WO2000029737A1 - Moteur aeronautique thermique a difference negative de temperature - Google Patents

Moteur aeronautique thermique a difference negative de temperature Download PDF

Info

Publication number
WO2000029737A1
WO2000029737A1 PCT/CN1999/000188 CN9900188W WO0029737A1 WO 2000029737 A1 WO2000029737 A1 WO 2000029737A1 CN 9900188 W CN9900188 W CN 9900188W WO 0029737 A1 WO0029737 A1 WO 0029737A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
air
heat
evaporator
liquid
Prior art date
Application number
PCT/CN1999/000188
Other languages
English (en)
French (fr)
Inventor
Yuanming Yi
Original Assignee
Yuanming Yi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuanming Yi filed Critical Yuanming Yi
Priority to AU11472/00A priority Critical patent/AU1147200A/en
Publication of WO2000029737A1 publication Critical patent/WO2000029737A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines

Definitions

  • the present invention relates to an aviation thermal engine, and in particular to a negative temperature difference aviation thermal engine that utilizes the energy possessed by the negative temperature difference between natural and normal temperature air in an artificial low-temperature environment.
  • the object of the present invention is to provide a new negative temperature difference aviation thermal engine, which uses the energy of the temperature difference between the artificially manufactured low temperature environment and the heat in the high-heat and high-density air stream compressed by the turbine fan blades as power, and It mainly uses the movable nozzle that can arbitrarily choose the jet direction to spray high-pressure air to generate reverse thrust. It provides an aviation aircraft with no need to burn oil, no fixed airport and runway, no restrictions on fuel flight time and distance, and can lift freely. New engine. Brief description of the invention
  • a negative temperature difference aviation thermal engine Its basic components are similar to that of a thermal steam engine using water as the working medium.
  • a multi-stage refrigeration cycle using pure phase-change athermal refrigeration technology includes a refrigeration compressor, a condenser, and a throttle.
  • a first-stage vapor compression refrigeration cycle device consisting of an evaporator and an evaporator, which provides original refrigeration capacity, a subcooled liquid working fluid condensing plate, a second-stage liquid refrigeration working fluid, and a first heat-preserving pressure vessel in which all the above components are provided.
  • working medium pump including intermediate N-class heat preservation pressure vessel equipped with intermediate cooling evaporator, subcooled liquid working medium condensation plate and liquid cooling working medium, together with working medium pump;
  • It also includes a terminal heat-preserving pressure vessel equipped with an intermediate N-stage refrigeration evaporator and a subcooled liquid working fluid condensing plate.
  • a heat exchanger and a high-pressure working fluid pump are installed at the lower part of the heat-preserving pressure vessel at the end.
  • the lower part is filled with liquid air, so that the heat exchanger is immersed in the liquid air.
  • the refrigerant in the final phase change refrigeration cycle is liquid air, and the refrigerant in each stage of the first phase change refrigeration cycle to the last phase change refrigeration cycle is evaporated.
  • the temperature increases in stages, and the evaporation temperature of the first-stage refrigerant is the lowest.
  • the above part is used as the auxiliary device of the engine, and the present invention also includes the main device of the engine;
  • the main engine device includes a heat exchange cavity composed of a structural circular shell, a structural partition and a heat insulation layer.
  • a turbine fan blade installed in the heat exchange cavity is an evaporator that absorbs heat from liquid air and vaporizes it into high-pressure air.
  • Turbine fan blades are installed in parallel with the turboexpander and generator installed outside the other side of the structural partition, which allows high-pressure air to work through the depressurizing turbine, and high-pressure heat exchange coils surrounding the periphery of the structural circular shell
  • the turbine fan blades are installed coaxially with the turboexpander through the shaft.
  • the evaporator is located between the turbofan blades and the turboexpander.
  • the evaporator, turboexpander, and high-pressure heat exchange coil condense the low-temperature air into The end of the liquid air keeps the condensing space in the pressure vessel and the high-pressure working medium pump re-entering the liquid air into the evaporator, thereby forming a thermal vapor work cycle; a thermal cycle, the thermal vapor work cycle is driven through the high-pressure air.
  • the flat expander works to provide power for the powerful operation of the turbine fan blades to compress natural air flow and the operation of small generators.
  • Turbo fans Heat generating sheet of high density compressed air by natural air flow strength, on the one hand to heat the vapor phase change for power for power thermodynamic cycle of the circulating air flow in the liquid air vaporizing Nature
  • To provide high-pressure air to provide heat on the other hand to provide forward thrust for the aircraft, while using the axial thrust of the turboexpander to provide forward thrust for the aircraft;
  • the main engine device is provided with a high-pressure air movable nozzle and a first high-pressure gas pipe connected thereto, and a directional valve connected by the first high-pressure gas pipe.
  • the flat expander is connected, and the fork is connected to the evaporator in the heat exchange chamber through a third high-pressure gas pipe;
  • the main engine device is provided with a thermal insulation short pipe and a gas pipe connected to the evaporator at the structural partition.
  • the natural air coming from the windward side of the aircraft flows through the turbine fan blades to be strongly compressed and extracted and enters the heat exchange cavity. After being cooled by heat exchange with the evaporator, it enters the heat exchanger located at the lower end of the heat insulation pressure vessel through the heat insulation short pipe and the gas pipe.
  • the invention is composed of an engine auxiliary device and an engine main device, adopts a pure phase-change athermal refrigeration technology, implements a multi-stage phase-change refrigeration cycle, and produces a large amount of cryogenic cooling capacity with a high cooling efficiency, and reuses the above-mentioned cooling capacity multiple times.
  • the low-temperature air after liquefaction of the turbine and the low-temperature natural air after repeated cooling are pumped into the high-pressure heat exchange coils and the evaporator in the heat exchange chamber by a high-pressure working medium pump.
  • the liquid air After the liquid air initially absorbs heat from the natural flowing air, it can fully exchange heat with the high-heat and high-density air stream compressed by the turbine fan blades, and quickly vaporize it into high-pressure air; part of the high-pressure air is used to drive the turboexpander, allowing It provides power for driving turbine fan blades and small generators; another part of the high-pressure air is jetted through the movable nozzle in the direction opposite to the forward direction set by the aircraft, thereby generating flight power; meanwhile, the thrust of the turbine fan blades and the turbine expansion are used The aircraft's axial thrust is used as flight power.
  • FIG. 1 is a schematic structural diagram of a subsidiary device of a negative temperature difference aviation thermal engine.
  • FIG. 2 is a schematic structural diagram of a main device of the engine. Description of the embodiments
  • a refrigeration compressor 1, a condenser 2, a throttle 4, and an evaporator 6 are installed in a first heat-preserving and pressure vessel 8, and a first-stage refrigerant is injected therein to form a first-stage vapor compression refrigeration cycle to provide original refrigeration. the amount.
  • the lower portion of the first heat preservation pressure vessel 8 is filled with a liquid refrigerant working medium 14, and the refrigeration compressor 1 and the condenser 2 in the above-mentioned first-stage vapor compression refrigeration cycle are immersed in the liquid refrigerant working medium 14.
  • a subcooled liquid working medium condensing plate 17 is provided in the middle of the first heat preservation pressure vessel 8.
  • the working fluid pump 9 is connected to the first heat-retaining pressure vessel 8 through a suction pipe 18, and the other end of the working fluid pump 9 is connected to the intermediate-stage refrigeration evaporator 19 in the middle-stage heat-retaining pressure vessel 20 through the working fluid infusion pipe 10.
  • the bottom of the middle N-level heat preservation pressure vessel 20 is filled with a liquid refrigerant 21.
  • the intermediate-stage refrigeration evaporator 19 and the subcooled liquid working medium condensing plate 17 are both installed in the intermediate N-stage heat-preserving pressure vessel 20.
  • the intermediate-stage refrigeration evaporator 19 is composed of a heat preservation return pipe 11, a working fluid infusion pipe 10, and a working fluid pump 9. It communicates with the liquid suction pipe 18 and the condensing space in the first heat-retaining and pressure vessel 8 to form a phase change for a cold refrigeration cycle.
  • One end of the working fluid pump 9 ' is connected to the middle N-stage heat preservation pressure vessel 20 through a suction pipe 18, and the other end of the working fluid pump 9 is connected to the middle N-stage refrigeration evaporator 12 through a working fluid infusion pipe 10.
  • the middle N-stage refrigerating evaporator 12 is installed in the terminal heat-preserving pressure vessel 13.
  • a supercooled liquid working medium condensing plate 17 ", liquid air 22, a high pressure working medium pump 24 and a heat exchanger 35 are also installed in the terminal heat insulating pressure vessel 13.
  • the high pressure working medium pump 24 can also be installed in the Outside.
  • the intermediate N-stage refrigeration evaporator 12 is connected to the condensing space in the intermediate N-stage heat-preserving pressure vessel 20 by the heat-insulating return pipe 11, the working fluid infusion pipe 10, the working fluid pump 9, and the liquid suction pipe 18. Change to cold refrigeration cycle.
  • the main engine device includes a heat exchange cavity 49 composed of a structural circular shell 43, a structural partition 39, and a heat insulation layer 41.
  • a turbine similar to the existing turbofan blade aero engine is installed in the heat exchange cavity 49.
  • Fan blade 42 is an evaporator 32 that absorbs heat from liquid air and vaporizes it into high-pressure air. It is installed parallel to the turbine fan blade 42 on the other side of the structural partition 39 to make the high pressure The air is passed through a pressure reducing turbine to perform work of a turboexpander 27 and a generator 28, and a high-pressure heat exchange coil 34 surrounding the periphery of the structural circular shell 43.
  • the turbo fan blade 42 is mounted coaxially with the turbo expander 27 through a shaft 50.
  • the evaporator 32 is located between the turbine fan blade 42 and the turbine expander 27.
  • the main engine of the engine is provided with a high-pressure air movable nozzle 38 and a first high-pressure gas pipe 37 connected to the high-pressure air movable nozzle 38, and a reversing gang 30 connected by the first high-pressure gas pipe 37.
  • the directional valve 30 is also connected to the turbine expander 27 through a second high-pressure gas pipe 46, and is connected to the evaporator 32 in the heat exchange chamber 49 through a third high-pressure gas pipe 31.
  • the main engine unit is provided with a thermal insulation short pipe 40 and an air transmission pipe 26 connected to the structural partition 39.
  • the natural air flow 47 from the windward side of the aircraft is strongly compressed and extracted by the turbine fan blade 42 and enters the heat exchange cavity 49.
  • After heat exchange and cooling with evaporator 32 it enters heat exchanger 35 located at the lower end of heat insulation pressure vessel 13 through heat insulation short pipe 40 and gas transmission pipe 26, and is cooled by liquid heat exchange with liquid air 22 and flows out of gas pipe 45.
  • Condensation and liquefaction enter the condensing space in the end heat-preserving pressure vessel 13.
  • the main engine unit is connected to the engine auxiliary unit through an air pipe 26, an exhaust pipe 29, and a high-pressure infusion pipe 25.
  • the high-pressure infusion pipe 25 is connected at one end to the high-pressure working fluid pump 24 on the auxiliary device of the engine, and the other end is connected to a reversing valve 51.
  • the reversing valve 51 also passes through the high-pressure infusion pipe 25 and exchanges heat with high pressure around the periphery of the structural round shell 43
  • the coil tube 34 is connected, and then the evaporator 32 in the heat exchange cavity 49 is connected.
  • the directional valve 51 can also be connected to the evaporator 32 in the heat exchange chamber 49 through a third high-pressure infusion pipe 33.
  • One end of the evaporator 32 in the heat exchange cavity 49 is connected to the high-pressure working fluid pump 24 through a connecting pipe and a directional valve 51, and the other end is connected to the high-pressure air through a third high-pressure gas pipe 31, the directional valve 30, the first high-pressure gas pipe 37, and high-pressure air.
  • the movable nozzle 38 is connected, and the turbine expander 27 is connected through a directional valve 30 and a second high-pressure gas pipe 46.
  • the outlet of the turbine expander 27 communicates with the condensing space in the terminal heat-preserving pressure vessel 13 in the auxiliary engine unit through an exhaust pipe 29.
  • the high-pressure working medium pump 24 located at the lower part of the terminal heat-preserving pressure vessel 13 is one end which sucks in liquid air 22 from the terminal heat-preserving pressure vessel 13 and the other end passes the high-pressure infusion pipe 25, the directional valve 51, and the high-pressure infusion pipe 25 Liquid air 22 is injected into the high-pressure heat exchange coils 34 surrounding the periphery of the structured round shell 43 and absorbs heat from the naturally flowing air before entering the evaporator 32; it can also pass through
  • the directional valve 51 and the third high-pressure infusion pipe 33 are connected to enter the evaporator 32.
  • the liquid air 22 in the evaporator 32 and the turbo fan blade 42 compresses the high-heat and high-density pressure air formed by the natural air flow 47 on the windward side to rapidly exchange heat, and vaporizes into high-pressure work air.
  • the high-pressure air enters the turbine expander 27 through the third high-pressure gas pipe 31 and the reversing valve 30 to work. After the turbine is cooled, the pressure is reduced, and the exhaust gas is condensed through the exhaust pipe 29 into the condensing space in the end insulation pressure vessel 13 and re- Liquefied into liquid air.
  • thermodynamic vapor work cycle and a final phase change to a cold refrigeration cycle are formed, and the external cooling capacity of the final phase change to a cold refrigeration cycle is used to consume natural room temperature heat.
  • the cycle constitutes the same thermal cycle.
  • the thermal cycle is composed of a heat exchange cavity 49, a turbine fan blade 42, a soaked end thermal insulation pressure vessel 13, a heat exchanger 35 in liquid air 22, a condensing space, a high-pressure working medium pump 24, and surrounds the structure.
  • the high-pressure heat exchange coil 34, the evaporator 32, the high-pressure air movable nozzle 38, and the connecting pipe, the directional valve, and the natural air flow are formed around the circular shell 43.
  • the natural air stream 47 from the windward side of the aircraft is strongly compressed and extracted by the turbine fan blades 42 into the heat exchange cavity 49. After heat exchange and cooling with the evaporator 32, it passes through the short thermal insulation pipe 40 and the air pipe 26, and enters the immersion at the end of the heat preservation pressure.
  • the heat exchanger 35 in the liquid air 22 in the container 13 is further cooled, then enters the condensing space, and is liquefied into liquid air, and then pumped into the high-pressure infusion pipe 25 through the high-pressure working medium pump 24, through the reversing valve 51 and the high-pressure infusion pipe 25, Enter the high-pressure heat exchange coil 34 surrounding the periphery of the structured round shell 43 to absorb normal temperature heat from natural space, or directly enter the evaporator 32 in the heat exchange chamber 49 through the reversing valve 51 and the third high-pressure infusion pipe 33.
  • the heat is absorbed in the high-heat and high-density air stream, and is quickly vaporized into high-pressure air, and then enters the high-pressure air movable nozzle 38 through the third high-pressure gas pipe 31, the directional valve 30, and the first high-pressure gas pipe 37, and can be ejected in any direction
  • the nozzle 38 sprays into the atmospheric space, and its reverse thrust is the main driving force for the aircraft to lift and sail.
  • the axial thrust of the turbo expander 27 is used as the aviation flight power. It includes the turbo expander 27 and the turbine fan blades 42 and a small generator 28. The three are coaxially installed, and the impeller force surface of the turbo expander 27 The axial thrust is in the same direction as aviation flight (see arrow 48).
  • a multi-stage refrigeration cycle cycle engine auxiliary device using pure phase change athermal refrigeration technology is located in the middle cabin of the aircraft, and the main engine device is located below the aircraft wing.
  • the high-pressure air moving nozzle 38 is composed of more than one and is distributed on the main engine device. High voltage The air moving nozzle 38 is connected to the evaporator 32 in the heat exchange cavity 49 through the high-pressure gas pipe, the reversing valve 30, and the high-pressure air is sprayed downward through the movable nozzle 38, so that the aircraft can generate vertical lift; The aircraft generates forward thrust in the horizontal direction; jetting forward can cause the aircraft to slow down in the horizontal direction; jetting in an oblique direction can produce the combined force of the horizontal and vertical directions.
  • the lower layer of liquid air 22 in the terminal heat-preserving pressure vessel 13 is generated by liquefaction of the condensing space through the exhaust gas of the turbo expander 27 and the natural air flow that has been cooled twice from the heat exchange cavity 49.
  • the high-pressure air moves the nozzle 38 When jetting ceased, its reserves kept increasing.
  • the liquid air 22 is pumped out by the high-pressure working fluid pump 24 and the high-pressure infusion pipe 25, and then the directional valve 51 is adjusted to allow it to directly enter the replacement valve through the third high-pressure infusion pipe 33.
  • the high-pressure working fluid pump 24 can provide liquid air 22 to the evaporator 32 in multiple times in a short period of time, which strongly promotes the operation of the aircraft.
  • the electric power starts the refrigeration compressor 1 for cooling, and its heat is consumed by the latent heat of vaporization of the liquid refrigerant working medium 14, and the vapor generated by the refrigerant working medium 14 due to heat consumption enters the ventilation pipe 16 from the supercooled liquid working medium condensing plate 17 and the evaporator.
  • the working medium pump 9 is started by electricity, and the liquid refrigerant working medium 14 enters the intermediate-stage refrigeration evaporator 19, absorbs heat from the working medium vapor in the intermediate N-stage refrigeration cycle, vaporizes and refrigerates, and returns to the first insulation through the heat-return gas return pipe 11.
  • the condensing space in the pressure vessel 8 condenses and is liquefied again.
  • the working medium pump 9 is started by electric power, and the liquid refrigerant working medium 21 is passed through the suction pipe 18, the working medium infusion pipe 10, and is input into the middle N-stage refrigeration evaporator 12 in the terminal thermal insulation pressure vessel 13 and sucked from the low-temperature air.
  • the heat is vaporized and refrigerated, and the condensing space in the intermediate N-level heat-retaining pressure vessel 20 is condensed through the heat-returning gas return pipe 11 and re-liquefied.
  • the liquid air 22 stored in the terminal heat-preserving pressure vessel 13 is pumped into the high-pressure infusion pipe 25, and the valve is switched by 51 adjustment, the liquid air 22 enters the high-pressure heat exchange coil 34 surrounding the structure round shell 43 through the high-pressure infusion pipe 25, and the liquid air 22 quickly absorbs heat from the natural environment and vaporizes into high-pressure air.
  • the high-pressure air passes through the evaporator 32,
  • the third high-pressure gas pipe 31, the directional valve 30, and the second high-pressure gas pipe 46 enter the turbine expander 27, and drive the turbine expander 27 to perform work, driving the small generator 28 to generate electricity, resulting in the refrigeration compressor 1, the working medium
  • the source 9, the working medium pump 9, and the high-pressure working medium pump 24 are disconnected from the starting power source, and rely on the power generated by the generator 28 to maintain normal operation.
  • the turbine expander 27 coaxially drives the turbine fan blades 42 to work, and compresses the natural air stream 47 flowing into the wind at high speed into high-heat and high-density air, so that the cryogenic liquid air and cryogenic saturated air flowing through the evaporator 32 suddenly It is vaporized into high-pressure superheated air, and the high-pressure superheated air enters the turboexpander 27 through the third high-pressure gas pipe 31, the directional valve 30, and the second high-pressure gas pipe 46, which greatly increases the mechanical function of the turboexpander 27. This further increases the drive of the turbine fan blades 42 to compress natural air to generate more high-temperature and high-density compressed air, which provides a reliable heat source for fast vaporizing liquid air.
  • the reversing valve 30 is adjusted to allow the surplus superheated high-pressure air to pass through the first high-pressure gas pipe 37 Enter the high-pressure air movable nozzle 38, and spray high-pressure air into the natural space according to the set direction to generate aeronautical power.
  • the high-pressure working fluid pump 24 pumps the liquid air 22 from the liquid heat storage space inside and below the end of the heat-insulating pressure vessel 13 at the end, allowing it to pass from the high-pressure heat exchange coil through the connecting pipe.
  • 34 enters the evaporator 32, and after rapidly absorbing heat and vaporizing, it enters the high-pressure air movable nozzle 38 through the connecting pipe to spray into the atmospheric space.
  • Aircraft needs strong acceleration During travel, the high-pressure air moving nozzle 38 sprays high-pressure air in the opposite direction to which the aircraft travels. When the aircraft needs to decelerate, the high-pressure air moving nozzle 38 sprays high-pressure air in the direction of travel of the aircraft.
  • the high-pressure air moving nozzle 38 sprays high-pressure air in the direction of the ground.
  • the high-pressure air moving nozzle 38 sprays high-pressure air toward the front-to-bottom oblique direction between the direction of flight of the aircraft and the vertical direction of the ground. The acceleration of gravity makes it possible to land smoothly at the specified position without the need for taxiing on the runway.
  • the power provided by the invention for the aircraft is a clean energy power, an unpaid energy power, a free lift aviation power, and an aviation power without restrictions on navigation time and distance, which is sufficient for human society to fully enter Free flight era.
  • the invention is not only suitable for aviation flight, but also suitable for land and water operations. It is a new engine suitable for water, land and air transportation vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

负温差航空热力发动机 发明领域
本发明涉及航空热力发动机, 特别涉及一种利用人工低温环境自然常 温空气之间的负温差所具有能量作功的负温差航空热力发动机。 现有技术描述
现有的航空发动机都是依靠燃烧石化燃料而产生高温热量, 然后利用 自然常温环境与高温热量之间所具有正向温差产生航空动力。 其缺点是消 耗了矿物资源, 严重污染了自然环境与大气空间, 飞行时间与距离受燃料 储量限制; 并且由于现有航空发动机主要依靠尾部喷气所产生的反推力行 进, 除利用大型螺旋桨垂直升降的直升飞机外, 致使现有航空飞机必须依 靠具有长跑道的飞机场才能升空与降落。
有一种负温差热力发动机, 利用纯相变无热制冷装置高效制取冷量, 然后利用人工制造的低温环境与常温环境之间的负向温差所具有的能量产 生机械动力。 但因其所利用的常温热量大量存在于地球表面, 存在于自然 水域之中, 空间大气环境中所具有的自然常温热量密度低, 因此无法使其 成为实用型的航空动力。 发明目的
本发明的目的是提供一种新的负温差航空热力发动机, 它利用人工制 造的低温环境与发动机涡轮风扇叶片压缩的高热高密度空气流中的热量之 间的温差所具有的能量作为动力, 并主要利用可以任意选择喷气方向的活 动喷管喷出高压空气产生反推力, 为航空飞机提供一种不需要烧油, 不需 要固定性机场与跑道, 飞行时间与距离不受燃料限制, 可以随意升降的新 型发动机。 发明简述
- 1 - 确认本 本发明的技术解决方案如下:
一种负温差航空热力发动机, 其基本部件与以水为工质的热力蒸汽发 动机相类似, 利用纯相变无热制冷技术的多级制冷循环, 它包括由制冷压 缩机、 冷凝器、 节流器和蒸发器組成的提供原始制冷量的首级蒸气压缩制 冷循环装置, 过冷液态工质冷凝板, 次一级液态制冷工质, 以及将上述部 件均设置在内的第一保温压力容器, 连同工质泵; 包括装有中间级制冷蒸 发器、 过冷液态工质冷凝板和液态制冷工质的中间 N级保温压力容器, 连 同工质泵;
它还包括装有中间 N级制冷蒸发器、 过冷液态工质冷凝板的末端保温 压力容器, 末端保温压力容器的下部装有换热器和高压工质泵, 并在末端 保温压力容器内的下部灌注液态空气, 使换热器浸泡在液态空气中, 末级 相变制冷循环的制冷工质为液态空气, 首级相变制冷循环至末级相变制冷 循环的各级制冷工质的蒸发温度, 依级次递增, 首级制冷工质蒸发温度最 低; 以上部分作为发动机副装置, 本发明还包括发动机主装置;
所述发动机主装置包括由结构圆壳、 结构隔板和保温层构成的换热 腔, 在该换热腔内安装的涡轮风扇叶片, 使液态空气吸热汽化成高压空气 的蒸发器, 在与涡轮风扇叶片相平行的在结构隔板另一侧外安装的、 使高 压空气通过降压透平而作功的透平膨胀机和发电机, 以及环绕在结构圆壳 外围的高压换热盘管, 涡轮风扇叶片通过机轴与透平膨胀机同轴安装, 蒸 发器位于涡轮风扇叶片与透平膨胀机之间, 上述蒸发器、 透平膨胀机、 高 压换热盘管、 使低温空气冷凝成液态空气的末端保温压力容器内的冷凝空 间、 以及使液态空气重新进入蒸发器的高压工质泵, 由此形成热力蒸气作 功循环; 一热力循环, 该热力蒸气作功循环通过高压空气驱动透平膨胀机运转作功, 为涡轮风扇叶片强力运转压缩自然空气流与小型发电机运转发电提供动 力, 涡轮风扇叶片通过强力压缩自然空气流产生高热高密度空气, 一方面 为热力蒸气作功循环与自然空气流的相变热力作功循环中的液态空气汽化 成高压空气提供热量, 另一方面为航空器提供前进推力, 同时利用透平膨 胀机的轴向推力为航空器提供前进推力;
所述发动机主装置上装有高压空气活动喷管和与之相连接的第一高压 输气管, 以及由第一高压输气管连接的换向阀, 该换向阀还通过第二高压 输气管与透平膨胀机连接, 叉通过第三高压输气管与换热腔内的蒸发器接 通; 所述发动机主装置上位于结构隔板处装有保温短管及与之相相连接的 输气管, 从航空器迎风面而来的自然空气流经涡轮风扇叶片强力压缩抽取 后进入换热腔, 并与蒸发器换热冷却后经保温短管和输气管进入位于末端 保温压力容器下部的换热器, 经与液态空气汽化换热强力冷却后从输气管 流出, 进入末端保温压力容器内冷凝空间冷凝液化; 液态空气经高压工质 泵加压后, 经高压输液管、 换向阀注入环绕于结构圓壳外围的高压换热盘 管, 从自然空间吸收常温热量后, 进入换热腔内蒸发器, 从由涡轮风扇叶 片强力压缩而成的高热高密度空气流中吸收热量, 快速汽化成高压空气; 经高压输气管与换向阀进入高压空气活动喷管, 通过可以任意方向喷气的 活动喷管喷向大气空间, 其反推力为航空器升降与航行的主动力; 由此形 成自然空气流的相变热力作功循环与末级相变以冷制冷循环。
本发明由发动机副装置和发动机主装置组成, 采用纯相变无热制冷技 术, 实行多级相变制冷循环, 以高倍的制冷效率生产出大量深冷冷量, 并 多次重复利用上述冷量来液化透平作功后的低温空气以及经多次冷却后的 低温自然空气, 通过高压工质泵将液态空气泵入位于结构圆壳外围的高压 换热盘管和换热腔内的蒸发器内, 使液态空气从自然流动空气中初步吸热 后, 再与涡轮风扇叶片压缩成的高热高密度空气流充分换热, 迅速汽化成 高压空气; 其中一部分高压空气用来驱动透平膨胀机, 让其为驱动涡轮风 扇叶片和小型发电机提供动力; 另一部分高压空气通过活动喷管向着与航 空器设定前进方向相反的方向喷气, 由此产生飞行动力; 同时利用涡轮风 扇叶片的推力以及透平膨胀机的轴向推力作为飞行动力。
下面结合附图对本发明作详细描述。 附图说明
图 1是一种负温差航空热力发动机的副装置结构示意图。
图 2是上述发动机的主装置结构示意图。 实施例的描述
参看图 1, 在第一保温压力容器 8内安装制冷压缩机 1、 冷凝器 2、 节 流器 4 和蒸发器 6, 内注首级制冷工质, 组成首级蒸汽压缩制冷循环, 提 供原始制冷量。 第一保温压力容器 8的下部充注液态制冷工质 14, 上述首 级蒸气压缩制冷循环中的制冷压缩机 1 和冷凝器 2被浸泡在液态制冷工质 14中。 第一保温压力容器 8的中部设置过冷液态工质冷凝板 17。 工质泵 9 通过吸液管 18与第一保温压力容器 8连接, 工质泵 9的另一端通过工质输 液管 10与位于中间 N级保温压力容器 20中的中间级制冷蒸发器 19连接。
中间 N级保温压力容器 20的底部注有液态制冷工质 21。 中间级制冷 蒸发器 19和过冷液态工质冷凝板 17,均安装在中间 N级保温压力容器 20 内, 中间级制冷蒸发器 19由保温回气管 11、 工质输液管 10、 工质泵 9和 吸液管 18与第一保温压力容器 8内的冷凝空间连通, 形成相变以冷制冷循 环。 工质泵 9'的一端通过吸液管 18,与中间 N级保温压力容器 20连接, 工 质泵 9,的另一端通过工质输液管 10,与中间 N级制冷蒸发器 12连接。
中间 N级制冷蒸发器 12安装在末端保温压力容器 13 内。 在末端保温 压力容器 13 内还装有过冷液态工质冷凝板 17"、 液态空气 22、 高压工质泵 24和换热器 35。高压工质泵 24也可以安装在末端保温压力容器 13的外部。 中间 N级制冷蒸发器 12由保温回气管 11,、 工质输液管 10,、 工质泵 9,和 吸液管 18,与中间 N级保温压力容器 20 内的冷凝空间连通, 形成相变以冷 制冷循环。
参看图 2, 发动机主装置包括由结构圆壳 43、 结构隔板 39和保温层 41 构成的换热腔 49, 在该换热腔 49 内安装的与现有涡轮风扇叶片航空发动 机相类似的涡轮风扇叶片 42, 使液态空气吸热汽化成高压空气的蒸发器 32, 与涡轮风扇叶片 42相平行的在结构隔板 39 另一侧处安装的、 使高压 空气通过降压透平而作功的透平膨胀机 27 和发电机 28, 以及环绕在结构 圆壳 43外围的高压换热盘管 34。 涡轮风扇叶片 42通过机轴 50与透平膨 胀机 27同轴安装。 蒸发器 32位于涡轮风扇叶片 42与透平膨胀机 27之间。
发动机主装置上装有高压空气活动喷管 38和与之相连接的第一高压输 气管 37, 以及由第一高压输气管 37连接的换向岡 30。 该换向阀 30还通过 第二高压输气管 46与透平膨胀机 27连接, 又通过第三高压输气管 31与换 热腔 49内的蒸发器 32接通。
发动机主装置上位于结构隔板 39处装有保温短管 40及与之相连接的 输气管 26, 从航空器迎风面而来的自然空气流 47经涡轮风扇叶片 42强力 压缩抽取后进入换热腔 49, 与蒸发器 32换热冷却后经保温短管 40和输气 管 26, 进入位于末端保温压力容器 13下部的换热器 35, 经与液态空气 22 汽化换热强力冷却后从输气管 45 流出, 进入末端保温压力容器 13 内冷凝 空间冷凝液化。
发动机主装置通过输气管 26、 尾气管 29和高压输液管 25与发动机副 装置连接。
高压输液管 25 —端连接发动机副装置上的高压工质泵 24, 另一端连 接换向阀 51 , 该换向阀 51还通过高压输液管 25,与环绕在结构圆壳 43外 围的高压换热盘管 34连接, 然后连接换热腔 49内蒸发器 32。 该换向阀 51 还可以通过第三高压输液管 33相接与换热腔 49内蒸发器 32连接。
换热腔 49内蒸发器 32的一端通过联接管和换向阀 51与高压工质泵 24 连接, 另一端通过第三高压输气管 31、 换向阀 30、 第一高压输气管 37与 高压空气活动喷管 38连接, 又通过换向阀 30、 第二高压输气管 46连接透 平膨胀机 27。 透平膨胀机 27出气口通过尾气管 29与发动机副装置内的末 端保温压力容器 13内冷凝空间连通。
位于末端保温压力容器 13 下部的高压工质泵 24, 其中一端从末端保 温压力容器 13 内吸入液态空气 22, 其中另一端通过高压输液管管 25、 换 向阀 51、 高压输液管 25,, 将液态空气 22注入环绕于结构圆壳 43外围的 高压换热盘管 34, 从自然流动空气中吸热后再进入蒸发器 32; 也可以通过 换向阀 51、 第三高压输液管 33相接进入蒸发器 32。 液态空气 22在蒸发器 32内与涡轮风扇叶片 42压缩迎风面自然空气流 47所形成的高热高密度压 力空气而快速换热, 并汽化成作功高压空气。 高压空气经第三高压输气管 31、 换向阀 30进入透平膨胀机 27透平作功, 透平后降温降压, 其尾气经 尾气管 29进入末端保温压力容器 13 内的冷凝空间冷凝, 重新液化成液态 空气。 由此形成热力蒸气作功循环与末级相变以冷制冷循环, 末级相变以 冷制冷循环的对外制冷量被用来消耗自然常温热量。 循环构成同一热力循环, 该热力循环由换热腔 49、 涡轮风扇叶片 42、 浸泡 的末端保温压力容器 13 内液态空气 22中的换热器 35、 冷凝空间、 高压工 质泵 24、 环绕于结构圆壳 43外围的高压换热盘管 34、 蒸发器 32、 高压空 气活动喷管 38以及联接管、 换向阀、 自然空气流所构成。 从航空器迎风面 而来的自然空气流 47, 经涡轮风扇叶片 42强力压缩抽取进入换热腔 49, 与蒸发器 32换热冷却后经保温短管 40和输气管 26, 进入浸泡在末端保温 压力容器 13内液态空气 22中的换热器 35进一步冷却,然后进入冷凝空间, 液化成液态空气, 再经高压工质泵 24泵入高压输液管 25, 经换向阀 51及 高压输液管 25,进入环绕于结构圆壳 43外围的高压换热盘管 34, 从自然空 间吸收常温热量, 或者通过换向阀 51、 第三高压输液管 33 直接进入换热 腔 49 内的蒸发器 32 中, 从高热高密度空气流中吸收热量, 快速汽化成高 压空气, 再经第三高压输气管 31、 换向阀 30和第一高压输气管 37进入高 压空气活动喷管 38, 通过可以任意方向喷气的活动喷管 38喷向大气空间, 其反推力就是航空器升降与航行的主动力。
利用透平膨胀机 27的轴向推力作为航空飞行动力, 它包括透平膨胀机 27和涡轮风扇叶片 42 以及小型发电机 28, 三者同轴安装, 并且透平膨胀 机 27的叶轮受力面所承受的轴向推力与航空飞行为同一方向(见箭头 48 )。
利用純相变无热制冷技术的多级制冷徨循环的发动机副装置设置在航 空器中部机舱内, 发动机主装置设置在航空器机翼下部。
高压空气活动喷管 38由一个以上组成, 分布于发动机主装置上。 高压 空气活动喷管 38通过高压输气管、 换向阀 30与换热腔 49 内蒸发器 32接 通, 高压空气通过活动喷管 38向下喷气, 可以使航空器产生垂直升力; 向 后喷气, 可以使航空器产生水平方向前进推力; 向前喷气, 可以使航空器 产生水平方向减速阻力; 向倾斜方向喷气, 可以产生水平与垂直方向的合 力。
末端保温压力容器 13 内的下层液态空气 22, 由透平膨胀机 27的尾气 与从换热腔 49导入的已经两次冷却的自然空气流, 经冷凝空间液化产生, 当高压空气活动喷管 38停止向外喷气时, 其储量不断增加。 为了加大末端 保温压力容器 13 内的液态空气储量, 液态空气 22经高压工质泵 24、 高压 输液管 25泵出后, 调整换向阀 51 , 让其经第三高压输液管 33直接进入换 热腔 49 内蒸发器 32, 液态空气 22以最冷温度在换热腔 49 内与自然空气 流 47换热, 加快自然空气流 47的冷凝液化进程, 增大发动机冷凝液化自 然空气流的能力。 当航空器需要加速飞行时, 通过高压工质泵 24可以短时 间、 间隙性地向蒸发器 32 多倍量地提供液态空气 22, 强力推动航空器运 行。
本发明的工作流程如下:
电力启动制冷压缩机 1制冷, 其热量由液态制冷工质 14的汽化潜热消 耗, 制冷工质 14 因耗热所产生的蒸气, 从通气管 16进入由过冷液态工质 冷凝板 17 与蒸发器 6所组成的冷凝空间冷凝; 与此同时, 液位调节器 23 自动将第一保温压力容器 8的上层液态制冷工质 14通过补液管 15补充到 下层。
电力启动工质泵 9, 让液态制冷工质 14进入中间级制冷蒸发器 19, 从 中间 N 级制冷循环中的工质蒸气中吸热汽化并制冷, 并经保温回气管 11 回到第一保温压力容器 8内冷凝空间冷凝, 重新液化。
电力启动工质泵 9,,将液态制冷工质 21经吸液管 18,、工质输液管 10,, 输入末端保温压力容器 13 内的中间 N级制冷蒸发器 12中, 从低温空气中 吸热汽化并制冷, 经保温回气管 11,回到中间 N级保温压力容器 20内的冷 凝空间冷凝, 重新液化。 在电力启动制冷压缩机 1、 工质泵 9、 9,的同时, 电力启动高压工质泵 24, 将末端保温压力容器 13 内所储存的液态空气 22泵入高压输液管 25, 经换向阀 51调整, 液态空气 22经高压输液管 25,进入环绕于结构圆壳 43 外围的高压换热盘管 34, 液态空气 22 迅速从自然环境中吸热汽化成高压 空气, 高压空气经蒸发器 32、 第三高压输气管 31、 换向阀 30、 第二高压 输气管 46进入透平膨胀机 27, 驱动透平膨胀机 27作功, 带动小型发电机 28运转发电, 致使制冷压缩机 1、 工质源 9、 工质泵 9,、 高压工质泵 24脱 离启动电源, 依靠发电机 28所产生的电力维持正常运转。
透平膨胀机 27 同轴带动涡轮风扇叶片 42工作, 将从迎风面高速流入 的自然空气流 47压缩成高热高密度空气, 使流经蒸发器 32 内的深冷液态 空气与深冷饱和空气骤然汽化成高压过热空气, 高压过热空气通过第三高 压输气管 31、 换向阀 30、 第二高压输气管 46进入透平膨胀机 27, 使透平 膨胀机 27的机械作功能力剧增, 由此进一步加大驱动涡轮风扇叶片 42压 缩自然空气, 产生更加高热和高密度的压缩空气, 为快速汽化液态空气提 供了可靠热源。
当负温差航空热力发动机热力蒸气作功循环系统汽化液态空气 22的能 力已经超出或大大超出透平膨胀机 27 的需要时, 调整换向阀 30, 让富余 过热高压空气经由第一高压输气管 37 进入高压空气活动喷管 38, 按设定 方向向自然空间喷出高压空气, 产生航空动力。
当航空器不需要加速行进时, 停止高压空气活动喷管 38喷气, 调整换 向阀 51 , 让高压工质泵 24泵出的液态空气 22经高压输液管 25,直接进入 换热腔 49内蒸发器 32, 让液态空气 22以最冷温度与自然空气流 47换热, 以此加快自然空气流 47的冷凝液化进程, 增大发动机冷凝液化自然空气流 47的能力, 增加末端保温压力容器 13内液态空气储量。
当航空器需要强力加速行进、 垂直升降和减速航行时, 高压工质泵 24 从末端保温压力容器 13 内下层液态空气储存空间多倍泵出液态空气 22, 让其通过联接管从高压换热盘管 34 进入蒸发器 32, 快速吸热汽化后, 然 后经联接管进入高压空气活动喷管 38喷向大气空间。 航空器需要强力加速 行进时, 高压空气活动喷管 38将高压空气喷向航空器行进相反方向。 航空 器需要减速航行时, 高压空气活动喷管 38 将高压空气喷向航空器行进方 向。 航空器需要垂直上升时, 高压空气活动喷管 38将高压空气喷向地面方 向。 航空器需要降落时, 高压空气活动喷管 38将高压空气向航空行进方向 与地面垂直方向之间的前下方倾斜方向喷出, 其反推力一方面为航空器水 平行进减速, 另一方面緩减航空器降落重力加速度, 使其在不需要跑道滑 行的情况下可以在指定位置平稳降落。
涡轮风扇叶片 42在压缩自然空气流 47 时所产生的推力, 透平膨胀机 27 因承受高压空气透平作功所产生的轴向推力, 高压空气活动喷管 38 喷 出高压空气所产生的反推力, 共同构成了负温差航空热力发动机航空飞行 动力。
本发明为航空器提供的动力是一种洁净能源动力, 是一种无偿能源动 力, 也是一种自由升降航空动力, 更是一种无航行时间与航行距离限制的 航空动力, 足以使人类社会全面进入自由飞行时代。
本发明不仅适用于航空飞行, 而且适用于陆上和水上运行, 是一种适 用于水、 陆、 空交通运输工具的新型发动机。

Claims

权 利 要 求 书
1. 一种负温差航空热力发动机, 其基本部件与以水为工质的热力蒸汽 发动机相类似, 利用纯相变无热制冷技术的多级制冷循环, 它包括由制冷 压缩机、 冷凝器、 节流器和蒸发器组成的提供原始制冷量的首级蒸气压缩 制冷循环装置, 过冷液态工质冷凝板, 次一级液态制冷工质, 以及将上述 部件均设置在内的第一保温压力容器, 连同工质泵; 包括装有中间级制冷 蒸发器、 过冷液态工质冷凝板和液态制冷工质的中间 N级保温压力容器, 连同工质泵;
其特征在于, 它还包括装有中间 N级冷蒸发器、 过冷液态工质冷凝板 的末端保温压力容器, 末端保温压力容器的下部装有换热器和高压工质泵, 并在末端保温压力容器内的下部灌注液态空气, 使换热器浸泡在液态空气 中, 末级相变制冷循环的制冷工质为液态空气, 首级相变制冷循环至末级 相变制冷循环的各级制冷工质的蒸发温度, 依级次递增, 首级制冷工质蒸 发温度最低; 以上部分作为发动机副装置, 本发明还包括发动机主装置; 所述发动机主装置包括由结构圆壳、 结构隔板和保温层构成的换热腔, 在该换热腔内安装的涡轮风扇叶片, 使液态空气吸热汽化成高压空气的蒸 发器, 在与涡轮风扇叶片相平行的在结构隔板另一侧处安装的、 使高压空 气通过降压透平而作功的透平膨胀机和发电机, 以及环绕在结构圆壳外围 的高压换热盘管, 涡轮风扇叶片通过机轴与透平膨胀机同轴安装, 蒸发器 位于涡轮风扇叶片与透平膨胀机之间, 上述蒸发器、 透平膨胀机、 高压换 热盘管、 使低温空气冷凝成液态空气的冷凝空间、 以及使液态空气重新进 入蒸发器的高压工质泵, 由此形成热力蒸气作功循环; 一热力循环, 该热力蒸气作功循环通过高压空气驱动透平膨胀机运转作功, 为涡轮风扇叶片强力运转压缩自然空气流与小型发电机运转发电提供动 力, 涡轮风扇叶片通过力压缩自然空气流产生高热高密度空气, 一方面为 热力蒸气作功循环与自然空气流的相变热力作功循环中的液态空气汽化成 高压空气提供热量, 另一方面为航空器提供前进推力, 同时利用透平膨胀 机的轴向推力为航空器提供前进推力;
所述发动机主装置上装有高压空气活动喷管和与之相连接的第一高压 输气管, 以及由第一高压输气管连接的换向阀, 该换向阀还通过第二高压 输气管与透平膨胀机连接, 又通过第三高压输气管与换热腔内的蒸发器接 通; 所述发动机主装置上位于结构隔板处装有保温短管及与之相连接的输 气管, 从航空器迎风面而来的自然空气流经涡轮风扇叶片强力压缩抽取后 进入换热腔, 并与蒸发器换热冷却后经保温短管和输气管进入位于末端保 温压力容器下部的换热器, 经与液态空气汽化换热强力冷却后从输气管流 出, 进入末端保温压力容器内冷凝空间冷凝液化; 液态空气经高压工质泵 加压后, 经高压输液管、 换向阀注入环绕于结构圆壳外围的高压换热盘管, 从自然空间吸收常温热量后, 进入换热腔内蒸发器, 从由涡轮风扇叶片强 力压缩而成的高热高密度空气流中吸收热量, 快速汽化成高压空气; 经高 压输气管与换向阀进入高压空气活动喷管, 通过可以任意方向喷气的活动 喷管喷向大气空间, 其反推力为航空器升降与航行的主动力; 由此形成自 然空气流的相变热力作功循环与末级相变以冷制冷循环。
2. 根据权利要求 1所述的负温差航空热力发动机, 其特征在于, 所述 透平膨胀机的叶轮受力面所承受的轴向推力与航空飞行为同一方向。
3. 根据权利要求 1所述的负温差航空热力发动机, 其特征在于, 所述 高压空气活动喷管由一个以上组成, 分布于发动机主装置上。
PCT/CN1999/000188 1998-11-12 1999-11-12 Moteur aeronautique thermique a difference negative de temperature WO2000029737A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU11472/00A AU1147200A (en) 1998-11-12 1999-11-12 The negative temperature difference aviation thermal engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 98121994 CN1223340A (zh) 1998-11-12 1998-11-12 负温差航空热力发动机
CN98121994.2 1998-11-12

Publications (1)

Publication Number Publication Date
WO2000029737A1 true WO2000029737A1 (fr) 2000-05-25

Family

ID=5227482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1999/000188 WO2000029737A1 (fr) 1998-11-12 1999-11-12 Moteur aeronautique thermique a difference negative de temperature

Country Status (3)

Country Link
CN (1) CN1223340A (zh)
AU (1) AU1147200A (zh)
WO (1) WO2000029737A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072105A (zh) * 2011-01-20 2011-05-25 顾为东 风力蓄能供电系统
CN108868928A (zh) * 2018-07-23 2018-11-23 西安龙拓热传导技术有限公司 采用自泄压热管原理的能量转化方法及自泄压热管发动机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046992A (zh) * 2011-12-29 2013-04-17 摩尔动力(北京)技术股份有限公司 无动力风扇散热器
CN107044650B (zh) * 2017-02-06 2023-04-04 国网安徽省电力公司电力科学研究院 一种火电厂液氨脱硝汽轮机联合节能循环系统
CN114991899A (zh) * 2021-03-01 2022-09-02 易元明 交通工具相对运动动能收集利用方法及其装置
WO2022217462A1 (zh) * 2021-04-13 2022-10-20 易元明 长转柄快速绕轴反冲驱动发电动力设备
CN117627783A (zh) * 2022-08-29 2024-03-01 易元明 液态空气热力工质航空发动机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067111A (zh) * 1991-05-21 1992-12-16 北京市西城区新开通用试验厂 一种大流量空气介质制冷机
WO1996013656A1 (en) * 1994-11-01 1996-05-09 Todor Georgiev Givetchev Gas turbine engine
WO1997013961A1 (en) * 1995-10-07 1997-04-17 Jae Hwan Kim Power generating system by use of fluid
JPH09195796A (ja) * 1996-01-16 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービンの吸気冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1067111A (zh) * 1991-05-21 1992-12-16 北京市西城区新开通用试验厂 一种大流量空气介质制冷机
WO1996013656A1 (en) * 1994-11-01 1996-05-09 Todor Georgiev Givetchev Gas turbine engine
WO1997013961A1 (en) * 1995-10-07 1997-04-17 Jae Hwan Kim Power generating system by use of fluid
JPH09195796A (ja) * 1996-01-16 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービンの吸気冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072105A (zh) * 2011-01-20 2011-05-25 顾为东 风力蓄能供电系统
CN108868928A (zh) * 2018-07-23 2018-11-23 西安龙拓热传导技术有限公司 采用自泄压热管原理的能量转化方法及自泄压热管发动机

Also Published As

Publication number Publication date
AU1147200A (en) 2000-06-05
CN1223340A (zh) 1999-07-21

Similar Documents

Publication Publication Date Title
US6606860B2 (en) Energy conversion method and system with enhanced heat engine
MX2009000406A (es) Motor criogenico de energia termica ambiente y presion constante.
WO2012163082A1 (zh) 热力过程采用喷射抽气节能方法
CN102852567A (zh) 热力过程采用喷射抽气节能方法
JP6903676B2 (ja) スパイラルタービン、圧縮機タービン、膨張機タービン、タービンヒートエンジン、タービンヒートポンプ及び脱塩水装置
CN104948302B (zh) 以lng为燃料的航空发动机燃料供应系统及工作方式
CN105673088A (zh) 一种油冷涡轮动叶片
WO2000029737A1 (fr) Moteur aeronautique thermique a difference negative de temperature
JP2009191614A (ja) 各種エネルギ保存サイクル合体機関
CN108216642A (zh) 一种应用于机载吊舱的中间再热式涡轮冷却器系统
CN100580341C (zh) 主动结冰式热泵系统
WO2000029067A1 (fr) Dispositif de lutte contre les incendies de foret a atmosphere sans oxygene et a basse temperature
CN112829951A (zh) 零排放航空飞机航行工艺方法及其动力装置
US3765168A (en) Water recovery
CN207701188U (zh) 构造冷源能量回收系统及热力发动机系统
WO2024045289A1 (zh) 液态空气热力工质航空发动机
JP2009174315A (ja) 各種エネルギ保存サイクル合体機関
RU2285131C1 (ru) Паротурбинный двигатель
CN219243966U (zh) 冷力能量转换装置
JP2019163761A (ja) ガスタービンシステム
JP2009174316A (ja) 各種エネルギ保存サイクル合体機関
CN105822454B (zh) 一种动力执行机构
CN1223341A (zh) 自然水域负温差热力发电站
CN115930482A (zh) 冷力能量转换装置及其能量转换方法
CN117231323A (zh) 制冷型冷峰动力系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 11472

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase