WO2000019593A1 - Moteur synchrone - Google Patents

Moteur synchrone Download PDF

Info

Publication number
WO2000019593A1
WO2000019593A1 PCT/JP1999/002541 JP9902541W WO0019593A1 WO 2000019593 A1 WO2000019593 A1 WO 2000019593A1 JP 9902541 W JP9902541 W JP 9902541W WO 0019593 A1 WO0019593 A1 WO 0019593A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
synchronous
permanent magnet
magnet rotor
synchronous motor
Prior art date
Application number
PCT/JP1999/002541
Other languages
English (en)
French (fr)
Inventor
Fumito Komatsu
Original Assignee
Fumito Komatsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27182398A external-priority patent/JP3163285B2/ja
Priority claimed from JP10271829A external-priority patent/JP3050851B2/ja
Application filed by Fumito Komatsu filed Critical Fumito Komatsu
Priority to EP99919610A priority Critical patent/EP1130757A4/en
Priority to US09/787,754 priority patent/US6424114B1/en
Publication of WO2000019593A1 publication Critical patent/WO2000019593A1/ja
Priority to HK02101403.7A priority patent/HK1040576A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/50Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by changing over from asynchronous to synchronous operation

Definitions

  • the present invention relates to a synchronous motor.
  • OA equipment has been equipped with a DC or AC fan motor for cooling.
  • DC or AC fan motor for cooling.
  • 2-pole or 4-pole AC fan motors are preferably used for equipment requiring a high rotation speed.
  • the inventor has already equipped the rectifier circuit connected to the armature coil with a diode, a brush, and a commutator, and rectified the AC current supplied from the AC power supply while rotating the same to energize the permanent magnet unit.
  • a synchronous motor that starts operation as a DC motor and starts the rotation of the permanent magnet rotor to near the synchronous rotation, at which point the computer is mechanically disconnected from the rectifying circuit and switched to synchronous operation with AC power. Proposed (Japanese Patent Application No. 7-232268, Japanese Patent Application No. 8-106929, etc.).
  • This synchronous motor has a high rotation speed of 3000 rpm (50 Hz) or 3600 rpm (60 Hz) with two poles, and is compact, efficient and versatile.
  • it is suitably used for an AC fan motor or the like.
  • the commutator 101 is provided so as to be movable in the axial direction of the output shaft 102, and mechanically switches from start-up operation to synchronous operation as described later.
  • This output shaft 102 has 180.
  • a ring-shaped permanent magnet rotor (not shown) magnetized to two poles each is provided coaxially with the force commuter 101.
  • the permanent magnet rotor starts rotating by repulsion from a magnetic pole formed by energizing the armature coil 103.
  • a conductive sliding ring 104 having a central angle smaller than 180 ° is provided on the outer periphery of the computer 101.
  • the switch 107 is switched from the connection between the single-phase AC power supply 105 and the rectifier circuit 106 to the connection between the single-phase AC power supply 105 and the armature coil 103.
  • the armature coil 103 is composed of two coil segments having an A coil and a B coil.
  • the A coil and the B coil are wound around a bobbin (not shown) with a predetermined number of turns in a predetermined winding direction in accordance with the rotation direction of the motor.
  • the power supply brushes 108a and 108b slide oppositely to the conductive sliding ring 104 provided on the outer periphery of the commutator 110 to alternately supply power, so that they are arranged opposite to each other at positions 180 ° out of phase. ing.
  • the A-side receiving brush 109a.109b supplies rectified current to the A coil
  • the B-side receiving brush 110a, 110b supplies rectified current to the B coil.
  • a side receiving brush 109 a, 109 b and B side receiving brush 1 110 a, ⁇ 1 110 b include diodes 1 1 1 a, 1 1 1 b and diodes 1 1 2 a, 1 1 2 b
  • the AC current from the single-phase AC power supply 105 is half-wave rectified and supplied to the A and B coils, respectively (see Fig. 17).
  • Power supply brushes 108a, 108b, A-side power receiving brush 109a.109b and B-side power receiving brush 110a, 110b have conductivity provided in housing 113.
  • the leaf springs 1 1 4a, 1 1 4b, 1 1 5a, 1 1 5b and the leaf springs "I 1 6a, 1 1 6b are biased to the radial center (Fig. 1 8), and can be slid into contact with the conductive sliding ring 104 (see Fig. 17).
  • the rectifier circuit 106 connected to the armature coil 103 rectifies the AC current supplied from the single-phase AC power supply 105 while rotating the permanent magnet rotor so as to energize it, starts up as a DC motor, and starts operation. Start the rotation of the magnet rotor to near the synchronous rotation.
  • Commutator 1 01 mechanically rectifier circuit scavenge short single-phase AC power source 1 05 and the armature coils 1 03 switches the changeover example switch 1 07 to 1 06 at this point As a result, the permanent magnet rotor 103 shifts to synchronous operation.
  • FIG. 1 7 Oite C,, C 2, C 3 is a capacitor for absorbing the surge current.
  • the synchronous motors disclosed in Japanese Patent Application Nos. Hei 7-23032 and No. Hei 8-10692 mentioned above start up with a DC motor near the synchronous speed, and operate synchronously. Since the commutator 101 was mechanically slid in the axial direction when the rotation speed was approached, it was designed to switch the switching switch 107 so that the connection with the rectification circuit 106 was cut off. Although there is a merit that the power consumption efficiency of the motor can be remarkably improved as compared with the conventional induction motor, the number of parts is large and the mechanism is complicated, and there is a limit in reducing the size of the motor.
