WO2000026508A1 - Flexibler schlauch zwischen dampfraum und messaufnehmer in einer dampfturbinenanlage - Google Patents

Flexibler schlauch zwischen dampfraum und messaufnehmer in einer dampfturbinenanlage Download PDF

Info

Publication number
WO2000026508A1
WO2000026508A1 PCT/DE1999/003340 DE9903340W WO0026508A1 WO 2000026508 A1 WO2000026508 A1 WO 2000026508A1 DE 9903340 W DE9903340 W DE 9903340W WO 0026508 A1 WO0026508 A1 WO 0026508A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
steam turbine
measuring sensor
pressure
turbine
Prior art date
Application number
PCT/DE1999/003340
Other languages
English (en)
French (fr)
Inventor
Rainer Junk
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2000026508A1 publication Critical patent/WO2000026508A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/003Arrangements for measuring or testing

Definitions

  • the invention relates to a steam turbine system with a steam turbine, which has a steam chamber and a sensor for measuring steam pressure.
  • a steam turbine system is usually used to generate electrical energy or to drive a machine.
  • a working medium usually a water / steam mixture, which is carried in an evaporator circuit of the steam turbine system is evaporated in an evaporator. The steam generated thereby relaxes in a work-performing manner in the steam turbine and is then fed to a condenser. The working medium condensed in the condenser is then fed back to the evaporator via a feed water pump.
  • the sensors provided for measuring the respective steam pressure are not so temperature stable that they could be attached directly to the steam room of the respective turbine stage. For this reason, the vapor pressure to be measured is transferred to the respective sensor using so-called impulse lines. Due to the fact that the steam from the steam rooms of the turbine stages passes through the impulse lines to the respective sensors, the steam is cooled. The steam at the respective sensor is then comparatively low, so that the steam pressure can be measured in all operating states of the steam turbine without damaging the sensor. Taking into account the cooling that has already taken place of the steam, the steam pressure of the individual turbine stage is then determined.
  • the pulse lines used to measure the steam pressure on the steam turbine are usually made of stainless steel pipes.
  • each impulse line is laid individually. Individual pulse lines are created from different pipe sections by welding them together. In some cases, adaptation of individual pipe sections to local conditions is also provided.
  • the pipeline system provided for the measurement of steam pressures therefore requires a particularly high level of technical effort during installation.
  • the installation of an additional stainless steel pipe is required for an additional measuring location when operating the system.
  • the invention is therefore based on the object of specifying a steam turbine system of the type mentioned above, which has a connection between the steam space of a turbine stage and the associated sensor, which can be set up with particularly little technical effort, and which can be adapted particularly easily to different measuring locations of the steam pressure is.
  • the invention is based on the consideration that a steam turbine system has a connection between the steam chamber and the measuring sensor that is particularly easy to set up if the connection does not comprise assembled individual parts but essentially one element.
  • a connection comprising essentially one element is also easy to install and can be adapted to different measuring points of the vapor pressure with particularly little technical effort, if the connection is not rigid, but flexible.
  • a reversibly deformable hose can be provided as a single piece as well as flexibly connected to different measuring locations of one or different steam rooms.
  • the sensor is advantageously connected to a data processing system.
  • digital processing of the measurement data is ensured when the measurement data of the measurement transducer is digitized, as a result of which they can be used particularly simply, for example, to regulate the steam pressure as a function of the quantity of steam supplied.
  • the reversibly deformable tube is preferably designed as a metal tube, since it is particularly easy to handle.
  • Commercial stainless steel hoses for example, have a temperature stability of up to approximately 600 ° C. and can be used at operating pressures of up to 400 bar, so that they can be flanged to the steam turbine steam chamber without further precautions.
  • a flexible hose is particularly easy to adapt to different measuring points of the vapor pressure, for example, in that different pressure measuring points can only be reached by flanging the respective hose.
  • a reversibly deformable hose adapts to the heat-related changes in length of the machine parts of the steam turbine, for example under different load conditions of the steam turbine system, due to its flexibility.
  • FIG. 1 shows schematically a steam turbine NEN system with a steam room and a number of sensors for measuring steam pressure.
  • the steam turbine plant 2 comprises a steam turbine 4 with a coupled generator 6 and in a water-steam circuit 8 a condenser 10 connected downstream of the steam turbine 4 and a steam generator 12.
  • the steam turbine 4 consists of a first pressure stage or a high pressure part 4A and a further stage or a medium and low pressure part 4B, which drive the generator 6 via a common shaft 14.
  • the steam generator 12 is connected on the steam outlet side via a steam line 16 to the steam discharge valve 18 of the high pressure part 4A of the steam turbine 4.
  • the steam outlet 20 of the high pressure part 4A of the steam turbine 4 is connected via an overflow line 22 to the steam discharge valve 24 of the medium and low pressure part 4B of the steam turbine 4.
  • the steam outlet 26 of the medium and low pressure part 4B of the steam tower 4 is connected to the condenser 10 via a steam line 28.
  • This is connected to the steam generator 12 via a feed water line 30, into which a feed water pump 32 and a feed water container 34 are connected, so that a closed water-steam circuit 8 is formed.
  • the steam supply to the steam turbine 4 is regulated as a function of the steam pressure at various points in the steam turbine 4.
  • the steam room 40 of the high pressure part 4A of the steam tower 4 and the steam room 42 of the medium and low pressure part 4B of the steam turbine 4 each have openings 46. These are either closed in a vapor-tight manner with a cover 48 or are each connected to a measuring sensor 52 via a reversibly deformable hose 50 made of stainless steel.
  • the sensors 52 are each connected to a data processing system 56 via lines 54.
  • the data Work system 56 is connected via data control lines 58, 60 to the steam inlet valve 18 and 24, respectively.
  • both steam D from the high-pressure part 4A of the steam turbine 4 and steam D from the steam chamber 42 of the medium and low-pressure part 4A of the steam turbine 4 pass through the reversibly deformable hoses 50 designed as stainless steel hoses to the respective measuring sensors 52.
  • the measuring sensors 52 record the pressure of the steam D supplied to them and pass on a measured value determined in each case to the data processing system 56 via the respective line 54. This regulates, inter alia, in a manner not shown in detail, via the control lines 58 and 60 connected to the steam inlet valves 18, 24, the steam supply into the steam rooms 40 and 42 of the steam turbine 4 depending on the measured values of the measuring sensor 52 fed to it.
  • the steam turbine system ensures a flexible choice of different measuring locations for the steam pressure, since all that is required for this is to flange one of the reversibly deformable hoses 50 from one opening 46 to another opening 46.
  • the system of pulse lines formed from reversibly deformable hoses 50 can be set up with particularly little effort, since reversibly deformable
  • Hoses 50 can be provided in a particularly large number of lengths and are easy to install.

