate
  • EW 1000
  • composition of the cathode layer (mass%): electrocatalyst -76 inactive electroconductive material -15 cation exchange fluorocopolymer (CPL-6) in mixture with Freon-122, acetone and isopropanol -0.5
  • the cathode has a general porosity of 48% with a porosity gradient of 9% by 1 ⁇ m.
  • the mixture obtained is applied on the other surface of the CEM.
  • the EMC is placed in the thermostat and dried as mentioned above. Then, the EMC is removed from the thermostat and cooled to room temperature.
  • composition of the anode layer (% by mass): electrocatalyst -90% cation exchange fluorocopolymer -9% inactive electroconductive material -1%
  • Anode catalyst charge -0.45 mg / cm 2 The layer has a general porosity of 42% with a porosity gradient of 5% by 1 ⁇ m.
  • the MEA produced is tested in an electrolysis of deionized water.
  • the device was operated stably for 2000 hours, then the test was interrupted and the MEA was removed. No exfoliation of the EMC electrode material was observed by visual inspection. When the MEA was put back in the cell, its parameters did not change.
  • EMC with a diameter of 50 mm and with a thickness of 180 ⁇ m is used, made of hydrolyzed tetrafluoroethylene copolymer with perfluorosulfide containing vinyl ester and perfluorinated vinyl ether (CPL-9), with -S0 3 K cation exchange groups, with a degree of crystallinity of
  • the EMC is placed in a thermostat and is thermally treated with the next temperature rise in multiple phases: at 202C for 20 minutes, at 602c for 20 minutes and at 90SC for 30 minutes.
  • the EMC is then removed from the thermostat, cooled to room temperature and another surface is covered in the same way by an anode material consisting of 0.9 g of catalyst [mixed oxide Ir0 2 + Pb0 2 (Pb0 2 - 5% ) with a particle size of 0.03 ⁇ m] and 0.03 g of oxidized lead (particle size of 0.08 ⁇ m) and 0.07 g of cation exchange fluorocopolymer (CPL-9) with groups -S0 3 Cation exchange K identical to the CEM copolymer, in the form of a 4.0% solution of Freon-113, ethanol and cyclohexanol (mass ratio 1: 10: 1).
  • the electrocatalyst charge of the anode is 0.45 mg / cm 2 .
  • the MEA produced contains EMC made of copolymer (CPL-9) with a thickness of 180 ⁇ m. These layers consist of (% by mass): electrocatalyst -90 inactive electroconductive material -3 cation exchange fluorocopolymer (CPL-9) -7 the overall porosity of the cathode layer is 50% with a porosity gradient of 7% per 1 ⁇ m and the general porosity of the anode layer is 56% with a porosity gradient of 12% by 1 ⁇ m.
  • the MEA produced is tested in an electrolysis of deionized water.
  • the electrode material 0.91 g of catalyst (palladium, with a particle size of 0.08 ⁇ m) and 0.09 g of fluorocopolymer (CPL-7) with identical -S0 3 H groups of identical cation exchange are added to the CEM copolymer, in the form of a 5% solution of Freon-122a (RTM), methyl ethyl ketone and isobutanol (1: 1: 9 mass ratio) to the particles obtained.
  • RTM Freon-122a
  • methyl ethyl ketone methyl ethyl ketone
  • isobutanol 1: 1: 9 mass ratio
  • the EMC is then placed in a thermostat and heat treated with the following temperature increase in multiple phases: at 20 ⁇ c for 10 minutes, at 402C for 20 minutes and 1002C for 30 minutes.
  • the EMC is then removed from the thermostat, cooled to room temperature and another surface is covered in the same way with the following mixture: 0.91 g of catalyst (mixture of Ir0 2 + Ru0 2 + Sn0 2 , mass ratio in% 80: 15: 5, particle size of 0.05 ⁇ m) and 0.09 g of fluorocopolymer (CPL-7) with cation exchange groups -S0 3 H identical to the EMC copolymer in the form of a 5% solution of freon-122a, methylene- tilcetone and isobutanol (mass ratio 1: 1: 9).
  • the compound obtained is applied to the other side of the CEM, then the CEM is placed in the thermostat and heat treated as mentioned above.
  • the electrocatalyst charge of the anode is 0.45 mg / cm 2 .
  • the MEA produced consists of EMF made of copolymer (CPL-7) with a thickness of 150 ⁇ m and the layers of electrode material cover the two surfaces of the EMC. These layers consist of (% by mass): electrocatalyst -91 inactive electroconductive material -0 cation exchange fluorocopolymer (CPL-9) -9 its general porosity is 61% with a porosity gradient of 13% by 1 ⁇ m.
  • the MEA produced is tested in an electrolysis of deionized water.
  • Example 9 demonstrates that if the MEA does not have the claimed composition, it has worse parameters.
  • the electrode material 0.5 g of catalyst (platinum, particle size 0.05 ⁇ m) and 0.055 g of copolymer (MF-4 SK) are mixed with cation exchange groups -S0 3 H identical to the copolymer of EMF in the form of a 1.8% solution in a mixture of dimethylacetamide, ethanol and acetone (mass ratio 1: 7: 2) in a glass container.
  • the viscous compound obtained from electrode material is applied on an air-dried surface of the EMF by the spreading process with a thickness such that the electrocatalyst charge is 0.15 mg / cm 2 .
  • the EMC is placed in a thermostat and is thermally treated with the following temperature increase in multiple phases: at 20-352C for 15 minutes, at 702C for 40 minutes and at 10oC for 30 minutes.
  • the EMC is then removed from the thermostat and cooled to room temperature.
  • the composition of the cathode layer (mass%): electrocatalyst -91 cation exchange fluorocopolymer identical to CEM copolymer -9
  • the cathode has a general porosity of 26% with a porosity gradient of 0% per l ⁇ m.
  • the MEA produced is tested in a water electrolysis.
  • the electrolyzer was operated for 2000 hours with a voltage increase of 1.95 V, then the test was interrupted and the MEA was removed. A tendency to exfoliate the electrode layer was observed by visual inspection. After putting the MEA back into the cell, the voltage was increased to 2.03 V.
  • the electrode material 0.1 g (20% by mass) of catalyst (platinum, particle size 0.05 ⁇ m), 0.3 g of carbon (average particle size 25A) and 0 are mixed , 1 g of fluoropolymer with cation exchange groups, in the form of a 5% solution (trademark Nafion Solution) of fluoropolymer with -S0 3 H cation exchange groups identical to the copolymer with which EMC of an isopropanol is produced (ratio of mass between catalyst and copolymer 3: 1: 1), in a glass container. The composition is stirred until a homogeneous state is achieved.
  • the viscous composition obtained is processed with a 5% KOH solution for the transformation of the -S0 3 H groups of the copolymer into SC ⁇ K groups.
  • the paste obtained is applied uniformly to one of the EMF surfaces using an opening device for extrusion of the paste so that the thickness of the electrode layer is 10 ⁇ m.
  • the EMF covered with the catalytic layer is dried at room temperature (202C) for 10 minutes and then at room temperature and at a pressure of 10 mm Hg for 30 minutes.
  • the EMF produced with the layer of electrode material was between teflon plates with a thickness of 10 mm, then treated by an electric heater at 1902C and compressed at 1902C and 50 kg / cm 2 for 30 minutes.
  • the MEA produced contained CEM (trademark Nafion-117) with -S0 3 K groups of cation exchange and with layers of electrode material on both surfaces, so that the charge of electrode material was 0.3 mg / cm 2 .
  • the electrode material contains (mass%): electrocatalyst -20 produced inactive electroconductive material -60 cation exchange copolymer identical to copolymer (trade mark Nafion-117 commercial) groups -S0 3 K cation exchange -20
  • the MEA is dipped in a 3% solution of sulfuric acid and kept in this solution at room temperature for 16 hours.
  • the -S0 3 K groups are transformed into -S0 3 H.
  • the MEA has a general porosity of 29% with a porosity gradient of 0% per 1 ⁇ m.
  • the MEA produced is tested in a fuel cell as follows: on the two surfaces of the MEA electrode layers, saturated carbon sheets with polytetrafluoroethylene dispersion (TU 6-05-1246-81) are placed and then compressed . The assembly is put in the fuel cell.
  • the MEA test is performed at 802C and the following gases are supplied to the fuel cell: hydrogen - to the anode compartment at a pressure of 2.5 atm. and oxygen to the cathode compartment at a pressure of 5 atm.
  • the following characteristics are obtained: voltage in the cell, V -0.72-0.75 current density, A / cm 2 -0.5
  • the electrolyzer was operated stably for 1000 hours, then the test was interrupted and the MEA was removed. Exfoliation of the electrode layer was observed by visual inspection. Then, the MEA was put back into the cell and the voltage was reduced to 0.65 V.
  • the claimed MEA has better electrochemical characteristics. than the known MEAs.
  • its voltage is 0.77 to 0.8 V and the current density of 0.5 A / cm 2
  • the cell voltage is not greater than 0.75 V and the current density of 0.5 A / cm 2 in the case of the MEA obtained by the prototype at a low catalyst load.
  • the claimed MEA Because of its low resistance and effective catalyst charge in water electrolysis, the claimed MEA has a voltage no greater than 1.75 V. That is, it is less than that of the known MEAs with the same catalyst charge.
  • the claimed process of the production of MEA that can be used in a fuel cell and in the electrolysis of water is not complicated, it takes less time and the CEM is not negatively affected.
  • strong adhesion is achieved between the electrode layer and the EMC.
  • the catalyst particles are not encapsulated by the fluoropolymer binder and are distributed evenly throughout the volume of the electrode layer, which contributes to an effective catalyst charge and increases the useful life of the fuel cells and electrolysers, especially if performs its assembly-disassembly (for example, for repair) during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Ensamblaje de membrana-electrodo que consiste en una membrana de intercambio catiónico que contiene flúor (hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro con un PE = 900-1300) y capas de material electrodo porosas (hechas de electrocatalizador), material inactivo electrocondutor y aglutinante fluoropolimérico situado sobre ambas superficies de la membrana de intercambio catiónico. La membrana de intercambio catiónico que contiene flúor está hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perflorosulfuro, que tiene un grado de cristalinidad de 2-8 %, obteniéndose unas capas de material del electrodo porosas que tienen una porosidad entre 40 y 70 %, que disminuye en la dirección de la superficie de la membrana de intercambio catiónico con un gradiente de porosidad de 5-15 % por 1 ν. Dicho ensamblaje membrana-electrodo es utilizado en células combustibles, en electrolizadores de agua y en otros procedimientos electroquímicos.

