WO2000031514A1 - Instrument de mesure de la diffusion de la lumiere - Google Patents

Instrument de mesure de la diffusion de la lumiere Download PDF

Info

Publication number
WO2000031514A1
WO2000031514A1 PCT/JP1999/006376 JP9906376W WO0031514A1 WO 2000031514 A1 WO2000031514 A1 WO 2000031514A1 JP 9906376 W JP9906376 W JP 9906376W WO 0031514 A1 WO0031514 A1 WO 0031514A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
scattering measurement
light scattering
cladding
Prior art date
Application number
PCT/JP1999/006376
Other languages
English (en)
French (fr)
Inventor
Motonobu Akagi
Kazunori Tsutsui
Tsutomu Mizuguchi
Mitsunao Sekiwa
Original Assignee
Otsuka Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co., Ltd. filed Critical Otsuka Electronics Co., Ltd.
Priority to JP2000584278A priority Critical patent/JP4054178B2/ja
Priority to EP99972735A priority patent/EP1134578A4/en
Publication of WO2000031514A1 publication Critical patent/WO2000031514A1/ja
Priority to HK02102027.1A priority patent/HK1040286A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4726Detecting scatter at 90°
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4764Special kinds of physical applications
    • G01N2021/4769Fluid samples, e.g. slurries, granulates; Compressible powdery of fibrous samples

Definitions

  • the present invention relates to a light scattering measurement device that performs light scattering measurement by irradiating a sample with light and detecting light scattered from within a scattering volume.
  • the light scattering measurement device is a device that measures the change over time of the scattered light due to the movement (Brownian motion) of particles existing in a fluid.
  • a rectangular parallelepiped cell containing a fluid is irradiated with a laser beam narrowed by a lens, and the scattering volume is limited by a binhole system having an angle of 90 °.
  • the scattered light was measured by a light receiving element such as a photomultiplier.
  • the light scattering measurement device Since the light scattering measurement device has a long optical path length in the cell, when a concentrated solution is used as a sample, incident light and scattered light are scattered multiple times, and accurate time-series data cannot be obtained.
  • the end faces of the incident single-mode optical fiber and the receiving single-mode optical fiber face each other at a predetermined angle in the cell.
  • a light scattering measurement device has been proposed in which the distance between the end faces is made shorter.
  • a minute lens is provided on the end face of the single mode optical fiber, and light other than light incident at a specific angle is cut off.
  • the measurement efficiency can be improved and the noise due to the light incident at an unnecessary angle can be cut off.
  • a structure for providing a small lens on the end face of the single mode optical fiber is required.
  • the structure of the single-mode optical fiber was complicated, which increased the cost.
  • the present invention provides a light scattering measurement device having a structure in which single mode optical fibers are brought close to each other at a predetermined angle to face each other.
  • An object of the present invention is to realize a light scattering measurement device capable of measuring scattered light intensity.
  • the light scattering measurement apparatus of the present invention comprises: a single-mode optical fiber for incident light for irradiating a sample with light; and a single-mode optical fiber for scattering light measurement for collecting and propagating the scattered light.
  • the end faces of the exposed cladding of the two single-mode optical fibers are opposed to each other at a predetermined angle (claim 1).
  • the feature is that the exposed end faces of the cladding of both single mode optical fibers are directly opposed to each other without passing through a condensing system such as a lens.
  • the light scattered from within the scattering volume directly enters the single-mode optical fiber for scattered light measurement and propagates.
  • the light input efficiency is lower than that through the light converging system, but if the scattering efficiency of the sample itself is high, it is possible to obtain measurement light with sufficient intensity and coherence for practical use.
  • the configuration inside the sample cell is simplified and the cost is reduced. And a highly reliable device can be obtained.
  • the distance between the cladding end faces of the two fibers is selected within a range from about the same as the cladding diameter to about several times the same (Claim 2). By making the distance between the cladding end faces of both fibers close to this level, it is possible to obtain a measuring light having higher intensity and coherence.
  • the incident coupling portion for causing the light from the incident light source to enter the single-mode optical fiber for incidence can be moved back and forth in the direction of the optical axis (claim 3)
  • the ND is placed on the optical path as in the conventional case.
  • continuous and stepless adjustments can be made to adjust the incident light. (Conventionally, only the number of ND filters to be arranged can be adjusted stepwise.) .
  • the light scattering measurement apparatus of the present invention includes an incident single mode optical fiber for irradiating a sample with light, and a scattered light measuring single mode optical fiber for collecting and propagating scattered light.
  • the clad is exposed, and the end face of the exposed clad of one optical fiber and the end face of the other optical fiber are opposed at a predetermined angle in the sample cell (claim 4).
  • the cladding of one optical fiber is exposed, light scattered from within the scattering volume directly enters the single mode optical fiber for scattered light measurement and propagates.
  • the light input efficiency is lower than that through the condensing system, if the scattering efficiency of the sample itself is high, it is possible to obtain measurement light with sufficient intensity and coherence for practical use.
  • the distance between the exposed end surface of the clad of one optical fiber and the end surface of the other optical fiber be a distance selected within a range from about the same as the diameter of the clad to about several times as large as the diameter of the clad. Section 5). This is because by bringing the exposed end face of the clad closer to the end face of the other optical fin so much, it is possible to obtain a measurement light having higher intensity and coherence.
  • the incident coupling portion for causing the light from the incident light source to enter the single-mode optical fiber for incidence can be moved back and forth in the direction of the optical axis (claim 6), the light can be placed on the optical path as in the prior art. Compared to the dimming method using an ND filter, continuous and stepless adjustment can be performed to adjust the incident light.
  • a light collecting means for collecting light is provided on the optical fiber in which the clad is not exposed (claim 7).
  • the provision of the light-gathering means improves the light-incidence efficiency compared to a structure without a light-gathering system, so that even if the scattering efficiency of itself is low, measurement light with sufficient intensity and coherence for practical use is obtained. Obtainable.
  • Examples of the condensing means include a prism and a lens (Claim 8), a structure in which an end face of an optical fiber is cut obliquely to form a reflective film (Claim 9), and a refractive index higher than that of the end face of the optical fiber.
  • a structure in which members are arranged (Claim 10) is conceivable.
  • FIG. 1 is an overall configuration diagram of the light scattering measurement device of the present invention.
  • FIG. 2 is an enlarged view showing a light scattering portion in the cell.
  • Figure 3 shows an optical fiber 4 for incident light and an optical fiber 6 for measuring scattered light in a cell 5. It is a perspective view which shows the structure which opposes and hold
  • FIG. 4 is a specific configuration diagram of the incident light intensity controller 3.
  • FIGS. 5A to 5C are views showing a structure in which the angles of the cladding 24 of the optical fiber 4 for incidence and the cladding 28 of the optical fiber 6 for measuring scattered light are in contact with each other.
  • FIG. 6A is an enlarged view showing a light scattering portion when the clad of one optical fiber is exposed.
  • FIG. 6B is a view showing an arrangement in which the clad 28 of the scattered light measuring optical fiber 6 is exposed, not the incident optical fiber 4, and is in contact with the distal end surface of the incident optical fiber 4. It is.
  • FIG. 6C shows a structure in a case where the cladding 24 of the incident optical fiber 4 is exposed and the distal end face of the scattered light measuring optical fiber 6 is located away from the distal end surface.
  • FIG. 6D shows a state in which the cladding 28 of the scattered light measuring optical fiber 6 is exposed, not the optical fiber 4 for incidence, and is located away from the distal end surface of the optical fiber 4 for incidence.
  • FIG. 7 shows a structure in which the cladding 24 of the optical fiber 4 for incidence is exposed, and the optical fiber 6 for measuring scattered light is provided with a prism 10 for refracting scattered light and a condenser lens 11. It is.
  • FIG. 8 is a diagram showing a structure in which light is collected by using a transparent covering portion 26 of a scattered light measuring optical fiber 6 as a cylindrical lens instead of mounting a prism or a lens.
  • FIG. 9 is a diagram showing a configuration in which a glass rod 13 is attached to the tip end surface of the optical fiber 6 for measuring scattered light to secure a wider incident aperture angle.
  • FIG. 10 is a view showing a glass rod 13 in which a tip 13a is lens-processed. ⁇ Best mode for carrying out the invention>
  • optical fiber single mode optical fiber
  • FIG. 1 is an overall configuration diagram of a light scattering measurement device.
  • the light emitted from the laser device 1 is converged by the lens 2, passes through the incident light intensity controller 3, and enters the incident optical fiber. It is incident on bus 4.
  • the tip of the input optical fiber 4 is inserted into the cell 5 filled with, and the sample is irradiated with laser light from the end.
  • the cell 5 is provided with a scattered light measuring optical fiber 6 at a predetermined angle (for example, about 90 °) with respect to the incident optical fiber 4.
  • the scattered light entering the scattered light measuring optical fiber 6 enters a light receiving element 7 such as a photomultiplier, and the light receiving element 7 measures time-series data. Then, in a processing circuit (not shown), the autocorrelation coefficient of the data is calculated, and the particle size and the like are obtained.
  • FIG. 2 is an enlarged view showing a light scattering portion in the cell 5.
  • the cladding 24 is exposed from the coating portion 22, and the light propagating through the core is radiated from the tip into the inside.
  • the cladding 28 of the scattered light measuring optical fiber 6 is also exposed from the coating portion 26 and faces the cladding 24 of the incident optical fiber 4.
  • the opposing angle 6> is 90 ° in the example of FIG. 2, but is not limited to 90 °, and may be any angle from 0 ° to 180 °. Since the scale (scattering vector) that captures the scattering phenomenon differs depending on the angle measured, more detailed information on molecular motion can be obtained by performing scattering measurements at various angles. However, in general, measurement should be performed only at 90 °. Therefore, part of the light radiated from the tip of the incident optical fiber 4 and scattered by the particles therein is incident on the scattered light measuring optical fiber 6.
  • the light collecting means is not provided at the tip of the optical fiber for incidence 4 or the tip of the optical fiber 6 for measuring scattered light. Therefore, the light B 2 emitted from the tip of the incident optical fiber 4 spreads at a predetermined opening angle, and all the scattered light does not always propagate in the propagating mode in the scattered light measuring optical fiber 6. Absent. However, if the distance between the end faces of the cladding is shortened, the measured scattering volume C becomes a volume of the order of a cylinder of core diameter. It has been confirmed that the intensity of light entering the light receiving element 7 that has propagated through the measuring optical fiber 6 reaches a value sufficient for practical use, and that good coherence can be obtained.
  • the above numerical values are merely examples, and it goes without saying that the present invention is not limited to this.
  • FIG. 3 is a perspective view showing a structure for holding the incident optical fiber 4 and the scattered light measuring optical fiber 6 in the cell 5 (the figure shows the incident optical fiber 4 side).
  • the retainer 23 has double grooves 23 a and 23 b for holding the tip of the optical fiber for incidence 4 where the clad 24 is exposed from the covering part 22.
  • the size of the groove 23 a is adjusted to the cladding 24, and the size of the groove 23 b is adjusted to the coating 22.
  • the holder 23 and the other holder for holding the other scattered light measuring optical fiber 6 are arranged at accurate positions in the cell 5. 8 indicates the core.
  • FIG. 4 is a specific configuration diagram of the incident light intensity controller 3.
  • the light B 1 emitted from the laser device 1 and narrowed down by the lens 2 is applied to the incidence coupling section 32 of the incidence optical fiber 4 (with a lens therein).
  • the light collecting position of the light B 1 is set to a predetermined position (for example, an end face) of the incident coupling section 32, all the light B 1 can be transmitted into the incident optical fiber 4 and propagated.
  • the focus position deviates from the predetermined position, the proportion of light propagating in the incident optical fiber 4 decreases.
  • the mechanism of the movement is not limited. For example, a mechanism using a rack and a gear wheel is exemplified.
  • the incident light intensity can be adjusted without permission without changing the beam system or optical axis of the light in the sample. .
  • the cladding 24 of the optical fiber 4 for incidence and the cladding 28 of the optical fiber 6 for measuring scattered light are close to each other. But did not make contact. However, it is also possible for the end faces of the cladding to contact each other.
  • FIGS. 5A to 5C are diagrams showing a structure in which the exposed cladding 24 of the incident optical fiber 4 and the exposed cladding 28 of the scattered light measuring optical fiber 6 are in contact with each other.
  • the corners of the claddings 24 and 28 may be close to each other, and as shown in FIG. 5B, the core 8 of the incident optical fiber 4 is attached to the scattered light measuring optical fiber.
  • the angle of the cladding 28 of the incident optical fiber 4 may approach the core 9 of the scattered light measuring optical fiber 6 as shown in FIG. 5C. Good.
  • the clads 24 and 28 of both optical fibers were exposed and rotatably placed.
  • FIG. 6A is an enlarged view showing a light scattering portion when the clad of one optical fiber is exposed.
  • the cladding 24 of the optical fiber 4 for incidence is exposed from the coating portion 22, and the light propagating through the core is irradiated into the sample from the tip.
  • the end surface of the scattered light measuring optical fiber 6 is in contact with the cladding 24 of the incident optical fiber 4 in a state where the cladding 28 is not exposed.
  • FIG. 6B is a view showing an arrangement in which the cladding 28 of the scattered light measuring optical fiber 6 is exposed, not the incident optical fiber 4, and is in contact with the distal end surface of the incident optical fiber 4. It is.
  • FIG. 6C shows a structure in which the cladding 24 of the incident optical fiber 4 is exposed, and is located away from the tip end surface of the scattered light measuring optical fiber 6.
  • FIG. 6D shows a state in which the clad 28 of the scattered light measuring optical fiber 6 is exposed, not the incident optical fiber 4, and is located away from the distal end surface of the incident optical fiber 4.
  • the opposing angle 6> is 90.
  • the angle is not limited to 90 °, but is 0 ° to 180 °.
  • the scale scattering vector
  • more detailed information on the motion can be obtained by performing scattering measurements at various angles.
  • measurement is performed only at 90 °.
  • 6A to 6D in order to further improve the light collection efficiency, it is preferable to adopt a structure for collecting light in one of the optical fibers that does not expose the clad.
  • Figures 7, 8, and 9 show a structure in which the cladding of one optical fiber is exposed and the cladding of the other optical fiber is not exposed, but instead the light is focused on the other optical fiber. It is a figure showing the adopted form.
  • FIG. 7 is a diagram showing a structure in which the clad 24 of the optical fiber 4 for incidence is exposed, and the optical fiber 6 for measuring scattered light is provided with a prism 10 for refracting scattered light and a condenser lens 11. It is.
  • the light from the scattered light is refracted by the prism 10 and collected by the condenser lens 11, and is incident on the scattered light measuring optical fiber 6, so that the scattered light can be collected from a relatively wide range. Therefore, the efficiency of light scattering measurement can be increased as compared with the embodiments of FIGS. 1, 5 and 6, which is effective when the sample concentration is low. Further, the same effect can be obtained by using the optical fiber 6 for incidence and using the optical fiber 4 for light reception.
  • FIG. 8 is a diagram showing a structure in which light is collected by using a transparent covering portion 26 of a scattered light measuring optical fiber 6 as a cylindrical lens instead of mounting a prism or a lens.
  • the end face 12 of the optical fiber 6 for measuring scattered light is cut diagonally, and a metal such as aluminum is deposited.
  • the configuration since there is no need to mount a prism or a lens, the configuration is simpler than that of the configuration in FIG. 8, which is advantageous in terms of space and cost.
  • FIG. 9 is a diagram showing a configuration in which a glass rod 13 having a higher refractive index than that of the solution is attached to the tip surface of the scattered light measuring optical fiber 6 to secure a wider incident aperture angle.
  • the tip of the glass load 13 is It is preferable to perform lens processing as shown by 13a.
  • FIGS. 7, 8 and 9 the structure for condensing light toward the scattered light measuring optical fiber 6 is adopted.However, the present invention is not limited to this.
  • a light-collecting member may be provided on the optical fiber 4 for use to expose the cladding of the optical fiber 6 for measuring scattered light.
  • Various other changes can be made within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明 細 書 - 光散乱測定装置
<技術分野 >
本発明は、 試料に光を照射し、 散乱体積内から散乱される光を検出するこ とにより光散乱測定を行う光散乱測定装置に関するものである。
ぐ背景技術 >
光散乱測定装置は、 流体中に存在する粒子の動き (ブラウン運動) による 散乱光の経時変化を測定する装置である。
従来の光散乱測定装置では、 ,流体の入つた直方体のセルに対してレン ズで絞ったレーザ光を照射し、 9 0 ° の角度を持たせたビンホール系にて散 乱体積を限定し、 その散乱光をフォトマルチプライヤ等の受光素子で測定し ていた。
この光散乱測定装置は、 セル内の光路長が長いので、 濃厚な溶液を試料と して使うと、 入射光及び散乱光が多重散乱し、 正確な時系列データを取得で きない。
そこで、 例えば特表平 2-502482号公報 (W088/07179 )に示されるように、 入射シングルモ一ド光ファイバと受光シングルモ一ド光ファイバとの端面同 士を、 セル内で、 所定角度で対峙させ、 しかも端面同士の距離を近接させた 光散乱測定装置が提案されている。
ところが、 前記の光散乱測定装置では、 シングルモード光ファイバの端面 に微小なレンズを設けていて、 特定の角度で入射する光以外の光をカットし ている。
このため、 測定効率を良好にすることができ、 かつ不要な角度で入射する 光によるノィズ分を遮断できる反面、 シングルモード光フアイパの端面に微 小なレンズを設けるための構造が必要となり、 これが、 シングルモード光フ アイバの構造を複雑にし、 コストを上げる要因となっていた。
<発明の開示 >
本発明は、 シングルモード光ファイバ同士を所定の角度で接近して対峙さ せる構造の光散乱測定装置において、 よりシンプルで信頼性の高い構成で、 散乱光強度を測定することのできる光散乱測定装置を実現することを目的と する。
本発明の光散乱測定装置は、 試料に光を照射する入射用シングルモード光 ファイバと、 散乱光を集めて伝搬させる散乱光測定用シングルモード光ファ イノ、'とを備え、 試料セル内で、 両シングルモード光ファイバの露出したクラ ヅドの端面同士を所定の角度をもって対向させているものである(請求項 1 )。 この場合、 両シングルモード光ファイバの露出したクラヅドの端面同士を、 レンズ等の集光系を介さずに、 直接向き合わせていることが特徴である。 こ の構成によれば、 散乱体積内から散乱された光は、 直接、 散乱光測定用シン グルモード光ファイバに入光し伝搬する。 入光効率は、 集光系を介する場合 よりも落ちるが、 試料自体の散乱効率が高いものであれば、 実用上十分な強 度とコヒ一レンスをもつた測定光を得ることができる。
また、入射用光ファイバと、散乱光測定用光ファイバとのクラッド端面同士 を、 レンズ等の集光系を介さずに、 直接向き合わせているので、 試料セル内 の構成が簡易になり、 安価で信頼性の高い装置とすることができる。
両ファイバのクラッド端面間の距離は、 クラヅド直径と同程度から、 その 数倍程度までの範囲内で選ばれた距離であることが望ましい(請求項 2 )。両 ファイバのクラヅド端面間をこの程度近づけることにより、 一層強い強度と コヒ一レンスをもった測定光を得ることができるからである。
また、 入射光源からの光を入射用シングルモード光ファイバに入射させる ための入射結合部が、光軸の方向に前後移動可能であれば(請求項 3 )、従来 のように、 光路上に N Dフィルターを配置する減光方式と比べて、 入射光を 調節するのに、 連続的で無段階の調節が行える (従来では、 配置する NDフ ィルタの数だけの段階的な調整しか行えなかった)。
本発明の光散乱測定装置は、 試料に光を照射する入射用シングルモード光 ファイバと、 散乱光を集めて伝搬させる散乱光測定用シングルモード光ファ ィバとを備え、 一方のシングルモード光ファイバのクラッドを露出し、 試料 セル内で、 一方の光ファイバの露出したクラヅドの端面と他方の光ファイバ の端面とを所定の角度をもって対向させていることを特徴とする(請求項 4 )。 この構成によれば、 一方の光ファイバのクラッドを露出させているので、 散乱体積内から散乱された光は、 直接、 散乱光測定用シングルモード光ファ ィバに入光し伝搬する。 入光効率は、 集光系を介する場合よりも落ちるが、 試料自体の散乱効率が高いものであれば、 実用上十分な強度とコヒ一レンス をもった測定光を得ることができる。
また、 一方の光ファイバの露出したクラッドの端面と他方の光ファイバの 端面との距離は、 クラッド直径と同程度からその数倍程度までの範囲内で選 ばれた距離にすることが好ましい(請求項 5 )。露出したクラッドの端面を、 他方の光ファイノ の端面にこの程度近づけることにより、 一層強 、強度とコ ヒーレンスをもつた測定光を得ることができるからである。
また、 入射光源からの光を入射用シングルモ一ド光ファイバに入射させる ための入射結合部が、光軸の方向に前後移動可能であれば(請求項 6 )、従来 のように、 光路上に NDフィルターを配置する減光方式と比べて、 入射光を 調節するのに、 連続的で無段階の調節が行える。
クラッドを露出させていない方の光ファイバに光を集光する集光手段が 設けられていることが好ましい (請求項 7 )。
集光手段を設けると、 集光系のない構造に比べて、 入光効率は向上するの で、 自体の散乱効率が低いものでも、 実用上十分な強度とコヒ一レンス をもつた測定光を得ることができる。
前記集光手段の例として、 プリズムとレンズ (請求項 8 )、 光ファイバの 端面を斜めにカットし反射膜を形成した構造(請求項 9 )、光ファイバの端面 に、 よりも屈折率の高い部材を配置した構造 (請求項 1 0 ) が考えられ る。
試料よりも屈折率の高い部材を配置するは、 レンズ加工されたものが好ま しい (請求項 1 l )o
<図面の簡単な説明 >
図 1は、 本発明の光散乱測定装置の全体構成図である。
図 2は、 セル内の光散乱部分を示す拡大図である。
図 3は、 入射用光ファイバ 4、 散乱光測定用光ファイバ 6をセル 5の中で 対向させ保持する構造を示す斜視図である。
図 4は、 入射光強度調節器 3の具体的な構成図である。
図 5 A〜図 5 Cは、 入射用光ファイバ 4のクラヅド 2 4と、 散乱光測定用 光ファイバ 6のクラッド 2 8との角を互いに接触させた構造を示す図である。 図 6 Aは、 一方の光ファイバのクラッドを露出させた場合の、 光散乱部分 を示す拡大図である。
図 6 Bは、 入射用光ファイバ 4でなく、 散乱光測定用光ファイバ 6のクラ ヅド 2 8が露出されていて、 入射用光ファイバ 4の先端面に接触している配 置を示す図である。
図 6 Cは、 入射用光ファイバ 4のクラッド 2 4が露出されていて、 散乱光 測定用光ファイバ 6の先端面と、 離れて配置されている場合の構造を示す図 e¾>る。
図 6 Dは、 入射用光ファイバ 4でなく、 散乱光測定用光ファイバ 6のクラ ヅド 2 8が露出されていて、 入射用光ファイバ 4の先端面と、 離れて配置さ れている状態を示す図である。
図 7は、 入射用光ファイバ 4のクラッド 2 4が露出されていて、 散乱光測 定用光ファイバ 6に、 散乱光を屈折させるプリズム 1 0と集光レンズ 1 1を 設けた構造を示す図である。
図 8は、 プリズムやレンズを実装する代わりに、 散乱光測定用光ファイバ 6の透明な被覆部 2 6をシリンドリカルレンズとして用いて、 集光する構造 を示す図である。
図 9は、 散乱光測定用光ファイバ 6の先端面にガラスロヅド 1 3を取り付 けて、 より広い入射開口角を確保する構成を示す図である。
図 1 0は、 先端 1 3 aをレンズ加工したガラスロヅド 1 3を示す図である。 <発明を実施するための最良の形態 >
以下「シングルモード光ファイバ」のことを、 単に「光ファイバ」 という。 —第 1の形態—
図 1は、 光散乱測定装置の全体構成図である。 レーザ装置 1から照射され た光は、 レンズ 2で絞られ、 入射光強度調節器 3を通して、 入射用光フアイ バ 4に入射される。 入射用光ファイバ 4の先は を満たしたセル 5に挿入 され、 その末端からレーザ光が試料に照射される。
セル 5には、 入射用光ファイバ 4と所定 (例えば約 9 0 ° ) の角度を持つ て、 散乱光測定用光ファイバ 6が設置されている。 散乱光測定用光ファイバ 6に入った散乱光は、 フォトマルチブライヤ等の受光素子 7に入り、 受光素 子 7において時系列データが測定される。 そして、 図示しない処理回路にお いて、 そのデータの自己相関係数が計算され、 粒子サイズ等が求められる。 図 2は、 セル 5内の光散乱部分を示す拡大図である。 入射用光ファイバ 4 は、 被覆部 2 2からクラッド 2 4が露出されていて、 その先端から、 コアを 伝搬してきた光が^中に照射される。また、散乱光測定用光ファイバ 6も、 被覆部 2 6からクラッド 2 8が露出され、 入射用光ファイバ 4のクラッド 2 4と対向している。対向角 6>は、図 2の例では、 9 0 ° としているが、 9 0 ° に限定されるものではなく、 0 ° 〜1 8 0 ° の任意に角度にすることができ る。 測定する角度によって散乱現象を捉えるスケール (散乱ベクトル) が異 なるため、 種々の角度において散乱測定を行えば、 分子運動に関するより詳 細な情報が得られる。 ただし、 一般的には、 9 0 ° のみにおいて測定を行う。 したがって、 入射用光ファイバ 4の先端から照射され 中の粒子により 散乱された光の一部が散乱光測定用光ファイバ 6に入射される。
本発明では、 入射用光ファイノ 4の先端や散乱光測定用光フアイバ 6の先 端には集光手段が付いていない。 したがって、 入射用光ファイバ 4の先端か ら照射される光 B 2は所定の開口角で広がるし、 また、 散乱光がすべて散乱 光測定用光ファイバ 6の中の伝搬可能モードで伝搬するとは限らない。 しか し、 クラッドの端面同士の距離を短くすれば、 測定散乱体積 Cはコア径サイ ズの円柱程度の体積となり、 散乱効率のよい試料 (例えばサブミクロンサイ ズの粒子) を使えば、 散乱光測定用光ファイバ 6を伝搬した受光素子 7に入 る光の強度は、 実用上十分な値に達し、 コヒ一レンスのよいデ一夕が得られ ることを確認している。
ここで、 具体的な数値をあげると、 入射用光ファイバ 4、 散乱光測定用光 ファイノ、' 6ともに、 コアの直径は 4〃m、 クラッドの直径は 1 2 5〃m、 被 覆部の直径は 9 0 0〃m、 開口数 NA= 0 . 1、 入射用光ファイバ 4のクラ ッド端面から測定散乱 までの距離 L 1 は高々 5 0 0 111程度、 測定散 乱体積 Cから散乱光測定用光ファイバ 6のクラッド端面までの距離 L 2は 高々 5 0 0程度/ である。 以上の数値は、 一例であり、 本発明がこれに限 定されないことは勿論である。
図 3は、 入射用光ファイバ 4、 散乱光測定用光ファイバ 6をセル 5の中で 保持する構造を示す斜視図である (図では入射用光ファイバ 4の側を示して いる)。保持器 2 3は、被覆部 2 2からクラヅド 2 4が露出された、入射用光 ファイバ 4の先端部を保持するために、 二重の溝 2 3 a, 2 3 bを有してい る。 溝 2 3 aの大きさはクラッド 2 4に合わせてあり、 溝 2 3 bの大きさは 被覆部 2 2に合わせている。 この保持器 2 3と、 もう一方の散乱光測定用光 ファイバ 6を保持する保持器とを、 セル 5の中に正確な位置に配置する。 な お、 8はコアを示している。
図 4は、 入射光強度調節器 3の具体的な構成図である。 レーザ装置 1から 照射されレンズ 2で絞られた光 B 1は、 入射用光ファイバ 4の入射結合部 3 2 (このなかにレンズが入っている) に照射される。 この場合、 光 B 1の集 光位置を、 入射結合部 3 2の所定位置 (例えば端面) に合わせれば、 光 B 1 をすベて入射用光ファイバ 4の中に入れて伝搬させることができるが、 集光 位置が所定位置からずれると、 入射用光ファイバ 4の中を伝搬する光の割合 は、 減少してくる。
そこで、 入射結合部 3 2を前後に平行移動させることとし、 このため、 入 射結合部 3 2を移動台 3 3に固定し、 この移動台 3 3をつまみ 3 4の回転で 移動させるようにした。 移動の機構は、 限定されないが、 例えばラックと歯 車を使ったものが例示される。
このように入射用光ファイバ 4に導かれる光の量を変化させることにより、 試料中の光のビーム系や光軸を変えることなく、 入射光強度を無断解、 連続 的に調整することができる。
以上の第 1の形態において、 図 2に示したように、 入射用光ファイバ 4の クラッド 2 4と、 散乱光測定用光ファイバ 6のクラッド 2 8とは、 接近して いるが、 接触はしていなかった。 しかし、 クラッドの端面同士を接触させる ことも可能である。
図 5 A〜図 5 Cは、 入射用光ファイバ 4の露出したクラッド 2 4と、 散乱 光測定用光ファイバ 6の露出したクラヅド 2 8とを互いに接触させた構造を 示す図である。 図 5 A に示すように互いにクラッド 2 4, 2 8の角 (かど) を接近させてもよく、図 5 B に示すように、入射用光ファイバ 4のコア 8に、 散乱光測定用光ファイバ 6のクラヅ ド 2 8の角を接近させてもよく、 図 5 C に示すように散乱光測定用光ファイバ 6のコア 9に、 入射用光フアイパ 4の クラヅド 2 4の角を接近させてもよい。
一第 2の形態一
以上の第 1の形態は、 図 2、 図 5に示すように、 両光ファイバのクラヅ ド 2 4, 2 8をむき出しにして酉己置したものであった。
しかし、 一方の光ファイバのクラヅドを露出させ、 他方の光ファイバのク ラッドを露出させない構造をとることもできる。
図 6 Aは、 一方の光ファイバのクラッドを露出させた場合の、 光散乱部分 を示す拡大図である。 入射用光ファイバ 4は、 被覆部 2 2からクラッド 2 4 が露出されていて、 その先端から、 コアを伝搬してきた光が試料中に照射さ れる。 散乱光測定用光ファイバ 6の先端面は、 クラッド 2 8が露出されてい ない状態で、 入射用光ファイバ 4のクラッド 2 4と、 接触している。
図 6 Bは、 入射用光ファイバ 4でなく、 散乱光測定用光ファイバ 6のクラ ッド 2 8が露出されていて、 入射用光ファイバ 4の先端面に接触している配 置を示す図である。
図 6 Cは、 入射用光ファイバ 4のクラッド 2 4が露出されていて、 散乱光 測定用光ファイバ 6の先端面と、 離れて配置されている場合の構造を示す。 図 6 Dは、 入射用光ファイバ 4でなく、 散乱光測定用光ファイバ 6のクラ ヅ ド 2 8が露出されていて、 入射用光ファイバ 4の先端面と、 離れて配置さ れている状態を示す図である。
これらの構造において、 入射用光ファイバ 4の先端から照射され試料中の 粒子により散乱された光の一部が散乱光測定用光ファイバ 6に入射される。 図 6 A〜図 6 Dにおいて、 対向角 6>を 9 0。 としているが、 9 0 ° に限定 されるものではなく、 0 ° 〜1 8 0。 の任意に角度にすることができる。 測 定する角度によって散乱現象を捉えるスケール (散乱ベクトル) が異なるた め、 種々の角度において散乱測定を行えば、 分^^動に関するより詳細な情 報が得られる。 ただし、 一般的には、 9 0 ° のみにおいて測定を行う。 前記図 6 A〜図 6 Dの形態で、 集光効率をさらによくしょうとすれば、 ク ラッドを露出させない一方の光ファイバにおいて、 光を集光する構造を採用 することが好ましい。
図 7、 図 8及び図 9は、 一方の光ファイバのクラヅドを露出させることと し、 他方の光ファイバのクラヅドを露出させないで、 その代わりに他方の光 ファイバに、 光を集光する構造を採用した形態を示す図である。
図 7は、 入射用光ファイバ 4のクラヅド 2 4が露出されていて、 散乱光測 定用光ファイバ 6に、 散乱光を屈折させるプリズム 1 0と集光レンズ 1 1を 設けた構造を示す図である。
散乱 からの光は、 プリズム 1 0で屈折され集光レンズ 1 1で集光さ れ、 散乱光測定用光ファイバ 6に入射されるので、 比較的広い範囲から散乱 光を集めることができる。 したがって、 図 1、 図 5、 図 6の実施例と比べて、 光散乱測定の効率を高めることができるので、 試料濃度が薄い場合に有効で ある。 また、 光ファイバ 6を入射用、 光ファイバ 4を受光用として用いてる 同様の効果が得られる。
図 8は、 プリズムやレンズを実装する代わりに、 散乱光測定用光ファイバ 6の透明な被覆部 2 6をシリンドリカルレンズとして用いて、 集光する構造 を示す図である。 散乱光測定用光ファイバ 6の先端面 1 2は斜めにカツトさ れ、 アルミニウムなどの金属を蒸着している。
この構成によれば、 プリズムやレンズの実装が不要なので図 8の構成より も簡易になり、 スペース面、 コスト面で有利になる。
図 9は、 散乱光測定用光ファイバ 6の先端面に、 知りよう溶液よりも屈折 率の高いガラスロッド 1 3を取り付けて、 より広い入射開口角を確保する構 成を示す図である。 ガラスロヅド 1 3の先端は、 図 1 0に示すように、 符号 1 3 aで示すようにレンズ加工することが好ましい。
前記図 7、 図 8及び図 9では、 散乱光測定用光ファイバ 6の方に光を集光 する構造を採用していたが、 本発明は、 これに限定されるものではなく、 例 えば入射用光フアイバ 4の方に集光部材を設け、 散乱光測定用光フアイパ 6 のクラッドを露出させてもよい。 その他本発明の範囲内で種々の変更を施す ことができる。

Claims

請 求 の 範 囲 .
1 . 試料に光を照射し、 散乱 内から散乱される光を検出することによ り光散乱測定を行う光散乱測定装置において、
試料に光を照射する入射用シングルモード光ファイバと、 散乱光を集めて 伝搬させる散乱光測定用シングルモード光ファイバとを備え、^ セル内で、 両シングルモード光ファイバの露出したクラッドの端面同士を所定の角度を もって対向させていることを特徴とする光散乱測定装置。
2 . 両ファイバのクラッド端面間の距離は、 クラッド直径と同程度からそ の数倍程度までの範囲内で選ばれた距離であることを特徴とする請求項 1記 載の光散乱測定装置。
3 . 入射光源からの光を入射用シングルモ一ド光ファイノ に入射させるた めの入射結合部が、 光軸の方向に前後移動可能であることを特徴とする請求 項 1記載の光散乱測定装置。
4 . 試料に光を照射し、 散乱体積内から散乱される光を検出することによ り光散乱測定を行う光散乱測定装置において、
試料に光を照射する入射用シングルモード光ファイバと、 散乱光を集めて 伝搬させる散乱光測定用シングルモード光ファイバとを備え、 一方のシング ルモード光ファイバのクラッドを露出し、 試料セル内で、 一方の光ファイバ の露出したクラッドの端面と他方の光ファイバの端面とを所定の角度をもつ て対向させていることを特徴とする光散乱測定装置。
5 . 一方の光ファイバの露出したクラッドの端面と他方の光ファイバの端 面との距離は、 クラッド直径と同程度からその数倍程度までの範囲内で選ば れた距離であることを特徴とする請求項 4記載の光散乱測定装置。
6 . 入射光源からの光を入射用シングルモード光ファイバに入射させるた めの入射結合部が、 光軸の方向に前後移動可能であることを特徴とする請求 項 4記載の光散乱測定装置。
7 . クラッドを露出させていない方の光ファイバに光を集光する集光手段 が設けられていることを特徴とする請求項 4記載の光散乱測定装置。
8 . 前記集光手段は、 プリズムとレンズである請求項 7記載の光散乱測定
9 , 前記集光手段は、 光フアイバの端面を斜めに力ットし反射膜を形成し た構造である請求項 7記載の光散乱測定装置。
1 0. 前記集光手段は、 光ファイバの端面に、 試料よりも屈折率の高い部材 を配置した構造である請求項 7記載の光散乱測定装置。
1 1 . 試料よりも屈折率の高い部材は、 レンズ加工されている請求項 1 0記 載の光散乱測定装置。
PCT/JP1999/006376 1998-11-24 1999-11-15 Instrument de mesure de la diffusion de la lumiere WO2000031514A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000584278A JP4054178B2 (ja) 1998-11-24 1999-11-15 光散乱測定装置
EP99972735A EP1134578A4 (en) 1998-11-24 1999-11-15 MEASURING DEVICE FOR LIGHT DISTRIBUTION
HK02102027.1A HK1040286A1 (zh) 1998-11-24 2002-03-15 用以測量光散射的儀器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/333130 1998-11-24
JP33313098 1998-11-24

Publications (1)

Publication Number Publication Date
WO2000031514A1 true WO2000031514A1 (fr) 2000-06-02

Family

ID=18262637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006376 WO2000031514A1 (fr) 1998-11-24 1999-11-15 Instrument de mesure de la diffusion de la lumiere

Country Status (6)

Country Link
EP (1) EP1134578A4 (ja)
JP (1) JP4054178B2 (ja)
KR (1) KR100647749B1 (ja)
HK (1) HK1040286A1 (ja)
TW (1) TWM262704U (ja)
WO (1) WO2000031514A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750967B2 (en) 2001-03-01 2004-06-15 Otsuka Electronics Co., Ltd. Light scattering measuring probe
US8101140B2 (en) 2008-02-26 2012-01-24 Battelle Memorial Institute Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels
CN108535673A (zh) * 2018-04-13 2018-09-14 中国计量科学研究院 一种基于磁共振成像的光散射测量装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843197B1 (fr) 2002-08-01 2005-08-05 Usinor Procede et dispositif de mesure en ligne de caracteristiques d'un revetement de surface d'un produit metallurgique.
KR101297246B1 (ko) * 2010-10-01 2013-08-20 주식회사 한비세트론 면역응집 산란광 및 자체발광 형광 바이오칩 측정장치
CN109142180B (zh) * 2018-07-13 2021-08-13 南京中医药大学 光学纳米结构探针及单细胞胶体渗透压检测平台及制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190254A (en) * 1981-05-20 1982-11-22 Inoue Japax Res Inc Probe for turbidity gauge
JPS62245944A (ja) * 1986-04-18 1987-10-27 Fuji Photo Film Co Ltd 濃度測定用光源装置
JPS6312939A (ja) * 1986-07-04 1988-01-20 Sumitomo Electric Ind Ltd 空間結合型センサ
WO1988007179A1 (en) * 1987-03-12 1988-09-22 The Secretary Of State For Defence In Her Britanni Dynamic light scattering apparatus
US4801203A (en) * 1984-05-18 1989-01-31 Sharp Kabushiki Kaisha Detector of impurities in molten solder
JPH0266429A (ja) * 1988-09-01 1990-03-06 Hamamatsu Photonics Kk 横方向光透過測定器
JPH0546880A (ja) * 1991-08-14 1993-02-26 Hochiki Corp 炎検出装置
JPH08261928A (ja) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk 濁度検出器
US5771091A (en) * 1994-12-07 1998-06-23 Phone-Or Ltd Sensor and a method for measuring distances to, and/or physical properties of, a medium
WO1998045682A1 (en) * 1997-04-07 1998-10-15 Laser Sensor Technology, Inc. A system for acquiring an image of a multi-phase fluid by measuring backscattered light

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155549A (en) * 1990-10-25 1992-10-13 The Research Of State University Of New York Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques
US5284149A (en) * 1992-01-23 1994-02-08 Dhadwal Harbans S Method and apparatus for determining the physical characteristics of ocular tissue
US5815611A (en) * 1995-08-11 1998-09-29 The Research Foundation Of State University Of New York Method and apparatus for submicroscopic particle sizing, and probe therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190254A (en) * 1981-05-20 1982-11-22 Inoue Japax Res Inc Probe for turbidity gauge
US4801203A (en) * 1984-05-18 1989-01-31 Sharp Kabushiki Kaisha Detector of impurities in molten solder
JPS62245944A (ja) * 1986-04-18 1987-10-27 Fuji Photo Film Co Ltd 濃度測定用光源装置
JPS6312939A (ja) * 1986-07-04 1988-01-20 Sumitomo Electric Ind Ltd 空間結合型センサ
WO1988007179A1 (en) * 1987-03-12 1988-09-22 The Secretary Of State For Defence In Her Britanni Dynamic light scattering apparatus
JPH0266429A (ja) * 1988-09-01 1990-03-06 Hamamatsu Photonics Kk 横方向光透過測定器
JPH0546880A (ja) * 1991-08-14 1993-02-26 Hochiki Corp 炎検出装置
US5771091A (en) * 1994-12-07 1998-06-23 Phone-Or Ltd Sensor and a method for measuring distances to, and/or physical properties of, a medium
JPH08261928A (ja) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk 濁度検出器
WO1998045682A1 (en) * 1997-04-07 1998-10-15 Laser Sensor Technology, Inc. A system for acquiring an image of a multi-phase fluid by measuring backscattered light

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1134578A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750967B2 (en) 2001-03-01 2004-06-15 Otsuka Electronics Co., Ltd. Light scattering measuring probe
US8101140B2 (en) 2008-02-26 2012-01-24 Battelle Memorial Institute Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels
CN108535673A (zh) * 2018-04-13 2018-09-14 中国计量科学研究院 一种基于磁共振成像的光散射测量装置

Also Published As

Publication number Publication date
EP1134578A4 (en) 2002-04-10
KR20010101024A (ko) 2001-11-14
KR100647749B1 (ko) 2006-11-24
EP1134578A1 (en) 2001-09-19
TWM262704U (en) 2005-04-21
JP4054178B2 (ja) 2008-02-27
HK1040286A1 (zh) 2002-05-31

Similar Documents

Publication Publication Date Title
CN105705936B (zh) 用于表征弯曲的零件的棱镜耦合系统和方法
JP2911877B2 (ja) 懸濁液の散乱光或いは蛍光を検出するためのファイバー検出器
US4645340A (en) Optically reflective sphere for efficient collection of Raman scattered light
US6885808B2 (en) Optical probe and optical pick-up apparatus
JP5728470B2 (ja) 粒子に作用する光学力を測定する方法および装置
JPH08505951A (ja) 光学センサ表面に位置する物質を分析する装置
WO2000031514A1 (fr) Instrument de mesure de la diffusion de la lumiere
US5859705A (en) Apparatus and method for using light scattering to determine the size of particles virtually independent of refractive index
CN208588673U (zh) 低光谱背景的拉曼光纤微型探头
Pearman et al. Multipass capillary cell for enhanced Raman measurements of gases
US7151602B2 (en) Particle size distribution analyzer
JP4563600B2 (ja) 光散乱測定プローブ
Schelle et al. Physical characterization of lightguide capillary cells
CN108982467A (zh) 低光谱背景的拉曼光纤微型探头
WO1991014935A1 (en) A method and an apparatus for cleaning control
CN111537414A (zh) 一种液体光学腔增强测量系统
WO2010007811A1 (ja) 光学ユニット
JPH11211990A (ja) 全反射照明型顕微鏡装置および試料ステージ
JPH10267846A (ja) レーザ照射/取り込み光学装置
US4839528A (en) Particle analyzing apparatus using an afocal light beam
JP2006098289A (ja) 全反射吸収測定用プリズムおよびこれを用いた全反射吸収測定装置
JPH09257697A (ja) 表面プラズモン共鳴センサ装置
JPH0478938B2 (ja)
JP3249993B2 (ja) 光学的測定装置
JPS61110035A (ja) 測光分析用光学システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09831667

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 584278

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017006217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999972735

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999972735

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017006217

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999972735

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017006217

Country of ref document: KR