Abstract

Eine Dampfturbinenanlage (2) mit einem Dampfraum (40, 42) und einem Messaufnehmer (52) soll eine Verbindung zwischen einem Dampfraum (40, 42) und einem Messaufnehmer (50) aufweisen, die mit besonders geringem technischen Aufwand zu errichten, und die besonders einfach an verschiedene Messorte des Dampfdrucks anpassbar ist. Hierzu ist erfindungsgemäss der Dampfraum (40, 42) mit dem Messaufnehmer (52) über einen reversibel verformbaren Schlauch (50) verbunden.

Description

Beschreibung
FLEXIBLER SCHLAUCH ZWISCHEN DAMFPRAUM UND MESSAUFNEHMER IN EINER DAMPFTURBINENANLAGE
Die Erfindung bezieht sich auf eine Dampfturbinenanlage mit einer Dampfturbine, die einen Dampfraum und einen Meßaufnehmer zum Messen von Dampfdruck aufweist.
Eine Dampfturbinenanlage wird üblicherweise zur Erzeugung elektrischer Energie oder auch zum Antrieb einer Arbeitsmaschine eingesetzt. Dabei wird ein in einem Verdampferkreislauf der Dampfturbinenanlage geführtes Arbeitsmedium, üblicherweise ein Wasser-Dampf-Gemisch, in einem Verdampfer verdampft. Der dabei erzeugte Dampf entspannt sich arbeitslei- stend in der Dampfturbine und wird anschließend einem Kondensator zugeführt. Das im Kondensator kondensierte Arbeitsmedium wird dann über eine Speisewasserpumpe erneut dem Verdampfer zugeführt.
Für eine Kontrolle des Betriebszustands einer Dampfturbinenanlage sowie zur Regelung der Zufuhr von Dampf in die Dampfturbine ist es üblicherweise vorgesehen, den Dampfdruck an verschiedenen Stellen der einzelnen Turbinenstufen zu messen. Die für eine Messung des jeweiligen Dampfdrucks vorgesehenen Meßaufnehmer sind jedoch nicht so temperaturstabil, daß sie unmittelbar an dem Dampfräum der jeweiligen Turbinenstufe angebracht werden könnten. Deswegen wird der zu messende Dampfdruck mittels sogenannter Impulsleitungen auf den jeweiligen Meßaufnehmer übertragen. Dadurch, daß der Dampf von den Dampfräumen der Turbinenstufen durch die Impulsleitungen hindurch zu den jeweiligen Meßaufnehmern gelangt, erfolgt eine Abkühlung des Dampfs. Am jeweiligen Meßaufnehmer weist dann der Dampf eine vergleichsweise geringe Temperatur auf, so daß eine Messung des Dampfdrucks bei allen Betriebszuständen der Dampfturbine ohne Beschädigung des Meßaufnehmers erfolgen kann. Unter Berücksichtigung der bereits erfolgten Abkühlung des Dampfs findet dann eine Ermittlung des Dampfdrucks der einzelnen Turbinenstufe statt.
Die zur Messung des Dampfdrucks an der Dampfturbine einge- setzten Impulsleitungen sind üblicherweise aus Edelstahlrohren gefertigt. Bei der Errichtung eines Systems von Impulsleitungen wird jede Impulsleitung einzeln verlegt. Einzelne Impulsleitungen entstehen dabei aus verschiedenen Rohrabschnitten durch ein Zusammenschweißen derselben. Hierbei ist teilweise auch eine Anpassung einzelner Rohrstücke an örtliche Gegebenheiten vorgesehen. Das zur Messung von Dampfdrük- ken bereitgestellte System aus Rohrleitungen erfordert somit bei der Errichtung einen besonders hohen technischen Aufwand. Außerdem ist für einen zusätzlichen Meßort beim Betrieb der Anlage die Verlegung eines zusätzlichen Edelstahlrohrs erforderlich.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Dampfturbinenanlage der oben genannten Art anzugeben, die eine Verbindung zwischen dem Dampfraum einer Turbinenstufe und dem dazugehörigen Meßaufnehmer aufweist, die mit besonders geringem technischen Aufwand zu errichten ist, und die besonders einfach an verschiedene Meßorte des Dampfdrucks anpaßbar ist.
Diese Aufgabe wird erfindungsgemäß durch eine Dampfturbinenanlage gelöst, bei der der Dampfraum einer Turbinenstufe mit dem dazugehörigen Meßaufnehmer über einen reversibel verformbaren Schlauch verbunden ist.
Die Erfindung geht dabei von der Überlegung aus, daß eine Dampfturbinenanlage dann eine besonders einfach zu errichtende Verbindung zwischen dem Dampfraum .und dem Meßaufnehmer aufweist, wenn die Verbindung keine zusammengefügten Einzelteile, sondern im wesentlichen ein Element umfaßt. Eine im wesentlichen ein Element umfassende Verbindung ist außerdem einfach zu verlegen und mit besonders geringem technischen Aufwand an verschiedene Meßorte des Dampfdrucks anpaßbar, wenn die Verbindung nicht starr, sondern flexibel ist. Ein reversibel verformbarer Schlauch ist sowohl als ein Einzelstück bereitstellbar als auch flexibel an verschiedene Meßorte eines oder verschiedener Dampfräume anschließbar.
Vorteilhafterweise ist der Meßaufnehmer an eine Datenverarbeitungsanlage angeschlossen. Auf diese Weise ist bei einer Digitalisierung der Meßdaten des Meßaufnehmers eine datentechnische Aufbereitung der Meßdaten gewährleistet, wodurch sie besonders einfach beispielsweise zur Regelung des Dampfdrucks in Abhängigkeit von der zugeführten Dampfmenge nutzbar sind.
Vorzugsweise ist der reversibel verformbare Schlauch als Me- tallschlauch ausgebildet, da dieser besonders einfach in der Handhabung ist. Handelsübliche Edelstahlschläuche beispielsweise weisen eine Temperaturstabilität bis annähernd 600 °C auf und sind bei Betriebsdrücken bis zu 400 bar verwendbar, so daß sie ohne weitere Vorsichtsmaßnahmen an den Dampfraum der Dampfturbine anflaschbar sind.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch den Einsatz von reversibel verformbaren Schläuchen als Impulsleitungen mit besonders geringem techni- sehen Aufwand die Errichtung eines Systems von Impulsleitungen gewährleistet ist. Hierbei ist ein flexibler Schlauch besonders einfach an verschiedene Meßorte des Dampfdrucks anpaßbar, indem beispielsweise verschiedene Druckmeßorte nur durch ein U flanschen des jeweiligen Schlauchs erreichbar sind. Außerdem paßt sich ein reversibel verformbarer Schlauch an wärmebedingte Längenänderungen der Maschinenteile der Dampfturbine, beispielsweise bei verschiedenen Lastzuständen der Dampfturbinenanlage, durch seine Flexibilität an.
Ein Ausführungsbeispiel wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine Dampfturbi- nenanlage mit einem Dampfraum und einer Anzahl von Meßaufnehmern zur Messung von Dampfdruck.
Die Dampfturbinenanlage 2 gemäß der Figur umfaßt eine Da pf- turbme 4 mit angekoppeltem Generator 6 und in einem Wasser- Dampf-Kreislauf 8 einen der Dampfturbine 4 nachgeschalteten Kondensator 10 sowie einen Dampferzeuger 12. Die Dampfturbine 4 besteht aus einer ersten Druckstufe oder einem Hoch- druckteil 4A und einer weiteren Stufe oder einem Mittel- und Niederdruckteil 4B, die über eine gemeinsame Welle 14 den Generator 6 antreiben.
Der Dampferzeuger 12 ist dampfausgangsseitig über eine Dampfleitung 16 an das Dampfemlaßventil 18 des Hochdruck- teils 4A der Dampfturbine 4 angeschlossen. Der Dampfauslaß 20 des Hochdruckteils 4A der Dampfturbine 4 ist über eine Überströmleitung 22 mit dem Dampfemlaßventil 24 des Mittel- und Niederdruckteils 4B der Dampfturbine 4 verbunden. Der Dampfauslaß 26 des Mittel- und Niederdruckteils 4B der Dampftur- bme 4 ist über eine Dampfleitung 28 an den Kondensator 10 angeschlossen. Dieser ist über eine Speisewasserleitung 30, in die eine Speisewasserpumpe 32 und ein Speisewasserbehal- ter 34 geschaltet sind, mit dem Dampferzeuger 12 so verbunden, daß ein geschlossener Wasser-Dampf-Kreislauf 8 entsteht.
Bei der Dampfturbine 4 der Dampfturbinenanlage 2 wird die Dampfzufuhr der Dampfturbine 4 in Abhängigkeit vom Dampfdruck an verschiedenen Stellen der Dampfturbine 4 geregelt. Hierfür weisen der Dampfräum 40 des Hochdruckteils 4A der Dampftur- bme 4 und der Dampfraum 42 des Mittel- und Niederdruckteils 4B der Dampfturbine 4 jeweils Offnungen 46 auf. Diese sind entweder jeweils mit einem Deckel 48 dampfdicht verschlossen oder aber jeweils über einen reversibel verformbaren Schlauch 50 aus Edelstahl mit einem Meßaufnehmer 52 ver- bunden. Die Meßaufnehmer 52 sind jeweils über Leitungen 54 an eine Datenverarbeitungsanlage 56 angeschlossen. Die Datenver- arbeitungsanlage 56 ist über Ansteuerleitungen 58, 60 datentechnisch mit dem Dampfeinlaßventil 18 bzw. 24 verbunden.
Beim Betrieb der Dampfturbinenanlage 2 gelangt sowohl Dampf D aus dem Hochdruckteil 4A der Dampfturbine 4 als auch Dampf D aus dem Dampfraum 42 des Mittel- und Niederdruckteils 4A der Dampfturbine 4 über die als Edelstahlschläuche ausgebildeten reversibel verformbaren Schläuche 50 zu den jeweiligen Meßaufnehmern 52. Die Meßaufnehmer 52 erfassen den Druck des ih- nen jeweils zugeführten Dampfs D und geben einen jeweils ermittelten Meßwert datentechnisch über die jeweilige Leitung 54 an die Datenverarbeitungsanlage 56 weiter. Diese regelt unter anderem in nicht näher dargestellter Weise über die mit den Dampfeinlaßventilen 18, 24 verbundenen Ansteuer- leitungen 58 bzw. 60 die Dampfzufuhr in die Dampfräume 40 bzw. 42 der Dampfturbine 4 in Abhängigkeit von den ihr zugeführten Meßwerten der Meßaufnehmer 52.
Die Dampfturbinenanlage gewährleistet eine flexible Wahl ver- schiedener Meßorte des Dampfdrucks, da hierfür lediglich ein Umflanschen eines der reversibel verformbaren Schläuche 50 von einer Öffnung 46 an eine andere Öffnung 46 erforderlich ist. Außerdem ist das aus reversibel verformbaren Schläuchen 50 gebildete System von Impulsleitungen mit besonders geringem Aufwand zu errichten, da reversibel verformbare
Schläuche 50 in besonders vielen Längen bereitstellbar und einfach zu verlegen sind.

Claims

Patentansprüche
1. Dampfturbinenanlage (2) mit einer Dampfturbine (4), die einen Dampfraum (40, 42) und einen Meßaufnehmer (52) zum Mes- sen von Dampfdruck aufweist, wobei der Dampfraum (40, 42) mit dem Meßaufnehmer (52) über einen reversibel verformbaren Schlauch (50) verbunden ist.
2. Dampfturbinenanlage (2) nach Anspruch 1, bei der der Meßaufnehmer (50) an eine Datenverarbeitungsanlage (56) angeschlossen ist.
3. Dampfturbinenanlage (2) nach Anspruch 1 oder 2, bei der der reversibel verformbare Schlauch (50) als Metall- schlauch ausgebildet ist.
PCT/DE1999/003340 1998-10-30 1999-10-18 Flexibler schlauch zwischen dampfraum und messaufnehmer in einer dampfturbinenanlage WO2000026508A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998150123 DE19850123C1 (de) 1998-10-30 1998-10-30 Dampfturbinenanlage
DE19850123.4 1998-10-30

Publications (1)

Publication Number Publication Date
WO2000026508A1 true WO2000026508A1 (de) 2000-05-11

Family

ID=7886199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003340 WO2000026508A1 (de) 1998-10-30 1999-10-18 Flexibler schlauch zwischen dampfraum und messaufnehmer in einer dampfturbinenanlage

Country Status (2)