Description

ENSAMBLAJE DE MEMBRANA-ELECTRODO Y PROCEDIMIENTO PARA
Sü PRODUCCIÓN
CAMPO TÉCNICO
La presente invención se refiere a la industria electroquímica en general, y más particularmente, al conjunto membrana-electrodo (MEA) basado en membranas de intercambio iónico que contienen flúor y al procedimiento para su fabricación. Dicho MEA se utiliza ampliamente en células combustibles, en electrolizadores de agua y en otros procedimientos electroquímicos.
TÉCNICA ANTERIOR
Existen MEA conocidos que consisten en membranas de intercambio iónico que contienen flúor MF4-SK (marca comercial rusa [RTM] y en las capas de un material del electrodo (composición del electrodo) situadas sobre ambos lados. La composición del electrodo consiste en la mezcla del electrocatalizador y del polímero de intercambio iónico [patente USSR ns 1.285.095 IPC S25V 11/10, 1990]. Como polímero de intercambio iónico en la composición del electrodo se utiliza electrolito conductor de protones inorgánico (ácido poliantimónico, fosfato de zirconio ácido) en la composición del electrodo. El electrocatalizador es platino, negro de paladio o de rodio.
La membrana MF-4 SK es una membrana de intercambio catiónico [CEM] de 300 μ de espesor hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene grupos fluorosulfuro con la siguiente fórmula estructural:
-¡ CF2 - CF2¡k - |CF - CF2¡c -
I
¿ - CF2 - CF(CF3)0 - CF2CF2 S03H. Nuestros experimentos han mostrado que este copolímero tiene un peso equivalente [PE] de 1200 y un grado de cristalinidad de 12% (véase nuestro ejemplo control 1) .
El MEA se produce por aplicación de la composición del electrodo sobre ambos lados de la CEM (se usa el método de sedimentación) . La composición del electrodo consiste en la mezcla de electrocatalizador y polvos de polímero de intercambio iónico (ácido poliantimónico) . La composición se fija por tratamiento con corriente eléctrica en agua a 90°C, la densidad de la corriente es 0,5-1 A/cm2.
El MEA producido consiste, por ejemplo, en la CEM, MF- 4SK y las capas de la composición del electrodo en ambos lados del mismo con electrocatalizador (negro de platino, tamaño de partículas 0,01 μ) sobre ambos lados, cátodo y ánodo. Tiene las siguientes características para la electrólisis del agua desionizada: el voltaje es 2,2 V cuando la densidad de corriente es 1 A/cm2 y la temperatura es 100°C. El voltaje no cambia durante 1000 horas.
El MEA descrito tiene la siguiente ventaja: puede trabajar en estado estable durante 1000 horas.
La desventaja del MEA (patente USSR n^ 1.258.095) es la imposibilidad de obtener una adhesión elevada entre las capas de la composición del electrodo y la CEM debido a que el polímero de intercambio iónico (ácido poliantimónico) se disuelve gradualmente después de una larga (más de 1000 horas) de electrólisis del agua y, por consiguiente, con un trabajo prolongado del MEA se puede observar una tendencia a la exfoliación de la composición del electrodo. El método de producción del MEA no permite una regulación precisa de la composición y cantidad de material electrodo aplicado a la CEM. El método es complicado debido a que las capas de la composición del electrodo (capas electrocatalíticas) se aplican por el método de la sedimentación, lo cual requiere el siguiente procesamiento con corriente eléctrica para fijar las capas sobre la CEM. La carga del electrocataliza- dor requerida para la fabricación de las capas electrocatalíticas es bastante alta: 1-2 mg/cm2 sobre el cátodo y 4-6 mg/cm2 sobre el ánodo.
También se conoce el MEA con cátodo poroso. Dicho MEA consiste en una membrana de intercambio iónica polimérica del tipo Nafion (marca comercial de CEM de DuPont) y una capa porosa de material electrodo - mezcla de partículas de electrocatalizador con aglutinante (patente de la Federación Rusa [RF] ns 2.015.207, IPC S25V 11/20, 1994), depositada sobre el lado del cátodo de la CEM. La capa del cátodo porosa de la composición del electrodo está hecha de una mezcla de partículas electrocatalíticas con aglutinante politetrafluoroetileno. La membrana (marca comercial Nafion) está producida a partir de copolímero hidrolizado de tetrafluoroetileno con éteres de vinilo perfluorado que contienen grupos de intercambio iónico. Para la electrólisis del agua, CEM (de Du Pont) Nafion (R) 120 con grupos de intercambio iónico - S03H (véase la patente H) (véase la patente RF de tetrafluoroetileno con éteres vinílicos perfluorados que contienen grupos de intercambio iónico. Para la CEM (de Du Pont) para la electrólisis del agua Nafion (R) con grupos de intercambio iónico S03 tetrafluoroetileno. La membrana (marca comercial Nafion) se produce a partir de hidroll248, Sociedad Americana de Química, Washington D.C.].
El MEA citado más arriba se produce aplicando una mezcla de partículas electrocatalíticas y material conductor inactivo con el aglutinante (politetrafluoroetileno) y polvo de aluminio sobre la lámina de aluminio (por la técnica A) . Después de secar por ejemplo a 105°C, se realiza una sinterización a 325 °C durante 10 minutos. La lámina de aluminio con la capa de material electrodo se coloca a continuación sobre la superficie del cátodo de la CEM y se prensa a 175°C y a una presión de 50-60 kg/cm2. Después de prensar el MEA se lleva a una solución de sosa cáustica para disolver la lámina de aluminio y el polvo de aluminio (este último se utiliza como promotor de la porosidad) . Después de esto la capa del material del electrodo se vuelve porosa. La ventaja de la MEA de la patente de la Federación Rusa (RF) ns 2.015.207 es que la duración del MEA es mayor debido a que el aglutinante (politetrafluoroetileno) no se disuelve durante la electrólisis. Cuando se utiliza dicho MEA para la electrólisis del agua, el voltaje de la célula es 1,8-1,9 V.
La desventaja del MEA descrito es que la adhesión entre la capa porosa de material del electrodo y la superficie de la CEM no es tan fuerte como se requiere. Durante el ensayo del MEA de larga duración se produce la exfoliación de la capa porosa del material del electrodo y los gases desprendidos se depositan en la superficie entre la CEM y la capa porosa. Esto produce un incremento del voltaje del MEA. Asimismo, como se ha visto en la patente RF (ejemplo 4) la desventaja del MEA descrito es una carga del electrocatalizador comparativamente alta debido a su capsulación particular por el politetrafluoroetileno durante la producción (prensando a 325 °C y con una presión de 50-60 kg/cm¿)
Asimismo, el volumen de la porosidad de la capa electrocatalítica del material electrodo es incontrolable ya que el transporte de gases y líquidos en la zona de reacción está impedido, empeorando las propiedades electro- químicas del MEA. La forma de producción del MEA descrito es bastante complicada, debido a que se requiere una elevada temperatura de sinterización (>300°C) y la lixiviación del aluminio para formar la capa porosa de un material del electrodo. Asimismo, la producción del MEA por compresión a 175°C da lugar a la destrucción particular de los grupos de intercambio catiónico, lo cual empeora las características electroquímicas de la CEM, pudiendo producir la destrucción de toda el MEA.
El conjunto de atributos esencial más próximo al MEA reivindicado y a su método de producción es el MEA y su método de producción descrito en la patente estadounidense ns 5.399.184, HOIM 8/10, 1995. El MEA, de acuerdo con la patente estadounidense ns 5.399.184 consiste en una membrana de intercambio catiónico que contiene flúor hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene grupos fluorosulfuro, con una capacidad de intercambio de 0,33-1,43 μg equivalentes/g [μg-eq/g] (de acuerdo con el texto en la memoria descriptiva de la invención para la patente) o 1,12-1,43 μg-eq/g (de acuerdo con los ejemplos y las reivindicaciones de la patente) que corresponde al documento EW 900-1300 y las capas porosas de un material del electrodo situado en ambos lados de su superficie. Estas capas están hechas de la mezcla de electrocatalizador con un material electroconduc- tor inactivo y aglutinante de fluoropolímero. El aglutinante de fluoropolímero es un fluoropolímero de intercambio catiónico con una composición idéntica al polímero de la membrana o puede ser politetrafluoroetileno. La CEM está hecho de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluoroεulfuro. Su fórmula estructural es:
!CF2 CF2¡ k - |CF - CF2¡
O i
CF2- CF- O- CF2- CF2- SO3X ,
I
CF3 K- 2.1 - 7.6 e -1 x - H, Na, K
- ¡CF2- CF 2¡m - ¡CF - CF2¡ n -
O
CF2 - CF2 - SO3X , m - 3.8 - 9.3 n - 1 x- H, Na, K Por ejemplo puede ser la CEM producida por Du Pont -
Nafion 117. Esta membrana está hecha de un copolímero con un grado de cristalinidad del 12%. [ACS Symposium Perfluo- rinated Ionomer Membranes, Lake Buena Vista, Florida February 23-26, 1982, Serie 180, págs. 217-248, Sociedad Americana de Química, Washington D.C.].
El MEA especificado mediante prototipo (patente estadounidense ns 5.399.184) está producida por aplicación de la pasta del material del electrodo sobre ambas superfi- cies de la CEM. Éste último consiste en el copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluoro (PE 900-1300) . La pasta está hecha de una mezcla de material electroconductor inactivo (carbono) y electrocatalizador (platino) con aglutinante de copolíme- ro que contiene flúor (con una solución al 5% de fluoroco- polímero de intercambio catiónico que tiene una composición similar al fluorocopolí ero, cuya CEM está hecho de una dispersión al 50% de politetrafluoroetileno en alcohol alifático) . La pasta se aplica sobre una de las superficies de la CEM y a continuación sobre la otra superficie (con el posterior tratamiento térmico) . Cuando se utiliza una solución al 5% de un fluoropolímero de intercambio catiónico «Solución Nafion» como aglutinante con grupos -S03H de intercambio iónico (ejemplo 1, patente estadounidense n^ 5.399.184), la pasta se trata con una solución de agua al 5% de hidróxido potásico antes de la aplicación a la CEM para transformar los grupos de intercambio iónico en -S03K. La pasta se extiende sobre una de las superficies de la CEM (con grupos -S03K) de tal forma que la capa de un material del electrodo después del secado no tendrá un espesor superior a 10 μm. A continuación la pasta se seca a temperatura ambiente durante 10 minutos y a continuación se elimina el disolvente a vació durante 30 minutos. A continuación la CEM con la pasta se colocan entre láminas de politetrafluoroetileno y se prensan a 190°C a una presión de 50 kg/cm2. A continuación, se coloca una capa de material análogo a un material del electrodo sobre la otra superficie de la membrana de la misma forma. A continuación, el MEA se lleva a una solución de ácido sulfúrico 5% a temperatura ambiente durante 16 h para convertir los grupos de intercambio iónico -S03K en -S03H.
Cuando se utiliza una dispersión de politetrafluoroetileno al 50% como aglutinante fluoropolimérico en el material del electrodo (véase ejemplo 5 de la patente estadounidense ns 5.399.184), la pasta del material electrodo se aplica a una lámina de material de carbono, a continuación la lámina se calienta a una temperatura de 325°C durante 10 minutos a presión. La secunda lámina se produce de la misma manera. Las capas del material del electrodo, las cuales se aplicaron a las láminas del material de carbono, son recubiertas después de esto con una solución al 5% de "Solución Nafion" que contiene grupos -S03H y a continuación se secan. Las láminas de carbono se colocan a continuación sobre la superficie de la CEM (con lados, los cuales se cubren con un material del electrodo enfrentado al CEM) y se prensan a una temperatura de 135°C con una presión de 140 kg/cm2 durante 60 minutos. El MEA producido por el método mencionado tiene capas porosas de material del electrodo sobre las superficies de la CEM. El MEA producido mediante prototipo (patente estadounidense ns 5.399.184) se prensa con un tejido de carbono de papel saturado con politetrafluoroetileno sobre ambas caras y se inserta en una célula de combustible. El voltaje de la célula de combustible del ejemplo 1 es 0,75-0,77 V, densidad de corriente 0,5 A/cm2, en el ejemplo 5 el voltaje es 0,75-0,8 V, densidad de la corriente 0,5 A/cm2. El MEA producido se puede usar no solo en células de combustible sino también en la electrólisis del agua.
Las desventajas del prototipo MEA son:
1. No existen suficientes características electroquímicas especialmente con una carga de electrocatalizador baja. La razón es una baja e incontrolada porosidad de las capas del material del electrodo y un elevado grado de cristalinidad. La baja e incontrolada porosidad del material del electrodo se deben a que la capa del material del electrodo se forma a una elevada temperatura de entre 190 y -340°C y a una presión de entre 50 y 120 kg/cm2. Nuestros experimentos mostraron que dicha porosidad de la capa del material electrodo es de aproximadamente 35% (véase nuestro ejemplo control 2).
Dichas condiciones de la producción del MEA producen una deformación y un colapso de los poros, tanto de los que están en la CEM como los que se formaron en el material del electrodo. Puede producirse un colapso local de la membrana. La baja e incontrolable porosidad del material de las capas del electrodo y el elevado grado de cristalinidad hacen difícil la alimentación del reactivo y la eliminación de los productos de reacción y que se alcance el necesario equilibrio de agua en el MEA. Esta es la razón de la relativamente elevada resistencia del MEA y el sobrevoltaje sobre los electrodos produciendo finalmente un voltaje bajo o un elevado consumo de energía eléctrica en la célula de combustible si se usa el MEA en la electrólisis del agua. Además tiene lugar la capsulación parcial del electrocatalizador con aglutinante de flúor. Disminuye la eficacia del electrocatalizador y aumenta su consumo.
2. No adhesión entre la capa catalítica y la CEM hace disminuir la duración del MEA. La razón es el largo procesamiento del MEA con la solución del ácido sulfúrico, lo cual produce un hinchamiento de las capas de material catalítico y debido al diferente grado de hinchamiento de la capa porosa catalítica y del MEA. Todo esto tiene como consecuencia la exfoliación de las capas de material catalítico cuando el MEA funciona durante un tiempo prolongado [Journal of Applied Electrochemistry 22 (1992) págs. 1-7]. Dicho procesamiento con ácido sulfúrico es necesario si se usa como aglutinante fluoropolimérico el mismo copolímero de intercambio catiónico (con grupos - S03K) que el copolímero de la CEM .
Cuando se usa politetraetileno como aglutinante polimérico es casi imposible alcanzar una distribución uniforme del electrocatalizador porque se producen habi- tualmente abultamientos sólidos de politetraetileno. Los abultamientos bloquean la superficie de la CEM y del electrocatalizador con lo cual se forman áreas sobre la superficie de la CEM que están totalmente cubiertas con politetraetileno a través de las cuales no pueden penetrar los reactivos líquidos y gaseosos de la reacción. La existencia de dichas áreas en el MEA contribuye a la exfoliación de la capa de material del electrodo desde la superficie de la CEM y al deterioro de características electroquímicas .
La desventaja del MEA producido mediante prototipo es el procedimiento de producción multietapa (6-7 pasos) y la larga duración del proceso, ya que solo el procesamiento del MEA con ácido sulfúrico dura aproximadamente 16 horas.
DESCRIPCIÓN DE LA INVENCIÓN
El resultado técnico obtenido con el MEA reivindicado incluye la mejora de las características electroquímicas del MEA (especialmente con una baja carga de catalizador) , aumento de la eficacia del uso del electrocatalizador y la duración del MEA.
El método reivindicado de la producción del MEA permite que el procedimiento sea más simple, reduciendo su duración y asegurando la producción de MEA con altas características electroquímicas.
El resultado técnico mencionado se obtiene utilizando una membrana de intercambio catiónico que contiene flúor hecha de copolímero hidrolizado de tetrafluoroetileno con éster vinílico que contiene perfluorosulfuro y probablemente con el tercer comonómero modificador, el cual tiene un grado de cristalinidad entre el 2 y el 8%, produciéndose las capas porosas de material del electrodo con una porosidad entre el 40 y el 70%, disminuyendo en dirección a la superficie de la CEM con un gradiente de porosidad entre el 5 y el 15% por 1 μ. El MEA consiste en una CEM que contiene flúor hecho de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluorosul- furo que tiene un PE de 900-1300 y capas porosas del material del electrodo hechas de una mezcla que contiene un material inactivo electroconductor y polímero fluoropolimérico localizado en ambas superficies de la CEM.
La CEM se puede hacer a partir de copolímero hidroli- zado de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro y el tercer comonómero modificador que se puede elegir entre etileno, perflúor-2-metilen-4-metil-l, 3- dioxolano y éter vinilico perfluoroalquilado con un grupo alquilo C.,-C3.
Las capas porosas del material electrodo están hechas de una mezcla que contiene (en % de masa) : electrocatalizador -20 - 85% material inactivo electroconductor -10 - 60% fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecho la CEM -2 - 8% politetrafluoroetileno 3 - 15% o las capas de material del electrodo se producen a partir de una mezcla que contiene (en % en masa) : electrocatalizador -65 - 95% material inactivo electroconductor -1 - 35% fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecho la CEM -1 - 9%
La simplificación del procedimiento y la reducción de su duración se consigue utilizando la CEM hecha de copolí- mero hidrolizado de tetrafluoroetileno que contiene perfluorosulfuro con un grado de cristalinidad entre el 2 y 8% para la producción del MEA. El método incluye la aplicación del electrocatalizador, del material electroconductor inactivo con una mezcla de aglutinante que contiene flúor sobre ambas superficies de la CEM que contiene flúor, el cual se produce a partir del copolímero hidrolizado de tetrafluoroetileno con éster vinílico que contiene perfluo- rosulfuro con un PE = 900 - 1.300 con el consiguiente tratamiento térmico. La mezcla del electrocatalizador, del material electroconductor inactivo y entre 1 y 5% de solución del fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecha la CEM, se aplica en una mezcla de disolventes orgánicos sobre ambas superficies de la CEM. El tratamiento con calor se realiza aumentando escalonadamente la temperatura: desde 20-35 °C hasta 80-100°C. Se puede usar otra CEM, por ejemplo la CEM producida hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro y el tercer comonómero modificador, el cual se puede elegir entre etileno, perflúor-2-metilen-4-metil-l, 3-dioxolano y éster vinílico perfluoroalquilado con un grupo alquilo C.,- C3. Se puede aplicar una mezcla de electrocatalizador, material electroconductor inactivo y entre el 1 y el 5% de una solución de fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero cuya CEM se puede aplicar en una mezcla de disolventes orgánicos a ambas superficies de la CEM.
Los autores de la presente invención vieron que un grado de cristalinidad del fluorocopolímero de intercambio catiónico hidrolizado (del que está hecha la membrana de intercambio catiónico) tiene una gran influencia sobre las características electroquímicas del MEA. Cuando el grado de cristalinidad del fluorocopolímero es igual al 2-8% existe tal balance de agua en el volumen del MEA que proporciona la entrada necesaria de reactivos en el MEA y la salida de productos de la reacción. Esto provoca unas características electroquímicas óptimas del MEA.
El grado de cristalinidad del fluorocopolímero que se utiliza en el MEA se puede controlar por las condiciones de su síntesis, por adición del tercer comonómero o por las condiciones de la hidrólisis cuando el copolímero se transforma desde la forma de intercambio no iónico en catiónico. Tanto el incremento del grado de cristalinidad de más del 8% como el descenso a menos del 2% producen el deterioro de las características electroquímicas del MEA.
La formación de la capa con porosidad que disminuye en la dirección de la membrana de intercambio catiónico con un gradiente de porosidad entre 5 y 15% por 1 μ contribuye a obtener las altas características electroquímicas del MEA. Los autores vieron que justamente esa porosidad se consigue cuando las capas de un material del electrodo que se aplican a la superficie de la membrana contienen un aglutinante que contiene flúor disuelto en una mezcla de disolventes orgánicos con diferentes puntos de ebullición (preferentemente como una solución 1-5%) . El aglutinante es un fluorocopolímero que es idéntico al fluorocopolímero del que está hecha la membrana. Dicha combinación del fluorocopolímero con la mezcla de disolventes junto con la eliminación de los disolventes durante el proceso multietapa con un aumento de la temperatura desde 20 y 35°C hasta 80-100°C proporciona el gradiente de porosidad necesario con una porosidad general preferentemente entre 40 y 70% sin utilizar ningún método especial para alcanzarla.
Si el tratamiento con calor se lleva a cabo a más de 100°C la porosidad necesaria podría difícilmente ser controlada, pudiéndose difícilmente alcanzar un gradiente de porosidad entre 5 y 15%. Llevar a cabo el tratamiento de calor a menos de 20°C no es conveniente debido a que la formación de la capa de electrodo se ralentiza, impidiéndose alcanzar el gradiente de porosidad de entre 5 y 15%.
Cuando se usó un fluorocopolímero de intercambio catiónico (que es idéntico al fluorocopolímero del cual está hecho la CEM) junto con los disolventes en los cuales el fluorocopolímero de la CEM se hincha bien como agluti- nante de un material de electrodo, se pudo conseguir una adhesión fuerte entre la capa de un material del electrodo y la CEM. Cuando se utilizan condiciones comparativamente suaves del tratamiento con calor (no más de 100°C sin ninguna presión) para producir el MEA, no se produce el prensado del material de electrodo en la superficie de la CEM, sino que se pegan. En las condiciones suaves mencionadas de la producción del MEA, la CEM no resulta dañada, no produciéndose la descomposición de los grupos de intercambio catiónico del fluorocopolímero de forma que las características electroquímicas no empeoran.
La membrana de intercambio catiónico del MEA reivindicado puede ser de copolímero hidrolizado de tetrafluoroetileno con éteres vinílicos que contienen perfluorosul- furo con la siguiente fórmula estructural:
-!CF2-CFΛ-¡CF-CF2¡e-
O - !CF2- CF-O|m -|CF2¡n - SO3 M
CF3
M = H\ Na", K~, W m = 0- 1 n = 2-5 κ= 100 -e% mol e= 104- 1758% mol
El tercer comonómero modificador en el fluorocopolímero mencionado podía ser etileno, perflúor-2-metilen-4- metil-1, 3-dioxolano, éter de perfluoroalquilvinilo (con C.,- C3 en el alquilo), etc. El comonómero modificador se añade al copolímero durante la síntesis en una cantidad de entre 1 y 15% mol (etileno 3-5% mol, perflúor-2-metilen-4-metil- 1, 3-dioxolano 1-4% mol, éteres de perfluoroalquilo con C1-C3 en el alquilo 2-5%) . Los copolímeros hidrolizadoε análogos de tetrafluo- roetileno con éteres vinílicos que contienen perfluorosul- furoalquilo con la fórmula estructural anterior se describen en los análogos anteriormente mencionados y en el prototipo y también en la patente RF ns 2.077.373 (IPC 6V01D 61/00, 1997) .
Los autores han sintetizado los copolímeros (CPL) que se utilizan en los siguientes ejemplos de la realización de la invención. Las fórmulas estructurales son: l.CPL-1
-!CF2-CF2¡m-¡CF-CF2!n-
O - CF2 - CF - O - CF2 - CF2 - SO3H
CF3 m = 89.6 % mol n = 10.4% mol
2. CPL-2
-!CF2 - CF2¡m - ¡CF - - CF2|n
1 1
O - CF2 - CF - O - CF2 - CF2 - SO3K
CF3 m = 88.3 % mol n= 11.7% mol
3. CPL-3
CF2-CF2 _-¡ιmm-|CF-CF2¡n
O - CF2 - CF2 - SO3H m = 82.42 % mol n= 17.58% mol
4. CPL-4
-|CF2 - CF2¡m - ¡CF -CF2¡n
O -CF2 -CF -O -CF2 -CF2 -CF2-CF2 -CF2 -SO3Na
CF3 m= 85.9% mol n= 14.1 %mol 5. CPL-5
- ¡CF2 - CF2¡m - ¡CF - CF2¡n - ¡CH2 - CH2¡P -
O
CF2 - CF - O - CF2 - CF2 - SO3K
CP r 3 m = 848 % mol n = 122 % mol
P = 30%mol
6. CPL-6
:CF2. -CF2¡m-¡CF-« CF2¡ - C -CF 1 2iP"
1
1
O O O
1 1 1
CF2 CF2- CF- CF,
1 1
CF3 -CF - O - CF2 CF2 - SO.Li m = 795 % mol n= 155% mol p = 50%o mol
7. CPL-7
CF2 - CF2¡m - ¡CF - CF2¡n - ¡C - CF2¡P-
1
O O O
1 1 1
CF2 CF2 -CF - CF,
1
CF3- CF - O - CF2 - CF2 - CF2 - -SO3H m = 880 % mol n = 110 % mol p = 10 ) mol 8. CPL-8
¡CF2 -CF2¡m- ¡CF- CF2¡n - ¡CF- -CF2¡P -
1 1
1 1
O O
1 1
CF2 CF,
1
CF2 -SO3H m = 795 % mol n = 165% mol
P = 40%o mol
9. CPL-9
¡CF2 - CF2¡m - ¡CF - CF2¡n - ¡CF - CF: 2ll
O O
1 1
CF2 CF2 - CF2 - CF
1
CF, - CF - O- -CF2 - CF2 - SO,K
-n = 839 % mol n= 131 %mol p = 30 % mol
La capa de un material del electrodo que se aplica sobre la superficie anódica de la CEM como electrocatalizador puede contener platino, iridio, Ir02, mezcla de óxidos Ir02+Ru02, Ir02+Ru02+Tiθ2, Ir02+Ru02+Sn02, Pb02+Ir02 y otras.
La capa de un material del electrodo que se aplica sobre la superficie catódica de la CEM como electrocatalizador puede contener platino, paladio o platino con rutenio etc.
Como material electroconductor inactivo la capa del material del electrodo puede contener carbono, plomo, dióxido de plomo, etc.
Es conveniente utilizar politetrafluoroetileno F-4D (RTM) , [estándar nacional ruso (RNS) ] 1496-77] en la composición de un material de electrodo.
El aglutinante de fluoropolímero en la composición de un material del electrodo es un fluorocopolímero con una composición idéntica al fluorocopolímero del cual está hecho la CEM. El aglutinante se usa como una solución 1-5% en una mezcla de disolventes orgánicos con diferentes puntos de ebullición. La composición de la mezcla depende de la composición del copolímero, de su peso equivalente y del tipo de grupo de intercambio catiónico (-S03H, -S03K, -S03Na, -S03Li) que está incluida en la misma.
Asimismo, la mezcla debe contener unos disolventes tales que no produzcan ninguna coagulación del sistema cuando la solución del fluorocopolímero de intercambio catiónico se combina con el electrocatalizador y el material electroconductor inactivo. La mezcla de disolventes orgánicos debe incluir los disolventes con un bajo punto de ebullición de 20-60°C [ 1 , 1 , 2-triflúor-1 , 2-diclo- roetano (freon 123a); pentano, 1, 1-diflúor-1, 2-dicloroetano (freon-132B) , 1, 1, 2-trifluorotricloroetano (freon 113), 1, 1, 1-triclorobromodietano (freon-123B) , acetona, etc.], disolventes con un punto de ebullición medio de 60-100 °C [1, 1-diflúor-l,2,2-tricloroetano (freon 122), etanol, hexano, metil etil cetona, benceno, isopropanol, N-propa- nol, heptano, etc.] y disolventes con elevados puntos de ebullición de 100-160°C [isobutanol, N-butanol, tolueno, dimetilformamida, ciclohexanona, etc.].
Si el fluorocopolímero contiene grupos de intercambio catiónico tales como el grupo -S03H, entonces se puede usar preferentemente la mezcla de etanol con freon-113 y metil etil cetona y heptano. Si existen grupos S03K, entonces se pueden usar preferentemente dimetilformamida mezclada con etanol y heptano. Para el copolímero con grupos -S03Li, se puede usar la mezcla de isopropanol con acetona y freon 123B.
La solución del fluorocopolímero de intercambio catiónico se obtiene disolviendo el polvo de fluorocopolímero de intercambio catiónico en la mezcla de disolventes orgánicos y calentando a continuación y agitando la solución. La temperatura de disolución depende de la composición y peso equivalente del copolímero y también de los puntos de ebullición de los disolventes utilizados.
Las propiedades del fluorocopolímero del que está hecho la CEM y las propiedades del MEA se determinaron de la siguiente forma:
1. La composición del fluorocopolímero se determinó por espectroscopia infrarroja utilizando el espectrómetro Perkin-Elmer, 1750. 2. La capacidad de intercambio se determinó por titulación [RNS 17552-72 y condiciones técnicas (TU) 6.06- 041-969-89] .
3. El grado de cristalinidad se determinó por el método de rayos X utilizando un espectrómetro de rayos X KRM-1.
4. El grosor de la membrana y el grosor de las capas de un material del electrodo se determinaron utilizando el micrómetro MK 25-1 (RNS 6507-78) .
5. La porosidad general y el gradiente de porosidad se determinaron por el método de la porometría con etalona (estándar) .
Los siguientes ejemplos ilustran la presente invención.
Ejemplo 1
Se usa CEM con un diámetro de 150 itim y con un espesor de 170 μm, hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éter vinílico (CPL-1) , con un grado de cristalinidad del 8%, EW = 1200, con grupos -S03H de intercambio catiónico, para producir MEA.
La producción de un material de electrodo. Se mezclan 0,24 g de electrocatalizador (platino) depositado en la superficie de 0,58 g de material electroconductor inactivo [negro de acetileno con un tamaño de partículas de 0,01 μm (TU 14-7-24-80)] en un recipiente de vidrio, con 0,1 g de politetrafluoroetileno y 0,08 g de fluorocopolímero CPL-1 en forma de una solución al 3% en la mezcla de etanol, freón-13 y metil etil cetona (relación de masas 5:2:3). El fluorocopolímero contiene grupos de intercambio catiónico -S03H y es idéntico al copolímero CEM. El compuesto viscoso obtenido se aplica sobre una superficie secada al aire del CEM pulverizando una capa de tal espesor que, después del secado, la carga de electrocatalizador no sea mayor de 0,3 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: 20sc durante 10 minutos, después 602C durante 40 minutos y 80ec durante 20 minutos. Después, el CEM se saca del termostato, se enfría a temperatura ambiente y se aplica el mismo material de electrodo a otra superficie de CEM de la misma forma. El MEA producido contiene CEM de CPL-1 con un espesor de 170 μm, con las capas de un material de electrodo situadas en sus dos lados. La carga de electrocatalizador es de 0,3 mg/cm2.
Las capas del material de electrodo contienen (% en masa) : electrocatalizador -24% material electroconductor inactivo -58% fluorocopolímero de intercambio catiónico CPL-1 -8% tetrafluoroetileno -10% la porosidad general es del 40% con un gradiente de porosidad del 5% por 1 μm.
El MEA producido se ensaya en una celda de combustible de la siguiente forma: sobre las dos superficies de las capas de electrodo del MEA producido, se aplica el tejido de carbono TMP-5 (RTM) saturado con dispersión de politetrafluoroetileno (TU 6-05-1246-81) y después se comprimen. A continuación, el agregado se pone en la celda de combustible. El ensayo se realiza a 80^C y se añaden los siguientes gases a la celda de combustible: hidrógeno en el compartimento del ánodo con una presión de 2,5 atmósferas y oxígeno en el compartimento del cátodo con una presión de 5 atmósferas.
Se obtienen los siguientes resultados: voltaje de la celda 0,77-0,78 V densidad de corriente 0,5 A/cm2
La celda de combustible se hizo funcionar de forma estable durante 3000 horas, después el ensayo se interrum- pió y se sacó el MEA. No se observó exfoliación de la capa del material de electrodo mediante inspección visual. Cuando el MEA se volvió a poner en la celda de combustible, los parámetros no cambiaron.
E-jemplo 2
Se usa CEM con un diámetro de 50 mm y con un espesor de 100 μm, hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éter vinílico y perfluorometilvinil éter (CPL-8), con un grado de cristali- nidad del 6%, EW = 1100, con grupos -S03H de intercambio catiónico, para producir MEA.
La producción de un material de electrodo. Se mezclan 0,85 g de electrocatalizador (platino, con un tamaño de partículas de 0,05 μm) y 0,1 g de material electroconductor inactivo (negro de acetileno con un tamaño de partículas de
0,015 μm) en un recipiente de vidrio. Después se añaden
0,03 g de politetrafluoroetileno (RNS 1491-77) y 0,02 g de fluoropolímero en forma de una solución al 2% en la mezcla de dimetilformamida con etanol y freón-123B (relación de masas 1:8:1) a las partículas de platino obtenidas que se mezclaron con el carbono. El fluorocopolímero es idéntico al copolímero CEM (CPL-8) . La composición viscosa obtenida se aplica sobre una de las superficies secadas al aire del CEM, extendiendo una capa de tal espesor que, después del secado, la carga de electrocatalizador no sea mayor de 0,3 μg/cm2. Después, el CEM se pone en un termostato y se calienta con el siguiente aumento de la temperatura en múltiples fases: 20-352C durante 10 minutos, después 502C durante 30 minutos y loóse durante 30 minutos. Después, el CEM se saca del termostato, se enfría a temperatura ambiente y se aplica el mismo material de electrodo en otra superficie de CEM de la misma forma. El MEA producido contiene CEM de CPL-8 con un espesor de 100 μm, con las capas de un material de electrodo situado en sus dos lados. La carga de electrocatalizador es de 0,3 mg/cm2.
Las capas del material de electrodo contienen (% en masa) : electrocatalizador -85% material electroconductor inactivo -10% fluorocopolímero de intercambio catiónico CPL-8 -2% tetrafluoroetileno -3% la porosidad general es del 50% con un gradiente de porosidad del 12% por 1 μm.
El MEA producido se ensaya en una celda de combustible de la siguiente forma: en las dos superficies de las capas de electrodo del MEA producido, se aplica el tejido de carbono saturado con dispersión de politetrafluoroetileno.
Se obtienen los siguientes resultados: voltaje de la celda 0,79-0,81 V densidad de corriente 0,5 A/cm2
La celda de combustible se hizo funcionar de forma estable durante 3000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación de la capa del material de electrodo mediante inspección visual. Cuando el MEA se volvió a poner en la celda de combustible, sus parámetros no cambiaron.
Ejemplo 3
Se usa CEM con un diámetro de 80 mm y con un espesor de 230 μm, hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éter vinílico (CPL-4) , con un grado de cristalinidad del 3%, EW = 1000, con grupos -S03Na de intercambio catiónico, para producir MEA.
La producción de un material de electrodo. Se mezclan 0,95 g del electrocatalizador (platino, con tamaño de partículas de 0,05 μm) y 0,01 g de material electroconductor negativo (negro de acetileno con un tamaño de partículas de 0,01 μ) en un recipiente de vidrio. Después, se añaden 0,04 g de fluorocopolímero TM-4 en forma de una solución al 1% en una mezcla de dimetilformamida con etanol y acetona (relación de masas 1:7:2) a la mezcla de partículas obtenida. El fluorocopolímero contiene grupos -S03Na de intercambio catiónico. La composición viscosa obtenida se aplica sobre una de las superficies secadas al aire del CEM extendiendo una capa de tal espesor que, después del secado, la carga de electrocatalizador no sea mayor de 0,15 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: 20-40^C durante 15 minutos, después 702C durante 40 minutos y ÍOO^C durante 30 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se aplica otra mezcla a otra superficie del CEM de la misma forma. La última mezcla contiene 0,95 g de electrocatalizador (iridio, con un tamaño de partículas de 0,01 μ) , 0,01 g de plomo con superficie oxidada (tamaño de partículas de 0,3 μ) y 0,04 g de fluorocopolímero CPL-4 en forma de una solución al 1% en la mezcla de dimetilformamida con etanol y acetona (relación de masas 1:7:2). El fluorocopolímero contiene grupos -S03Na de intercambio catiónico.
El MEA producido contiene CEM de CPL-4 con un espesor de 230 μm con las capas de un material de electrodo situadas en sus dos lados. La carga de electrocatalizador anódico es de 0,45 mg/cm2.
Las capas del material de electrodo contienen (% en masa) : electrocatalizador -95% material electroconductor inactivo -1% fluorocopolímero de intercambio catiónico CPL-4 -4% la porosidad general es del 45% con un gradiente de porosidad del 8% por 1 μm.
El MEA producido se ensaya en una electrólisis de agua de la siguiente forma. Se aplican colectores de corriente hechos de titanio poroso (porosidad del 26%) a ambos lados del MEA. El conjunto se consolida usando dos placas de metal, se prensan entre sí con tornillos, se sumerge en el recipiente de agua y se trata por medio de una corriente de 0,5-1 A/cm2 a 902C durante 1 hora. El MEA producido se pone en una celda para electrólisis de agua desionizada. El voltaje en la celda fue de 1,71 V, la densidad de corriente de 1 A/cm2 y la temperatura de 1002C.
El dispositivo se hizo funcionar de forma estable durante 2000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación de la capa del material de electrodo mediante inspección visual. Cuando el MEA se volvió a poner en la celda, sus parámetros no cambiaron. Ej emplo 4
Se usa CEM con un diámetro de 50 mm y con un espesor de 200 μm, hecho de copolímero hidrolizado de tetrafluoroe- tileno con perfluorosulfuro que contiene éter vinílico (CPL-2) , con un grado de cristalinidad del 7%, EW = 1300, con grupos -S03K de intercambio catiónico, para producir MEA.
Para la producción de un material de electrodo, se depositan 0,65 g de electrocatalizador (platino) sobre la superficie de 0,18 g de material electroconductor negativo (negro de acetileno con un tamaño de partículas de 0,01 μm) y las partículas se mezclan en un recipiente de vidrio. Después se añaden 0,15 g de politetrafluoroetileno y 0,02 g de fluorocopolímero CPL-2 en forma de una solución al 2,7% en la mezcla de isopropanol, freón-123a y ciclohexano- na (relación de masas 7:4:1) a la mezcla de partículas obtenida. El fluorocopolímero contiene grupos -S03K de intercambio catiónico y es idéntico al copolímero CEM. La composición viscosa obtenida se aplica sobre una superficie secada al aire del CEM, pulverizando una capa de tal espesor que, después del secado, se obtiene una carga de electrocatalizador de 0,3 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: 25ec durante 15 minutos, después 702C durante 40 minutos y 95^C durante 20 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se aplica el mismo material de electrodo a otra superficie de CEM de la misma forma. El MEA producido contiene CEM de CPL-2 con un espesor de 200 μm, con las capas de un material de electrodo situadas en sus dos lados. La carga de electrocatalizador es de 0,3 mg/cm . Las capas del material de electrodo contienen (% en masa) : electrocatalizador -65% material electroconductor inactivo -18% fluorocopolímero de intercambio catiónico CPL-2 -2% politetrafluoroetileno -15 la porosidad general es del 70% con un gradiente de porosidad del 15% por 1 μm.
El MEA producido se ensaya en una celda de combustible de la siguiente forma: se aplica sobre las dos superficies de las capas de electrodo del MEA producido, el tejido de carbono saturado con dispersión de politetrafluoroetileno (TU 6-05-1246-81) y después se comprime. Después, el agregado se pone en la celda de combustible. El ensayo se realiza a 80SC y se añaden los siguientes gases a la celda de combustible: hidrógeno en el compartimento del ánodo con una presión de 2,5 atmósferas, y oxígeno en el compartimento del cátodo con una presión de 5 atmósferas.
Se obtienen los siguientes resultados: voltaje de la celda 0,77-0,78 V densidad de corriente 0,5 A/cm2
La celda de combustible se hizo funcionar de forma estable durante 3000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación de la capa del material de electrodo mediante inspección visual. Cuando el MEA se devolvió a la celda de combustible, sus parámetros no cambiaron.
Ejemplo 5
Se usa CEM con un diámetro de 50 mm y con un espesor de 150 μm, hecho de copolímero hidrolizado de tetrafluoroe- tileno con perfluorosulfuro que contiene éter vinílico (CPL-3), con un grado de cristalinidad del 2%, EW = 900, con grupos -S03H de intercambio catiónico, para producir MEA.
Para la producción del material de electrodo, se depositan 0,1 g de electrocatalizador (platino) sobre la superficie de 0,3 g de material electroconductor negativo (negro de acetileno con un tamaño de partículas de 0,01 μ) y las partículas se mezclan en un recipiente de vidrio. Después, se añaden 0,06 g de politetrafluoroetileno (RNS 1496-77) y 0,04 g de fluorocopolímero CPL-3 en forma de una solución al 5% en una mezcla de pentano, N-propanol y N- butano (relación de masas 1:1:1) a las partículas obteni- das. El fluorocopolímero contiene grupos -S03H de intercambio catiónico y es idéntico al copolímero CEM. La composición viscosa obtenida se aplica sobre una de las superficies secadas al aire del CEM, extendiendo una capa de tal espesor que, después del secado, la carga de electrocatali- zador sea de 0,3 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: 30^c durante 20 minutos, después 55^c durante 30 minutos y 902C durante 20 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se aplica el mismo material de electrodo en otra superficie del CEM de la misma forma. El MEA producido contiene CEM de CPL-3 con un espesor de 150 μm, con las capas de un material de electrodo situadas en sus dos lados. La carga de electrocatalizador es de 0,3 mg/cm2.
Las capas del material de electrodo contienen (% en masa) : electrocatalizador -20% material electroconductor inactivo -60% fluorocopolímero de intercambio catiónico CPL-3 -82% politetrafluoroetileno -12% la porosidad general es del 45% con un gradiente de porosidad del 10% por 1 μm.
El MEA producido se ensaya en una celda de combustible de la siguiente forma: sobre las dos superficies de las capas de electrodo de MEA, se ponen láminas de carbono saturadas con dispersión de politetrafluoroetileno (TU 6- 05-1246-81) y después se comprime. El conjunto se pone en la celda de combustible. El ensayo de MEA se realiza a 80^C y se aplican los siguientes gases a la celda de combustible: hidrógeno - a la cámara anódica a una presión de 5 atm, y oxígeno a la cámara catódica a una presión de 25 atmósferas. Se obtienen las siguientes características: voltaje en la celda, V -0,77 -0,80 densidad de corriente, A/cm2 -0,5
La celda de combustible se hizo funcionar de forma estable durante 3000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación del material del electrodo del CEM mediante inspección visual. Cuando el MEA se volvió a poner en la celda de combustible, sus parámetros no cambiaron.
Ejemplo 6
Se usa CEM con un diámetro de 50 mm y con un espesor de 170 μ, hecho de copolímero hidrolizado de tetrafluoroe- tileno con perfluorosulfuro que contiene éster vinílico y etileno (CPL-4) , con grupos -S03Na de intercambio catiónico, con un grado de cristalinidad del 8%, EW = 1250, para la producción de MEA. Para producir el material de electrodo para el cátodo se mezclan 0,65 g de catalizador (plati- no, tamaño de partículas de 0,05 μm) y 0,34 g de negro de acetileno (tamaño de partículas 0,01 μm) en un recipiente de vidrio. Después se añaden 0,01 g de fluorocopolímero (CPL-4) con grupos -S03Na de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 1,7% de freón-123V (RTM) , etanol e isobutileno (relación de masas 2:5:5) a las partículas obtenidas. La composición viscosa obtenida del material de electrodo se aplica a una superficie secada al aire del CEM por el procedimiento de verter la composición con tal espesor que la carga de electrocatalizador sea de 0,3 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: 3ose durante 20 minutos, después 50se durante 30 minutos y 1002C durante 15 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se cubre otra superficie de la misma forma con el material del ánodo producido como en el ejemplo 3. Después, el CEM se pone en un termostato y se trata térmicamente de la forma mencionada. El MEA producido contiene CEM (CPL-4) con un espesor de 170 μm, las dos caras están cubiertas con capas de material de electrodo con una carga de electrocatalizador de 0,15 mg/cm2 en el cátodo y de 0,45 mg/¿m en el ánodo. Estas capas constan de (% en masa) : electrocatalizador -65 material electroconductor inactivo -34 fluorocopolímero de intercambio catiónico CPL-4 -1 y su porosidad general es del 63% con un gradiente de porosidad del 13% por 1 μm.
El MEA producido se ensaya en una electrólisis de agua desionizada.
Se aplican colectores de corriente hechos de titanio poroso a ambos lados del MEA. El MEA producido se ajusta en la celda para realizar la electrólisis de agua desionizada. El voltaje de celda en las celdas es 1,73-1,75 V y la densidad de corriente de 1 A/cm2 a una temperatura de 1002C.
El electrolizador se hizo funcionar de forma estable durante 2000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación del material de electrodo del CEM mediante inspección visual. Cuando el MEA se volvió a poner en la celda, los parámetros no cambiaron.
Ejemplo 7
Se usa CEM con un diámetro de 50 mm y un espesor de 230 μm, hecho de copolímero hidrolizado de tetrafluoroeti- leño con grupos perfluorosulfo que contiene éter vinílico y perfluorooxalato (CPL-6) con grupos -S03Li de intercambio catiónico, con un grado de cristalinidad del 4%, EW = 1000, para producir MEA. Para la producción del material de electrodo, se mezclan 0,76 g de catalizador (platino, tamaño de partículas de 0,08 μm) y 0,15 g de carbón (tamaño de partículas 0,001 μm) en un recipiente de vidrio. Después se añaden 0,09 g de fluorocopolímero (CPL-6) con grupos - S03Li de intercambio catiónico idénticos al copolímero de CEM, en forma de una solución al 2,65% de freón-122, acetona e isopropanol (relación de masas 2:7:1) a las partículas obtenidas. La composición viscosa obtenida de material de electrodo se aplica sobre una superficie secada al aire del CEM por el procedimiento de verter la composición con tal espesor que la carga de electrocatalizador sea de 0,15 μg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: a 202C durante 20 minutos, y a 40^C durante 30 minutos. Después el CEM se saca del termostato y se enfría a temperatura ambiente. Composición de la capa del cátodo (% en masa) : electrocatalizador -76 material electroconductor inactivo -15 fluorocopolímero de intercambio catiónico (CPL-6) en mezcla con freón-122, acetona e isopropanol -0,5 El cátodo tiene una porosidad general del 48% con un gradiente de porosidad del 9% por 1 μm.
Después, se mezclan 0,90 g de óxido mixto de Ir02 - Ru02 con contenidos de IrC^ del 80% (tamaño de partículas de 0,05 μm) y 0,01 g de material electroconductor inactivo -Pb02 en un recipiente de vidrio, con 0,09 g de fluorocopolímero (CPL-6) con grupos -S03Li de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 2,6% mezclada con freón-122, acetona e isopropanol (rela- ción de masas 2:7:1).
La mezcla obtenida se aplica en la otra superficie del CEM. El CEM se pone en el termostato y se seca como se ha mencionado anteriormente. Después, el CEM se saca del termostato y se enfría a temperatura ambiente.
Composición de la capa del ánodo (% en masa) : electrocatalizador -90% fluorocopolímero de intercambio catiónico -9% material electroconductor inactivo -1%
Carga de catalizador del ánodo -0,45 mg/cm2. La capa tiene una porosidad general del 42% con un gradiente de porosidad del 5% por 1 μm.
El MEA producido se ensaya en una electrólisis de agua desionizada.
Se aplican colectores de corriente hechos de titanio poroso a ambos lados del MEA. El conjunto se comprime usando dos placas de metal que se prensan entre sí con tornillos, se sumerge en el recipiente de agua y se trata por medio de una corriente eléctrica de 0,5-1 A/cm2 a 902C durante 1 hora. El MEA producido se fija en la celda para realizar la electrólisis del agua desionizada. El voltaje de la celda es de 1,76 V, la densidad de corriente de 1 A/cm2 y la temperatura de 100se.
El dispositivo se hizo funcionar de forma estable durante 2000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación del material del electrodo del CEM mediante inspección visual. Cuando el MEA se volvió a poner en la celda, sus parámetros no cambiaron.
Ejemplo 8
Se usa CEM con un diámetro de 50 mm y con un espesor de 180 μm, hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éster vinílico y éter vinílico perfluorado (CPL-9) , con grupos -S03K de intercambio catiónico, con un grado de cristalinidad del
7,5%, EW = 1150 para producir MEA. Para producir el material de electrodo, se mezclan 0,9 g de catalizador
(mezcla de platino y rutenio, tamaño de partículas 0,05 μm) y 0,03 g de carbón (tamaño de partículas 0,001 μm) en un recipiente de vidrio. Después se añaden 0,07 g de fluorocopolímero de intercambio catiónico (CPL-9) con grupos S03K de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 4,0% de freón-113, etanol y ciclohexanol (relación de masas 1:10:1) a las partículas obtenidas. La composición viscosa obtenida de material de electrodo se aplica sobre una superficie secada al aire del CEM por el procedimiento de extender la composición con un espesor tal que la carga del electrocatalizador sea de 0,15 mg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: a 202C durante 20 minutos, a 602c durante 20 minutos y a 90SC durante 30 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se cubre otra superficie de la misma forma por un material de ánodo que consta de 0,9 g de catalizador [óxido mixto Ir02 + Pb02 (Pb02 - 5%) con un tamaño de partículas de 0,03 μm] y 0,03 g de plomo oxidado (tamaño de partículas de 0,08 μm) y 0,07 g de fluorocopolímero de intercambio catiónico (CPL- 9) con grupos -S03K de intercambio catiónico idénticos al copolímero de CEM, en forma de una solución al 4,0% de freón-113, etanol y ciclohexanol (relación de masas 1:10:1). La carga del electrocatalizador del ánodo es de 0,45 mg/cm2. El MEA producido contiene CEM hecho de copolímero (CPL-9) con un espesor de 180 μm. Estas capas constan de (% en masa) : electrocatalizador -90 material electroconductor inactivo -3 fluorocopolímero de intercambio catiónico (CPL-9) -7 la porosidad general de la capa del cátodo es del 50% con un gradiente de porosidad del 7% por 1 μm y la porosidad general de la capa del ánodo es del 56% con un gradiente de porosidad del 12% por 1 μm.
El MEA producido se ensaya en una electrólisis de agua desionizada.
Se aplican colectores de corriente hechos de titanio poroso a ambos lados del MEA. El conjunto se comprime usando dos placas de metal que se prensan entre sí con tornillos, se sumerge en un recipiente con agua y se trata por medio de una corriente eléctrica de 0,5-1 A/cm2 a 902C durante 1 hora. El MEA producido se ajusta en la celda para la electrólisis del agua desionizada. El voltaje de la celda es de 1,72-1,74 V y la densidad de corriente de 1 A/cm2 a ÍOO^C. El electrolizador se hizo funcionar de forma estable durante 2000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación del material del electrodo del CEM mediante inspección visual. Cuando el MEA se volvió a poner en la celda, los parámetros no cambiaron.
Ejemplo 9
Se usa CEM con un diámetro de 50 IB y con un espesor de 150 μm, hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éter vinílico y perfluorodioxalato (CPL-7) , con grupos -S03H de intercambio catiónico, con un grado de cristalinidad del 1%, EW = 850, para producir MEA. Para producir el material de electrodo se añaden 0,91 g de catalizador (paladio, con un tamaño de partículas de 0,08 μm) y 0,09 g de fluorocopolímero (CPL-7) con grupos -S03H de intercambio catiónico idénticos al copolímero CEM, en forma de una solución al 5% de freón- 122a (RTM) , metiletilcetona e isobutanol (relación de masas 1:1:9) a las partículas obtenidas. El compuesto viscoso obtenido de material de electrodo se aplica sobre una superficie secada al aire del CEM por el procedimiento de verter la composición con tal espesor que la carga del electrocatalizador sea de 0,15 mg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: a 20^c durante 10 minutos, a 402C durante 20 minutos y a 1002C durante 30 minutos. Después el CEM se saca del termostato, se enfría a temperatura ambiente y se cubre otra superficie de la misma forma con la siguiente mezcla: 0,91 g de catalizador (mezcla de Ir02 + Ru02 + Sn02 , relación de masas en % 80:15:5, tamaño de partículas de 0,05 μm) y 0,09 g de fluorocopolímero (CPL-7) con grupos -S03H de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 5% de freón-122a, metile- tilcetona e isobutanol (relación de masas 1:1:9). El compuesto obtenido se aplica a la otra cara del CEM, después el CEM se pone en el termostato y se trata térmicamente como se ha mencionado anteriormente. La carga de electrocatalizador del ánodo es de 0,45 mg/cm2. El MEA producido consta de CEM hecho de copolímero (CPL-7) con un espesor de 150 μm y las capas de material de electrodo cubren las dos superficies del CEM. Estas capas constan de (% en masa) : electrocatalizador -91 material electroconductor inactivo -0 fluorocopolímero de intercambio catiónico (CPL-9) -9 su porosidad general es del 61% con un gradiente de porosidad del 13% por 1 μm.
El MEA producido se ensaya en una electrólisis de agua desionizada.
Se aplican colectores de corriente hechos de titanio poroso a ambos lados del MEA. El conjunto se comprime usando dos placas de metal que se prensan entre sí con tornillos, se sumerge en el recipiente de agua y se trata por medio de una corriente eléctrica de 0,5-1 A/cm2 a 902C durante 1 hora. El MEA producido se ajusta en una celda para la electrólisis de agua desionizada. El voltaje de la celda es de 1,82-1,84 V y la densidad de corriente de 1 A/cm2 a 100SC
El dispositivo se hizo funcionar de forma estable durante 2000 horas, después el ensayo se interrumpió y se sacó el MEA. No se observó exfoliación del material de electrodo del CEM mediante inspección visual. Después de volver a introducir el MEA en la celda, el voltaje se elevó hasta 1,86-1,88 V. El ejemplo 9 demuestra que si el MEA no tiene la composición reivindicada, tiene peores parámetros.
Ejemplo 1 de control
Se usa CEM con un diámetro de 50 mm y un espesor de 300 μm hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éter vinílico (RTM MF4-SK) , con grupos -S03H de intercambio catiónico, con un grado de cristalinidad del 12%, EW = 1200 para producir MEA. Para producir el material de electrodo, se mezclan 0,5 g de catalizador (platino, tamaño de partículas 0,05 μm) y 0,055 g de copolímero (MF-4 SK) con grupos -S03H de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 1,8% en mezcla de dimetilacetamida, etanol y acetona (relación de masas 1:7:2) en un recipiente de vidrio. El compuesto viscoso obtenido de material de electrodo se aplica sobre una superficie secada al aire del CEM por el procedimiento de extender con un espesor tal que la carga de electrocatalizador sea de 0,15 mg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente con el siguiente aumento de la temperatura en múltiples fases: a 20-352C durante 15 minutos, a 702C durante 40 minutos y a lOOec durante 30 minutos. Después el CEM se saca del termostato y se enfría a temperatura ambiente. La composición de la capa del cátodo (% en masa) : electrocatalizador -91 fluorocopolímero de intercambio catiónico idéntico al copolímero de CEM -9 El cátodo tiene una porosidad general del 26% con un gradiente de porosidad del 0% por lμm.
Después, se mezclan 0,5 g de iridio (tamaño de partículas de 0,01 μm) y 0,055 g de copolímero (RTM MF-4 SK) con grupos -S03H de intercambio catiónico idénticos al copolímero de CEM en forma de una solución al 1,8% de una mezcla de dimetilaceta ida, etanol y acetona (relación de masas 1:7:2) en un recipiente de vidrio. El compuesto viscoso obtenido de material de electrodo se aplica sobre otra superficie secada al aire del CEM por el procedimiento de verter la composición con tal espesor que la carga del electrocatalizador sea de 0,45 mg/cm2. Después, el CEM se pone en un termostato y se trata térmicamente como se ha mencionado anteriormente. La composición de la capa del ánodo (en % en masa) : electrocatalizador -91 fluorocopolímero de intercambio catiónico idéntico al copolímero de CEM -9
El MEA producido se ensaya en una electrólisis de agua.
Se aplican colectores de corriente hechos de titanio poroso a ambos lados del MEA. El conjunto se comprime usando dos placas de metal que se prensan entre sí con tornillos, después se sumerge en el recipiente con agua y se trata por medio de una corriente eléctrica de 0,5-1 A/cm2 a 902C durante 1 hora. El MEA producido se ajusta en la celda para la electrólisis del agua desionizada. El voltaje de la celda es de 1,91 V y la densidad de corriente de 1 A/cm2 a 1002C.
El electrolizador se hizo funcionar durante 2000 horas con un aumento del voltaje de 1,95 V, después el ensayo se interrumpió y se sacó el MEA. Se observó una tendencia a la exfoliación de la capa del electrodo por inspección visual. Después de volver a poner el MEA en la celda, el voltaje se aumentó a 2,03 V.
Ejemplo 2 de control Se usa CEM con un diámetro de 50 mm y un espesor de 140 μ (en estado sólido) hecho de copolímero hidrolizado de tetrafluoroetileno con perfluorosulfuro que contiene éster vinílico (marca comercial Nafion-117) con grupos - S03K de intercambio catiónico, con un grado de cristalinidad del 12%, EW = 1100 para producir MEA.
Para producir el material de electrodo, se mezclan 0,1 g (20% en masa) de catalizador (platino, tamaño de partícu- las 0,05 μm) , 0,3 g de carbón (tamaño medio de partículas 25A) y 0,1 g de fluoropolímero con grupos de intercambio catiónico, en forma de una solución al 5% (marca comercial Nafion Solution) de fluoropolímero con grupos -S03H de intercambio catiónico idénticos al copolímero con el cual se produce CEM de un isopropanol (relación de masas entre catalizador y copolímero 3:1:1), en un recipiente de vidrio. La composición se agita hasta que se consigue un estado homogéneo. Después, la composición viscosa obtenida se procesa con una solución al 5% de KOH para la transfor- mación de los grupos -S03H del copolímero en grupos SC^K. La pasta obtenida se aplica uniformemente a una de las superficies de CEM usando un dispositivo con apertura para la extrusión de la pasta de forma que el espesor de la capa de electrodo fuera de 10 μm. Después el CEM cubierto con la capa catalítica se seca a temperatura ambiente (202C) durante 10 minutos y después a temperatura ambiente y a una presión de 10 mm de Hg durante 30 minutos. El CEM producido con la capa de material de electrodo estaba entre placas de teflón con un espesor de 10 mm, después se trató mediante un calentador eléctrico a 1902C y se comprimió a 1902C y 50 kg/cm2 durante 30 minutos. Después de enfriar el conjunto, el CEM se sacó y se cubrió otra superficie de la misma manera con el mismo material de electrodo. El material de electrodo se fijó como se ha mencionado anteriormente. El MEA producido contenía CEM (marca comercial Nafion-117) con grupos -S03K de intercambio catiónico y con capas de material de electrodo en ambas superficies, de forma que la carga de material de electrodo fuera de 0,3 mg/cm2. El material de electrodo contiene (% en masa) : electrocatalizador -20 material electroconductor inactivo -60 copolímero de intercambio catiónico idéntico al copolímero (marca comercial Nafion-117) grupos -S03K de intercambio catiónico -20 El MEA producido se sumerge en una solución al 3% de ácido sulfúrico y se mantiene en esta solución a temperatura ambiente durante 16 horas. Los grupos -S03K se transforman en -S03H. El MEA tiene una porosidad general del 29% con un gradiente de porosidad del 0% por 1 μm.
El MEA producido se ensaya en una celda de combustible de la siguiente forma: sobre las dos superficies de las capas de electrodo MEA, se ponen láminas de carbono saturado con dispersión de politetrafluoroetileno (TU 6-05- 1246-81) y después se comprimen. El conjunto se pone en la celda de combustible. El ensayo MEA se realiza a 802C y se suministran los siguientes gases a la celda de combustible: hidrógeno - al compartimento del ánodo a una presión de 2,5 atm. y oxígeno al compartimento del cátodo a una presión de 5 atm. Se obtienen las siguientes características: voltaje en la celda, V -0,72-0,75 densidad de corriente, A/cm2 -0,5 El electrolizador se hizo funcionar de forma estable durante 1000 horas, después el ensayo se interrumpió y se sacó el MEA. Se observó exfoliación de la capa del electrodo mediante inspección visual. Después, el MEA se volvió a poner en la celda y el voltaje se redujo a 0,65 V.
Como se muestra en los ejemplos proporcionados, el MEA reivindicado tiene mejores características electroquímicas que los MEA conocidos. Así pues, cuando se usa el MEA reivindicado en una celda de combustible, su voltaje es de 0,77 a 0,8 V y la densidad de corriente de 0,5 A/cm2, mientras que el voltaje de la celda no es mayor de 0,75 V y la densidad de corriente de 0,5 A/cm2 en el caso del MEA obtenido mediante el prototipo a una baja carga de catalizador.
A causa de su baja resistencia y carga de catalizador eficaz en la electrólisis de agua, el MEA reivindicado tiene un voltaje no mayor de 1,75 V. Es decir, es menor que el de los MEA conocidos con la misma carga de catalizador.
El procedimiento reivindicado de la producción de MEA que se puede usar en una celda de combustible y en la electrólisis de agua no es complicado, tarda menos tiempo y el CEM no se ve afectado negativamente. Además, se consigue una fuerte adhesión entre la capa del electrodo y el CEM. Las partículas del catalizador no se encapsulan por el aglutinante fluoropolimérico y se distribuyen uniformemente en todo el volumen de la capa de electrodo, lo que contribuye a una carga de catalizador eficaz y aumenta la duración útil de las celdas de combustible y electrolizadores, especialmente si se realiza su montaje-desmontaje (por ejemplo, para reparación) durante la operación.

Claims

REIVINDICACIONES
1. Ensamblaje de membrana-electrodo que consiste en una membrana de intercambio catiónico que contiene flúor (hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro con un PE = 900-1300) y capas de material electrodo porosas (hechas de electrocatalizador) , material inactivo electroconductor y aglutinante fluoropolimérico situado sobre ambas superfi- cies de la membrana de intercambio catiónico. La membrana de intercambio catiónico que contiene flúor está hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinilico que contiene perfluorosulfuro, que tiene un grado de cristalinidad de 2-8%, obteniéndose unas capas de material del electrodo porosas que tienen una porosidad entre 40 y 70%, que disminuye en la dirección de la superficie de la membrana de intercambio catiónico con un gradiente de porosidad de 5-15% por 1 μ.
2. Ensamblaje de membrana-electrodo mediante el p.l, que tiene la siguiente característica distintiva: membrana de intercambio catiónico que contiene flúor que está hecha de copolímero hidrolizado de tetrafluoroetileno con éster vinílico que contiene perfluorosulfuro y el tercer co onó- mero modificador, el cual se puede elegir entre las siguientes onas: etileno, perflúor-2-metilen-4-metil-l, 3- dioxolan y éter vinílico perfluoroalquilado con un grupo alquilo C1-C3.
3. El MEA del p. 1 ó 2 tiene la siguiente característica distintiva: las capas porosas de material del electrodo están hechas de una mezcla que contiene (% en masa) : electrocatalizador -20 - 85% material inactivo electroconductor -10 - 60% fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecha la membrana -2 - 8% politetrafluoroetileno 3 - 15%
4. El ensamblaje electrodo-membrana del p. 1 ó 2 tiene la siguiente característica distintiva: las capas porosas del material del electrodo están hechas de una mezcla que contiene (% en masa) : electrocatalizador -65 - 95% material inactivo electroconductor -1 - 35% fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecha la membrana -1 - 9%.
5. El procedimiento de producción del MEA incluye la aplicación de la mezcla del electrocatalizador y el material inactivo electroconductor con aglutinante polimé- rico que contiene flúor en ambas superficies de membrana de intercambio catiónico que está hecha de polímero hidroliza- do de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro con un PE = 900-1300 y tratamiento con calor. El método tiene la siguiente característica distintiva: la membrana de intercambio catiónico que está hecha de copolímero hidrolizado de tetrafluoroetileno con éter vinílico que contiene perfluorosulfuro, tiene un grado de cristalinidad de 2-8%. Sobre ambas superficies de la membrana de intercambio catiónico se aplica una mezcla del electrocatalizador, del material inactivo electroconductor y 1-5% de una solución de fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del cual está hecho la membrana de intercambio catiónico en una mezcla de disolventes orgánicos. El tratamiento con calor se lleva a cabo con un incremento multietapa de la temperatura desde 20-35°C hasta 80-100°C.
6. El procedimiento de producción del ensamblaje de membrana-electrodo por el p. 5 tiene la siguiente característica distintiva: se utiliza una membrana de intercambio catiónico que contiene flúor que está hecha de copolímero hidrolizado de tetrafluoroetileno con éster vinílico que contiene perfluorosulfuro y el tercer comonómero modificador, el cual se puede elegir entre las siguientes onas: etileno, perflúor-2-metilen-4-metil-l, 3-dioxolan y éter vinílico perfluoroalquilado con un grupo alquilo C1-C3.
7. El procedimiento de producción del MEA por el p. 5 ó 6 tiene la siguiente característica distintiva: la mezcla del electrocatalizador, el material inactivo electroconductor y una solución 1-5% de fluorocopolímero de intercambio catiónico idéntico al fluorocopolímero del que está hecho la membrana de intercambio catiónica en una mezcla disolventes inorgánicos, se aplica sobre ambos lados de la membrana de intercambio catiónico.
PCT/ES1998/000351 1998-12-22 1998-12-22 Ensamblaje de membrana-electrodo y procedimiento para su producción WO2000038261A1 (es)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES98961260T ES2195427T3 (es) 1998-12-22 1998-12-22 Ensamblaje de membrana-electrodo y procedimiento para su produccion.
JP2000590239A JP2002533877A (ja) 1998-12-22 1998-12-22 膜−電極アセンブリー及びその製造方法
EP98961260A EP1176655B1 (en) 1998-12-22 1998-12-22 Membrane-electrode assembly, and production process
PCT/ES1998/000351 WO2000038261A1 (es) 1998-12-22 1998-12-22 Ensamblaje de membrana-electrodo y procedimiento para su producción
AT98961260T ATE235110T1 (de) 1998-12-22 1998-12-22 Membranelektrodenanordnung und herstellungsverfahren
PT98961260T PT1176655E (pt) 1998-12-22 1998-12-22 Conjunto de membrana-electrodo e processo de producao
CA002356293A CA2356293A1 (en) 1998-12-22 1998-12-22 Membrane-electrode assembly and method of its production
AU16729/99A AU770055B2 (en) 1998-12-22 1998-12-22 Membrane-electrode assembly, and production process
US09/868,796 US6685806B1 (en) 1998-12-22 1998-12-22 Membrane electrode assembly and method of its production
DE69812444T DE69812444T2 (de) 1998-12-22 1998-12-22 Membranelektrodenanordnung und herstellungsverfahren
CN98814396A CN1337072A (zh) 1998-12-22 1998-12-22 膜电极组件及其生产方法
KR10-2001-7008035A KR100472779B1 (ko) 1998-12-22 1998-12-22 막-전극 조립체 및 그 제작방법
BR9816109-1A BR9816109A (pt) 1998-12-22 1998-12-22 Conjunto membrana-eletrodo e processo de produção do mesmo
DK98961260T DK1176655T3 (da) 1998-12-22 1998-12-22 Membranelektrode aggregat og produktionsproces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1998/000351 WO2000038261A1 (es) 1998-12-22 1998-12-22 Ensamblaje de membrana-electrodo y procedimiento para su producción

Publications (1)

Publication Number Publication Date
WO2000038261A1 true WO2000038261A1 (es) 2000-06-29

Family

ID=8302848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000351 WO2000038261A1 (es) 1998-12-22 1998-12-22 Ensamblaje de membrana-electrodo y procedimiento para su producción

Country Status (14)

Country Link
US (1) US6685806B1 (es)
EP (1) EP1176655B1 (es)
JP (1) JP2002533877A (es)
KR (1) KR100472779B1 (es)
CN (1) CN1337072A (es)
AT (1) ATE235110T1 (es)
AU (1) AU770055B2 (es)
BR (1) BR9816109A (es)
CA (1) CA2356293A1 (es)
DE (1) DE69812444T2 (es)
DK (1) DK1176655T3 (es)
ES (1) ES2195427T3 (es)
PT (1) PT1176655E (es)
WO (1) WO2000038261A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022336A1 (es) * 2000-09-13 2002-03-21 David Fuel Cell Components, S.L. Método para la fabricación de materiales compuestos
WO2003036655A1 (fr) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Solution d'electrolyte polymere pour la production d'une electrode de pile a combustible
US7494733B2 (en) * 2001-06-11 2009-02-24 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
CN101942672A (zh) * 2010-09-16 2011-01-12 清华大学 一种聚合物电解质膜电极的制备方法
US20110159402A1 (en) * 2003-09-10 2011-06-30 Daikin Industries, Ltd. Stabilized fluoropolymer and method for producing same
US8043763B2 (en) 2000-12-26 2011-10-25 Asahi Glass Company, Limited Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780935B2 (en) * 2000-02-15 2004-08-24 Atofina Chemicals, Inc. Fluoropolymer resins containing ionic or ionizable groups and products containing the same
JP4529276B2 (ja) * 2000-11-09 2010-08-25 旭硝子株式会社 固体高分子型燃料電池の製造方法
AU2003268695A1 (en) * 2002-09-30 2004-04-19 Asahi Glass Company, Limited Electrolyte film, process for producing the same, and solid polymer type fuel cell
WO2004047211A1 (fr) * 2002-11-20 2004-06-03 Xu, Gang Ensemble electrode a membrane pour piles a combustible et son procede de fabrication
JP2004192950A (ja) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp 固体高分子型燃料電池及びその製造方法
WO2004066426A1 (ja) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
JP4492037B2 (ja) * 2003-05-21 2010-06-30 株式会社エクォス・リサーチ 燃料電池用電極
CN100401563C (zh) * 2003-07-02 2008-07-09 中山大学 一种质子交换膜燃料电池膜电极组件的制备方法
US20050130006A1 (en) * 2003-09-17 2005-06-16 Asahi Kasei Kabushiki Kaisha Membrane electrode assembly for polymer electrolyte fuel cell
US8057847B2 (en) * 2003-10-31 2011-11-15 Utc Fuel Cells, Llc Method for preparing membranes and membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP2006244960A (ja) * 2005-03-07 2006-09-14 Daihatsu Motor Co Ltd 燃料電池
CN1309109C (zh) * 2005-03-23 2007-04-04 武汉理工大学 一种燃料电池用气体扩散层及其制备方法
HUP0501201A2 (en) * 2005-12-23 2007-07-30 Cella H Electrode for electrochemical cell working with high differential pressure difference, method for producing said electrode and electrochemical cell for using said electrode
CN101008087B (zh) * 2006-01-25 2010-08-04 中国科学院大连化学物理研究所 一种固体聚合物电解质水电解用膜电极的制备方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP4986298B2 (ja) * 2007-01-30 2012-07-25 富士フイルム株式会社 固体電解質フイルムの製造方法及びウェブ状の固体電解質フイルム
JP5305672B2 (ja) * 2007-04-13 2013-10-02 富士フイルム株式会社 固体電解質フイルムの製造方法
JP5362632B2 (ja) * 2010-03-25 2013-12-11 株式会社クラレ 膜−電極接合体及びその製造方法ならびに固体高分子型燃料電池
CN102263290B (zh) * 2010-05-31 2014-04-02 比亚迪股份有限公司 一种聚合物电池及其制备方法
WO2012088166A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Ionomers and ionically conductive compositions
WO2012088170A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
US10189927B2 (en) 2014-05-28 2019-01-29 Daikin Industries, Ltd. Ionomer having high oxygen permeability
WO2019181919A1 (ja) * 2018-03-20 2019-09-26 旭化成株式会社 陽イオン交換膜及び多層構造膜、並びに、電解槽
CN112670583A (zh) * 2020-12-30 2021-04-16 厦门大学 一种硅碳负极用非水电解液组合物及其应用
DE102021214923A1 (de) * 2021-12-22 2023-06-22 Siemens Energy Global GmbH & Co. KG Membranelektrodenanordnung und Verfahren zu deren Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622861A1 (en) * 1993-04-26 1994-11-02 E.I. Du Pont De Nemours & Company Incorporated Membrane and electrode structure
US5399184A (en) * 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
WO1995015016A1 (en) * 1993-11-29 1995-06-01 International Fuel Cells Corporation Cell/membrane and electrode assembly for electrochemical cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399184A (en) * 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
EP0622861A1 (en) * 1993-04-26 1994-11-02 E.I. Du Pont De Nemours & Company Incorporated Membrane and electrode structure
WO1995015016A1 (en) * 1993-11-29 1995-06-01 International Fuel Cells Corporation Cell/membrane and electrode assembly for electrochemical cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOSDALE, R.; STEVENS. P: "New electrodes for hydrogen / oxygen solid Polymer electrolyte fuel cell", SOLID STATE IONICS, vol. 61, 1993, pages 251 - 255, XP000941140 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022336A1 (es) * 2000-09-13 2002-03-21 David Fuel Cell Components, S.L. Método para la fabricación de materiales compuestos
US6939493B2 (en) 2000-09-13 2005-09-06 Poligono Industrial Nicomedes Garcia—Naves BvC Method for the production of composite materials
US8043763B2 (en) 2000-12-26 2011-10-25 Asahi Glass Company, Limited Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer
US8263710B2 (en) 2000-12-26 2012-09-11 Asahi Glass Company, Limited Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer
US8470943B2 (en) 2000-12-26 2013-06-25 Asahi Glass Company, Limited Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer
US7494733B2 (en) * 2001-06-11 2009-02-24 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
WO2003036655A1 (fr) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Solution d'electrolyte polymere pour la production d'une electrode de pile a combustible
US20110159402A1 (en) * 2003-09-10 2011-06-30 Daikin Industries, Ltd. Stabilized fluoropolymer and method for producing same
US8680209B2 (en) 2003-09-10 2014-03-25 Daikin Industries, Ltd. Stabilized fluoropolymer and method for producing same
CN101942672A (zh) * 2010-09-16 2011-01-12 清华大学 一种聚合物电解质膜电极的制备方法
CN101942672B (zh) * 2010-09-16 2012-10-10 清华大学 一种聚合物电解质膜电极的制备方法

Also Published As

Publication number Publication date
ES2195427T3 (es) 2003-12-01
EP1176655B1 (en) 2003-03-19
ATE235110T1 (de) 2003-04-15
US6685806B1 (en) 2004-02-03
DE69812444T2 (de) 2004-02-12
PT1176655E (pt) 2003-07-31
CN1337072A (zh) 2002-02-20
JP2002533877A (ja) 2002-10-08
BR9816109A (pt) 2001-11-06
DE69812444D1 (de) 2003-04-24
EP1176655A1 (en) 2002-01-30
DK1176655T3 (da) 2003-07-07
KR20010110309A (ko) 2001-12-12
CA2356293A1 (en) 2000-06-29
KR100472779B1 (ko) 2005-03-08
AU770055B2 (en) 2004-02-12
AU1672999A (en) 2000-07-12

Similar Documents

Publication Publication Date Title
WO2000038261A1 (es) Ensamblaje de membrana-electrodo y procedimiento para su producción
Read Ether-based electrolytes for the lithium/oxygen organic electrolyte battery
Xie et al. Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions
Kowalczk et al. Li-air batteries: A classic example of limitations owing to solubilities
EP1588449B1 (en) Catalyst ink
CN1981400B (zh) 固体高分子型燃料电池用电解质膜、其制造方法以及固体高分子型燃料电池用膜电极接合体
Chaparro et al. Properties of catalyst layers for PEMFC electrodes prepared by electrospray deposition
JP3318675B2 (ja) 非水性電気化学電池用電解液
JPH10294131A (ja) ポリマー電解質を有するリチウム電池
EP0123516B2 (en) Electrochemical cell
KR20050044731A (ko) 불화 이오노머 가교 공중합체
WO1994019839A1 (fr) Membrane d'echange d'ions pour cellule electrochimique
EP1912272A1 (en) Electrolyte membrane for use in solid polymer-type fuel cell, process for production of the membrane and membrane electrode assembly for use in solid polymer-type fuel cell
EP0955687A2 (en) Method for producing a slurry for forming a catalyst layer for a proton exchange membrane fuel cell
Balogun et al. Communication—non-fluorous, hydrocarbon PEMFCs, Generating> 1 W cm− 2 power
Han et al. Evaluation of the electrochemical performance of a lithium-air cell utilizing diethylene glycol diethyl ether-based electrolyte
US3261716A (en) Method of operating a fuel cell containing a sulfuric-nitric acid electrolyte
JP4709518B2 (ja) プロトン伝導膜及び燃料電池
Chan et al. Influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells
MXPA01006572A (es) Ensamblaje de membrana-electrodo y procedimiento para su produccion
KR102062463B1 (ko) 과염소산염을 포함하는 전해질을 이용한 레독스 흐름 전지
Aryal et al. Water Management for an Electrochemical Gas Separation and Inerting System
Baradie et al. Water sorption and protonic conductivity in a filled/unfilled thermostable ionomer for proton exchange membrane fuel cell
Wessling A tubular electrochemical reactor for slurry electrodes
Maruyama et al. Carbon surface oxidation by short-term ozone treatment for modeling long-term degradation of fuel cell cathodes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98814396.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2356293

Country of ref document: CA

Ref document number: 2356293

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09868796

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 590239

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017008035

Country of ref document: KR

Ref document number: PA/a/2001/006572

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998961260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 16729/99

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017008035

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998961260

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998961260

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017008035

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 16729/99

Country of ref document: AU