  • An object of the present invention is to reliably shift from start-up operation to synchronous operation and achieve high reliability in order to solve the above-mentioned problems of the prior art and realize an energy-saving synchronous motor that meets the needs of the times.
  • Another object of the present invention is to provide a synchronous motor that has been reduced in size. To achieve the above object, the present invention has the following configuration.
  • the first configuration includes a permanent magnet rotor rotatably provided around an output shaft in a housing, a first detection means for detecting a rotation speed and a magnetic pole position of the permanent magnet rotor, and an AC power supply.
  • Second detecting means for detecting the frequency of the motor, a stator having an armature coil wound around a stator core, and rectifying an AC current supplied from an AC power supply by a rectifying bridge circuit to rotate the permanent magnet rotor.
  • a start-up operation circuit that performs a start-up operation as a brushless motor, a synchronous operation circuit that short-circuits the AC power supply and the armature coil, and synchronously operates the permanent magnet rotor as an AC synchronous motor.
  • An operation switching switch for switching connection to a start-up operation circuit or a synchronous operation circuit; a start-up operation circuit for starting operation; and a rotation speed of the permanent magnet rotor detected by the first detection means is used for the second detection.
  • Control means for switching the operation switching switch from the start-up operation circuit to the synchronous operation circuit to shift to the synchronous operation when the power supply frequency near the synchronous rotation speed is detected by the means. It is characterized by the following.
  • control means controls the start-up operation by suppressing the input on the inversion side with respect to the non-inversion side within a range in which the rectified current alternately flowing through the armature coil of the start-up operation circuit is inverted.
  • the energization range may be time-divisionally switched within a range in which the rectified current flowing through the armature coil is reversed during one rotation of the permanent magnet rotor.
  • a third detecting means having a sensor plate in which a slit for defining an energizing direction to the armature coil is formed in a circumferential direction, and an optical sensor capable of detecting the slit. Is characterized in that in the start-up operation, the direction of energization to the armature coil is switched and controlled by the output signal of the optical sensor.
  • a slit for defining an energizing range to the armature coil is formed in the sensor plate in the circumferential direction, and the control means controls the rectified current by the output signal of the optical sensor in the start-up operation.
  • the switching control is performed so that the armature coil is energized by a predetermined rotation angle within a range in which is inverted.
  • the first detecting means includes a sensor plate in which slits and light-shielding portions are alternately formed by dividing the magnetic poles by an odd number at a peripheral portion for defining an energizing direction and an energizing range to the armature coil.
  • An optical sensor capable of detecting the slit and the light shielding portion is provided, and the control means detects a rotation angle and a magnetic pole position of the permanent magnet rotor based on an output signal of the optical sensor during a start-up operation, and controls the armature coil. Switching is performed such that the energizing direction is switched and the armature coil is energized by a predetermined rotation angle within a range in which the rectifying current is reversed.
  • the control means starts the operation from the synchronous operation once. After that, the operation switching switch is repeatedly controlled so as to shift to synchronous operation again.
  • the control means When the control means shifts from the start-up operation to the synchronous operation, the control means switches the switching means for supplying the rectified current to the start-up operation circuit, and then switches the operation switching switch to the synchronous operation circuit to perform the synchronous operation. It is characterized by controlling to shift.
  • the armature coil is divided into an A coil and a B coil and wound in series.
  • the start operation circuit uses only the A coil to operate as a DC brushless motor
  • the synchronous operation circuit uses the A coil and the B coil. It features synchronous operation as an AC synchronous motor using coils.
  • stator core is provided with an auxiliary core extending in the direction opposite to the rotation direction of the permanent magnet rotor on the main core, and is designed so that the magnetic permeability of the main core is larger than that of the auxiliary core.
  • the stator is mounted on a stator core, and an armature coil is continuously wound around a bobbin having a core extending in a direction orthogonal to the rotation center of the permanent magnet rotor and flanges at both ends of the core. It is characterized by the following.
  • the second configuration includes a permanent magnet rotor rotatably provided around an output shaft in the housing, a first detection means for detecting a rotation speed and a magnetic pole position of the permanent magnet rotor, and an AC power supply.
  • Second detecting means for detecting the frequency of the stator coil, a stator having an armature coil in which an A coil and a B coil are wound in series around a stator core via an intermediate tap, rectifying means and switching means.
  • a start-up operation circuit that rectifies the AC current of the AC power supply, alternately flows the rectified current to the A coil and the B coil according to the rotation angle of the permanent magnet rotor, and starts the permanent magnet rotor as a DC brushless motor;
  • a synchronous operation circuit that synchronizes the permanent magnet rotor as an AC synchronous motor by short-circuiting the AC power supply and the armature coil, and a startup operation circuit provided between the AC power supply and the intermediate tap.
  • Operation switching switch for switching the connection to the road or synchronous operation circuit, and starting control the switching means of the operation circuit to alternately switch the direction of the rectified current flowing through the A coil and the B coil to perform the start operation, and the first detection means
  • the operation switching switch is switched to the synchronous operation circuit.
  • Control means for performing control to shift to synchronous operation.
  • control means controls the switching means to switch the energizing angle range to the armature coil of the start-up operation circuit during one rotation of the permanent magnet rotor so that the A coil is larger than the B coil, and rectifies the current. It is characterized by starting operation so that the current converges on the coil A.
  • the switching means connected to the B coil of the start-up operation circuit is omitted, and the coil A is designed so that the rectified current flows more than the B coil in the start-up operation.
  • the first detecting means includes a sensor plate provided with a slit that defines a current direction and a range of the current supplied to the A coil and the B coil, respectively, and an optical sensor for detecting the slit of the sensor plate.
