WO2000036294A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2000036294A1
WO2000036294A1 PCT/DE1999/003371 DE9903371W WO0036294A1 WO 2000036294 A1 WO2000036294 A1 WO 2000036294A1 DE 9903371 W DE9903371 W DE 9903371W WO 0036294 A1 WO0036294 A1 WO 0036294A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
bore
fuel injection
guide
Prior art date
Application number
PCT/DE1999/003371
Other languages
English (en)
French (fr)
Inventor
Yalcin Ertem
Ergün Filiz
Güngör Yurtseven
Heinz Stutzenberger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020007008736A priority Critical patent/KR20010040841A/ko
Priority to EP99957931A priority patent/EP1055062B1/de
Priority to US09/622,142 priority patent/US6422208B1/en
Priority to DE59910654T priority patent/DE59910654D1/de
Priority to JP2000588507A priority patent/JP2002532652A/ja
Publication of WO2000036294A1 publication Critical patent/WO2000036294A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a piston-shaped valve member is guided axially displaceably in a guide bore in a valve body.
  • the valve member has a conical valve sealing surface at its lower end on the combustion chamber side, with which it interacts with a stationary valve seat surface at the closed end of the guide bore.
  • two downstream of the injection openings are arranged downstream of the valve seat surface and, starting from the closed end of the guide bore, open into the combustion chamber of the internal combustion engine. The fuel inflow to these injection openings is controlled by the sealing cross section between the valve seat surface and the valve sealing surface.
  • Fuel injector has two guide areas with which it is slidably guided on the wall of the guide bore.
  • a first upper guide area is provided at the end of the valve member facing away from the combustion chamber, which is above one Extends fuel pressure chamber, which is formed by a cross-sectional expansion of the guide bore and into which a high-pressure fuel inlet channel opens.
  • the upper guide area also seals the pressure chamber from a spring chamber in which a valve spring acting on the valve member in the closing direction is accommodated.
  • the valve member has a second lower guide area in a region facing the combustion chamber, which is designed as an annular collar with which the valve member interacts with a reduction in the diameter of the guide bore.
  • the lower guide area which is designed as an annular collar, separates an annular gap formed between the valve member and the wall of the guide bore and extending from the pressure chamber from a lower pressure chamber located below and opening onto the valve seat surface when the fuel injection valve is closed.
  • the collar of the lower guide area of the valve member emerges from the overlap with the
  • a throttle passage cross section is provided between the annular gap and the pressure chamber below, when fuel injection valve is closed, that is to say when the valve member is in contact with the valve seat, via which fuel can flow into the pressure chamber below.
  • this throttle cross section is designed as an annular throttle gap between the collar of the lower guide area and the reduction in diameter of the guide bore.
  • this design of the throttle connection cross section between the annular gap and the pressure space below has the disadvantage in the known fuel injection valve for internal combustion engines that it is due to surface tolerances on the collar and on the
  • the fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the throttle connection cross section between the annular gap and the pressure chamber below it on the fuel injection valve can be produced easily and reproducibly with high accuracy.
  • Such a throttle bore can be manufactured very precisely in terms of production technology, with little effort, in particular also very much small spreads can be reduced in series production. It is particularly advantageous that such a throttle bore, contrary to the prior art, is independent of fit tolerances between the valve member and the geometry of the guide bore.
  • Throttle bore in the valve member consistently have the same throttle cross-section, but it is also possible to design the throttle bore in two or more stages, the smallest bore diameter then determining the throttle flow cross-section.
  • This smallest throttle bore cross section can be provided at the inlet of the throttle bore, in its central region or at the outlet of the throttle bore (as shown in the exemplary embodiment).
  • the design of the throttle bore as a two- or multi-stage bore has the advantage that a good flow can be achieved with sufficient throttling effect, the difference in diameter between the large and the smallest throttle diameter of the bore and the respective bore lengths between the larger bore part and throttle cross section in the design can easily set the desired throttling effect for each fuel injector type.
  • a further advantage of the fuel injection valve according to the invention is provided by the provision of an annular groove at the transition between the annular collar forming the lower guide region and a subsequent region of the cross-section which is reduced Valve member reached.
  • This annular groove has the advantage that the lower edge of the collar, which forms a control edge, is worked out with sharp edges, so that precise control can be achieved in cooperation with the corresponding paragraph of the guide bore.
  • Fuel injector is provided by
  • Recesses formed on the surface after the annular collar has emerged from the bore shoulder area allow a better unimpeded overflow from the annular gap into the pressure space below, so that the fuel under high pressure can flow from the fuel inlet channel via the annular gap and the pressure space below as evenly as possible to the injection openings.
  • Fuel injection valve for internal combustion engines is shown in the drawing and is explained in more detail below.
  • FIG. 2 shows an enlarged detail from FIG. 1 in the area of the combustion chamber facing the invention Valve body with the representation of the geometry of the valve member guided therein at the end facing the combustion chamber.
  • the exemplary embodiment of the fuel injection valve for internal combustion engines according to the invention shown in a simplified section in FIG. 1 has a valve body 1, which projects with its lower free end into the combustion chamber of the internal combustion engine to be supplied in a manner not shown in detail, and with its upper end facing away from the combustion chamber a valve holding body, also not shown, is clamped.
  • the valve body 1 has an axial end extending from its upper end face 3
  • a piston-shaped valve member 7 is guided axially displaceably, which has at its lower end on the combustion chamber side a conical valve sealing surface 9, with which it is connected to the closed end of the
  • valve seat surface 11 cooperates.
  • An injection opening 13 leads from this valve seat surface 11 downstream of the sealing cross section formed between the line of contact between valve seat surface 11 and valve sealing surface 9, which opens into the combustion chamber of the internal combustion engine to be supplied.
  • the exemplary embodiment has only one injection opening, but it is alternatively also possible to provide a plurality of injection openings, wherein these can alternatively lead away from the blind hole of the guide bore 5 formed below the valve member 7.
  • the piston-shaped valve member 7 has two guide areas with which it is slidably guided on the wall of the guide bore 5.
  • a first top Guide region 15 is provided on the end of the valve member 7 facing away from the combustion chamber, which is guided in an upper region of the guide bore 5 facing away from the combustion chamber.
  • the upper guide region 15 of the valve member 7 merges via a shoulder forming a pressure shoulder 17 into a valve member shaft part 19 with a reduced diameter.
  • the pressure shoulder 17 is arranged in an overhead pressure chamber 21, which is formed by a cross-sectional expansion of the guide bore 5 and into which a high-pressure fuel supply channel 23 opens.
  • This high-pressure fuel supply channel 23 is connected in a manner not shown to a high-pressure injection line which, on the other hand, leads away from a high-pressure fuel pump, via which fuel is fed from a storage tank under high pressure to the individual fuel injection valves.
  • a second lower guide area at the end of the valve member 7 close to the combustion chamber is designed as an annular collar 25, which with its cylindrical outer wall surface matches the wall of a
  • the annular collar 25, as shown enlarged in FIG. 2, forms a control edge 33 with its lower boundary edge facing the combustion chamber, with which it cooperates with a bore shoulder edge 35 of the bore shoulder 27 facing away from the combustion chamber.
  • control edge 33 and bore shoulder edge 35 are arranged so that the Control edge 33 on the annular collar 25 of the valve member 7, when the opening stroke movement is directed upward, passes over the upper bore shoulder edge 35 and thus releases a flow cross-section between the annular gap 29 and the lower pressure chamber 31.
  • the valve member 7 has an annular groove 37 for a more precise working out of the control edge 33 on the annular collar 25 between the transition of the annular collar 25 to the valve member shaft in the pressure chamber 31 below. Furthermore, recesses in the form of surface grindings 39 are worked into the valve member 7 in the area of the pressure chamber 31 below, by means of which the flow cross-section in this area is increased again.
  • a throttle bore 41 is provided in the valve member 7 for the fuel filling of the pressure chamber 31 located below when the valve member 7 abuts the valve seat surface 11.
  • the throttle bore 41 is arranged obliquely such that its inlet opening in the annular gap 29 and its outlet opening in the pressure chamber 31 below.
  • the throttle bore 41 is designed as a two-stage bore, with the larger bore section opening into the annular gap 29 and the smaller bore section opening into the pressure chamber 31 below. The throttling effect when fuel passes can be adjusted in a simple manner via the small, throttling diameter and its arrangement within the throttle bore 41.
  • the fuel injection valve for internal combustion engines works in the following manner.
  • a valve spring 45 holds the valve member 15 with its valve sealing surface 9 in contact with the valve seat surface 11 via a valve plate 43, see above that a flow cross-section to the injection opening 13 is closed.
  • the annular collar 25 on the valve member 7 is immersed in the bore shoulder 27 and thus separates the pressure space 31 located below from the annular gap 29, which on the other hand opens into the pressure space 21 located above.
  • the standing pressure of the fuel present in the high-pressure fuel supply channel 23, in the overhead pressure chamber 21 and in the annular gap 29 is also built up in the lower pressure chamber 31 via the throttle bore 41.
  • the high-pressure fuel injection at the injection valve is initiated by supplying fuel under high pressure from the injection pump via the high-pressure fuel supply channel 23 into the pressure chamber 21 located above.
  • the high-pressure fuel acting on the pressure shoulder 17 in the opening direction now displaces the valve member 7 against the closing force of the valve spring 45 in the opening stroke direction.
  • the valve sealing surface 9 lifts off the valve seat 11 and releases the flow cross-section to the injection opening 13, so that the fuel present in the pressure chamber 31 below is injected via the injection opening 13 into the combustion chamber of the internal combustion engine.
  • the fuel pressure in the pressure chamber 31 below collapses very quickly because the injection cross section at the
  • Injection opening 13 is formed larger than the smallest diameter of the throttle bore 41.
  • this first opening stroke phase of the valve member 7 more fuel therefore flows through the injection opening 13 out of the pressure chamber 31 below than can flow through the throttle bore 41 into it.
  • a pressure drop is now established on the annular collar 25, as a result of which the high fuel pressure present in the annular gap 29 applies an additional closing force to the cross-sectional transition to the annular collar 25.
  • the opening stroke movement of the valve member is braked until the high fuel pressure that builds up further in the pressure chamber 21 is sufficient to overcome this additional closing force and to move the valve member 7 further up to its opening stroke stop.
  • the collar 25 now emerges from the overlap with the bore shoulder 27 and thus releases an unrestricted overflow cross section between the annular gap 29 and the pressure chamber 31 below, so that the
  • High-pressure fuel injection is continued at the injection opening 13 of the fuel injection valve.
  • the point in time at which this cross-section of the connection is opened is determined by passing over the control edge 33 on the annular collar 25 via the bore shoulder edge 35.
  • the opening time of the unthrottled overflow between the annular gap 29 and the pressure chamber 31 below and thus the first opening stroke phase can now be set in a simple manner.
  • the shape of the injection course can also be gradually adjusted via the throttle cross section of the throttle bore 41.
  • the fuel injection valve is closed in a known manner by interrupting the high-pressure fuel supply in the upper pressure chamber 21, as a result of which the pressure present at the injection valve again drops below the necessary opening pressure, so that the valve spring 45 now moves the valve member 7 back into contact with the valve seat surface 11, the pressure build-up described at the outset now being established again via the throttle bore 41.
  • Fuel injection valve is now possible in a structurally simple manner to be able to set a two-stage opening stroke course of the valve member 7 without having to resort to a second additional valve closing spring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einer Führungsbohrung (5) eines Ventilkörpers (1) axial verschiebbaren Ventilglied (7), das zwei Führungsbereiche aufweist, mit denen es gleitverschiebbar in der Führungsbohrung (5) geführt ist, von denen ein erster oberer Führungsbereich am brennraumabgewandten Ende des Ventilgliedes (7) und ein zweiter unterer Führungsbereich (25) in einem brennraumnahen Bereich des Ventilgliedes (7) vorgesehen ist, wobei der untere Führungsbereich (25) einen zwischen dem Ventilgliedschaft und der Wand der Führungsbohrung (5) gebildeten, an einen Kraftstoffhochdruckzulaufkanal angeschlossenen Ringspalt (29) von einem untenliegenden an die Ventilsitzfläche (11) mündenden Druckraum (31) bei geschlossenem Kraftstoffeinspritzventil trennt und während der Öffnungshubbewegung des Ventilgliedes (7) diese Verbindung aufsteuert sowie mit einem Drosselverbindungsquerschnitt zwischen dem Ringspalt (29) und dem untenliegenden Druckraum (31). Dabei ist dieser Drosselquerschnitt als Drosselbohrung (41) ausgebildet.