Country Link
DE (1) DE19850123C1 (de)
WO (1) WO2000026508A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756596A (en) * 1952-03-14 1956-07-31 Gen Motors Corp Compressor temperature sensing system
US3545571A (en) * 1968-12-19 1970-12-08 Gen Motors Corp Pressure transfer device
DE3800181A1 (de) * 1988-01-07 1989-07-20 Esser Hans Peter Dampfgeraet
US4854416A (en) * 1986-06-09 1989-08-08 Titeflex Corporation Tuned self-damping convoluted conduit
DE4424743A1 (de) * 1994-07-13 1996-01-18 Siemens Ag Verfahren und Vorrichtung zur Diagnose und Prognose des Betriebsverhaltens einer Turbinenanlage
US5689066A (en) * 1995-08-15 1997-11-18 Stevenson; Dennis B. Method and apparatus for analyzing gas turbine pneumatic fuel system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756596A (en) * 1952-03-14 1956-07-31 Gen Motors Corp Compressor temperature sensing system
US3545571A (en) * 1968-12-19 1970-12-08 Gen Motors Corp Pressure transfer device
US4854416A (en) * 1986-06-09 1989-08-08 Titeflex Corporation Tuned self-damping convoluted conduit
DE3800181A1 (de) * 1988-01-07 1989-07-20 Esser Hans Peter Dampfgeraet
DE4424743A1 (de) * 1994-07-13 1996-01-18 Siemens Ag Verfahren und Vorrichtung zur Diagnose und Prognose des Betriebsverhaltens einer Turbinenanlage
US5689066A (en) * 1995-08-15 1997-11-18 Stevenson; Dennis B. Method and apparatus for analyzing gas turbine pneumatic fuel system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEGLINGER VIKTOR ET AL: "METHODEN DER ERPROBUNG BEI MODERNEN INDUSTRIEGASTRUBINEN", MTZ MOTORTECH Z APR 1978, vol. 39, no. 4, April 1978 (1978-04-01), pages 153 - 157, XP002130498 *

Also Published As

Publication number Publication date
DE19850123C1 (de) 1999-11-25

Similar Documents

Publication Publication Date Title
DE3047310C2 (de) Betriebsüberwachungseinrichtung für Dampfkraftwerke
EP2475920B1 (de) Diagnosesystem für ein ventil
DE3421522C2 (de) Verfahren und Einrichtung zur Diagnose eines Wärmekraftwerks
DE1751531A1 (de) Regelvorrichtung fuer Abgaskessel
DE2853919A1 (de) Kraftanlage mit wenigstens einer dampfturbine, einer gasturbine und einem waermerueckgewinnungsdampferzeuger
EP0359735B1 (de) Abhitze-Dampferzeuger
DE3445791C2 (de) Wärmeleistungswächter zur Lieferung von Information über ein Dampfturbogeneratorsystem
DE69931413T2 (de) Gekühltes System in einer Kraftanlage mit kombiniertem Kreislauf
DE10219948A1 (de) Dampfturbine
DE2445525C3 (de) Verfahren zum Beeinflussen der Austrittstemperatur des eine Berührungsheizfläche eines Dampferzeugers durchströmenden Dampfes
DE2620734C3 (de) Überwachungsanordnung für einen Durchlauf-Dampferreuger zur Ermittlung der Abweichungen zwischen der vom Speisewasser aufgenommenen und der von der Feuerung abgegebenen Wärmemenge
DE2620887A1 (de) Einrichtung zur regelung eines kernkraftwerkes
WO2000026508A1 (de) Flexibler schlauch zwischen dampfraum und messaufnehmer in einer dampfturbinenanlage
EP3161378A1 (de) Regelungsverfahren zum betreiben eines abhitzedampferzeugers
DE2023748C3 (de) Speisewasse rvorwärm-Einrichtung in einer kombinierten Gas-Dampfkraftanlage mit nachgeschaltetem Dampferzeuger
DE2518353A1 (de) Regelsystem fuer energieerzeuger
WO2012034876A2 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE1817012A1 (de) Wellendichtungsanordnung fuer eine mit einem elastischen Flud arbeitende Maschine mit einer Mehrzahl Spaltdichtungen
CH632050A5 (en) Control device for a power station block operated in sliding pressure mode
DE1225199B (de) Waermeuebertragersystem einer Atomreaktoranlage mit im Zwangdurchlauf arbeitendem Waermeuebertrager
DE701324C (de) Zwangsdurchfluss-Roehrendampferzeuger mit Zwischenueberhitzer
DE2427923A1 (de) Steuereinrichtung fuer eine dampfturbinenanordnung mit umgehungsleitung
DE1476802A1 (de) Einrichtung zur Verringerung von Temperatureinfluessen bei einer pneumatischen Steuer- und Regeleinrichtung fuer ein Gasturbinentriebwerk
EP0507730B1 (de) Einrichtung zum lastabhängigen Regeln der Speisewassermenge eines Zwanglaufdampferzeugers
WO2000057143A1 (de) Volumenstrommessgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ IN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase