WO2000032050A1 - Lasergestippter kunststoffdarm - Google Patents

Lasergestippter kunststoffdarm Download PDF

Info

Publication number
WO2000032050A1
WO2000032050A1 PCT/EP1999/008824 EP9908824W WO0032050A1 WO 2000032050 A1 WO2000032050 A1 WO 2000032050A1 EP 9908824 W EP9908824 W EP 9908824W WO 0032050 A1 WO0032050 A1 WO 0032050A1
Authority
WO
WIPO (PCT)
Prior art keywords
film tube
laser
polyamide
laser light
layer
Prior art date
Application number
PCT/EP1999/008824
Other languages
English (en)
French (fr)
Inventor
Dirk Pophusen
Anton Krallmann
Original Assignee
Wolff Walsrode Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolff Walsrode Aktiengesellschaft filed Critical Wolff Walsrode Aktiengesellschaft
Priority to JP2000584757A priority Critical patent/JP2002530233A/ja
Priority to EP99960981A priority patent/EP1135027A1/de
Priority to AU17759/00A priority patent/AU1775900A/en
Priority to CA002352182A priority patent/CA2352182A1/en
Publication of WO2000032050A1 publication Critical patent/WO2000032050A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • B29C59/165Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating of profiled articles, e.g. hollow or tubular articles
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C13/0003Apparatus for making sausage casings, e.g. simultaneously with stuffing artificial casings
    • A22C13/0006Apparatus for making artificial collagen casings
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C13/0013Chemical composition of synthetic sausage casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/002Sausage casings made by extrusion
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0053Sausage casings multilayer casings
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0063Sausage casings containing polyamide, e.g. nylon, aramide
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0083Sausage casings biaxially oriented
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0086Sausage casings shrinkable casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/001Tubular films, sleeves
    • B29L2023/002Sausage casings