Description

Kraftsto feinspritzventil für Brennkraf maschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen gemäß der Gattung des Oberbegriffs des Patentanspruchs 1 aus. Bei einem derartigen aus der Schrift US-4,987,887 bekannten Kraftstoffeinspritzventil ist ein kolbenförmiges Ventilglied axial verschiebbar in einer Führungsbohrung eines Ventilkörpers geführt. Das Ventilglied weist dabei an seinem unteren, brennraumseitigen Ende eine konische Ventildichtfläche auf, mit der es mit einer ortsfesten Ventilsitzfläche am geschlossenen Ende der Führungsbohrung zusammenwirkt . Dabei sind bei dem bekannten Kraftstoffeinspritzventil der Ventilsitzfläche stromabwärts zwei Einspritzöffnungen nachgeordnet, die vom geschlossenen Ende der Führungsbohrung ausgehend in den Brennraum der Brennkraftmaschine münden. Die Kraftstoffzuströmung zu diesen Einspritzöffnungen wird dabei durch den Dichtquerschnitt zwischen Ventilsitzfläche und Ventildichtfläche gesteuert. Das Ventilglied des bekannten
Kraftstoffeinspritzventils weist dabei zwei Führungsbereiche auf, mit denen es gleitverschiebbar an der Wand der Führungsbohrung geführt ist. Dabei ist ein erster oberer Führungsbereich am brennraumabgewandten Ende des Ventilgliedes vorgesehen, der sich dabei oberhalb eines Kraftstoffdruckraumes erstreckt, der durch eine Querschnittserweiterung der Führungsbohrung gebildet ist und in den ein Kraftstoffhochdruckzulaufkanal einmündet. Dabei übernimmt der obere Führungsbereich neben der sicheren Ventilgliedführung auch die Abdichtung des Druckraumes gegenüber einem Federraum, in dem eine das Ventilglied in Schließrichtung beaufschlagende Ventilfeder untergebracht ist. Zusätzlich zu diesem oberen ersten Führungsbereich weist das Ventilglied einen zweiten unteren Führungsbereich in einem brennraumzugewandten Bereich auf, der als Ringbund ausgebildet ist, mit dem das Ventilglied mit einer Durchmesserverringerung der Führungsbohrung zusammenwirkt . Dabei trennt der als Ringbund ausgebildete untere Führungsbereich einen zwischen dem Ventilgliedschaft und der Wand der Führungsbohrung gebildeten, vom Druckraum ausgehenden Ringspalt von einem untenliegenden, an die Ventilsitzfläche mündenden unteren Druckraum bei geschlossenem Kraftstoffeinspritzventil . Während der nach oben gerichteten Öffnungshubbewegung des Ventilgliedes taucht der Ringbund des unteren Führungsbereiches des Ventilgliedes aus der Überdeckung mit der
Durchmesserverringerung der Führungsbohrung aus und öffnet so einen ungedrosselten Durchströmquerschnitt zwischen dem Ringspalt und dem untenliegenden Druckraum.
Zur KraftstoffVersorgung des untenliegenden Druckraumes ist dabei bei geschlossenem Kraftstoffeinspritzventil, das heißt bei am Ventilsitz anliegendem Ventilglied ein Drosseldurchtrittsquerschnitt zwischen dem Ringspalt und dem untenliegenden Druckraum vorgesehen, über den Kraftstoff in den untenliegenden Druckraum einströmen kann. Dieser Drosselquerschnitt ist dabei beim bekannten Kraftstoffeinspritzventil als Ringdrosselspalt zwischen dem Ringbund des unteren Führungsbereiches und der Durchmesserverringerung der Führungsbohrung ausgebildet. Diese Ausbildung des Drosselverbindungsquerschnittes zwischen dem Ringspalt und dem untenliegenden Druckraum hat bei dem bekannten Kraftstoffeinspritzventil für Brennkraftmaschinen jedoch den Nachteil, daß es aufgrund von Oberflächentoleranzen am Ringbund und an der
Führungsbohrungswand schwierig ist, einen korrekten Drosselquerschnitt an verschiedenen
Kraftstoffeinspritzventilen reproduzierbar einzustellen. Dabei erfordert diese Art der Herstellung eines korrekten Drosselspaltes insbesondere einen hohen Aufwand hinsichtlich der Fertigungsgenauigkeit und ist somit nur mit hohem Aufwand und Kosten erzielbar. Da der präzisen Einstellung des Drosselquerschnittes jedoch hinsichtlich einer korrekten Funktion des Kraftstoffeinspritzventils, insbesondere der Einstellung der Voreinspritzung eine hohe Bedeutung zukommt, ist die Möglichkeit des Einstellens über den Ringdrosselspalt zwischen Führungsbund und Wand der Führungsbohrung nicht ausreichend.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß der Drosselverbindungsquerschnitt zwischen dem Ringspalt und dem untenliegenden Druckraum am Kraftstoffeinspritzventil einfach und mit hoher Genauigkeit reproduzierbar herstellbar ist. Dies wird dabei durch die erfindungsgemäße Ausbildung des Drosselverbindungsquerschnittes als Drosselbohrung erreicht, die das Ventilglied schräg durchdringt, wobei die Eintrittsöffnung der Drosselbohrung im Bereich des Ringspaltes und die Austrittsöffnung im Bereich des unten liegenden Druckraumes angeordnet ist. Dabei läßt sich eine derartige Drosselbohrung fertigungstechnisch mit geringem Aufwand sehr genau fertigen, wobei insbesondere auch sehr kleine Streubreiten bei einer Serienfertigung reduzierbar sind. Besonders vorteilhaft ist, daß eine derartige Drosselbohrung, entgegen dem Stand der Technik, unabhängig von Passungstoleranzen zwischen dem Ventilglied und der Geometrie der Führungsbohrung ist. Dabei kann die
Drosselbohrung im Ventilglied durchgängig den gleichen Drosselquerschnitt aufweisen, es ist jedoch auch möglich, die Drosselbohrung zwei- oder mehrstufig auszubilden wobei, dann der kleinste Bohrungsdurchmesser den Drosseldurchströmquerschnitt bestimmt. Dabei kann dieser kleinste Drosselbohrungsquerschnitt am Eintritt der Drosselbohrung, in deren mittigem Bereich oder am Austritt der Drosselbohrung (wie im Ausführungsbeispiel dargestellt) vorgesehen sein. Die Ausbildung der Drosselbohrung als zwei- oder mehrstufige Bohrung hat dabei den Vorteil, daß ein gutes Durchströmen bei ausreichender Drosselwirkung erzielbar ist, wobei sich über die Durchmesserdifferenz zwischen dem großen und dem kleinsten Drosseldurchmesser der Bohrung sowie den jeweiligen Bohrungslängen zwischen größerem Bohrungsteil und Drosselquerschnitt in konstruktiv einfacher Weise die gewünschte Drosselwirkung für jeden Kraftstoffeinspritzventiltyp einstellen läßt.
Es ist somit mit dem erfindungsgemäßen Kraftstoffeinspritzventil in konstruktiv einfacher Weise möglich, den für die Formung des Einspritzverlaufs am Einspritzventil wichtigen Drosselquerschnitt zwischen dem Ringspalt und dem untenliegenden Druckraum präzise und reproduzierbar einzustellen.
Ein weiterer Vorteil des erfindungsgemäßen Kraftstoffeinspritzventils wird durch das Vorsehen einer Ringnut am Übergang zwischen dem, den unteren Führungsbereich bildenden Ringbund und einem sich anschließenden, im Querschnitt verringerten Bereich des Ventilgliedes erreicht. Dabei hat diese Ringnut den Vorteil, daß die untere Kante des Ringbundes, die eine Steuerkante bildet, scharfkantiger herausgearbeitet ist, so daß sich eine präzise Steuerung im Zusammenwirken mit dem entsprechenden Absatz der Führungsbohrung erzielen läßt.
Ein weiterer Vorteil des erfindungsgemäßen
Kraftstoffeinspritzventils wird durch das Vorsehen von
Ausnehmungen am Ventilglied im Bereich des untenliegenden Druckraumes erreicht, wobei diese, vorzugsweise als
Flächenanschliffe ausgebildeten Ausnehmungen nach Austauchen des Ringbundes aus der Bohrungsabsatzfläche ein besseres ungehindertes Überströmen aus dem Ringspalt in den untenliegenden Druckraum ermöglichen, so daß der unter hohem Druck stehende Kraftstoff aus dem KraftstoffZulaufkanal über den Ringspalt und den untenliegenden Druckraum möglichst gleichmäßig zu den Einspritzöffnungen überströmen kann.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
Ein Ausführungsbeispiel des erfindungsgemäßen
Kraftstoffeinspritzventils für Brennkraftmaschinen ist in der Zeichnung dargestellt und wird im folgenden näher erläutert .
Es zeigen die Figur 1 ein erstes Ausführungsbeispiel des
Kraftstoffeinspritzventils in einem Längsschnitt durch den Ventilkörper und das darin geführte Ventilglied und die Figur 2 einen vergrößerten Ausschnitt aus der Figur 1 im erfindungswesentlichen brennraumzugewandten Bereich des Ventilkörpers mit der Darstellung der Geometrie des darin geführten Ventilgliedes an dessen brennraumzugewandtem Ende.
Beschreibung des Ausführungsbeispiels
Das in der Figur 1 in einem vereinfachten Schnitt dargestellte Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen weist einen Ventilkörper 1 auf, der mit seinem unteren freien Ende in nicht näher dargestellter Weise in den Brennraum der zu versorgenden Brennkraftmaschine ragt und der mit seiner oberen, brennraumabgewandten Stirnseite gegen einen ebenfalls nicht näher dargestellten Ventilhaltekörper verspannt ist. Der Ventilkörper 1 weist dabei eine von seiner oberen Stirnfläche 3 ausgehende, als axiale
Sackbohrung ausgebildete Führungsbohrung 5 auf. In dieser Führungsbohrung 5 ist ein kolbenförmiges Ventilglied 7 axial verschiebbar geführt, das an seinem unteren brennraumseitigen Ende eine konische Ventildichtfläche 9 aufweist, mit der es mit einer am geschlossenen Ende der
Führungsbohrung 5 gebildeten ortsfesten Ventilsitzfläche 11 zusammenwirkt. Dabei führt von dieser Ventilsitzfläche 11 stromabwärts des zwischen der Berührungslinie zwischen Ventilsitzfläche 11 und Ventildichtfläche 9 gebildeten Dichtquerschnittes eine Einspritzöffnung 13 ab, die in den Brennraum der zu versorgenden Brennkraftmaschine mündet . Dabei weist das Ausführungsbeispiel lediglich eine Einspritzöffnung auf, es ist alternativ jedoch auch möglich, eine Vielzahl von Einspritzöffnungen vorzusehen, wobei diese zudem alternativ vom unterhalb des Ventilgliedes 7 gebildeten Sackloches der Führungsbohrung 5 abführen können.
Das kolbenförmige Ventilglied 7 weist zwei Führungsbereiche auf, mit denen es gleitverschiebbar an der Wand der Führungsbohrung 5 geführt ist. Dabei ist ein erster oberer Führungsbereich 15 am brennraumabgewandten Ende des Ventilgliedes 7 vorgesehen, der in einem brennraumabgewandten oberen Bereich der Führungsbohrung 5 geführt ist. Der obere Führungsbereich 15 des Ventilgliedes 7 geht über einen, eine Druckschulter 17 bildenden Absatz in einen, im Durchmesser verringerten Ventilgliedschaftteil 19 über. Dabei ist die Druckschulter 17 in einem obenliegenden Druckraum 21 angeordnet, der durch eine Querschnittserweiterung der Führungsbohrung 5 gebildet ist und in den ein Kraftstoffhochdruckzulaufkanal 23 einmündet. Dieser Kraftstoffhochdruckzulaufkanal 23 ist dabei in nicht näher gezeigter Weise an eine Hochdruckeinspritzleitung angeschlossen, die andererseits von einer Kraftstoffhochdruckpumpe abführt, über die Kraftstoff aus einem Vorratstank unter hohem Druck den einzelnen Kraftstoffeinspritzventilen zugeführt wird.
Ein zweiter unterer Führungsbereich am brennraumnahen Ende des Ventilgliedes 7 ist als Ringbund 25 ausgebildet, der mit seiner zylindrischen Außenwandfläche mit der Wand eines
Bohrungsabsatzes 27 der Führungsbohrung 5 zusammenwirkt. Dabei trennt der den zweiten unteren Führungsbereich bildende Ringbund 25 des Ventilgliedes 7 einen zwischen dem Ventilgliedschaftteil 19 und der Wand der Führungsbohrung 5 gebildeten Ringspalt 29 bei geschlossenem
Kraftstoffeinspritzventil von einem stromabwärts unterhalb des Ringbundes 25 angeordneten untenliegenden, an die Ventilsitzfläche 11 mündenden Druckraum 31.
Der Ringbund 25 bildet, wie in der Figur 2 vergrößert dargestellt, mit seiner unteren brennraumzugewandten Begrenzungskante eine Steuerkante 33, mit der er mit einer brennraumabgewandten Bohrungsabsatzkante 35 des Bohrungsabsatzes 27 zusammenwirkt. Dabei sind Steuerkante 33 und Bohrungsabsatzkante 35 so angeordnet, daß die Steuerkante 33 am Ringbund 25 des Ventilgliedes 7 bei dessen nach oben gerichteter Öffnungshubbewegung die obenliegende Bohrungsabsatzkante 35 überfährt und so einen Durchströmquerschnitt zwischen dem Ringspalt 29 und dem untenliegenden Druckraum 31 freigibt. Dabei weist das Ventilglied 7 für eine präzisere Herausarbeitung der Steuerkante 33 am Ringbund 25 zwischen dem Übergang des Ringbundes 25 zum Ventilgliedschaft im untenliegenden Druckraum 31 eine Ringnut 37 auf. Desweiteren sind am Ventilglied 7 im Bereich des untenliegenden Druckraumes 31 Ausnehmungen in Form von Flächenanschliffen 39 eingearbeitet, über die der Durchströmquerschnitt in diesem Bereich noch einmal vergrößert wird.
Zur Kraftstoffbefüllung des untenliegenden Druckraumes 31 bei an der Ventilsitzfläche 11 anliegendem Ventilglied 7 ist desweiteren eine Drosselbohrung 41 im Ventilglied 7 vorgesehen. Die Drosselbohrung 41 ist dabei derart schräg angeordnet, daß ihre Eintrittsöffnung in den Ringspalt 29 und ihre Austrittsöffnung in den untenliegenden Druckraum 31 mündet. Desweiteren ist die Drosselbohrung 41 als zweistufige Bohrung ausgebildet, wobei der im Durchmesser größere Bohrungsabschnitt in den Ringspalt 29 und der im Durchmesser kleinere Bohrungsabschnitt in den untenliegenden Druckraum 31 einmündet. Dabei läßt sich über den kleinen, drosselnden Durchmesser und dessen Anordnung innerhalb der Drosselbohrung 41 die Drosselwirkung beim Kraftstoffdurchtritt in einfacher Weise einstellen.
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen arbeitet in folgender Weise .
Bei geschlossenem Einspritzventil hält eine Ventilfeder 45 das Ventilglied 15 über einen Ventilteller 43 mit seiner Ventildichtfläche 9 in Anlage an der Ventilsitzfläche 11, so daß ein Durchströmquerschnitt zur Einspritzöffnung 13 verschlossen ist. Zugleich ist der Ringbund 25 am Ventilglied 7 in den Bohrungsabsatz 27 eingetaucht und trennt so den untenliegenden Druckraum 31 vom Ringspalt 29, der andererseits in den obenliegenden Druckraum 21 mündet. Der im Kraftstoffhochdruckzulaufkanal 23, im obenliegenden Druckraum 21 und im Ringspalt 29 anstehende Standdruck des Kraftstoffes wird über die Drosselbohrung 41 auch im untenliegenden Druckraum 31 aufgebaut.
Die Kraftstoffhochdruckeinspritzung am Einspritzventil wird durch das Zuführen von unter hohem Druck stehenden Kraftstoff von der Einspritzpumpe über den Kraftstoffhochdruckzulaufkanal 23 in den obenliegenden Druckraum 21 eingeleitet. Dabei verschiebt nunmehr der an der Druckschulter 17 in Öffnungsrichtung angreifende Kraftstoffhochdruck das Ventilglied 7 entgegen der Schließkraft der Ventilfeder 45 in Öffnungshubrichtung. In Folge dessen hebt die Ventildichtfläche 9 vom Ventilsitz 11 ab und gibt den Durchströmquerschnitt zur Einspritzöffnung 13 frei, so daß der im untenliegenden Druckraum 31 anstehende Kraftstoff über die Einspritzöffnung 13 in den Brennraum der Brennkraftmaschine eingespritzt wird. Dabei bricht der Kraftstoffdruck im untenliegenden Druckraum 31 sehr rasch zusammen, da der Einspritzquerschnitt an der
Einspritzöffnung 13 größer ausgebildet ist als der kleinste Durchmesser der Drosselbohrung 41. in dieser ersten Öffnungshubphase des Ventilgliedes 7 strömt somit mehr Kraftstoff durch die Einspritzöffnung 13 aus dem untenliegenden Druckraum 31 ab als durch die Drosselbohrung 41 in diesen nachfließen kann. Auf diese Weise stellt sich nunmehr am Ringbund 25 ein Druckgefälle ein, durch das der im Ringspalt 29 anstehende Kraftstoffhochdruck eine zusätzliche Schließkraft auf den Querschnittsübergang zum Ringbund 25 aufbringt. Infolge dieses zusätzlichen Schließdruckes wird die Öffnungshubbewegung des Ventilgliedes abgebremst bis der sich weiter im Druckraum 21 aufbauende Kraftstoffhochdruck ausreichend ist, diese zusätzliche Schließkraft zu überwinden und das Ventilglied 7 bis an seinen Öffnungshubanschlag weiter nach oben zu verschieben. Während dieses weiteren Öffnungshubweges des Ventilgliedes 7 taucht nun der Ringbund 25 aus der Überdeckung mit dem Bohrungsabsatz 27 aus und gibt so einen ungedrosselten Überströmquerschnitt zwischen dem Ringspalt 29 und dem untenliegenden Druckraum 31 frei, so daß die
Kraftstoffhochdruckeinspritzung an der Einspritzöffnung 13 des Kraftstoffeinspritzventils fortgesetzt wird. Dabei ist der Zeitpunkt des Aufsteuerns dieses Verbindungsquerschnittes durch das Überfahren der Steuerkante 33 am Ringbund 25 über die Bohrungsabsatzkante 35 festgelegt. Über die Auslegung des Ringbundes 25 und insbesondere den axialen Abstand h zwischen der Steuerkante 33 und der Bohrungsabsatzkante 35 läßt sich nunmehr der Öffnungszeitpunkt des ungedrosselten Überströmens zwischen dem Ringspalt 29 und dem untenliegenden Druckraum 31 und somit der ersten Öffnungshubphase in einfacher Weise einstellen. Desweiteren läßt sich über den Drosselquerschnitt der Drosselbohrung 41 die Einspritzverlaufsformung auch graduell einstellen.
Mit Austauchen des Ringbundes 25 aus der Überdeckung mit dem Bohrungsabsatz 27 erfolgt nunmehr das vollständige Aufsteuern des Kraftstoffeinspritzventils in gewohnter Weise bis zur Anlage des Ventilgliedes 7 an einem Öffnungshubanschlag.
Das Schließen des Kraftstoffeinspritzventils erfolgt in bekannter Weise durch die Unterbrechung der Kraftstoffhochdruckzufuhr in den oberen Druckraum 21, in dessen Folge der am Einspritzventil anstehende Druck wieder unter den notwendigen Öffnungsdruck sinkt, so daß die Ventilfeder 45 nunmehr das Ventilglied 7 in Anlage an die Ventilsitzfläche 11 zurückbewegt, wobei sich nunmehr über die Drosselbohrung 41 der eingangs beschriebene Druckaufbau erneut einstellt.
Dabei ist es mit dem erfindungsgemäßen
Kraftstoffeinspritzventil nunmehr in konstruktiv einfacher Weise möglich, einen zweistufigen Öffnungshubverlauf des Ventilgliedes 7 einstellen zu können, ohne dabei auf eine zweite zusätzliche Ventilschließfeder zurückgreifen zu müssen.

Claims

Patentansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einer Führungsbohrung (5) eines Ventilkörpers (1) axial verschiebbaren Ventilglied (7) , das an seinem brennraumseitigen Ende eine Ventildichtfläche (9) aufweist, mit der es mit einer ortsfesten Ventilsitzfläche (11) zusammenwirkt sowie mit wenigstens einer, sich stromabwärts an den Dichtquerschnitt zwischen Ventilsitzfläche (11) und Ventildichtfläche (9) anschließenden Einspritzöffnung (13) in den Brennraum der zu versorgenden Brennkraftmaschine, wobei das Ventilglied (7) zwei Führungsbereiche aufweist, mit denen es gleitverschiebbar in der Führungsbohrung (5) geführt ist, von denen ein erster oberer Führungsbereich (15) am brennraumabgewandten Ende des Ventilgliedes (7) und ein zweiter unterer Führungsbereich (25) in einem brennraumzugewandten Bereich des Ventilgliedes (7) vorgesehen ist, wobei der untere Führungsbereich (25) einen zwischen dem Ventilgliedschaft (19) und der Wand der Führungsbohrung (5) gebildeten, an einen Kraftstoffhochdruckzulaufkanal (23) angeschlossenen Ringspalt (29) von einem untenliegenden an die Ventilsitzfläche (11) mündenden Druckraum (31) bei geschlossenem Kraftstoffeinspritzventil trennt und während der Öffnungshubbewegung des Ventilgliedes (7) diese Verbindung aufsteuert sowie mit einem Drosselverbindungsquerschnitt zwischen dem Ringspalt (29) und dem untenliegenden Druckraum (31) , dadurch gekennzeichnet, daß der Drosselquerschnitt als Drosselbohrung (41) ausgebildet ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Drosselbohrung (41) als Schrägbohrung im Ventilglied (7) ausgebildet ist, deren Eintrittsöffnung oberhalb des zweiten Führungsbereiches (25) in den Ringspalt (29) und deren Austrittsöffnung unterhalb des zweiten Führungsbereiches (25) in den untenliegenden Druckraum (31) mündet.
3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Drosselbohrung (41) als
Stufenbohrung mit vorzugsweise zwei unterschiedlichen Durchmessern ausgebildet ist.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der untere zweite Führungsbereich (25) am Ventilglied (7) als Ringbund (25) ausgebildet ist.
5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß am Übergang zwischen dem Ringbund (25) und dem in den untenliegenden Druckraum (31) ragenden
Ventilgliedschaftteil eine Ringnut (37) vorgesehen ist.
6. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß der Ringbund (25) mit seiner unteren, brennraumzugewandten Kante eine Steuerkante (33) bildet, die mit einem, an einer Durchmesserverringerung der Führungsbohrung (5) gebildeten Bohrungsabsatz (27) zusammenwirkt .
7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß am Ventilgliedschaft im Bereich des untenliegenden Druckraumes (31) eine Querschnittsverringerung vorgesehen ist.
8. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß am Ventilgliedschaft im Bereich des untenliegenden Druckraumes (31) eine Ausnehmung, vorzugsweise ein Flächenanschliff (39) vorgesehen ist.
PCT/DE1999/003371 1998-12-11 1999-10-21 Kraftstoffeinspritzventil für brennkraftmaschinen WO2000036294A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020007008736A KR20010040841A (ko) 1998-12-11 1999-10-21 내연기관용 연료 분사 밸브
EP99957931A EP1055062B1 (de) 1998-12-11 1999-10-21 Kraftstoffeinspritzventil für brennkraftmaschinen
US09/622,142 US6422208B1 (en) 1998-12-11 1999-10-21 Fuel injection valve for internal combustion engines
DE59910654T DE59910654D1 (de) 1998-12-11 1999-10-21 Kraftstoffeinspritzventil für brennkraftmaschinen
JP2000588507A JP2002532652A (ja) 1998-12-11 1999-10-21 内燃機関のための燃料噴射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19857244.1 1998-12-11
DE19857244A DE19857244A1 (de) 1998-12-11 1998-12-11 Kraftstoffeinspritzventil für Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO2000036294A1 true WO2000036294A1 (de) 2000-06-22

Family

ID=7890780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003371 WO2000036294A1 (de) 1998-12-11 1999-10-21 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (7)

Country Link
US (1) US6422208B1 (de)
EP (1) EP1055062B1 (de)
JP (1) JP2002532652A (de)
KR (1) KR20010040841A (de)
DE (2) DE19857244A1 (de)
ES (1) ES2229794T3 (de)
WO (1) WO2000036294A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062959A1 (de) * 2000-12-16 2002-06-20 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US7100577B2 (en) * 2004-06-14 2006-09-05 Westport Research Inc. Common rail directly actuated fuel injection valve with a pressurized hydraulic transmission device and a method of operating same
DE102004060552A1 (de) * 2004-12-16 2006-06-22 Robert Bosch Gmbh Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE102005015735A1 (de) * 2005-04-06 2006-10-12 Robert Bosch Gmbh Brennstoffeinspritzventil
US7415969B2 (en) * 2006-02-28 2008-08-26 Caterpillar Inc. Fuel injector having recessed check top
EP2083165A1 (de) * 2008-01-22 2009-07-29 Delphi Technologies, Inc. Einspritzdüse
EP2568157A1 (de) * 2011-09-08 2013-03-13 Delphi Technologies Holding S.à.r.l. Einspritzdüse
DE102017202310A1 (de) * 2017-02-14 2018-08-16 Robert Bosch Gmbh Drosselelement sowie Niederdruckkreislauf eines Kraftstoffeinspritzsystems mit einem Drosselelement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987887A (en) * 1990-03-28 1991-01-29 Stanadyne Automotive Corp. Fuel injector method and apparatus
US5769319A (en) * 1995-01-23 1998-06-23 Cummins Engine Company, Inc. Injection rate shaping nozzle assembly for a fuel injector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417694A (en) * 1980-10-22 1983-11-29 The Bendix Corporation Injector valve with contoured valve seat and needle valve interface
US5299919A (en) * 1991-11-01 1994-04-05 Paul Marius A Fuel injector system
DE19529375A1 (de) * 1995-08-10 1997-02-13 Bosch Gmbh Robert Brennstoffeinspritzventil
DE69626097T2 (de) * 1995-08-29 2003-10-30 Isuzu Motors Ltd Kraftstoffeinspritzvorrichtung der speichergattung
DE19821768C2 (de) * 1998-05-14 2000-09-07 Siemens Ag Dosiervorrichtung und Dosierverfahren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987887A (en) * 1990-03-28 1991-01-29 Stanadyne Automotive Corp. Fuel injector method and apparatus
US5769319A (en) * 1995-01-23 1998-06-23 Cummins Engine Company, Inc. Injection rate shaping nozzle assembly for a fuel injector

Also Published As

Publication number Publication date
US6422208B1 (en) 2002-07-23
JP2002532652A (ja) 2002-10-02
EP1055062A1 (de) 2000-11-29
EP1055062B1 (de) 2004-09-29
KR20010040841A (ko) 2001-05-15
ES2229794T3 (es) 2005-04-16
DE59910654D1 (de) 2004-11-04
DE19857244A1 (de) 2000-06-15

Similar Documents

Publication Publication Date Title
DE69922087T2 (de) Brennstoffeinspritzdüse
DE2711350A1 (de) Kraftstoffeinspritzduese fuer brennkraftmaschinen
EP0949415A2 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
WO2001088365A1 (de) Einspritzanordnung für ein kraftstoff-speichereinspritzsystem einer verbrennungsmaschine
DE10055651A1 (de) Druckgesteuerter Injektor mit optimierten Einspritzverlauf über den Hubweg
DE19645900A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19823937A1 (de) Servoventil für Kraftstoffeinspritzventil
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1055062B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE4437927C2 (de) Magnetventilgesteuerte Kraftstoffeinspritzvorrichtung mit einer Einspritzdüse zur Kraftstoffeinspritzung in den Brennraum einer Dieselbrennkraftmaschine
DE10100390A1 (de) Einspritzventil
DE19716226C2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10031582A1 (de) Druckgesteuerter Injektor mit gesteuerter Düsennadel
EP1344929A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10031574B4 (de) Druckgesteuerter doppelschaltender Hochdruckinjektor
EP0262197B1 (de) Einspritzdüse für brennkraftmaschinen
EP1671028B1 (de) Ventil zur steuerung einer verbindung in einem hochdruckflüssigkeitssystem, insbesondere einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102008035087A1 (de) Einspritzventil
EP1185780B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur herstellung desselben
DE10132249A1 (de) Kraftstoffinjektor mit kraftausgeglichenem Steuerventil
EP0817914A1 (de) Druckventil
DE102006050033A1 (de) Injektor, insbesondere Common-Rail-Injektor
EP1073836B1 (de) Düseneinheit zur dosierung von flüssigkeiten oder gasen
DE10117861A1 (de) Injektordüse mit Drosselverhalten
WO2005068824A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999957931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007008736

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09622142

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999957931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008736

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999957931

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007008736

Country of ref document: KR