WO2000036166A1 - Metodo y equipo para separar particulas de oro - Google Patents

Metodo y equipo para separar particulas de oro Download PDF

Info

Publication number
WO2000036166A1
WO2000036166A1 PCT/ES1998/000345 ES9800345W WO0036166A1 WO 2000036166 A1 WO2000036166 A1 WO 2000036166A1 ES 9800345 W ES9800345 W ES 9800345W WO 0036166 A1 WO0036166 A1 WO 0036166A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
vertices
settler
outlet
less
Prior art date
Application number
PCT/ES1998/000345
Other languages
English (en)
French (fr)
Inventor
Luis Castro Gomez
Original Assignee
Luis Castro Gomez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE69818317T priority Critical patent/DE69818317D1/de
Application filed by Luis Castro Gomez filed Critical Luis Castro Gomez
Priority to BR9816125-3A priority patent/BR9816125A/pt
Priority to CN98814359A priority patent/CN1327483A/zh
Priority to PCT/ES1998/000345 priority patent/WO2000036166A1/es
Priority to EP98959917A priority patent/EP1231285B1/en
Priority to JP2000588413A priority patent/JP2002532238A/ja
Priority to AU15645/99A priority patent/AU755914B2/en
Priority to AT98959917T priority patent/ATE250145T1/de
Priority to ES98959917T priority patent/ES2207864T3/es
Priority to CA002355062A priority patent/CA2355062A1/en
Priority to KR1020017007709A priority patent/KR20010108030A/ko
Publication of WO2000036166A1 publication Critical patent/WO2000036166A1/es
Priority to US09/883,106 priority patent/US20020074265A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0045Plurality of essentially parallel plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2488Feed or discharge mechanisms for settling tanks bringing about a partial recirculation of the liquid, e.g. for introducing chemical aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/04Separation devices for treating liquids from earth drilling, mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the sedimented particles among which are gold and other high density materials, as well as particles of low density and larger sizes and other smaller dragged, as well as some sludge from fraction 2 to 2 a - More concentrated mud than the entrance, with almost all the particles not sedimented 3 ° - Water more or less clear, with very fine particles
  • the residence time of the sludge in the sedimentator that is to say the volume / input expense ratio, and the vertical distance between sheets, to the characteristics of the particles to be separated are those of the clays, tender or sludge that contain them, which should be done in each case to achieve the maximum economic performance of sedimentation, that is, the maximum sedimentation of gold and other interesting particles, before the sedimentation of clay and other particles prevents it
  • the proportion of the 3 d fraction is generally less than 30% of the input volume and the proportion of the I to fraction is vanable and can reach less than 1 %, as, for example, separating clay gold without sands If the clays
  • the concentration of gold and other materials in fraction I a can be from 20 times higher than in the original material, excluding water, up to 1000 times, depending on the sizes ⁇ shapes of the different materials and the way of conducting the process in order to achieve maximum separation of dense (gold and others) If the size of the dense is very fine or the proportion of fine dense is very high, this method may not be convenient.
  • FIG. 1 shows a schematic of the method, excluding the previous or subsequent processes not claimed.
  • 2- It is the three-outlet settler that receives the homogeneous mixture in agitation 1.2 and from which the turbid or clear water 2.1 recirculating to the mixing station 1, light mud 2.3 that goes to the concentrating settler 3 and gold, sand and dense particles that are stored or are going to a complementary process of concentration 2.5.
  • 3- It is a two-outlet settler where the light mud 2.3 is concentrated and gives us turbid water 3.1 that goes to the mixing station 1, and dense mud 3.4 that goes to the restitution rafts.
  • the dislodged can be done after screening if it starts with fluid sludges.
  • the three-outlet settler is composed of a battery, usually of two dimensions , of parallelepiped cells of a few millimeters thick, for openings cm wide and for openings dm high, with inclination of the dimension greater than about 60 ° in relation to the horizontal and an approximate average inclination of the intermediate dimension of about 20 ° + 10 ° in relation to the horizontal, as seen in Figure 2, which represents the projections of a cell in three orthogonal planes defined by the x, y ⁇ z cells
  • the cells in the batteries are opened by the four narrow faces and closed by two flat or ruled surfaces of material sheets a and b, in which zero, 0, is the entrance area of the material to be separated.
  • 1 is the zone of exit of the decanted ones
  • 2 is the zone of exit of mud more concentrated than the one of entrance
  • 3 is the zone of exit of the water lighter than the one of entrance
  • the narrow and longer faces are attached to others of other symmetrical cells in relation to planes parallel to xy, of equal function and do not require closure, except at the ends of the battery that are closed
  • the subscripts indicate the planes on which the corners of the inclined plates a and b are projected
  • Non-sedimented clay comes out with water through zone 2, except for a small proportion that inevitably accompanies sedimentables, which leaves through zone 1.
  • the flow rates of the three outputs must be regulated.
  • the outputs 1 go freely to a lower hopper of one or more outlets with expenses controlled by ejectors or other equipment to use.
  • the outputs 2, the maximum flow have a section that will be calculated in each case and are regulated by level difference between the output of fraction 3 and fraction 2, so that the higher the output level of fraction 3, the lower its relative flow will be and the greater that of fraction 2.
  • the objective will be that the water in fraction 3 be directly reusable and as much as possible.
  • the cells are attached so that faces 0 # 1 are common to two symmetric cells according to a vertical plane, that of the xy axes of Figure 2 and that faces 2 # 3 are common to two other symmetric cells are relative to another plane parallel to the xy that passes through the edges 2 3, and so on, as many times as necessary.
  • the successive faces a and faces b form two sets of folded plates, without sharp edges, but with cylindrical agreements between each two planes. They can also be sintered or other wave corrugated sheets. This succession of folds or waves constitute one of the dimensions of the battery, let's call it its width that is measured on the z axis.
  • the other dimension of the battery is defined by the quantity of plates such as a and b all parallel and equidistant, which is measured on the x-axis, where there can be up to hundreds of folded or wavy plates.
  • the other dimension of the battery, its height is measured or by the length of the folds of the plates or by their projection on the axis and of figure 2. In this way the zones
  • zones 3 are aligned according to parallel to the xy axis. zones 3 also according to parallel to the x-axis interspersed, in planes parallel to xz. and in lower planes, the zones
  • a triangular or angular piece approximately equal to 40% of the separation between plates, is attached to all the ridge so that the bisector matches with the generatrix of the sine surface, as seen in Figure 4, which is a perspective view, in which 5, are the joined pieces that appear in the form of an angle and a triangle.
  • the active angle must be less than 60 °.
  • the arrows indicate the conditions that the sedimented particles could make towards the outlet 1, moving away from the 2.
  • the residence time of the mixture to be separated is the same in all cells, for which it must reach each cell the same flow and leave each cell the same flow, without a cell yielding or receiving anything from the immediate shared faces 3 # 2 or 0 # 1 open.
  • the inlet mixture is flocculant, it must reach the newly agitated distributor, so that it remains in the cells for as long as possible without decanting and without flocculating the sludge (clays or other tiers).
  • Figure 5 shows a cross section of one of the distribution tubes that are arranged on the zero zone alignments.
  • 8 is a diffuser that aims to reduce the speed of the mixture, which if it reaches high speed to zone 0 would reduce the efficiency of the settler.
  • the mixture reaches zone 0 with a speed approximately double that of descent in the cells.
  • These distributors also separate the cloudy mixture that enters through zones zero, 0, to the settler, from the clear or cloudy water that leaves through zones 3.
  • Figure 6 shows the cross section of a tube 9 with perforations 10, one or two for each cell, equal, small enough to achieve an equal expense in all cells and a long piece 11 attached to the tube to support in its grooves transversal zones 2 of the cell delimiter plates.
  • Figure 7 is a side view of a battery cut according to an xy plane, figure
  • Spacers and plate supports can be rubber or plastic or other material plugs, or chains, in zones 3.
  • Figure 8 is a side view of the battery container where the figures correspond to the parts described above until the eleven; 12 corresponds to the adjustable level landfill for clear or cloudy water, 13 is an adjustable level outlet of the mixing manifolds 9 from which it exits through zones 2 of the cells, and 14 is the sedimentation hopper which are evacuated by one or several exits 15, continuously or intermittently, ensuring that the hopper is full of sediments so that few fine with them.
  • Figure 9 is a front view of the same container on a smaller scale in which several mixing inlet tubes 6, diffusers 8 and several sludge outlet tubes 9, as well as two hoppers 14 and outflows 15 are selected.
  • the weir 12 may be on the face or the back side.
  • This container can be made of reinforced concrete, metal, plastic or other materials.
  • the lines that represent it in the figures would correspond to its internal faces. It can be used, buried, submerged, air or mixed according to local conditions.
  • An advantage of this settler is that of having three exits If I did not have exit 3 for more or less cloudy water, as the water separates inevitably, the settler will almost be occupied by water and the sludge will then exit through exits 1 and 2 without having time to decant. advantage is due to the great uniformity of operation, when arriving at each cell and leaving each cell the same expense of mixing to separate and also finally has the most important advantage that the four different flows are not mixed or crossed
  • the clear sludge from the outlets 2 of the three outlet settler T that is evacuated through the tubes 9 and outlets 13 can be led to another two outlet settler, coupled to the three outlet settler, as can be seen in Figure 10 so that the flows leaving the outlets 13 are distributed by means of the distributors 16, analogous to the 6, between the cells of the two-outlet settler D
  • the three-way settler is represented by T, by 17 the outlet of concentrated sludge and by 18 the outlet of the clear water from the settler D
  • the inclination of the sheets of this second settler can be less than 60 ° since the clear water that is released runs well upwards and the concentrated sludge that goes down also it runs well even with slopes of 10 °, but it is not possible to reach slopes so low to avoid an excess of occupied surface, being the most convenient slope between 45 ° and 60 ° with the honzontal
  • this second settler is of relative large volume, in fixed installations it can be made underground, reinforced concrete, or semi-drained and in mobile installations it can be made metallic or of other materials, on wheels or foxes, or almost submerged floating
  • the clear water outlet is analogous to that of the three outlet settler and the outlet of the concentrated sludge can be by pump, by siphon or tube up or directly by the bottom in the case of floating settler in us or lakes
  • TION RULE 26 The same three-outlet settler described above, but without the upper clear water outlet, can be used with advantage to clarify the water that comes out of the rafts and other sewage from the installation to return them to the public channels or recover them for the circuit, in which case the cloudy water would enter from above, indiscriminately and the clear water would come out through the less low outlet and tubes 9, of the figures, while the sediments would come out through the lower outlets, 1.
  • the advantage of this application is in the superior ease of entry, in almost parallel paths down and in which the sediments do not mix with the inlet water.
  • the relative height of the plates may be smaller, or greater in width, which is a bit closer to the classic cross-flow settler but without reaching the orthogonal movement of water and particles but keeping the flows slightly divergent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Método y equipo para separar partículas de oro y de otros materiales sedimentables contenidos en arcillas, tierras y lodos, consistente en desleír estos en suficiente cantidad de agua, hasta que las partículas a separar puedan caer sin obstáculos, dentro de un sedimentador de láminas inclinadas de tres salidas, durante el tiempo necesario para que puedan recorrer la distancia vertical entre láminas, antes de que la sedimentacíon de la arcilla o tierra impida su caída; sedimentador dotado de numerosas celdas consistentes en espacios situados entre láminas en forma de paralelogramos, paralelas, planas o regladas, próximas, de modo que por las zonas de los vértices más altos sale líquido menos turbio, por la zona de los vértices menos altos entra el líquido desleído a separar, por la zona de los vértices más bajos salen las partículas separables y por la zona de los vértices menos bajos sale líquido más turbio.

Description

MÉTODO Y EQUIPO PARA SEPARAR PARTÍCULAS DE ORO
Sector técnico - El método y equipo que se descπben son aplicables a la separación de partículas de oro y de otros minerales densos contenidos en arcillas y tierras vanas o lodos, y por lo tanto se encuadra en el sector minero Sin embargo puede ser aplicable a algunos tratamientos de aguas y también a procesos industriales
Técnicas anteriores - La separación del oro. de arcillas y tienas vanas o de lodos, la hacían los romanos pasando el matenal extraído de la cantera o charcos, desleído en abundante agua, por canales con barreras o travesanos en el fondo, donde se depositaban las partículas de oro de masas supenores a lμgr o mas según su forma Los "gahmpeiros" del Brasil siguen utilizando este método Actualmente, cuando la proporción de partículas más finas es apreciable, se utiliza también el método del cianuro, que consiste en disolver el oro con cianuro, generalmente sódico, y precipitar luego oro de la solución Este método tiene el inconveniente de su peligrosidad por lo tóxico que es el ion cianuro, y por la contaminación de las aguas residuales y tienas tratadas Tam- bien se utiliza la flotación
Descnpción del método - Las arcillas, tierras o lodos que contienen oro u otros mate- nales a separar se mezclan uniformemente con suficiente cantidad de agua, u otro líquido en algunos casos, en un proceso continuo, es decir, un flujo de arcillas con otro flujo mucho mayor de agua Este flujo de lodo claro se hace pasar por una criba con abertura de malla de 120 μm de lado aproximadamente, para separar los partículas de tamaño supenor que podrían causar problemas en las fases postenores Las partículas de tamaño superior separadas del flujo se pueden separar entre si por densidades en ciclones o mesas de sacudidas o vibrantes o por cualquier otro procedimiento al uso El líquido que pasa la criba se mantiene agitado, en su recorrido hasta un sedimentador de tres salidas, en el que se separan las tres fracciones siguientes
Ia - Las partículas sedimentadas, entre las que se encuentra el oro y otros materiales de alta densidad, asi como partículas de baja densidad y tamaños mayores y otras menores arrastradas, asi como algún lodo de la fracción 2a 2a - Lodo mas concentrado que el de entrada, con casi todas las partículas no sedimentadas 3° - Agua mas o menos clara, con partículas muy finas Para conseguir esas tres fracciones es preciso ajustar el tiempo de permanencia del lodo en el sediementador, es decir la relación volumen/gasto de entrada, y la dis- tancia vertical entre láminas, a las caractensticas de las partículas a separar v a las de las arcillas, tiercas o lodos que las contienen, lo cual deberá hacerse expenmentalmente en cada caso, para conseguir el máximo rendimiento económico de la sedimentación, es decir la máxima sedimentación del oro y otras partículas interesantes, antes de que la sedimentación de la arcilla y otras partículas la impidan La proporción de la 3d fracción es generalmente inferior al 30% del volumen de entrada y la proporción de la Ia fracción es vanable pudiendo llegar a menos del 1%, como, por ejemplo, separando oro de arcilla sin arenas Si además las arcillas son de tamaño fino, menor que 7μm se consigue separar partículas muy finas de oro y de otros materiales densos. En el caso del oro se separarían partículas de 80 picogramos (2μm de diámetro), a 20 nanogramos, según formas
La concentración de oro y otros matenales en la fracción Ia puede ser desde 20 veces mayor que en el material originario, excluido el agua, hasta mayor que 1000 veces, dependiendo de los tamaños \ formas de los distintos materiales y del modo de conducir el proceso a efectos de lograr la máxima separación de densos (oro y otros) Si el tamaño de los densos es muy fino o la proporción de densos finos es muy alta, este método puede no ser conveniente Tal es el caso de la separación del oro que aparece entre algunas cuarcitas, en laminas transparentes de menos de 5 mm2 y gruesos ü de pocos A (10-10 m), que sedimentan lentamente en el aire, y en general todas las partículas de masa inferior a 80 pgr de oro Por este procedimiento también se pueden separar arenas de cuarzo y matenales de análoga densidad, de las arcillas Si partimos de un cnbado de 120 x 120 μm2 se podrán llegar a separar arenas de diámetro equivalente a efectos de velocidad de sedimentación 50% mayor que el de la arcilla o tierra
Concentrado el oro u otros materiales de 20 a 1000 veces mas por sedimenta- cíon. se puede concentrar todavía mas en mesas de sacudidas o vibratorias, o por otra j sedimentación análoga a la antenor, o por otros procedimientos, a pie de mina, o transportarlo a factoría exterior para posteriores tratamientos.
Como para conseguir la sedimentación del oro sin obstáculos se precisan de 20 a 160 litros de agua por g de tieπa seca, según sus granulametrias, la gestión del agua en este proceso puede ser un problema. Aplicado a las explotaciones de los lodos del fondo del Amazonas y sus afluentes no es problema, pero para aplicarlo en una comarca poblada, con recursos de agua limitados y con reglamentaciones estrictas en cuanto a vertidos, es preciso lo siguiente:
1°.- Recuperar todo el agua posible. 2°.- Que las aguas residuales lleven la misma composición que las de toma
(y por tanto el mismo ph y claridad).
Las aguas que salen del sedimentador de tres salidas no son claras, ya que la sedimentación que se efectúa en él exige la ausencia de floculantes, pero ese agua contiene solamente partículas arcillosas menores que lμm de diámetro y restos de materia orgánica, en proporciones de menos de 50 partes por millón, por lo cual son útiles directamente para desleir otras arcillas, sin tratamiento alguno; pero en este sedimentador sólo se recupera menos de 1/3 del agua, y por lo tanto es preciso recuperar el agua que sale con la arcilla en la fracción 2a del sedimentador de tres salidas, y otras aguas residuales. Para recuperar el agua de la 2a fracción lo más conveniente es adosar al sedimentador de tres salidas otro de dos salidas en el que por una parte salga agua clara o turbia y por otra lodo con densidad aparente de 1,3 a 1,5. Si saliera de 1,4 se recuperarían el 50% más del total del agua y quedarían sin recuperar de 5 a 40 litros de agua/kg de tierra que irían a las balsas de restitución de donde una parte se puede recuperar directamente de la superficie, otra parte por filtración iría a manantiales y cauces naturales o artificiales de donde se pueden recuperar también y otra parte se evaporaría o permenecería por algún tiempo como más humedad de la arcilla. Así el agua nueva necesaria para el proceso puede resultar entre 1 y 3 litros por kg de arcilla seca, fácilmente asumible. Imaginemos un banco de sedimentos que contenga arcillas y oro no separable con barreras, así como 1 kg de arenas sedimentables/Tm. no separables en cribado, y que la granulametría del oro y de la arcilla permitan separarlos. Habría que mezclar 1 Tn de material con el agua recuperada más 2m' de agua fresca y desleírlos uniformemente. Se podría obtener un concentrado con el oro. más 1 kg de arenas, más aproximada- mente 3 litros de lodo claro, en total unos 4,5 kg de concentrado del que el oro y arena se separen fácilmente del lodo por cualquier procedimiento pero tratando un concentrado con un contenido en oro de 500 a 1000 veces mayor, en seco, que en el material de partida. Lo que permitiría aplicar este método siempre que hubiera 0,10 gr de oro, por Tm de lodo seco, o aplicarlo a los lodos vertidos por los "galimpeiros" en proceso complementario, siempre que lleven 0.08 gr/Tn de lodo seco. Si se parte de arcillas secas el límite de explotabilidad seria de 0,15 a 0,3 gr/Tn de arcilla seca, según las condiciones locales, lo cual hace interesante este método en aquellos casos en que las partículas de oro u otros minerales son muy finas y no pueden aplicarse otros métodos más costosos o contaminantes. En la figura 1 se ve un esquema del método, excluyendo los procesos previos o posteriores no reivindicados.
1- Es la estación de mezcla y agitación del agua nueva 00.1, más el agua de recirculación 2.1, 3.1 y 4.1 con el lodo o la arcilla cortada en virutas 0.1 , donde además se criba a aproximadamente 120 x 120 μm2. de donde los grandes 1.4 se tratan por métodos convencionales y el cribado 1.2 va al sedimentador 2.
2- Es el sedimentador de tres salidas que recibe la mezcla homogénea en agitación 1.2 y del que salen el agua turbia o clara 2.1 recirculante a la estación de mezcla 1, lodo ligero 2.3 que va al sedimentador concentrador 3 y oro, arena y partículas densas que se almacenan o van a preceso complementario de concentración 2.5. 3- Es un sedimentador de dos salidas donde se concentra el lodo ligero 2.3 y nos da agua turbia 3.1 que va a la estación de mezcla 1, y lodo denso 3.4 que va a las balsas de restitución.
4- Son las balsas de restitución, que se van preparando en los espacios de donde se ha extraído la arcilla, para dejarla de nuevo depositada allí, de cuyas balsas todavía sale agua 4.1 que se puede enviar a la estación de mezcla 1. Modo de realizarlo y aplicación - Si se extrae la arcilla de un banco y tiene poca humedad lo mejor es fresarla de modo que las virutas obtenidas tengan pocos milímetros de grueso, de 1 a 3, y a ser posible rotas a la misma longitud, lo que hace más rápida y segura la operación de desleído en el gran volumen de agua necesario El desleído se pasará por una criba vibrante de aproximadamente 120 μm de luz El separado se arrastrara con agua a una mesa de sacudidas donde se separan el oro y otras partículas densas entre si y de las arenas El cnbado se lleva al sedimentador de tres salidas que puede ser fijo, o móvil sobre zorras o ruedas, y próximo al punto de arranque y a las balsas de restitución, según forma y dimensiones del yacimiento La fracción 3a del sedimentador de tres salidas, con mayor concentración de oro se extrae del fondo del mismo con eyector de aire o agua, o cadena de arrastre, y se pasa a otro equipo donde se separan, el oro y otros densos o grandes entre si y de los ligeros finos desechables, en la misma explotación o en factona aparte El desleído se puede hacer después del cribado si se parte de lodos fluidos Descripción del equipo.- El sedimentador de tres salidas esta compuesto por una batería, generalmente de dos dimensiones, de celdas paralepipédicas de unos milímetros de grueso, por vanos cm de anchura y por vanos dm de altura, con inclinación de la dimensión mayor de unos 60° con relación a la horizontal y una inclinación media aproximada de la dimensión intermedia de unos 20° + 10° con relación a la horizontal, según se ve en la figura 2, que representa las proyecciones de una celda en tres planos ortogonales definidos por los ejes x, y ^ z Las celdas en las baterías están abiertas por las cuatro caras estrechas y cerradas por dos superficies planas o regladas de chapas materiales a y b, en la que cero, 0, es la zona de entrada del material a separar. 1 es la zona de salida de los decantados, 2 es la zona de salida de lodo mas concentrado que el de entrada y 3 es la zona de salida del agua más clara que la de entrada Las caras estrechas y mas largas van adosadas a otras de otras celdas simetncas con relación a planos paralelos al xy, de igual función y no precisan cierre, salvo en los extremos de la batería que son cerradas Los subíndices indican los planos en que están proyectadas las esquinas de las placas inclinadas a y b Al entrar el lodo por 0 (cero) se extiende entre a y b horizontalmente según la superficie indicada por las líneas 4 por su menor densidad media que el lodo que está debajo y comienza a perder agua que sube hacia el techo, superficie b, se mueve bajo él según la línea de máxima pendiente, pero hacia arriba, hasta llegar a la cara 2#3 y luego sube por ella hasta 3, por donde sale, mientras que los sedimentos caen al suelo de la placa a. luego se mueven sobre él según la máxima pendiente hasta la cara 0, 1 y luego bajan por ella hasta salir por la zona 1; y. La arcilla no sedimentada sale con agua por la zona 2, salvo una pequeña proporción que inevitablemente acompaña a los sedimentables, que sale por la zona 1.
Para que funcione conectamente es preciso regular los caudales de las tres salidas. Las salidas 1 van libremente a una tolva inferior de una o más salidas con gastos controlados por eyectores u otros equipos al uso. Las salidas 2, las de máximo caudal, tienen una sección que se calculará en cada caso y se regulan por diferencia de nivel entre la salida de la fracción 3 y de la fracción 2, de modo que cuanto más alto sea el nivel de salida de la fracción 3, menor será su caudal relativo y mayor el de la fracción 2. El objetivo será que el agua de la fracción 3 sea reutilizable directamente y la mayor cantidad posible.
Generalmente se adosan las celdas de modo que las caras 0#1 sean comunes a dos celdas simétricas según un plano vertical, el de los ejes xy de la figura 2 y que las caras 2#3 sean comunes a otras dos celdas simétricas son relación a otro plano paralelo al xy que pase por las aristas 2 3, y así sucesivamente, la cantidad de veces que sea preciso. Las sucesivas caras a y caras b forman dos conjuntos de placas plegadas, sin aristas vivas, sino con acuerdos cilindricos entre cada dos planos. También pueden ser chapas onduladas senoidales o de otra onda. Esta sucesión de pliegues u ondas constituyen una de las dimensiones de la batería, llamémosle su anchura que se mide en el eje z. La otra dimensión de la batería, llamémosle su grueso, viene definido por la cantidad placas como los a y b todas paralelas y equidistantes, que se mide sobre el eje x, donde puede haber hasta cientos de placas plegadas u onduladas. La otra dimensión de la batería, su altura, se mide o por la longitud de los pliegues de las placas o por su proyección sobre el eje y de la figura 2. De este modo las zonas
0 quedan alineadas según paralelas al eje xy. las zonas 3 también según paralelas al eje x intercaladas, en planos paralelos al xz. y en planos inferiores, las zonas
1 alineadas en paralelas al eje x en el plano xz y las zonas 2 también paralelas al eje x en plano paralelo al xz. tal como se ve en la figura 3, vista en prespectiva, en la que los planos más altos son los definidos por las alineaciones 3, los menos altos son los definidos por las alineaciones 0, los más bajos son los definidos por las alineaciones 1 y los menos bajos son los definidos por la alineaciones 2. Si las láminas separadoras de las celdas tienen forma senoidal, los sedimen- tados que lleguen a ellos en las zonas cumbreras generatrices 3#2 tendrán la indecisión de caer hacia los lados o seguir cumbrera abajo y podrían llegar hasta la salida 2. Para evitarlo unos cm más arriba de la salida 2, se une a todos las cumbreras, una pieza triangular o angular, de grueso aproximadamente igual al 40% de la separación entre placas de modo que la bisectriz coincida con la generatriz de la superficie senoidal, tal como se ve en la figura 4, que es una vista en perspectiva, en la que 5, son las piezas unidas que aparecen con forma de ángulo y de triangulo. El ángulo activo debe tener menos de 60°. En la figura las flechas indican los reconidos que podrían hacer las partículas sedimentadas hacia la salida 1, alejándose de la 2. Para el buen funcionamiento de la batería es necesario que el tiempo de permanencia de la mezcla a separar sea igual en todas las celdas, para lo cual debe llegar a cada celda el mismo caudal y salir de cada celda el mismo caudal, sin que una celda ceda o reciba nada de las inmediatas que comparten las caras 3#2 ó 0#1 abiertas. Además en los casos en que la mezcla de entrada sea floculante deberá llegar al distribuidor recién agitada, para que permanezca en las celdas el máximo tiempo posible sin decantar y sin flocular los lodos (arcillas u otras tienas).
En la figura 5 se ve una sección transversal de uno de los tubos repartidores que se disponen sobre las alineaciones de zonas cero. 0, de entrada de la mezcla a decantar, donde 6 es un tubo repartidor de mezcla a decantar, 7 es una ranura o serie de perforaciones para la salida de la mezcla. 8 es un difusor que tiene por objeto reducir la velocidad de salida de la mezcla, que si llegara a alta velocidad a la zona 0 reduciría la eficacia del sedimentador. La mezcla llega a la zona 0 con una velocidad aproximadamente doble de la de descenso en las celdas. La ranura 7 suficientemente estrecha, con una pérdida de presión relativamente alta con re- lación a las pérdidas por el recorrido a la largo de los tubos, consigue el gasto uniforme por unidad de longitud y celda, que es necesario. Estos repartidores también separan la mezcla turbia que entra por las zonas cero, 0, al sedimentador, del agua clara o turbia que sale por las zonas 3.
En la figura 6 se ve la sección transversal de un tubo 9 con perforaciones 10, una o dos para cada celda, iguales, suficientemente pequeñas para conseguir un gasto igual en todas las celdas y una pieza larga 11 unida al tubo para soportar en sus ranuras transversales las zonas 2 de las placas delimitadoras de las celdas.
La figura 7 es una vista lateral de una batería cortada según un plano xy, figura
1, en la que las cifras representativas de las piezas son las mismas que en las otras figuras. Se ve como el plano de alineaciones 3 es el más alto, el 0 es menos alto, 1 el más bajo y 2 el menos bajo, y como las placas plegadas u onduladas descansan en las ranuras de la pieza 11. En la parte superior los distanciadores y apoyos de las placas pueden ser tacos de goma o de plástico u otro material, o cadenas, en las zonas 3. La figura 8 es una vista lateral del recipiente contenedor de la batería donde las cifras corresponden a las partes descritas anteriormente hasta el 11; el 12 corresponde al vertedero de nivel regulable para el agua clara o turbia, el 13 es una salida de nivel regulable de los tubos colectores 9 de mezcla de la que sale por las zonas 2 de las celdas, y 14 es la tolva colectora de sedimentados que se evacúan por una o varias salidas 15, continúa o intermitentemente, procurando que la tolva esté llena de sedimentados a fin de que salgan pocos finos con ellos.
La figura 9 es una vista frontal del mismo contenedor a escala menor en la que se aprecian varios tubos de entrada de mezcla 6, difusores 8 y varios tubos de salida de lodo 9, así como dos tolvas 14 y salidas 15 de decantados. El vertedero 12 puede estar en la cara vista o en la posterior.
2 Este contenedor puede hacerse de hormigón armado, metálico, de plástico o de otros materiales Las lineas que lo representan en las figuras corresponderían a sus caras internas Se puede utilizar, enterrado, sumergido, aereo o mixto según las condiciones locales Una ventaja de este sedimentador es la de tener tres salidas Si no tuviera la salida 3 para agua mas o menos turbia, como el agua se separa inevitablemente llegara a estar el sedimentador casi ocupado por agua y el lodo saldría seguidamente por las salidas 1 y 2 sin tener tiempo de decantar Otra ventaja es debida a la gran uniformidad de funcionamiento, al llegar a cada celda y salir de cada celda el mismo gasto de mezcla a separar y también finalmente tiene la ventaja mas importante de que no se mezclan ni se cruzan los cuatro distintos flujos
El lodo claro de las salidas 2 del sedimentador de tres salidas T que se evacúa por los tubos 9 y salidas 13 se puede conducir a otro sedimentador de dos salidas, acoplado al de tres salidas, tal como puede verse en la figura 10 de modo que los caudales que salen de las salidas 13 se repartan por medio de los distribuidores 16, análogos a los 6, entre las celdas del sedimentador de dos salidas D En dicha figura 10, se representa por T el sedimentador de tres salidas, por 17 la salida de lodo concentrado y por 18 la salida del agua clara del sedimentador D La inclinación de las laminas de este segundo sedimentador puede ser menor que 60° ya que el agua clara que se desprende corre bien hacia arriba v el lodo concentrado que va hacia abajo también corre bien incluso con pendientes de 10°, pero no se puede llegar a pendientes tan bajas para evitar un exceso de superficie ocupada, siendo la pendiente mas conveniente entre 45° y 60° con la honzontal
Como este segundo sedimentador es de gran volumen relativo, en instalaciones fijas puede hacese soterrado, de hormigón armado, o semientenado y en instalaciones móviles puede hacerse metálico o de otros mateπales, sobre ruedas o zorras, o flotante casi sumergido
La salida del agua clara es análoga a la del sedimentador de tres salidas y la salida del lodo concentrado puede ser por bomba, por sifón o tubo hacia arriba o directa por el fondo en el caso de sedimentador flotante en nos o lagos
CIÓN REGLA 26 El mismo sedimentador de tres salidas anteriormente descrito, pero sin la salida superior de agua clara, puede utilizarse con ventaja para clarificar el agua que sale de las balsas y otras aguas residuales de la instalación para devolverlas a los cauces públicos o recuperarlas para el circuito, en cuyo caso entraría el agua turbia por arriba, indiscriminadamente y saldría el agua clara por la salida menos baja y tubos 9, de las figuras, mientras que los sedimentos saldrían por las salidas más bajas, 1. La ventaja de esta aplicación está en la facilidad de entrada superior, en los recorridos casi paralelos hacia abajo y en que los sedimentos no se mezclan con el agua de entrada. Para esta aplicación la altura relativa de las placas puede ser menor, o mayor su anchura con lo cual se acerca un poco al sedimentador clásico de flujo transversal pero sin llegar al movimiento ortogonal de agua y partículas sino manteniendo los flujos poco divergentes.
CIÓN REGLA 26

Claims

REIVINDICACIONES Ia.- MÉTODO Y EQUIPO PARA SEPARAR PARTÍCULAS DE ORO y de otros materiales de alta velocidad de sedimentación, contenidas en arcillas, tierras y lodos, caracterizado porque se mezcla y deslíe el material que contiene las partículas en un caudal de agua u otro líquido adecuado, tan grande como sea preciso para tener un caudal de suspensión que permita a las partículas a separar realizar el recorrido vertical hacia abajo, sin obstáculos, entre las láminas de un sedimentador de láminas inclinadas, durante el tiempo de permanencia entre las láminas, caracterizado también porque dicho tiempo será lo suficientemente breve para que la concentración de otras partículas de menor velocidad de sedimentación no obstaculice el recorrido vertical de las partículas de alta velocidad de sedimentación, y caracterizado asimismo porque el sedimentador de láminas inclinadas tiene tres salidas diferentes, una para las partículas a separar, otra para líquidos con más partículas en suspensión de baja velocidad de sedimentación que el de entrada y otra para líquido claro o menos turbio.
2a.- Método y equipo para separar partículas de oro como el descrito en la reivindicación Ia caracterizado porque el sedimentador de tres salidas está constituido por celdas paralepipédicas de poco grueso, generalmente abiertas por las caras estrechas, delimitadas por láminas planas con forma preferentemente de paralelogramos, o celdas de poco grueso delimitadas por superficies regladas o mixtas que si se desarrollaran tendrían forma de paralelogramos aproximadamente, con las caras de poco ancho también generalmente abiertas, cuyas láminas están dispuestas con la inclinación nece- saria para que las partículas a separar puedan deslizarse sobre la cara inferior de cada celda desde la zona de los vértices menos altos de los paralelogramos, por donde entra la suspensión a separar, hacia la zona de los vértices más bajos, por donde salen las partículas de mayor velocidad de sedimentación, inclinación que no es la línea de máxima pendiente; carac- terizado también porque por la zona de los vértices más altos sale líquido
6 claro o menos turbio, y por la zona de vértices menos bajos de los paralelogramos sale un líquido más turbio que el de entrada, con la mayor parte de las partículas de más baja velocidad de sedimentación.
3a.- Método y equipo para separar partículas de oro como el descrito en las reivindicaciones Ia y 2a caracterizado porque las celdas de poco grueso del sedimentador de láminas inclinadas están delimitadas por las partes planas de numerosas placas de un material adecuado, plegado una o más veces o por las semiondas de placas onduladas, senoidales o de otro tipo, separadas entre si desde pocos milímetros hasta algunos centímetros, de modo que las zonas de vértices homólogos estén en alineaciones rectas, caracterizado también porque sobre las alineaciones de las zonas de los vértices menos altos se disponen tubos paralelos a ellas, horizontales o ligeramente inclinados, con entradas para la mezcla por su parte superior y con ranuras o perforaciones en las generatrices inferiores, seguidas hacia abajo de difusores tan largos como las alineaciones, que reducen la velocidad de salida de la mezcla de los tubos hasta que sea entre 1,2 y 3 veces aproximadamente la velocidad de descenso entre placas, y caracterizado también porque bajo las zonas de los vértices menos bajos, salida de líquido más turbio, se sitúan tubos horizontales, en los que se apoyan las placas, dotados de una o dos perforaciones en cada espacio entre placas de sección suficientemente pequeña, cuyos tubos inferiores se prolongan hacia arriba para dar salida al líquido más turbio hasta un nivel pocos centímetros inferior al de salida del agua o clara o menos turbia, separada de ella, dentro o fuera del recipiente contenedor del conjunto, caracterizado asimismo proque si las placas son senoidales sobre cada cumbrera llevan unidas piezas triangulares o angulares de pocos milímetros de grueso con un vértice hacia arriba cerca de la salida menos baja, cuya bisectriz coincide con la generatriz que une la salida del líquido más claro con la salida del líquido más turbio.
4a.- Método y equipo para separar partículas de oro, como el descrito en las reivindicaciones Ia, 2a y 3a caracterizada porque el conjunto de paque-
OJA DE SUSTITUCIÓN REGLA 26 tes de placas delimitadoras de series de celdas se contiene en un depósito de sección horizontal rectangular, prismático, inclinado según la pendiente citada en la reivindicación 2a, dotado de un suplemento superior preferentemente vertical donde se alojan los tubos alimentadores y los difusores, con un vertedero a un lado de altura regulable para salida de líquido claro o menos turbio, y cerrado por la parte inferior por una tolva piramidal invertida donde se recogen las partículas de oro y otros materiales separables, de donde se evacúan más o menos continuamente por cualquier procedimiento conocido, y con salidas de los tubos colectores inferiores de líquido más turbio a su nivel o a nivel superior, inferior al de salida de líquido claro o menos turbio.
5a.- Método y equipo para separar partículas de oro como el descrito en las reivindicaciones Ia, 2a, 3a y 4a caracterizado porque el líquido más turbio que sale de las zonas de los vértices menos bajos de las celdas del sedimentador de tres salidas descrito en la reivindicación 2a se hace pasar, con o sin adición de floculante, por otro sedimentador de dos salidas análogo al descrito en las reivindicaciones 2a, 3a y 4a sin la salida de las zonas de los vértices menos bajos, en el cual se separa agua clara que sale por las zonas de los vértices más altos, y lodo concentrado, pero aún fluido, que sale por la parte inferior. 6a.- Método y equipo para separar partículas de oro como el descrito en las reivindicaciones Ia, 2a, 3a y 4a caracterizado porque el líquido claro o menos turbio qu sale por las zonas de los vértices más altos de las celdas descritas en la reivindicación 2a y acaso en la 5a, se clarifica más intensamente, haciéndolo pasar, con o sin adición de floculante, por otro sedimentador de láminas análogo al de tres salidas, pero de sólo dos, sin la salida superior, sin los tubos alimentadores y sin los difusores de entrada descritos en la reivindicación 3a, con salida de agua clara por las zonas de los vértices menos bajos y tubos inferiores, y salida de los posos por la tolva inferior.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES1998/000345 1998-12-17 1998-12-17 Metodo y equipo para separar particulas de oro WO2000036166A1 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000588413A JP2002532238A (ja) 1998-12-17 1998-12-17 金粒子の分離方法及び装置
BR9816125-3A BR9816125A (pt) 1998-12-17 1998-12-17 Método e equipamento para separação de partìculas de ouro
CN98814359A CN1327483A (zh) 1998-12-17 1998-12-17 分离黄金微粒的方法和设备
PCT/ES1998/000345 WO2000036166A1 (es) 1998-12-17 1998-12-17 Metodo y equipo para separar particulas de oro
EP98959917A EP1231285B1 (en) 1998-12-17 1998-12-17 Process and equipment for the separation of gold particles
DE69818317T DE69818317D1 (de) 1998-12-17 1998-12-17 Verfahren und vorrichtung zum trennen von goldteilchen
AU15645/99A AU755914B2 (en) 1998-12-17 1998-12-17 Process and equipment for the separation of gold particles
CA002355062A CA2355062A1 (en) 1998-12-17 1998-12-17 Process and equipment for the separation of gold particles
ES98959917T ES2207864T3 (es) 1998-12-17 1998-12-17 Metodo y equipo para separar particulas de oro.
AT98959917T ATE250145T1 (de) 1998-12-17 1998-12-17 Verfahren und vorrichtung zum trennen von goldteilchen
KR1020017007709A KR20010108030A (ko) 1998-12-17 1998-12-17 금 입자들의 분리 방법 및 장치
US09/883,106 US20020074265A1 (en) 1998-12-17 2001-06-15 Method and equipment for separating gold particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1998/000345 WO2000036166A1 (es) 1998-12-17 1998-12-17 Metodo y equipo para separar particulas de oro

Publications (1)

Publication Number Publication Date
WO2000036166A1 true WO2000036166A1 (es) 2000-06-22

Family

ID=8302841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000345 WO2000036166A1 (es) 1998-12-17 1998-12-17 Metodo y equipo para separar particulas de oro

Country Status (12)

Country Link
US (1) US20020074265A1 (es)
EP (1) EP1231285B1 (es)
JP (1) JP2002532238A (es)
KR (1) KR20010108030A (es)
CN (1) CN1327483A (es)
AT (1) ATE250145T1 (es)
AU (1) AU755914B2 (es)
BR (1) BR9816125A (es)
CA (1) CA2355062A1 (es)
DE (1) DE69818317D1 (es)
ES (1) ES2207864T3 (es)
WO (1) WO2000036166A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258984A (zh) * 2014-08-04 2015-01-07 云南天地行节能科技有限公司 一种自流式重选提高精矿品位的工艺
RU2714787C1 (ru) * 2019-10-02 2020-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157303B (zh) * 2013-03-11 2016-03-09 昆明理工大学 一种振动型斜板盒沉降分离器
GB201313093D0 (en) * 2013-07-19 2013-09-04 Samaroo Mahendra Mining process employing dewatering of slurry
ZA201901524B (en) * 2018-03-14 2021-07-28 Roeland Michel Mathieu Thijs Apparatus and method for recovering particles from a slurry
EA202190053A1 (ru) 2018-06-18 2021-03-22 Баксалта Инкорпорейтед Нижняя секция для соединения со сборкой с тарельчатым сепаратором и сборка с тарельчатым сепаратором
ES2744323B2 (es) * 2018-08-24 2020-06-25 Atca Asesoria Proyectos E Instalaciones S L Lamela para decantador y modulo lamelar para decantador
TW202136283A (zh) 2019-12-12 2021-10-01 日商武田藥品工業股份有限公司 連續性的蛋白質回收方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385668A (en) * 1991-06-27 1995-01-31 Bateman Project Holdings Limited Apparatus for separating particulate material from a liquid medium
US5617955A (en) * 1994-03-14 1997-04-08 Peter Abt Dynamic-mining system comprising hydrated multiple recovery sites and related methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385668A (en) * 1991-06-27 1995-01-31 Bateman Project Holdings Limited Apparatus for separating particulate material from a liquid medium
US5617955A (en) * 1994-03-14 1997-04-08 Peter Abt Dynamic-mining system comprising hydrated multiple recovery sites and related methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258984A (zh) * 2014-08-04 2015-01-07 云南天地行节能科技有限公司 一种自流式重选提高精矿品位的工艺
RU2714787C1 (ru) * 2019-10-02 2020-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ повышения эффективности вакуумной дезинтеграции золотоносных глинистых пород

Also Published As

Publication number Publication date
JP2002532238A (ja) 2002-10-02
DE69818317D1 (de) 2003-10-23
US20020074265A1 (en) 2002-06-20
ATE250145T1 (de) 2003-10-15
EP1231285A1 (en) 2002-08-14
BR9816125A (pt) 2002-05-21
AU1564599A (en) 2000-07-03
CN1327483A (zh) 2001-12-19
KR20010108030A (ko) 2001-12-07
ES2207864T3 (es) 2004-06-01
AU755914B2 (en) 2003-01-02
EP1231285B1 (en) 2003-09-17
CA2355062A1 (en) 2000-06-22

Similar Documents

Publication Publication Date Title
ES2434844T3 (es) Dispositivo separador
ES2234893T3 (es) Tanque combinado de desgasifiacion y de flotacion.
ES2380067T3 (es) Aparato de separación de arena por sedimentación
CN1103747C (zh) 净化废水的方法和设备
KR101336169B1 (ko) 침전과 부상을 연계한 고도정수처리장치
WO2000036166A1 (es) Metodo y equipo para separar particulas de oro
KR100536952B1 (ko) 폴리에틸렌 여재를 사용한 다단계 수두차 여과식 하천정화 장치
WO1999026709A1 (en) Lamellar separator
US20150352467A1 (en) Remote submerged chain conveyor
US11407658B2 (en) Passive gravity filter cell and methods of use thereof
KR101369975B1 (ko) 무동력 플럭응집 장치
CN205391828U (zh) 一体式斜管沉淀过滤池
ES2930601T3 (es) Un sistema y un método para separar piezas que tienen una segunda densidad del material granular
EP0112129A2 (en) Separator apparatus and method
EP0213509A2 (en) Method and apparatus for use in separating solids from liquids
MXPA01006086A (es) Metodo y equipo para separar particulas de oro
AU657268B2 (en) Sedimentation device
US12006234B2 (en) Passive gravity filter cell and methods of use thereof
ES2276648T3 (es) Procesos de recuperacion de un mineral.
CN207537316U (zh) 一种处理雨水或城市生活污水的生物过滤装置
ES2239872B1 (es) Aparato para la depuracion de aguas residuales.
CN117902698A (zh) 一种含油污水处理装置
CN201272706Y (zh) 一体化澄清器
CN101244347A (zh) 污泥漏斗悬浮泥渣层式斜板、斜管沉淀工艺与装置
ES2444298A1 (es) Sistema integrado modular para tratamiento y aprovechamiento de aguas provenientes de escorrentía superficial

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98814359.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR CA CN CU CZ EE HU ID IL IS JP KR LT LV MX PL RO SI SK TR US YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2355062

Country of ref document: CA

Ref document number: 2355062

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/006086

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 588413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017007709

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 512801

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 15645/99

Country of ref document: AU

Ref document number: 1998959917

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017007709

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998959917

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 15645/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998959917

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017007709

Country of ref document: KR