Definitions

  • the present invention relates to a single-layer or multilayer, biaxially stretched, shrinkable, polyamide-based film tube which has been tipped by means of laser light, in particular a plastic casing which can be used as an artificial sausage casing.
  • PVDC polyvinylidene chloride copolymers
  • PA polyamide
  • the very good barrier properties of the PVDC cover can have the known disadvantages, such as high material costs, low thermostability in thermoplastic processing, low tear resistance and, last but not least, decreasing acceptance due to ecological reasons
  • DE 43 39 337 describes a five-layer, biaxially stretched tubular film for packaging and wrapping food.
  • This sheath is characterized in that it is made up of an inner and outer layer made of the same polyamide material and a middle polyolefin layer, as well as two adhesive layers made of the same material.
  • EP 530 538 describes a five-layer coextruded biaxially stretched tubular film with at least 3 PA layers, polymer layers with a water vapor and oxygen barrier character being incorporated between the inner and outer PA layers.
  • the artificial casings are mechanically dipped by needle rollers, but thermal and electrical processes are also known one roller consists of a needle cylinder, which can also be heated, while the second cylinder, the counter-pressure roller, usually with a rubber, Cotton fleece or felt surface is equipped.
  • the needle spacing is approximately 10 mm and the needle or the hole in the artificial intestine is 0.5 to 1 mm in diameter.
  • care must be taken to ensure that the stippling does not take place directly into the lying edge of the flattened artificial intestine, since the stippling occurs
  • EP-A-0 845 336 describes a special embodiment of this method for the dipping of plastic intestine according to the prior art.
  • a film tube in particular a plastic intestine, which was biaxially stretched, in one or more layers, is shrinkable and polyamide-based and has been dipped with laser light.
  • Polyamide-based is understood to mean that at least one layer of the film tube consists predominantly, ie at least 50% by weight, of polyamide, optionally also in the form of a copolymer or a blend.
  • the film can be extruded directly into a film tube or initially produced as a flat film and welded into a tube at a later point in time.
  • Such artificial casings according to the invention can be produced by irradiating a single- or multilayer, biaxially stretched, shrinkable, polyamide-based film tube produced by conventional methods by means of laser light.
  • a biaxially oriented film tube produced using the tube-stretching method (double-bubble method) is preferably irradiated with laser light.
  • the conventional tube stretching process can be divided into the following process steps: 1. Extrusion, calibration and cooling of the primary tube to be stretched
  • biaxial stretching to mean the transverse and longitudinal stretching of the thermoplastic extrudate at temperatures between the glass transition temperature and the melt temperature of the polymeric materials.
  • the biaxial stretching is usually carried out by means of a bladder filled with a gas or fluid pressure cushion, which is enclosed in a gas-tight or fluid-tight manner between two pairs of rollers running at different circumferential speeds.
  • the degree of transverse stretching is calculated from the ratio of the tube diameter in the stretched state to the unstretched primary tube.
  • the stretching ratio (RV) reflects the quotient of the transverse stretching degree and the longitudinal stretching degree
  • the area stretching degree (FR) results from the product of the longitudinal stretching degree with the
  • the biaxially stretched film tube according to the invention is produced in a diameter range (caliber range) between 30 and 150 mm typical for scalded and boiled sausage applications.
  • the thickness of the coextruded film is between 35 and 70 micrometers.
  • the molecules of the film tube in the solid state align themselves in such a way that the modulus of elasticity and the strengths are increased considerably both in the transverse and in the longitudinal direction become.
  • the shrinkage of the film is adjusted by the stretching and subsequent temperature treatment (thermal fixation).
  • the packaging sleeve deforms primarily elastically during the filling process and during pasteurization or sterilization.
  • the packaging envelope must maintain its cylindrical shape and must not bulge or curve.
  • the film tube produced in this way can be treated with laser light immediately after the heat setting inline or as a separate, subsequent assembly step.
  • CO 2 lasers have proven to be particularly suitable for processing polyamide intestines, since they operate in a wavelength range in which polyamide has a suitable transmission.
  • Nd.YAG lasers and excimer lasers have also proven their worth for processing plastics. In principle, these can also be used to produce the film tubes according to the invention, but are less suitable owing to the transmission properties of the polyamide.
  • the unfocused laser beam from the laser light source is usually bundled using a focusing lens. After adjusting the preferably flat film tube in the focal plane, the focal point of the laser, the perforation can be carried out to achieve the desired hole diameter, depending on the intensity set and the pull-off and feed speed of the film tube.
  • Multiple perforations can be achieved with only one laser light source, for example by moving the light source transversely to the withdrawal direction of the film tube or by using a perforated plate.
  • the perforation can take place separately on the top and bottom of the intestine, either by using several laser light sources or by directing the laser light via appropriate radiation splitters and mirrors.
  • the achievable bore diameter is generally between 10 and 1000 ⁇ m, in particular between 100 and 300 ⁇ m, depending on the set process parameters.
  • select the intensity of the laser is usually in the range between 2 and 2000 W, in particular between 20 and 200 W.
  • an intestine which is closed on one side is loaded with pressure on the inside, for example via a water column, and the diameter (caliber) which arises with increasing pressure is measured.
  • the maximum pressure and the resulting caliber until the shell is torn away / burst is recorded as the burst pressure and burst caliber.
  • PA polyamide 6 e.g .: Durethan B40 F (Bayer AG)
  • the commercial product Walsroder® K plus SK a five-layer, stretched, polyamide-based plastic casing with a nominal caliber of 60 mm (manufacturer Wolff Walsrode AG, Walsrode) is laid flat by the laser source that can be moved transversely to the direction of advance of the film tube and perforated using a Synrad CO 2 laser .
  • the hole spacing in and parallel to the feed direction is 10 mm and the individual hole diameter is 150 ⁇ m on average.
  • Comparative example 1.2 (NB1.2):
  • the casing used in Example 1 is mechanically tipped by means of needles, so that the hole spacing in and parallel to the feed direction is 10 mm and the individual hole diameter is on average 500 ⁇ m.
  • the casing used in Example 2 is mechanically tipped by means of needles, so that the hole spacing in and parallel to the direction of advance is 10 mm and the individual hole diameter is on average 500 ⁇ m.
  • a three-layer plastic intestine was produced using the tube stretching process.
  • a primary tube was extruded through a multi-layer die, which was then simultaneously biaxially stretched at a surface temperature of 90 ° C.
  • the casing then has a flat lying width of 97 mm and a total thickness of 45 ⁇ m.
  • the layer structure is: (inside) PA / PO-HV / PA (outside)
  • Thickness profile (inside) 10/10/25 (outside)
  • the intestine is passed through a laser unit as described in Examples 1 and 2 and perforated by means of a CO 2 laser.
  • the hole spacing in and parallel to the feed direction is 10 mm and the individual hole diameter is 150 ⁇ m on average.
  • a five-layer plastic intestine was made using the tube stretching process.
  • a primary tube was extruded through a multi-layer die, which was then simultaneously biaxially stretched at a surface temperature of 90 ° C.
  • the casing then has a flat lying width of 97 mm and a total thickness of 55 ⁇ m.
  • the layer structure is: (inside) PA / PA + MB + aPA / PO-HV / PA + MB + aPA / PA (outside) Thickness profile: (inside) 5/20/5/20/5 (outside)
  • the intestine is passed through a laser unit and perforated using a CO 2 laser.
  • the hole spacing in and parallel to the feed direction is 10 mm and
  • the average hole diameter is 150 ⁇ m.
  • a five-layer plastic intestine was made using the tube stretching process.
  • a primary tube was extruded through a multi-layer die, which was then simultaneously biaxially stretched at a surface temperature of 90 ° C.
  • the casing then has a flat lying width of 97 mm and a total thickness of 40 ⁇ m.
  • the layer structure is: (inside) PA / PO-HV / XX / PA + MB + aPA / PA (outside)
  • Thickness profile (inside) 5/5/5/20/5 (outside)
  • the intestine is passed through a laser unit as described in Examples 1 and 2 and perforated by means of a CO 2 laser.
  • the hole spacing in and parallel to the feed direction is 10 mm and the individual hole diameter is 150 ⁇ m on average.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Processing Of Meat And Fish (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft einen ein- oder mehrschichtigen, biaxial gereckten, schrumpffähigen, polyamidbasierenden mittels Laserlicht gestippten Folienschlauch, insbesondere einen als künstliche Wursthülle verwendbaren Kunststoffdarm.

