WO2000026992A1 - Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions - Google Patents

Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions Download PDF

Info

Publication number
WO2000026992A1
WO2000026992A1 PCT/FR1999/002606 FR9902606W WO0026992A1 WO 2000026992 A1 WO2000026992 A1 WO 2000026992A1 FR 9902606 W FR9902606 W FR 9902606W WO 0026992 A1 WO0026992 A1 WO 0026992A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellets
antenna
etching
receiver
stacking
Prior art date
Application number
PCT/FR1999/002606
Other languages
English (en)
Inventor
Xavier Chamussy
Pascal Bil
Christian Val
Original Assignee
Tda Armements S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tda Armements S.A.S. filed Critical Tda Armements S.A.S.
Priority to EP99950839A priority Critical patent/EP1127385B9/fr
Priority to DE69911047T priority patent/DE69911047T2/de
Publication of WO2000026992A1 publication Critical patent/WO2000026992A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • H01Q21/0093Monolithic arrays

Definitions

  • the present invention relates to a method for producing radio wave receivers by interconnecting three-dimensional integrated circuits.
  • GPS Global Positioning System
  • these receivers being carried on board munitions of the shell or missile type for improving fire.
  • the invention can however be extended to other fields, whenever there is a need to use a GPS or a radio wave receiver in a reduced volume or inside mobiles when these are subjected to significant accelerations and decelerations.
  • the GPS it is possible to receive, at any time and at any place on the earth, by means of a receiver and an antenna, radio signals emitted by at least 6 satellites which allow the user to know its exact position in latitude, longitude and altitude.
  • an on-board GPS allows, thanks to a transponder, to transmit trajectory correction orders from a ground station, or to directly pilot an on-board trajectory correction system from the position of the shell and coordinates of a target.
  • connection pads are each connected to any one of the faces of the stack except one, said base which is intended to be in contact with a printed circuit substrate.
  • the connections between the pellets are formed between them on the faces of the stack by laser etching.
  • the object of the invention is to overcome the aforementioned drawbacks.
  • the subject of the invention is a method for producing a radio wave receiver coupled to a reception antenna by stacking semiconductor pads each containing at least one integrated circuit and comprising connection pads for connecting the pads between them, characterized in that it consists in metallizing the external surface of the stacked pellets to create a ground plane of the antenna of the receiver, in covering the ground plane with a dielectric material, in metallizing the surface of the dielectric material and to etch the receiver antenna on the metallized surface obtained.
  • the invention also relates to a use of the method for implementing a GPS receiver on board a munition.
  • the main advantage of the invention is that it allows the use of radio wave receivers on board ammunition which gives them sufficient reliability to withstand the accelerations to which the ammunition is subjected. As a result, it makes it possible to ensure greater effectiveness in long-range shots because it is known that in the absence of a trajectory correction device, this efficiency decreases very quickly with the range of the ammunition due to the errors of accuracy and dispersion.
  • the implementation according to the invention of a radio wave receiver by stacking semiconductor pellets comprising an antenna etched on the external surface of the pellets constitutes a good means for constituting an on-board navigation aid system capable to locate the ammunition on its trajectory and to carry out a correction of trajectory so that the ammunition can reach its objective.
  • Figure 1 the different steps of the method according to the invention in the form of a flowchart.
  • FIG. 2 an embodiment of wiring on TAB film where TAB is the abbreviation for "Tape Automated Bounding”.
  • Figure 3 an integrated module without the antennas.
  • Figure 4 a module integrated with the ground plane of the antenna.
  • Figure 5 an integrated module with antenna substrate.
  • Figure 6 an integrated GPS module in 3D technology.
  • FIG. 7a, 7b, 7c different integration models.
  • the method according to the invention takes place in 6 steps referenced from 1 to 6 in FIG. 1.
  • Step 1 consists of producing, in a known manner in the form of ASIC chips, an abbreviation for "Application Specifies Integrated Circuit", the components specific to the GPS receiver.
  • step 2 The wiring of the chips or of the discrete components is carried out in step 2 on flexible printed circuits of the polyamide, epoxy type or else on film according to the process known under the English abbreviation TAB of "Tape Automated Bonding".
  • TAB Transmission Automated Bonding
  • these films can be four in number, a supply film 7, two films 8 and 9 containing the signal processing electronics and a film 10 for the microwave circuits.
  • Step 3 Films 7 to 10 are coated in step 3 with an epoxy resin to form pellets.
  • the pellets are also cut according to the shape of the windows of the TAB films and their stacking one above the other to form a receiver module.
  • the interconnections between each level of film can be carried out according to the method described in patent FR 2,670,323 already cited.
  • Plugs 1 1 for connecting the module to an external circuit not shown, are produced according to the method known by the abbreviation BGA of "Bail
  • Step 4 consists of metallization shown in Figure 4 of the outer faces of the module composed of the pellets stacked according to step 3 to create the ground plane of the antenna.
  • step 5 a deposition shown in FIG. 5 of a dielectric material with a high dielectric constant is carried out on the faces of the module, this deposition is followed in step 6 by metallization and etching of the antennas 1 3a, 1 3b as shown in figure 6.
  • the antennas are preferably engraved all around the module so that there is always an active antenna, that is to say capable of receiving data from the GPS satellite network when the munition is rotating on itself.
  • the 3D technology implemented makes it possible to envisage any type of shape, and to use conforming antennas or micro-ribbon antennas still known under the Anglo-Saxon designation "patch", the engraving of which is carried out by area of the modules.
  • Figures 6a to 6c show different integration solutions capable of satisfying certain volume constraints.
  • FIG. 6a corresponds to an embodiment of a cubic module with “patch” antennas arranged on four faces of the cube.
  • FIG. 6b corresponds to an embodiment of a cylindrical module with a ribbon antenna arranged in turn.
  • the embodiment of FIG. 6c is that of a cylindrical conical module with multi-strand antenna.
  • FIG. 7 represents a GPS module implemented according to the method of the invention, inside an artillery rocket.
  • the GPS module 1 4 is placed in the nose of the rocket.
  • its dimension is very small compared to the longitudinal dimension of the rocket which in this example is of the order of 1 45 mm, its maximum diameter being of the order of 50 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Le procédé consiste à empiler (3) des pastilles semi-conductrices contenant chacune au moins un circuit intégré et comportant des plots de connexion pour le raccordement des pastilles entre elles. La surface extérieure des pastilles est métallisée (4) pour créer un plan de masse de l'antenne du récepteur. Le plan de masse est recouvert (5) d'un matériau diélectrique dont la surface non commune au plan de masse est métallisée puis gravée (6) pour former l'antenne du récepteur. Applications: récepteurs embarqués sur des munitions.

Description

PROCEDE DE REALISATION DE RECEPTEURS D'ONDES
RADIOELECTRIQUES PAR INTERCONNEXION DE CIRCUITS INTEGRES
EN TROIS DIMENSIONS
La présente invention concerne un procédé de réalisation de récepteurs d'ondes radioélectriques par interconnexion de circuits intégrés en trois dimensions.
Elle s'applique notamment à la réalisation de récepteurs connus sous l'abréviation anglo-saxonne GPS de "Global Positioning System", ces récepteurs étant embarqués à bord de munitions de type obus ou missiles pour l'amélioration des tirs. L'invention peut toutefois être étendue à d'autres domaines, chaque fois qu'il y a nécessité d'utiliser un GPS ou un récepteur d'ondes radioélectriques dans un volume réduit où à l'intérieur de mobiles lorsque ceux ci sont soumis à des accélérations et décélérations importantes.
Développé initialement aux Etats-Unis d'Amérique pour des applications de défense en 1 973, le GPS a révolutionné le monde de la navigation maritime et aérienne, pour entrer ensuite dans une ère d'application civile et de loisir notamment.
Grâce au GPS il est possible de recevoir, à chaque instant et à n'importe quel endroit sur la terre, au moyen d'un récepteur et d'une antenne, des signaux radios émis par au moins 6 satellites qui permettent à l'utilisateur de connaître sa position exacte en latitude, longitude et altitude.
Dans le domaine de l'artillerie, un GPS embarqué permet grâce à un transpondeur de transmettre des ordres de correction de trajectoire à partir d'une station au sol, ou de piloter directement un système de correction de trajectoire embarqué à partir de la position de l'obus et des coordonnées d'un objectif.
Cependant plusieurs difficultés s'opposent à cette mise en œuvre. D'une part, les circuits électroniques doivent pouvoir fonctionner avec des contraintes d'accélération très sévères de 1 5 à 20 000 g pendant plusieurs millisecondes et d'autre part, le volume occupé par l'ensemble doit pour certains types de munitions être très réduit, de l'ordre de quelques dizaines de cm3 par exemple. Pour résoudre ces problèmes une intégration en technologie à trois dimensions désignée ci-après technologie 3D, du type de celle décrite dans le brevet d'invention FR 2 670 323 et déposée au nom de Thomson-CSF, peut être envisagée. Le procédé décrit consiste à réaliser l'interconnexion de pastilles semiconductrices empilées comportant chacune un circuit intégré.
Les pastilles semi-conductrices sont rendues solidaires les unes des autres par des plots de connexion. Les plots de connexion sont chacun reliés à l'une quelconque des faces de l'empilement sauf une, dite base qui est destinée à être en contact avec un substrat de circuit imprimé. La formation des connexions des pastilles entre elles est réalisée sur les faces de l'empilement par gravure laser.
L'application de ce procédé à la réalisation d'un GPS embarqué sur une munition ne permet pas de satisfaire certaines contraintes volumiques, notamment à cause de la forme parallélipipédique des pastilles et de l'antenne qui est connectée à l'extérieur de celles-ci. Ceci a également pour effet de rendre le dispositif ainsi réalisé très vulnérable quand à sa résistance aux accélérations lors du coup d'envoi de la munition.
Le but de l'invention est de palier les inconvénients précités.
A cet effet, l'invention a pour objet un procédé de réalisation d'un récepteur d'ondes radioélectriques couplé à une antenne de réception par empilement de pastilles semiconductrices contenant chacune au moins un circuit intégré et comportant des plots de connexion pour raccorder les pastilles entre elles, caractérisé en ce qu'il consiste à métalliser la surface extérieure des pastilles empilées pour créer un plan de masse de l'antenne du récepteur, à recouvrir le plan de masse par un matériau diélectrique, à métalliser la surface du matériau diélectrique et à graver l'antenne du récepteur sur la surface métallisée obtenue.
L'invention à également pour objet une utilisation du procédé à la mise en oeuvre d 'un récepteur GPS embarqué dans une munition. L'invention a principalement pour avantage qu'elle permet une mise en oeuvre de récepteurs d'ondes radioélectrique embarqués à bord de munitions qui leur confère une fiabilité suffisante pour résister aux accélérations aux quelles sont soumis les munitions. De ce fait elle permet d'assurer une plus grande efficacité aux tirs de longue portée car il est connu qu'en l'absence de dispositif de correction de trajectoire, cette efficacité diminue très vite avec la portée de la munition en raison des erreurs de justesse et de dispersion.
On sait en effet qu'au- delà de 1 5 km il y a nécessité de corriger la trajectoire alors que pour mettre à distance de sécurité des unités d'artillerie des contrebatteries adverses il faut actuellement envisager des portées de 35 km. A 35 km l'écart type sur la portée est d'environ 600 m et l'écart type latéral est d'environ 200 m.
Aussi la mise en œuvre selon l'invention d'un récepteur d'onde radioélectrique par empilement de pastilles semi-conductrices comportant une antenne gravée sur la surface externe des pastilles constitue un bon moyen pour constituer un système d'aide à la navigation embarqué capable de localiser la munition sur sa trajectoire et d'effectuer une correction de trajectoire pour que la munition puisse atteindre son objectif.
D'autres caractéristiques et avantages de l'invention apparaîtront dans la description qui suit faite en regard des dessins annexés qui représentent :
La figure 1 les différentes étapes du procédé selon l'invention sous la forme d'un organigramme.
La figure 2 un mode de réalisation de câblage sur film TAB où TAB est l'abréviation anglo-saxonne de "Tape Automated Bounding" .
La figure 3 un module intégré sans les antennes.
La figure 4 un module intégré avec le plan de masse de l'antenne.
La figure 5 un module intégré avec substrat de l'antenne.
La figure 6 un module GPS intégré en technologie 3D.
Les figures 7a, 7b, 7c différents modèles d'intégration. Le procédé selon l'invention se déroule en 6 étapes référencées de 1 à 6 sur la figure 1 .
L'étape 1 consiste à réaliser de façon connue sous forme de puces d'ASIC, abréviation anglo-saxonne de "Application Spécifie Integrated Circuit"les composants spécifiques au récepteur GPS.
Le câblage des puces ou des composants discrets est réalisé à l'étape 2 sur des circuits imprimés souples type polyamide, époxy ou encore sur film selon le procédé connu sous l'abréviation anglo saxonne TAB de "Tape Automated Bonding" . Pour un récepteur GPS ces films peuvent être au nombre de quatre, un film 7 d'alimentation, deux films 8 et 9 contenant l'électronique de traitement du signal et un film 1 0 pour les circuits hyperfréquence.
Les films 7 à 1 0 sont enrobés à l'étape 3 dans une résine époxy pour former des pastilles. Au cours de l'étape 3 est également réalisé le découpage pastilles suivant la forme des fenêtres des films TAB et leur empilement les unes au dessus des autres pour former un module récepteur. Les interconnexions entre chaque niveau de film peuvent être réalisées suivant le procédé décrit dans le brevet FR 2 670 323 déjà cité.
Après métallisation des faces des pastilles, les interconnexions entre pastilles sont effectuées par gravure laser et les pistes de conduction sont protégées par un dépôt isolant. L'empilage des pastilles est représenté à la figure 3, où les éléments homologues à ceux de la figure
2 sont représentés avec les mêmes références. Des plots 1 1 de raccordement du module sur un circuit imprimé extérieur non représenté, sont réalisés suivant le procédé connu sous l'abréviation BGA de "Bail
Grid Array" . Des sorties 1 2a, 1 2b de connexion du film hyper à l'antenne sont également réalisés.
L'étape 4 consiste à effectuer une métallisation représentée à la figure 4 des faces extérieures du module composé des pastilles empilées selon l'étape 3 pour créer le plan de masse de l'antenne.
A l'étape 5 un dépôt représenté à la figure 5 d'un matériau diélectrique à constante diélectrique élevée est effectué sur les faces du module, ce dépôt est suivi à l'étape 6 par une métallisation et une gravure des antennes 1 3a, 1 3b comme montré à la figure 6. Les antennes sont de préférence gravées tout autour du module de façon qu'il y ait toujours une antenne active, c'est-à-dire susceptible de recevoir des données du réseau de satellite GPS lorsque la munition est une rotation sur elle-même. Dans son principe la technologie 3D mise en œuvre permet d'envisager tout type de formes, et d'utiliser des antennes conformes ou des antennes à micro-ruban encore connue sous la désignation anglo- saxonne "patch" dont la gravure est réalisée à la superficie des modules.
Les figures 6a à 6c montre différentes solutions d'intégration capables de satisfaire certaines contraintes volumiques.
La figure 6a correspond à une réalisation de module cubique avec antennes "patch" disposées sur quatre faces du cube.
La figure 6b correspond à une réalisation d'un module cylindrique avec une antenne ruban disposée tout a tour. Enfin la réalisation de la figure 6c est celle d'un module cylindro conique avec antenne multibrins.
La figure 7 représente un module GPS mis en œuvre selon le procédé de l'invention, à l'intérieur d'une fusée d'artillerie. Suivant ce mode de réalisation le module GPS 1 4 est placé dans le nez de la fusée. On peut constater que sa dimension est très petite par rapport à la dimension longitudinale de la fusée qui dans cet exemple est de l'ordre de 1 45 mm, son diamètre maximum étant de l'ordre de 50 mm.
La description ci-dessus n'a été faite qu'à titre d'exemple non limitatif en s'appuyant sur une réalisation de type GPS, il va de soit que l'invention peut également s'appliquer à la miniaturisation de tout type de récepteur d'ondes radioélectriques chaque fois notamment que le récepteur est destiné à fonctionner dans un environnement mécanique sévère, tout en occupant un espace très réduit.

Claims

REVENDICATIONS
1 . Procédé de réalisation d'un récepteur d'ondes radioélectriques couplé à une antenne de réception, par empilement (3) de pastilles semiconductrices contenant chacune au moins un circuit intégré et comportant des plots de connexion pour raccorder les pastilles entre elles, caractérisé en ce qu'il consiste à métalliser (4) la surface extérieure des pastilles empilées pour créer un plan de masse de l'antenne du récepteur, à recouvrir (5) le plan de masse par un matériau diélectrique, à métalliser (6) la surface du matériau diélectrique et à graver l'antenne du récepteur sur la surface métallisée obtenue.
2. Procédé selon la revendication 1 , caractérisé en ce que les pastilles semiconductrices sont obtenues par câblage de puces électronique sur film TAB suivi d'un enrobage dans une résine époxy.
3. Procédé selon les revendications 1 et 2, caractérisé en ce qu'il consiste à empiler les pastilles en les conformant pour former un cube.
4. Procédé selon la revendication 3, caractérisé en ce qu'il consiste à graver des antennes patch sur les faces du cube.
5. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'il consiste à conformer les pastilles selon un cylindre.
6. Procédé selon la revendication 5, caractérisé en ce qu'il consiste à graver une antenne ruban tout au tour du cylindre.
7. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'il consiste à empiler les pastilles en les conformant pour former un cône.
8. Procédé selon la revendication 7, caractérisé en ce qu'il consiste à graver les antennes à la surface du cône. 9 Utilisation du procédé selon l'une quelconque des revendications 1 à 8 à la mise en oeuvre d'un récepteur GPS embarqué dans une munition ou des récepteurs d'ondes radioélectriques.
PCT/FR1999/002606 1998-11-03 1999-10-26 Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions WO2000026992A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99950839A EP1127385B9 (fr) 1998-11-03 1999-10-26 Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions
DE69911047T DE69911047T2 (de) 1998-11-03 1999-10-26 Verfahren zur realisierung von empfängen für elektromagnetische wellen durch verbinden von integrierten schaltkreisen in drei dimensionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/13814 1998-11-03
FR9813814A FR2785452B1 (fr) 1998-11-03 1998-11-03 Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions

Publications (1)

Publication Number Publication Date
WO2000026992A1 true WO2000026992A1 (fr) 2000-05-11

Family

ID=9532311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002606 WO2000026992A1 (fr) 1998-11-03 1999-10-26 Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions

Country Status (4)

Country Link
EP (1) EP1127385B9 (fr)
DE (1) DE69911047T2 (fr)
FR (1) FR2785452B1 (fr)
WO (1) WO2000026992A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461542B2 (en) 2008-09-08 2013-06-11 Koninklijke Philips Electronics N.V. Radiation detector with a stack of converter plates and interconnect layers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013643A1 (de) * 2004-03-19 2005-10-13 Infineon Technologies Ag Antennenanordnung und Verfahren zum Herstellen derselben
FR2940521B1 (fr) 2008-12-19 2011-11-11 3D Plus Procede de fabrication collective de modules electroniques pour montage en surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670323A1 (fr) * 1990-12-11 1992-06-12 Thomson Csf Procede et dispositif d'interconnexion de circuits integres en trois dimensions.
US5219377A (en) * 1992-01-17 1993-06-15 Texas Instruments Incorporated High temperature co-fired ceramic integrated phased array package
EP0620613A2 (fr) * 1993-04-15 1994-10-19 Hughes Aircraft Company Réseau de couches en structure treillis de petite dimension fabricable
US5367308A (en) * 1992-05-29 1994-11-22 Iowa State University Research Foundation, Inc. Thin film resonating device
US5764189A (en) * 1995-09-27 1998-06-09 Siemens Aktiengesellschaft Doppler radar module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670323A1 (fr) * 1990-12-11 1992-06-12 Thomson Csf Procede et dispositif d'interconnexion de circuits integres en trois dimensions.
US5219377A (en) * 1992-01-17 1993-06-15 Texas Instruments Incorporated High temperature co-fired ceramic integrated phased array package
US5367308A (en) * 1992-05-29 1994-11-22 Iowa State University Research Foundation, Inc. Thin film resonating device
EP0620613A2 (fr) * 1993-04-15 1994-10-19 Hughes Aircraft Company Réseau de couches en structure treillis de petite dimension fabricable
US5764189A (en) * 1995-09-27 1998-06-09 Siemens Aktiengesellschaft Doppler radar module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461542B2 (en) 2008-09-08 2013-06-11 Koninklijke Philips Electronics N.V. Radiation detector with a stack of converter plates and interconnect layers

Also Published As

Publication number Publication date
FR2785452B1 (fr) 2003-06-13
EP1127385B1 (fr) 2003-09-03
EP1127385B9 (fr) 2004-03-03
DE69911047D1 (de) 2003-10-09
FR2785452A1 (fr) 2000-05-05
EP1127385A1 (fr) 2001-08-29
DE69911047T2 (de) 2004-04-29

Similar Documents

Publication Publication Date Title
US9172143B2 (en) Electronic device module with integrated antenna structure, and related manufacturing method
US11671169B2 (en) Radio frequency data downlink for a high revisit rate, near earth orbit satellite system
CA2701538A1 (fr) Systeme d'antenne embarque de poursuite de satellite avec controle de polarisation
EP0445010B1 (fr) Satellite d'observation de type géostationnaire à système de manoeuvre d'apogée à ergols liquides et à antennes creuses
EP1127385B9 (fr) Procede de realisation de recepteurs d'ondes radioelectriques par interconnexion de circuits integres en trois dimensions
EP0512487B1 (fr) Antenne à lobe formé et grand gain
FR2727934A1 (fr) Satellite geostationnaire stabilise 3-axes a surveillance radar de son espace environnant
EP1074064B1 (fr) Appareil de poursuite de satellites a defilement
FR2823569A1 (fr) Procede d'acquisition d'informations azimutales
EP3840116B1 (fr) Antenne reconfigurable à réseau transmetteur avec intégration monolithique des cellules élémentaires
EP4025502B1 (fr) Procédé de fabrication d'un satellite à partir d'une configuration générique d'éléments antennaires
FR3023264A1 (fr) Satellite a maitre couple variable
WO2021176186A1 (fr) Dispositif et système de réception de messages ads-b par un satellite en orbite défilante
WO2010106280A1 (fr) Charge utile d'un ais satellite et procede correspondant
EP2109232B1 (fr) Satellite agile à antennes de transmission réparties.
EP2293385A1 (fr) Antenne autodirectrice en polarisation circulaire
FR3070091A1 (fr) Systeme electronique comprenant une couche de redistribution inferieure et procede de fabrication d'un tel systeme electronique
EP4194344A1 (fr) Agencement d'antennes ttc pour satellite plat
FR3090898A1 (fr) Procédé de géolocalisation d’un émetteur de signaux radioélectriques par un engin volant et système de géolocalisation associé
FR2624981A1 (fr) Dispositif et procede de radionavigation pour aeronef a voilure tournante
EP4125309A1 (fr) Carte de circuits imprimes multicouche
WO2023079246A1 (fr) Dispositif d'antibrouillage à antenne unique
FR3042917A1 (fr) Dispositif d'antenne d'aide a l'acquisition et systeme d'antenne pour le suivi d'une cible en mouvement associe
FR3123513A1 (fr) Empilement pour fabriquer un circuit intégré destiné à assurer une fonction de lentille électromagnétique pour une antenne reconfigurable à réseau transmetteur
FR3119027A1 (fr) Radar à antenne active à couverture angulaire élargie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999950839

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999950839

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999950839

Country of ref document: EP