Description

Lasergestippter Kunststoffdarm
Die vorliegende Erfindung betrifft einen ein- oder mehrschichtigen, biaxial gereck- ten, schrumpffähigen, polyamidbasierenden mittels Laserlicht gestippten Folienschlauch, insbesondere einen als künstliche Wursthülle verwendbaren Kunststoffdarm.
Die Entwicklung im Bereich künstlicher Wursthüllen ist gekennzeichnet durch das Bestreben Produkte bereitzustellen, die den veränderten Anforderungen der fleischverarbeitenden Industrie im Hinblick auf Ökonomie und Ökologie gerecht werden.
Bei der industriellen Brüh- und Kochwurstherstellung hat sich biaxial gereckter Kunststoffdarm auf der Basis von Polyvinylidenchlorid-Copolymeren (PNDC) und Polyamid (PA) in vielerlei Hinsicht seit Jahren bewährt. Während die Marktverbreitung von polyamidbasierendem Darm weiter steigt, ist bei halogenhaltigem PNDC- Darm eine eher abnehmende Tendenz zu beobachten. Die sehr guten Barriereeigenschaften der PVDC-Hülle können die bekannten Nachteile, wie hohe Materialkosten, geringe Thermostabilität bei der thermoplastischen Verarbeitung, geringer Weiter- reißwiderstand und nicht zuletzt die abnehmende Akzeptanz aufgrund ökologischer
Bedenken nicht aufwiegen.
Bei polyamidbasierndem Darm zeichnet sich ein Trend zu mehrschichtigem coextru- dierten Darm ab, der insbesondere im Hinblick auf die erreichbaren Barrierewerte gegen Wasserdampf, Sauerstoff und Licht Vorteile gegenüber Einschichtprodukten bietet.
Reiner einschichtiger Polyamiddarm wurde verbessert, indem man durch die Zugabe von Blendkomponenten zum Beispiel die Wasserdampfpermeation reduziert hat. In der DE 28 50 181 wird eine solche einschichtige, biaxial verstreckte Hülle bestehend aus einer Polymermischung aus aliphatischem Polyamid und einem olefinischen Copolymer beschrieben.
In der DE 43 39 337 wird eine fünfschichtige, biaxial verstreckte Schlauchfolie zur Verpackung und Umhüllung von Lebensmitteln beschrieben. Diese Hülle ist dadurch gekennzeichnet, daß sie aus einer inneren und äußeren Schicht aus dem gleichen Polyamidmaterial und einer mittleren Polyolefinschicht sowie zwei aus dem gleichen Material bestehenden Haftvermittlerschichten aufgebaut ist.
In der EP 530 538 wird eine fünfschichtig coextrudierte biaxial gereckte Schlauchfolie mit mindestens 3 PA-Schichten beschrieben, wobei zwischen den innen- und außenliegenden PA-Schichten Polymerschichten mit wasserdampf- und sauerstoffsperrenden Charakter eingebunden sind.
Die bisherigen Entwicklungen wurden somit vornehmlich betrieben um eine schrumpfbare hochfeste Hülle mit sehr guten Barrierewerten bereitzustellen.
Bei einigen Brätsorten ist aber gerade eine gewisse Durchlässigkeit des Darms erforderlich. Aus diesem Grunde werden ungereckte Därme aus Kunststoff nach der Her- Stellung weiter konfektioniert, indem der Darm bewußt mit kleinen Löchern versehen wird. Sind die Lochdurchmesser kleiner und die Löcher zahlreich, so bezeichnet man diese Därme nicht mehr als gelochte, sondern als gestippte, geprickelte oder perforierte Kunstdärme.
Der Stand der Technik zum Stippen von Kunstdarm wird im Buch „Wursthüllen
Kunstdarm" von G. Effenberger (2. Aufl., Bad Wörishofen 1991, Seiten 60-62) umfassend dargestellt. Danach werden die Kunstdärme mechanisch durch Nadelwalzen gestippt, jedoch sind auch thermische und elektrische Verfahren bekannt. Bei der mechanischen Stippung wird der Kunstdarm durch ein Walzenpaar geführt. Die eine Walze besteht aus einem Nadelzy linder, der auch beheizbar ausgerüstet sein kann, während der zweite Zylinder, die Gegendruckwalze, meistens mit einer Gummi-, Baumwollvlies- oder Filzoberfläche ausgerüstet ist. Für die beschriebenen Anwendungen ist es in der Regel ausreichend, wenn der Nadelabstand ca. 10 mm beträgt und die Nadel bzw. das Loch im Kunstdarm 0,5 bis 1 mm Durchmesser hat. Dabei muß jedoch darauf geachtet werden, daß die Stippung nicht direkt bis in die Liege- kante des flachgelegten Kunstdarmes erfolgt, da die durch die Stippung eintretende
Festigkeitsminderung sich sonst dort bemerkbar machen würde. Dieses wird vermieden, indem man für jedes zu stippende Kaliber eine entsprechend breite Nadel walze verwendet und einen ausreichend bemessenen Abstand zur Liegekante läßt. In der Regel wird bei der Stippung davon ausgegangen, daß pro Quadratzentimeter Kunst- darmoberfläche 1 bis maximal 2 Löcher vorliegen. Es sind aber auch Kunstdärme bekannt, die eine wesentlich dichtere Lochbildungaufweisen.
Eine spezielle Ausführungsform dieses Verfahrens zur Stippung von Kunststoffdarm nach dem Stand der Technik beschreibt EP-A-0 845 336.
Nach dem hier beschriebenen Stand der Technik ist das Stippen von gerecktem Kunststoffdarm nicht möglich, da aufgrund des Weiterreißverhaltens gereckter Polyamiddärme die notwendige Fülldruckfestigkeit nicht ausreichend ist.
Es bestand daher die Aufgabe einen als Kunststoffdarm verwendbaren Folienschlauch bereitzustellen, der neben den anderen wichtigen Anforderungen, die sich aus dem Wurstherstellverfahren ergeben, auf der einen Seite eine hohe Festigkeit und ein gutes Schrumpfvermögen zeigt, auf der anderen Seite aber eine lokale Durchlässigkeit aufweist, die es ermöglicht, daß zum einen Gase, wie sie beispielsweise bei der Zwiebelmettwurstreifung entstehen, aus der Hülle austreten können, zum anderen aber auch Gase und Flüssigkeiten von außen durch die Hülle an das Füllgut gelangen, zum Beispiel um das Füllgut zu räuchern oder einen Reifeprozeß bei Rohwurst zu gewährleisten.
Gelöst wurde diese Aufgabe durch die Bereitstellung eines Folienschlauchs, insbesondere eines Kunststoffdarms , der biaxial gereckt, ein- oder mehrschichtig, schrumpfbar und polyamidbasierend ist und der mittels Laserlicht gestippt worden ist. Unter polyamidbasierend wird dabei verstanden, daß mindestens eine Schicht des Folienschlauchs überwiegend, d. h. zu mindestens 50 Gew.% aus Polyamid besteht, gegebenenfalls auch in Form eines Copolymers oder eines Blends.
Die Folie kann dabei direkt zu einem Folienschlauch extrudiert werden oder zunächst als Flachfolie hergestellt und zu einem späterem Zeitpunkt zu einem Schlauch verschweißt werden.
Überraschenderweise hat es sich bei den durchgeführten Prüfungen und in den anwendungstechnischen Versuchen mit erfindungsgemäß hergestellten Mustern gezeigt, daß es durch den Laserlichtbeschuß zu keiner Reduktion der Festigkeit des Folienschlauchs kommt und daß von den Löchern ausgehende Einriße, wie sie beim Stanzen mit Nadeln bekannt sind, nicht auftreten. Darüberhinaus lassen sich auch kleinere Lochdurchmesser als mit herkömmlicher Nadelstippung erreichbar, erzeugen.
Der Einsatz von Lasern im Bereich der Kunstdarmherstellung und -Konfektionierung war bisher vornehmlich auf die Veränderung der Oberflächencharakteristiken wie Oberflächenpolaritäten und die Messung von Geometriegrößen beschränkt.
Die Herstellung solcher erfindungsgemäßen Kunstdärme kann erfolgen, indem ein nach üblichen Verfahren hergestellter ein- oder mehrschichtiger, biaxial gereckter, schrumpffähiger, polyamidbasierender Folienschlauch mittels Laserlicht bestrahlt wird. Vorzugsweise wird ein im Schlauchreckverfahren (Double-Bubble- Verfahren) hergestellter biaxial orientierter Folienschlauch mit Laserlicht bestrahlt.
Das konventionelle Schlauchreckverfahren kann untergliedert werden in die Verfahrensschritte: 1. Extrusion, Kalibrierung und Kühlung des zu reckenden Primärschlauches
2. Wiedererwärmung des Primärschlauches auf geeignete Recktemperatur
3. Biaxiales Verstrecken durch Anlegen einer Druckdifferenz zwischen Schlauchinnenvolumen und der Schlauchumgebung sowie durch die die Längsverstreckung unterstützende Längsabzugskraft
4. Thermofixierung der biaxial gereckten Schlauchfolie
5. Aufwicklung und nachfolgende Offline-Konfektionierungsschritte (Raffen etc.)
Unter der biaxialen Verstreckung versteht der Fachmann die Quer- und Längsverstreckung des thermoplastischen Extrudates bei Temperaturen zwischen Glasübergangstemperatur und Schmelzetemperatur der polymeren Werkstoffe. Die biaxiale Reckung erfolgt üblicherweise mittels einer mit einem Gas- oder Fluiddruckpolster gefüllten Blase, die zwischen zwei mit unterschiedlich hohen Umfangsgeschwindig- keiten laufenden Walzenpaaren gas- bzw. fluiddicht eingeschlossen ist. Während das
Verhältnis der unterschiedlichen Walzenumfangsgeschwindigkeiten dem Längsreck- grad entspricht, errechnet sich der Querreckgrad aus dem Verhältnis der Schlauch- durchmesserr im gereckten Zustand zum ungereckten Primärschlauch. Das Reckverhältnis (RV) spiegelt den Quotienten aus Querreckgrad und Längsreckgrad wieder, der Flächenreckgrad (FR) resultiert aus dem Produkt des Längsreckgrades mit dem
Querreckgrad.
Der erfindungsgemäße biaxial verstreckte Folienschlauch wird in einem für Brüh- und Kochwurstanwendungen typischen Durchmesserbereich (Kaliberbereich) zwi- sehen 30 und 150 mm hergestellt. Die Dicke der coextrudierten Folie bewegt sich in bevorzugten Ausfuhrungsformen zwischen 35 und 70 Mikrometern.
Während der Verstreckung richten sich die Moleküle des im Festkörperzustand befindlichen Folienschlauches derart aus, daß der Elastizitätmodul und die Festig- keiten sowohl in Quer- als auch in Längsrichtung in erheblichem Maße gesteigert werden. Durch die Verstreckung und anschließende Temperaturbehandlung (Thermo fixierung) wird zugleich der Schrumpf der Folie eingestellt.
Ausreichende Festigkeit ist dann gegeben, wenn sich die Verpackungshülle beim Füllvorgang und während der Pasteurisation oder Sterilisation vornehmlich elastisch verformt. Die Verpackungshülle muß dabei ihre zylindrische Form beibehalten und darf sich nicht ausbeulen oder krümmen.
Die Behandlung des so hergestellten Folienschlauchs mit Laserlicht kann sofort im Anschluß an die Thermofixierung inline oder als separater, sich anschließender Kon- fektionierungsschritt erfolgen.
Als geeignet für die Bearbeitung von Polyamid-Darm haben sich insbesondere CO2- Laser erwiesen, da diese in einem Wellenlängenbereich arbeiten, bei dem Polyamid eine geeignete Transmission aufweist. Zur Bearbeitung von Kunststoffen haben sich für Schneideaufgaben auch Nd.YAG-Laser und Excimer-Laser bewährt. Diese können grundsätzlich zur Herstellung der erfindungsgemäßen Folienschläuche ebenfalls eingesetzt werden, sind aber aufgrund der Transmissionseigenschaften des Polyamids weniger geeignet. Der unfokussierte Laserstrahl der Laserlichtquelle wird in der Regel mittels einer Fokussierlinse gebündelt. Nach Justierung des vorzugsweise flachgelegten Folienschlauchs in der Fokusebene, dem Brennpunkt des Lasers, kann die Perforation je nach eingestellter Intensität und Abzugs- und Vorschubgeschwindigkeit des Folienschlauchs zur Erzielung der gewünschten Lochdurchmesser durchgeführt werden. Eine mehrfache Perforierung läßt sich bei nur einer Laserlichtquelle z.B. durch Bewegen der Lichtquelle quer zur Abzugsrichtung des Folienschlauchs oder durch den Einsatz einer Lochplatte erreichen. Die Perforation kann separat auf der Ober- und Unterseite des Darms erfolgen, indem entweder mehrere Laserlichtquellen verwendet werden oder das Laserlicht über entsprechende Strahlungsteiler und Spiegel gelenkt wird. Der erreichbare Bohrungsdurchmesser liegt in Abhängigkeit der eingestellten Verfahrensparameter im allgemeinen zwischen 10 und 1000 μm, insbesondere zwischen 100 und 300 μm. Je nach der gewählten Anordnung der Laser und der Anzahl der gleichzeitig vorzunehmenden Perforationen ist die Intensität der Laser auszuwählen. Üblicherweise liegt die installierte Leistung im Bereich zwischen 2 bis 2000 W, insbesondere zwischen 20 bis 200 W.
Die folgenden Beispiele und Vergleichsbeispiele sollen die Erfindung verdeutlichen.
Prüfungen:
Ermittlung des Druckdehnungsverhaltens mit Messung des Platzdruckes und Platzkalibers.
Hierbei wird ein einseitig verschlossener Darm innenseitig z B. über eine Wassersäule mit Druck belastet und der sich bei steigendem Druck einstellende Durchmesser (Kaliber) meßtechnisch erfaßt. Der maximale Druck und das dabei sich einstellende Kaliber bis zum Wegreißen/Platzen der Hülle wird als Platzdruck und Platzkaliber festgehalten.
Anwendungstechnische Füllversuche mit Beurteilung der FüUmaschinengängigkeit, Messung der Füll- und Fertigkaliber und Beurteilung des Aussehens der hergestellten Musterwürste. Die Beurteilung wird mittels Vergabe von Schulnoten vorgenommen.
Messung des Lochbildes (mittlere Lochdurchmesser, Lochabstand) mittels mikroskopischer Vermessung.
Beispiele:
Die unterschiedlichen in erfindungsgemäßen Folienschläuchen und in den Vergleichsbeispielen eingesetzten Polymere werden wie folgt abgekürzt:
PA Polyamid 6 z.B.: Durethan B40 F (Bayer AG)
PO-HV Propylen-basiernder Copolymer- z.B.: Bynel E 379 (DuPont) Haftvermittler
XX Ethylen-Vinylalkohol-Copolymer z.B.: EVAL LC F 101 BZ (Kuraray)
APA teilaromatisches Copolyamid z.B.: Selar PA 3426 (DuPont)
MB Masterbatch auf Basis Polyamid 6 z.B.: Farbmasterbatch PA gold
Beispiel 1 (Bl) :
Das Handelsprodukt Walsroder® K plus SK, ein fiinfschichtiger, gereckter, polyamidbasierender Kunststoffdarm mit Nennkaliber 60 mm (Hersteller Wolff Walsrode AG, Walsrode) wird flachgelegt schrittweise an der quer zur Vorschubrichtung des Folienschlauchs beweglichen Laserquelle vorbeigeführt und mittels eines Synrad- CO2-Lasers perforiert. Der Lochabstand in und parallel zur Vorschubrichtung beträgt 10 mm und der Einzellochdurchmesser beträgt im Mittel 150 μm. Der CO2-Laser arbeitet bei einer Wellenlänge von λ = 10,6 μm und einer mittleren Leistung von P = 50 W.
Vergleichsbeispiel 1.1 (VB1.1) :
Der in Beispiel 1 verwendete Darm wird nicht gestippt. Nergleichsbeispiel 1.2 (NB1.2) :
Der in Beispiel 1 verwendete Darm wird mechanisch mittels Nadeln gestippt, so daß der Lochabstand in und parallel zur Vorschubrichtung 10 mm und der Einzelloch- durchmesser im Mittel 500 μm beträgt.
Beispiel 2 (B2) :
Das Handelsprodukt Walsroder® K flex rot, ein fünfschichtiger, gereckter, poly- amidbasierender Kunststoffdarm mit Nennkaliber 45 (Hersteller Wolff Walsrode
AG, Walsrode) wird flachgelegt schrittweise an der quer zur Vorschubrichtung des Folienschlauchs beweglichen Laserquelle vorbeigeführt und mittels eines Synrad- CO2-Lasers perforiert. Der Lochabstand in und parallel zur Vorschubrichtung beträgt 10 mm und der Einzellochdurchmesser beträgt im Mittel 150 μm. Der CO2-Laser arbeitet bei einer Wellenlänge von λ = 10,6 μm und einer mittleren Leistung von
P = 50 W.
Vergleichsbeispiel 2 (VB2) :
Der in Beispiel 2 verwendete Darm wird mechanisch mittels Nadeln gestippt, so daß der Lochabstand in und parallel zur Vorschubrichtung 10 mm und der Einzellochdurchmesser im Mittel 500 μm beträgt.
Beispiel 3 (B3) :
Ein dreischichtiger Kunststoffdarm wurde über das Schlauchreckverfahren hergestellt. Über eine Mehrschichtdüse wurde ein Primärschlauch extrudiert, der anschließend bei 90 °C Oberflächentemperatur simultan biaxial verstreckt wurde.
Der Darm hat dann eine Flachliegebreite von 97 mm und eine Gesamtdicke von 45 μm. Der Schichtaufbau ist: (innen) PA / PO-HV / PA (außen)
Dickenprofil: (innen) 10 / 10 / 25 (außen)
Der Darm wird wie in Beispiel 1 und 2 beschrieben durch eine Lasereinheit geführt und mittels eines CO2-Lasers perforiert. Der Lochabstand in und parallel zur Vorschubrichtung beträgt 10 mm und der Einzellochdurchmesser beträgt im Mittel 150 μm. Der CO2-Laser arbeitet bei einer Wellenlänge von λ = 10,6 μm und einer mittleren Leistung von P = 60 W.
Beispiel 4 (B4) :
Ein fünfschichtiger Kunststoffdarm wurde über das Schlauchreckverfahren hergestellt. Über eine Mehrschichtdüse wurde ein Primärschlauch extrudiert, der anschlie- ßend bei 90 °C Oberflächentemperatur simultan biaxial verstreckt wurde.
Der Darm hat dann eine Flachliegebreite von 97 mm und eine Gesamtdicke von 55 μm.
Der Schichtaufbau ist: (innen) PA / PA + MB + aPA / PO-HV / PA + MB + aPA / PA (außen) Dickenprofil: (innen) 5 / 20 / 5/ 20 / 5 (außen)
Der Darm wird durch eine Lasereinheit geführt und mittels eines CO2-Lasers perfo- riert. Der Lochabstand in und parallel zur Vorschubrichtung beträgt 10 mm und der
Einzellochdurchmesser beträgt im Mittel 150 μm. Der CO2-Laser arbeitet bei einer Wellenlänge von λ = 10,6 μm und einer mittleren Leistung von P = 60 W. Beispiel 5 (B5) :
Ein fünfschichtiger Kunststoffdarm wurde über das Schlauchreckverfahren hergestellt. Über eine Mehrschichtdüse wurde ein Primärschlauch extrudiert, der anschlie- ßend bei 90 °C Oberflächentemperatur simultan biaxial verstreckt wurde.
Der Darm hat dann eine Flachliegebreite von 97 mm und eine Gesamtdicke von 40 μm.
Der Schichtaufbau ist: (innen) PA / PO-HV / XX / PA + MB + aPA / PA (außen)
Dickenprofil: (innen) 5 / 5 / 5/ 20 / 5 (außen)
Der Darm wird wie in Beispiel 1 und 2 beschrieben durch eine Lasereinheit geführt und mittels eines CO2-Lasers perforiert. Der Lochabstand in und parallel zur Vor- schubrichtung beträgt 10 mm und der Einzellochdurchmesser beträgt im Mittel 150 μm. Der CO2-Laser arbeitet bei einer Wellenlänge von λ = 10,6 μm und einer mittleren Leistung von P = 60 W.
Die Muster aus den Beispielen und Vergleichsbeispielen wurden anschließend gerafft und anhand von Druckdehnungskurven auf ihre mechanische Festigkeit und im anwendungstechnischen Füllversuch mit Zwiebelmettwurst auf ihre Praxistauglichkeit hin überprüft. Das Ergebnis der Prüfungen ist in nachfolgender Tabelle zusammengestellt:
Figure imgf000015_0001

Claims

Patentansprtiche
1. Ein- oder mehrschichtiger, biaxial gereckter, schrumpffähiger, polyamidbasierender, mittels Laserlicht gestippter Folienschlauch.
2. Folienschlauch gemäß Anspruch 1 , wobei der Lochdurchmesser der einzelnen gestippten Löcher zwischen 10 und 1000 μm, insbesondere zwischen 100 und 300 μm liegt.
3. Folienschlauch gemäß Anspruch 1 oder 2, wobei das zum Stippen verwendete
Laserlicht von einem CO2 -Laser erzeugt wird.
4. Folienschlauch gemäß einem der Ansprüche 1 bis 3 mit einer Gesamtdicke von 30 bis 70 μm.
5. Verwendung eines Folienschlauchs gemäß einem der Ansprüche 1 bis 4 als Kunststoffdarm bei der Herstellung von Würsten.
6. Verfahren zur Herstellung eines Folienschlauchs gemäß einem der Ansprüche 1 bis 4, bei dem ein nach dem Schlauchreckverfahren hergestellter, biaxial orientierter, polyamidbasierender Folienschlauch in einem separaten Konfek- tionierungsschritt oder vorzugsweise inline an mindestens einem focussierten CO2-Laser vorbeigeführt und dabei mit Laserlicht einer ausreichenden Intensität behandelt wird, um den Folienschlauch zu stippen.
Verfahren gemäß Anspruch 6, wobei der Folienschlauch flachgelegt an mindestens einem focussierten Cθ2-Laser vorbeigeführt wird.
PCT/EP1999/008824 1998-11-27 1999-11-17 Lasergestippter kunststoffdarm WO2000032050A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000584757A JP2002530233A (ja) 1998-11-27 1999-11-17 レーザーによって穿孔したプラスチックガット(gut)
EP99960981A EP1135027A1 (de) 1998-11-27 1999-11-17 Lasergestippter kunststoffdarm
AU17759/00A AU1775900A (en) 1998-11-27 1999-11-17 Plastic gut perforated by a laser
CA002352182A CA2352182A1 (en) 1998-11-27 1999-11-17 Plastic gut perforated by a laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19854769.2 1998-11-27
DE19854769A DE19854769A1 (de) 1998-11-27 1998-11-27 Lasergestippter Kunststoffdarm

Publications (1)

Publication Number Publication Date
WO2000032050A1 true WO2000032050A1 (de) 2000-06-08

Family

ID=7889224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008824 WO2000032050A1 (de) 1998-11-27 1999-11-17 Lasergestippter kunststoffdarm

Country Status (6)

Country Link
EP (1) EP1135027A1 (de)
JP (1) JP2002530233A (de)
AU (1) AU1775900A (de)
CA (1) CA2352182A1 (de)
DE (1) DE19854769A1 (de)
WO (1) WO2000032050A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1420650T3 (da) * 2001-08-21 2008-04-14 Becker & Co Naturinwerk Multiperforeret kollagenfilm
WO2010017829A1 (de) * 2008-08-14 2010-02-18 Rhb Revitalisierungs-, Handels- Und Beteiligungsgesellschaft Mbh Rohwursttrocknung
JP2018134756A (ja) * 2017-02-20 2018-08-30 グンゼ株式会社 食肉製品製造用ケーシングチューブ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190997A2 (de) * 1985-02-05 1986-08-13 Ciba-Geigy Ag Laserbeschriftung pigmentierter Systeme
DE3601913A1 (de) * 1986-01-23 1987-07-30 Wolff Walsrode Ag Vorrichtung und verfahren zum schneiden von kunstdaermen
EP0530538A1 (de) * 1991-08-23 1993-03-10 Wolff Walsrode Aktiengesellschaft 5-Schichtig coextrudierte biaxial gereckte Schlauchfolie mit mindestens 3 PA-Schichten
JPH0575223A (ja) * 1991-09-17 1993-03-26 Sumitomo Bakelite Co Ltd 開口部を有する表面にポリアミツク酸層のあるポリイミドフイルム及びこれを用いたフレキシブル印刷回路用基板乃至回路板
WO1995004102A1 (en) * 1993-07-31 1995-02-09 Devro Limited Collagen film
DE19625094A1 (de) * 1996-06-24 1998-01-02 Kalle Nalo Gmbh Raupenförmige Verpackungshülle
EP0845336A1 (de) * 1996-11-27 1998-06-03 Viskase Corporation Verfahren und Vorrichtung zum Perforieren von schlauchförmigen Nahrungsmittelhüllen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190997A2 (de) * 1985-02-05 1986-08-13 Ciba-Geigy Ag Laserbeschriftung pigmentierter Systeme
DE3601913A1 (de) * 1986-01-23 1987-07-30 Wolff Walsrode Ag Vorrichtung und verfahren zum schneiden von kunstdaermen
EP0530538A1 (de) * 1991-08-23 1993-03-10 Wolff Walsrode Aktiengesellschaft 5-Schichtig coextrudierte biaxial gereckte Schlauchfolie mit mindestens 3 PA-Schichten
JPH0575223A (ja) * 1991-09-17 1993-03-26 Sumitomo Bakelite Co Ltd 開口部を有する表面にポリアミツク酸層のあるポリイミドフイルム及びこれを用いたフレキシブル印刷回路用基板乃至回路板
WO1995004102A1 (en) * 1993-07-31 1995-02-09 Devro Limited Collagen film
DE19625094A1 (de) * 1996-06-24 1998-01-02 Kalle Nalo Gmbh Raupenförmige Verpackungshülle
EP0845336A1 (de) * 1996-11-27 1998-06-03 Viskase Corporation Verfahren und Vorrichtung zum Perforieren von schlauchförmigen Nahrungsmittelhüllen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9317, Derwent World Patents Index; Class A26, AN 1993-138612, XP002134234 *

Also Published As

Publication number Publication date
JP2002530233A (ja) 2002-09-17
AU1775900A (en) 2000-06-19
CA2352182A1 (en) 2000-06-08
DE19854769A1 (de) 2000-05-31
EP1135027A1 (de) 2001-09-26

Similar Documents

Publication Publication Date Title
EP0758527B1 (de) Polyamid-Wursthülle mit verbesserter Schälcharakteristik
EP0530549B1 (de) Mindestens 3schichtig coextrudierte biaxial gereckte Schlauchfolie mit innenliegender PA-Schicht
EP0530538B1 (de) 5-Schichtig coextrudierte biaxial gereckte Schlauchfolie mit mindestens 3 PA-Schichten
EP0530539B1 (de) Coextrudierte biaxial gereckte Schlauchfolie
DE4339337C2 (de) Fünfschichtige, biaxial verstreckte Schlauchfolie zur Verpackung und Umhüllung von pastösen Lebensmitteln
DE19515254C2 (de) PVC-freie Mehrschichtfolie, Verfahren zur Herstellung derselben und deren Verwendung
DE69426273T3 (de) Zäher, wärmeschrumpfbarer Mehrschichtfilm
DE69910025T2 (de) Verfahren zum Verpacken
DE2758320A1 (de) Biaxial gestreckte fuenfschichtenfolie und verfahren zu ihrer herstellung
CH663576A5 (de) Waermeschrumpfbare verbundfolie und verfahren zu ihrer herstellung.
DE3217551A1 (de) Hitzeschrumpfbare, thermoplastische mehrschicht-verpackungsfolie, verfahren zu ihrer herstellung und ihre verwendung
DE60002586T2 (de) Heissschrumpfbare mehrschichtige kunststofffolie mit barriereeigenschaften
DE3339836A1 (de) Mehrschichtige verpackungsfolien und aus ihnen hergestellte artikel mit verbesserter waermebestaendigkeit
EP2095715A1 (de) Nahrungsmittelhülle mit Barrierewirkung für Sauerstoff und/oder Wasserdampf und geeignet einen Nahrungsmittelzusatzstoff aufzunehmen, zu speichern und an das Nahrungsmittel abzugeben
DE10323417B3 (de) Räucherbare flächen- oder schlauchförmige Nahrungsmittelhülle oder -folie für Lebensmittelverpackungen, sowie Verfahren zu deren Herstellung
DE60216189T2 (de) Polyamid-Nahrungsmittelhülle mit einer undurchlässigen Mittelschicht
DE60019873T2 (de) Schutzbeutel mit Ethylencopolymere von hoher und niedriger Kristallinität enthaltender Schutzauflage
EP1135027A1 (de) Lasergestippter kunststoffdarm
DE3111269C2 (de)
EP1677980B1 (de) Nahrungsmittelhülle auf polyamidbasis mit rauchübertrag
CH641480A5 (de) Schlauchfolie aus synthetischem harz mit einseitig aktivierter innenliegender oberflaeche.
EP0166226A1 (de) Verfahren zum Herstellen eines zu einem faltenbalgartigen Hohlkörper gerafften Schlauchhüllenabschnitts für die Weiterverarbeitung als Schäldarm bei der Herstellung von Würstchen sowie danach hergestellter Hohlkörper
EP1521674B1 (de) Biaxial verstreckte, fünfschichtige schlauchfolie zur verpackung und umhüllung von fleisch mit oder ohne knochen oder pastösen lebensmitteln und ihre verwendung
DE69924122T2 (de) Wärmeschrumpfbare folie
WO2004005024A1 (de) Biaxial verstreckte schlauchfolie zur verpackung und umhüllung von fleisch mit oder ohne knochen oder pastösen lebensmitteln und ihre verwendung

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 17759

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999960981

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 584757

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09856578

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2352182

Country of ref document: CA

Ref country code: CA

Ref document number: 2352182

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/005298

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1999960981

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999960981

Country of ref document: EP