  • the control means controls the switching means of the start-up operation circuit in the start-up operation based on the output signal of the optical sensor to control the A coil so that the rectified current flows more than the B coil.
  • the control means is characterized in that, when the synchronous motor loses synchronism, the operation switching switch is repeatedly controlled so as to temporarily shift from the synchronous operation to the starting operation and then shift to the synchronous operation again.
  • stator core is provided with an auxiliary core extending in a direction opposite to the rotation direction of the permanent magnet rotor on the main core, and is designed so that the magnetic permeability of the main core is larger than that of the auxiliary core. I do.
  • control means shifts from the start-up operation to the synchronous operation
  • the control means switches off the switch for flowing the rectified current to the B coil side of the start-up operation circuit, and then switches the operation changeover switch to the synchronous operation circuit.
  • the switch for flowing the rectified current to the A-coil side is turned on and controlled to shift to synchronous operation.
  • stator is wound around a bobbin having a core wound on a stator core and extending in a direction orthogonal to the rotation center of the permanent magnet rotor and flanges at both ends of the core, and an A coil and a B coil are wound continuously. It is characterized by having been done.
  • the control means performs switching control on the direction and range of the rectified current flowing alternately to the armature coil from the AC power supply via the rectification bridge circuit, and performs the restart operation by the start operation circuit.
  • the permanent magnet detected by the first detecting means When the rotation speed of the stone rotor reaches the vicinity of the synchronous rotation speed with respect to the power supply frequency detected by the second detection means, the operation switching switch is switched from the start-up operation circuit to the synchronous operation circuit to shift to synchronous operation. Control to do. Therefore, the transition from start-up operation to synchronous operation can be performed reliably and smoothly.
  • the control means performs switching control such that the energizing angle range to the armature coil during one rotation of the permanent magnet rotor in the start-up operation circuit is such that the A coil is larger than the B coil.
  • the operation switching switch is switched to the synchronous operation circuit to shift to synchronous operation. In this way, the transition from start-up operation to synchronous operation can be performed reliably and smoothly.
  • a brush or a commutator is not required in the start-up operation circuit, a spark is prevented from being generated when switching the current direction in the start-up operation, thereby providing high reliability and safety.
  • a synchronous motor can be provided.
  • mechanical parts such as commutators, brushes, and switches can be omitted as in the past, the size of the motor can be reduced, and manufacturing costs can be reduced.
  • the control means repeats the operation switching switch so as to temporarily shift from synchronous operation to start-up operation and then shift to synchronous operation again.
  • the control it is possible to provide a synchronous motor with high operation reliability and stability.
  • the control means when the control means shifts from the start-up operation to the synchronous operation, the control means turns off the switching means for flowing the rectified current to the start-up operation circuit, and then switches the operation switching switch to the synchronous operation circuit. If the control is switched to synchronous operation by switching to, it is possible to prevent short circuit in the start-up operation circuit and shift to synchronous operation.
  • the switch for supplying the rectified current to the B coil side of the start-up operation circuit is turned off, then the operation switching switch is switched to the synchronous operation circuit, and the rectified current is supplied to the A coil side. If the control to shift to the synchronous operation is performed by turning on the switch for flowing the current, it is possible to prevent the short circuit of the start-up operation circuit and shift to the synchronous operation.
  • the stator core is provided with a permanent magnet core on the main core.
  • the auxiliary core is designed so that the magnetic permeability of the main core is greater than that of the auxiliary core, the permanent magnet It is possible to eliminate the points and to stabilize the direction of rotation.
  • a larger winding core area is secured and the space factor is increased compared to when armature coils are housed in the stator core, so that the number of turns of the armature coils is increased. By doing so, the output efficiency of the motor can be increased.
  • the stator is mounted on a stator core, and the A coil and the B coil are continuously formed on a bobbin having a core extending in a direction orthogonal to the rotation center of the permanent magnet rotor and flanges at both ends of the core.
  • the output shaft through which the stator core is inserted does not create wasted space, so that the winding core area can be enlarged to increase the space factor and increase the motor output efficiency.
  • the synchronous motor, power supply frequency 5 0 H ⁇ , 6 0 ⁇ ⁇ can use the same synchronous motor without changing the fine mechanical design be varied in ⁇ ⁇ ⁇ ⁇ ⁇ like Runode, An extremely versatile synchronous motor can be provided.
  • FIG. 1 is an explanatory diagram of a starting operation circuit and a synchronous operation circuit of the two-pole synchronous motor according to the first embodiment.
  • 2A and 2B are an external view of a permanent stone rotor installed in the housing of the two-pole synchronous motor and a top view of the two-pole synchronous motor.
  • 3A to 3D are an explanatory front view of a two-pole synchronous motor, an inner view of an upper housing, a bottom view, and a top view of a stator coil.
  • FIG. 4A is a power supply AC waveform
  • Fig. 4B is a rectified waveform
  • Fig. 4C is a graph showing the relationship between the voltage waveform applied to the armature coil by time division control and the rotation angle of the permanent magnet rotor
  • Fig. 4D is a graph showing a relationship between a voltage waveform applied to an armature coil by rotation angle control and a rotation angle of a permanent magnet rotor.
  • FIG. 5 is an explanatory diagram showing the configuration of the optical sensor and the sensor plate in the rotation angle control.
  • FIG. 6 is an explanatory front view of a two-pole synchronous motor and a top view of a stator coil according to another example.
  • FIG. 7 is an explanatory view showing a configuration of a photosensor and a sensor plate for a two-pole synchronous motor according to another example.
  • FIG. 8 is an explanatory view showing a configuration of a photosensor and a sensor plate for a four-pole synchronous motor according to another example.
  • FIG. 9 is a circuit diagram of the two-pole synchronous motor according to the second embodiment at the time of starting operation.
  • FIG. 10 is a circuit diagram of the two-pole synchronous motor during synchronous operation.
  • FIG. 11 is a graph showing the relationship between the voltage waveform applied to the armature coil of the start-up operation circuit and the rotation angle of the permanent magnet rotor.
  • FIG. 12 is an explanatory diagram of a sensor plate provided in the optical sensor.
  • FIG. 13 is a partially cutaway explanatory view of the four-pole synchronous motor according to the third embodiment.
  • FIG. 14 is an explanatory sectional view of a shaft of a four-pole synchronous motor.
  • FIG. 15 is an explanatory view of a rotating disk provided in an optical sensor of a four-pole synchronous motor.
  • FIGS. 16A and 16B are an axial sectional view of the permanent magnet rotor of the eight-pole synchronous motor according to the fourth embodiment and a partial sectional view of the stator with the permanent magnet rotor removed.
  • reference numeral 1 denotes a housing main body that accommodates a rotor and a stator, and its upper and lower sides are covered by an upper housing 2 and a lower housing 3.
  • a permanent magnet rotor 5 is rotatably built in the housing 1 around the output shaft 4.
  • the output shaft 4 is rotatably supported by bearings 6 and 7 in the upper housing 2 and the lower housing 3.
  • a non-magnetic material for example, stainless steel is suitably used in consideration of disturbance of a magnetic field formed in the armature coil.
  • the lower housing 3 is provided with a wiring hole 3a for wiring to an armature coil 9 described later.
  • a link-shaped magnet 5b magnetized at approximately 180 ° at N and S poles is held on the inner wall of a cylindrical rotor yoke 5a.
  • the permanent magnet rotor 5 starts rotating around the output shaft 4 by repulsion from a magnetic pole formed by energizing the armature coil.
  • the magnet 5b for example, ferrite, a rubber magnet, a plastic magnet, samarium cobalt, a rare earth magnet, neodymium boron, or the like can be manufactured at low cost.
  • stator 10 having an armature coil 9 in which an A coil and a B coil are wound in series around a stator core 8 is incorporated.
  • stator core 8 is provided with a main core 8a and an auxiliary core 8b extending around the main core 8a in a direction opposite to the rotation direction of the permanent magnet rotor 5.
  • the magnetic permeability of the main core 8a is designed to be higher than that of the auxiliary core 8b.
  • the main core 8a is preferably a laminated core made of a gay steel sheet, and the auxiliary core 8b is made of an SPC material. (Cold rolled steel sheet) is preferably used.
  • the permanent magnet rotor 5 stops at a position where the magnetic poles of each magnetic pole have the minimum magnetic resistance between the main core 8a and the auxiliary core 8b (that is, a position shifted toward the auxiliary core 8b from a position facing the main core 8a). I will be. Therefore, the dead center of the torque at the time of startup can be eliminated, and the rotation directionality of the permanent magnet rotor 5 at the time of startup can be stabilized. Further, the stay core 8 is fitted integrally with the bobbin 11, and the armature coil 9 is continuously wound around the bobbin 11 without being divided for each of the A coil and the B coil.
  • the winding area is secured to the hobbin 11 with a wide area and the space factor is increased, the number of windings of the armature coil 9 is increased compared to the 2-pole, 3-slot type motor. As a result, it is possible to contribute to improvement of the output efficiency of the motor.
  • an optical sensor 12 is provided in the upper housing 2 as first detecting means for detecting the rotation speed and the magnetic pole position of the permanent magnet rotor 5.
  • the light sensor 12 includes, for example, a light detection element 12a having a light source for light emission and a light receiving element, and a light-shielding part 13a and a light-transmitting part 13b according to the magnetic pole position of the magnet 5b. 8 0. It is equipped with rotating disks 13 formed in a single step. The rotating disk 13 is mounted integrally with the permanent magnet rotor 5, and these rotate integrally with the output shaft 4 as a center (see FIG. 3B).
  • the optical sensor 12 detects the rotation speed and the magnetic pole position of the permanent magnet rotor 5 by the rotating disk 13, and the light detection element 12 a generates a pulse corresponding to the rotation speed.
  • the starting operation circuit 14 is controlled by a predetermined timing according to the magnetic pole position by control means described later.
  • the light detection element 12a is fixed to the inner wall of the upper housing 2 with a screw, as shown in FIGS. 2A and 2B.
  • the optical sensor 12 is not limited to the light transmission type, but may be a reflection type sensor.
  • Various other means such as a magnetic sensor using a Hall element, a magnetoresistive element, a coil, a method based on high-frequency induction, a method based on a change in capacitance, and the like are used as other rotational speed detecting means of the optical sensor 12. It is possible.
  • the start-up operation circuit 14 re-rectifies the AC current of the single-phase AC power supply 15 by the rectification bridge circuit 20 and switches the switching means according to the rotation angle of the permanent magnet rotor 5 to perform the rectification. Only the A coil of the armature coils 9 is energized so as to change the direction of the current, and the permanent magnet rotor 5 is started up as a DC brushless motor.
  • the synchronous operation circuit 21 short-circuits the AC power supply 15 and the armature coil 9 and performs synchronous operation using the permanent magnet rotor 5 as an AC synchronous motor.
  • Triacs SW 1 and SW 2 are provided between the AC power supply 15 and the A coil and the B coil as operation switching switches, respectively. Regarding the triacs SW 1 and SW 2, the connection is switched to the start-up operation circuit 14 or the synchronous operation circuit 21 by applying a gate pulse irrespective of the polarity of the alternating current by ONZOFF.
  • first and second transistors 16 and 17 are respectively connected in series as switching means between the A coil and the rectifying bridge circuit 20. Further, between the A coil and the rectifier bridge circuit 20, third and fourth transistors 18 and 19 are connected in series as switching means.
  • Reference numeral 2 denotes a microcomputer as control means, which controls the amount and direction of current flowing through the start-up operation circuit 14 by switching control in the start-up operation, and switches the operation when shifting from the start-up operation to the synchronous operation. Performs switch switching control.
  • 23 is a low-voltage power supply for driving the microcomputer. That is, the switching means of the start-up operation circuit 14 are controlled, the direction of the rectified current flowing through the A coil is alternately switched to suppress the input on the inversion side with respect to the non-inversion side, and the start operation is performed.
  • step (2) When the rotation speed of the permanent magnet rotor 5 detected by step (2) reaches near the synchronous rotation speed, the first to fourth transistors 16 to 19 are turned off, and the triac SW1 and SW2 are turned on, and the synchronous operation circuit is turned on. 2 Switch to 1 and control to shift to synchronous operation.
  • the frequency of the AC power supply 15 is detected by the power supply frequency detection unit 24 as the second detection means and is input to the input terminal IN1.
  • the rotation speed and the magnetic pole position of the permanent magnet rotor 5 are detected by the optical sensor 12 and input to the input terminal IN2.
  • a switching signal to the retry switches SW1 and SW2 is output from the output terminal OU T1
  • the first and second transistors 16 and 17 and the third and third transistors are output from the output terminal OU T2 and the output terminal OU T3.
  • An output signal is output to cause each of the transistors 18 and 19 to perform NZO FF.
  • the microcomputer 22 adjusts the timing to the magnetic pole position of the permanent magnet rotor 5 detected by the optical sensor 12 and adjusts the base current from the output terminal OUT 2 in the rotation angle range of 0 ° to 180 °.
  • the first to fourth transistors 16 to 19 are activated. All are turned FF, a switch signal to turn on triac SW1 and SW2 is output, and the alternating current indicated by the two-dot chain line arrow 3 flows through the synchronous operation circuit 21.
  • rectified currents 1 and 2 flow in the start-up operation circuit 14 will be specifically described with reference to FIG.
  • the rotation angle of the permanent magnet rotor 5 is in the range of 0 ° to 180 °
  • the base current is output from the output terminal UT2
  • the first and second transistors 16 and 17 are simultaneously turned on.
  • a rectified current ⁇ ⁇ ⁇ flows through the A coil through the rectifying bridge circuit 20.
  • the rotation angle of the permanent magnet rotor 5 is 180 ° to 36 °.
  • the base current is output from the output terminal OUT 3 and the third and fourth transistors 18 and 19 are simultaneously turned on.
  • a rectified current ⁇ ⁇ ⁇ flows through the A coil via the rectifying bridge circuit 20.
  • the microcomputer 22 determines that the energization angle range is within a range in which the rectified current flowing through the A coil has an inverted waveform during one rotation of the permanent magnet rotor 5 (the dashed portions of the sine waveforms in FIGS. 4B and 4C). Is re-switched by time division.
  • the direction in which the rectified current flowing in the A coil flows out to (1) is defined as the + side
  • the direction in which the rectified current flows out in (2) is defined as the one side.
  • the shaded area indicates the range of the energization angle.
  • the microcomputer 22 controls the third and fourth transistors 18.19 of the start-up operation circuit 14 in the start-up operation according to a preset time division in which the rotation angle of the permanent magnet rotor 5 is in the range of 180 ° to 360 °. Perform switching control.
  • the rotation angle of the permanent magnet rotor 5 can be obtained by detecting the light-shielding portion 13a and the light-transmitting portion 13b of the rotary disk 13 by the optical sensor 12. For example, as shown in FIG. 4C, in the energization range in which the rectified current ⁇ ⁇ having an inverted waveform flows through the A coil, the microcomputer 22 outputs the base current from the output terminal OUT 3 in an arbitrary time division, and outputs the base current. 3.
  • the switching control is performed by turning ON and OFF the fourth transistors 1 8 and 1 9. In this way, the input of the inverting side is suppressed with respect to the non-inverting side within the range in which the rectified current flowing alternately through the A coil is inverted, and the rotation speed of the permanent magnet rotor 5 is changed to the original current direction of the power supply frequency (inverting direction). Start-up operation so as to converge in the direction in which current does not flow. Then, as the number of rotations of the permanent magnet rotor 5 increases, the third and fourth transistors 18 and "I 9 are turned ONZO FF in synchronization with the rotation angle of the permanent magnet rotor 5 to synchronize. Start up near the rotation speed.
  • the microcomputer 22 turns off all the first to fourth transistors 16 to 19 in FIG. Turn on the triac SW1 and SW2 to switch from the startup operation circuit 14 to the synchronous operation circuit 21.
  • the armature coil 9 an A coil and a B coil are connected in series, and an alternating current indicated by a two-pointed arrow 3 in FIG. 1 flows, and the permanent magnet rotor 5 is synchronized with a change in the magnetic pole of the armature coil 9.
  • Rotate, AC synchronous It is rotationally driven as a motor.
  • the A coil and the B coil are connected in series to the armature coil 9, an AC current suitable for a load that generates a torque required for the synchronous operation flows.
  • the first to fourth transistors 16 to 19 are turned off before the triacs SW1 and SW2 are turned on. If the input on the inverting current side is not suppressed, the rectifier bridge circuit 20 performs an operation to shift to synchronous operation with a probability of 50% in both the original current direction and the inverting current direction. If the operation shifts to synchronous operation, the motor will step out and restart will be repeated. To prevent such problems, the reverse current side is suppressed.
  • the micro-computer 22 shifts to the start-up operation after the number of rotations of the permanent magnet rotor 5 has dropped to a predetermined value from the time of the synchronous rotation.
  • repetitive control is performed to shift to synchronous operation again.
  • the threshold value of the rotation speed of the permanent magnet rotor 5 to 355 rpm when shifting from start-up operation to synchronous operation
  • the control is repeated and stable.
  • the driving operation of the motor can be realized.
  • an optimal value may be set according to the output characteristics, application, size, etc. of each motor.
  • the transition operation from the start operation to the synchronous operation is performed under the control of the microcomputer 22. Therefore, the power supply frequency is 50 Hz, 60 Hz, 10 Hz. Even if it changes to 0 Hz or the like, the same two-pole synchronous motor can be used without changing the detailed mechanical design, so that an extremely versatile synchronous motor can be provided.
  • FIG. 5 in addition to the optical sensor 12 and the rotating disk 13 (first detecting means) for detecting the rotation speed and the magnetic pole position of the permanent magnet rotor 5, Sensor plates 25 on which slits 25a and 25b respectively defining the energization range are formed and optical sensors 26a and 26b ( (Third detection means).
  • the slit 25a determines the direction of conduction of the A coil, and the optical sensor 26a outputs an output signal according to the detection result.
  • the slit 25b determines the energization range of the A coil, and the optical sensor 26b outputs an output signal corresponding to the detection result.
  • the microcomputer 22 Based on the detection signals of the optical sensors 26a and 26b, the microcomputer 22 sets the third and fourth transistors within a range in which the rectified current flowing through the A coil is inverted every 180 ° in the start-up operation. 18 and 19 are turned on and off. At this time, the rectified current shown in FIG. 4D flows through the A coil, for example. As shown in FIG. 4D, the inversion current is restricted so as not to flow through the A coil by 30 ° before and after 180 ° with respect to the rotation direction of the permanent magnet rotor 5. In this case, since the energizing direction and energizing range for the A coil are defined by the sensor plate 25, the microcomputer 22 does not need to perform a complicated switching operation, thereby simplifying the control operation.
  • the sensor plate 25 has only a slit 25a that defines the direction of current flow to the A coil. Only the optical sensor 26a that detects the slit 25a is provided.
  • the microcomputer 22 may control the reitinging control by time division within the range of 80 ° inversion.
  • the microcomputer 22 switches the direction and range of the rectified current flowing from the AC power supply 15 through the rectifying bridge circuit 20 to the armature coil 9 by switching control to control the non-inverting side.
  • the rotation speed of the permanent magnet rotor 5 detected by the optical sensor 12 is synchronized with the power supply frequency.
  • the triac SW 1 and SW 2 are turned on to switch to the synchronous operation circuit 21 and control is performed to shift to synchronous operation. Therefore, the transition from start-up operation to synchronous operation can be performed reliably and smoothly. .
  • a brush or commutator is not required in the start-up operation circuit 14, sparks are prevented when switching the current direction during start-up operation, ensuring high reliability and safety.Synchronous operation with any power supply frequency
  • a possible synchronous motor can be provided.
  • mechanical parts such as commutator brushes can be omitted as in the past, and the configuration of switching means can be simplified, so that downsizing of the motor can be promoted and manufacturing costs can be reduced. Wear.
  • the microcomputer 22 when the synchronous motor loses synchronism, the microcomputer 22 repeatedly performs control so as to shift from the synchronous operation to the start-up operation and then to the synchronous operation again, thereby achieving operational reliability and stability.
  • a high synchronous motor can be provided.
  • an auxiliary core 8b is provided on the main core 8a so as to extend in a direction opposite to the rotation direction of the permanent magnet rotor 5, and the magnetic permeability of the main core 8a is higher than that of the auxiliary core 8b.
  • stator core 8 can secure a wider winding core area and increase the space factor as compared with the case where the armature coil 9 is stored in the slot in a two-pole, three-slot type motor. By increasing the number of turns, the output efficiency of the motor can be increased.
  • the permanent magnet rotor 5 has one end of the output shaft 4 linked to the rotor yoke 5a, and the rotor yoke 5a has a rotor yoke receiving member 27. May be linked.
  • stator 10 stator core 8 is fixed to stator fixing member 28, and stator fixing member 28 is fitted in lower housing 3.
  • the permanent magnet rotor 5 is rotatable via a bearing 6 provided on the upper housing 2 and a bearing 7 provided between the rotor yoke receiving member 27 and the lower housing 3.
  • a heat radiating hole 5c and a heat radiating hole 27a are formed in a part of the rotor yoke 5a and a part of the rotor yoke receiving member 27.
  • the heat radiating holes 5c and the heat radiating holes 27a cause convection of air inside and outside the motor, so that heat generated in the stator 10 is released to the outside.
  • a core 11 a attached to the stator core 8 and extending in a direction orthogonal to the rotation center of the permanent magnet rotor 5, and flanges 11 b at both ends of the core 11 a are provided.
  • the A coil and the B coil are continuously wound around the bobbin 11 having the coil.
  • the sensor plate 29 has a disc shape, and in order to regulate the direction of current supply to the A coil and the range of current supply, a light-shielding portion 29a and a slit 29b are provided at the peripheral edge of the magnetic plate alternately by dividing the magnetic poles into odd numbers. Is formed.
  • the sensor plate 29 stops at the detection position of the optical sensor 12 corresponding to the N pole position or the S pole position.
  • the slit 29b of the sensor plate 29 is divided into an odd number (13 in FIG. 7) by dividing 180 ° because the permanent magnet rotor 5 is magnetized 180 ° in the case of two poles.
  • the slit 29 b and the light shielding portion 29 a are always formed so as to be opposed to each other. Therefore, it is possible to reliably determine whether the permanent magnet rotor 5 is stopped on the N pole side or the S pole side (see FIG. 7).
  • the micro computer 22 is set to A so that the rotation direction of the permanent magnet rotor 5 becomes forward.
  • a rectified current flows through the coil in the direction indicated by arrow 1 in Fig. 1 to start and rotate.
  • the microcomputer 22 moves the A coil to the direction indicated by the arrow ⁇ in FIG. 1 so that the rotation direction of the permanent magnet rotor 5 becomes the forward direction.
  • a commutation current is applied to start rotation.
  • Switching of the direction of energization to the A coil is performed by counting the slit 29b of the sensor plate 29 by the optical sensor 12 and when the rotation angle of the permanent magnet rotor 5 is 0 ° to 180 °, the first and second coils are switched. Only the second transistors 16 and 17 are turned on at the same time, and from 180 ° to 360 °, only the third and fourth transistors 18.8 ⁇ 9 are turned on at the same time to perform switching control.
  • the energization range of the coil A is counted by the optical sensor 12 by the number of slits 29 b of a part of the sensor plate 29 corresponding to the N pole side or the S pole side in the range where the rectified current is reversed. , So that the A coil is energized by a predetermined rotation angle.
  • the fourth transistors 18 and 19 are turned ONZOFF to control the conduction.
  • the combination of the single sensor plate 29 and the optical sensor 12 provides various information such as the rotation speed, rotation angle, magnetic pole position, energizing direction and energizing range of the A coil of the permanent magnet rotor 5. Since the control operation can be performed by detecting the motor, the number of parts is small, and the motor configuration can be simplified and downsized.
  • the present invention is not limited to these as long as the slit and the light-shielding portion are formed by dividing the magnetic poles by an odd number. .
  • the energization range on the inverted waveform side that regulates the rectified current flowing through the armature coil 9 can be arbitrarily set by the micro computer 22.
  • the present method is not limited to the optical sensor, but may be a method in which detection is performed by a Hall element using, for example, a multi-pole magnetized cylindrical magnet.
  • the overall configuration of the two-pole synchronous motor is such that the stator 10 has an armature coil 9 in which an A coil and a B coil are wound in series around a stator core 8 via an intermediate tap 30.
  • the other parts are the same as those of the first embodiment (see FIGS. 3 and 4), and the same members are denoted by the same reference numerals and the description is used.
  • FIG. 9 the configurations of the start-up operation circuit for starting and operating the two-pole synchronous motor, the synchronous operation circuit, and the control means for controlling these circuits by switching will be described with reference to FIGS. 9 and 10.
  • FIG. 9 the configurations of the start-up operation circuit for starting and operating the two-pole synchronous motor, the synchronous operation circuit, and the control means for controlling these circuits by switching will be described with reference to FIGS. 9 and 10.
  • the start-up operation circuit 14 includes rectifying means and switching means, rectifies the AC current of the single-phase AC power supply 15, and converts the rectified current to the A coil and the B coil in accordance with the rotation angle of the permanent magnet rotor 5.
  • the magnets are alternately flowed through the coil to start up the permanent magnet rotor 5 as a DC brushless motor.
  • the synchronous operation circuit 21 short-circuits the AC power supply 15 and the armature coil 9 and performs synchronous operation using the permanent magnet rotor 5 as an AC synchronous motor.
  • An operation switching switch SW 1 is provided between the AC power supply 15 and the intermediate tap 30, and the operation switching switch SW 1 restarts the operation circuit 14 or The connection to the synchronous operation circuit 21 is switched.
  • first and second FETs (field effect transistors) 31 and 32 are connected to the A coil in series as switching means so as to face each other. Also, the first and second FETs 31 and 32 are connected in parallel with a rectifier (!) And a second diode 33.34 as a rectifier.
  • the B coil has a third and fourth diode as switching elements. FETs (field-effect transistors) 35 and 36 are connected in series to face each other, and the third and fourth FETs 35 and 36 are connected in parallel with the third and fourth diodes 37, 38 as rectifying elements.
  • the capacitors C "1 and C2 may be connected in parallel to the A coil and the B coil, respectively, as indicated by broken lines.
  • the capacitors C I and C 2 improve the power factor of the power consumed in the armature coil 9 to compensate for output loss and absorb high-voltage surge current.
  • Reference numeral 22 denotes a microcomputer as control means.
  • the starting operation circuit 14 controls the amount of current flowing in the starting operation circuit 14 by switching control and the direction of the current in the start operation. Performs switching control of operation switching switch S ⁇ ⁇ . That is, each switching means of the start-up operation circuit 14 is controlled, the start-up operation is performed by alternately switching the direction of the rectified current flowing through the ⁇ coil and the B coil, and the permanent magnet rotor 5 detected by the optical sensor 12 is operated.
  • the operation switching switch SW1 is switched from the start-up operation circuit 14 to the synchronous operation circuit 21 to control the operation to shift to the synchronous operation.
  • the frequency of the AC power supply 15 is detected by the power supply frequency detection unit 24 as the second detection means and is input to the input terminal IN1.
  • the rotation speed and the magnetic pole position of the permanent magnet rotor 5 are detected by the optical sensor 12 and input to the input terminal IN2.
  • a switching signal to the operation switching switch SW1 is output from the output terminal OU T1
  • an output signal for turning ON the switch SW2 to the switch SW5 is output from the output terminals OU T2 to OU T5.
  • a gate pulse is selectively applied from the FET drive power supply 39 to each gate of the 1 FET 31, the second FET 32, the third FET 35, and the fourth FET 36.
  • the microcomputer 22 adjusts the timing to the magnetic pole position of the permanent magnet rotor 5 detected by the optical sensor 12,
  • the switch SW2 and the switch SW4 are turned ONZO FF (when the switch is ON, the rectification current shown in 1 and 3 flows in the start-up operation circuit 14), and the switch SW3 and the switch SW5 are set to OF FZON (when the start-up operation circuit 1 is in ⁇ N).
  • the operation of the first FET 31, the second FE 32, the third FET 35, and the fourth FET 36 is controlled in such a manner that the rectified currents indicated by (1) and (2) flow through 4).
  • the switches SW1 to SW5 may use relays or semiconductor switches (for example, triacs, photocabras, transistors, and IGBTs).
  • rectified currents 1 and 3 flow in the start-up operation circuit 14 will be specifically described with reference to FIG.
  • the first and third FETs 31 and 35 are in the 0 N state when the current directions are 1 and 3 respectively.
  • the rectified current ⁇ ⁇ flows through the A coil through the first FET 31 and the second diode 24, and the rectified current 3 flows through the B coil through the third FET 35 and the fourth diode 38. It flows alternately according to the waveform.
  • FIG. 11 is a graph showing the relationship between the voltage waveform applied to the armature coil 9 by the AC power supply 15 and the rotation angle of the permanent magnet rotor 5.
  • the voltage waveform is shown with the direction in which the rectified current flowing from the AC power supply 15 flows out in 1 and 2 as the + side, and the direction in which the current flows out in 2 and 3 as one side.
  • the hatched portion indicates the range of the energization angle.
  • the microcomputer 22 controls switching of the switches SW2 to SW5 of the start-up operation circuit 14 in accordance with a preset energization angle range in the start-up operation. For example, as shown in Figure 11, only switch SW4 and switch SW5 By performing switching control that repeats NZO FF in an arbitrary time division, the rectification currents 3 and ⁇ ⁇ ⁇ flowing through the B coil are suppressed, the rectification currents 1 and ⁇ ⁇ ⁇ flowing through the A coil are increased, and the rectification current as a whole is reduced. Control to converge on the A coil. Then, as the rotation speed of the permanent magnet rotor 5 increases, the switch SW2 to the switch SW5 are switched in time with the rotation of the permanent magnet rotor 5 to start up near the synchronous rotation speed.
  • the microcomputer 22 in FIG. 10 switches the operation switching switch SW1 from the start-up operation circuit 14 to the synchronous operation circuit 21. Switch. Specifically, the switch SW4 and the switch SW5 are turned off, and then the operation switching switch SW1 is switched. To shift to synchronous operation. At this time, an alternating current shown in (1) and (2) in FIG. 10 flows in the armature coil 9 in series with the A coil and the B coil, and the permanent magnet rotor 5 is synchronized with the change in the magnetic pole of the armature coil 9. Rotates and is driven to rotate as an AC synchronous motor.
  • the micro computer 22 transitions to the start-up operation after the rotational speed of the permanent magnet rotor 5 has dropped to a predetermined value once at the time of synchronous rotation.
  • repetitive control is performed to shift to synchronous operation again.
  • an optimal value may be set according to the output characteristics, application, size, etc. of each motor.
  • the power frequency is 50 H z, 60 H Z, 1 00 H identical two-pole synchronous motors without Z such change fine mechanical design be varied in Therefore, an extremely versatile synchronous motor can be provided.
  • the switching means connected to the B coil may be omitted.
  • the switch SW4 and the third FET 35 or the switch SW5 and the fourth FET 36 may be omitted. This simplifies the start-up operation circuit 14 for performing switching control in the start-up operation, simplifies the control, and can reduce the number of parts, so that it can be manufactured at low cost and contribute to the downsizing of the motor.
  • a sensor plate 40 having slits 40a and 40b respectively defining a current direction and a current application range to the A coil and the B coil.
  • the slits 40a and 40b may be detected by the optical sensor 12 (see FIG. 9).
  • the long arc-shaped slit 40a defines the direction of current flow to the A coil and the B coil
  • the short arc-length slit 40b defines the range of current flow to the B coil.
  • 40c in FIG. 12 indicates the sensor position on the slit 26a side
  • 40d indicates the sensor position on the slit 40b side).
  • the microcomputer 22 determines the ONZO of the switches SW2 to SW5 of the start operation circuit 14 in the start operation.
  • the A coil may have more rectified current than the B coil.
  • the microcomputer 22 since the energization angle ranges for the A coil and the B coil are defined by the sensor plate 40, the microcomputer 22 does not need to perform complicated switch switching control each time, thereby simplifying the control operation.
  • the microcomputer 22 controls the energization angle range to the armature coil 9 during one rotation of the permanent magnet rotor 5 in the start-up operation circuit 14.
  • the switching means is controlled so that the A coil becomes larger than the B coil, and the start operation is performed so that the rectified current converges on the A coil.
  • the operation switching switch SW1 is switched to the synchronous operation circuit 2 "1 so that the synchronous operation is controlled, so that the operation is switched from the start operation to the synchronous operation.
  • the brushless commutator is not required in the start-up operation circuit 14, preventing sparks when switching the current direction to provide a highly reliable and safe synchronous motor.
  • mechanical parts such as a commutator and a brush can be omitted as in the related art, the downsizing of the motor can be promoted and the manufacturing cost can be reduced.
  • the microcomputer 22 when the synchronous motor loses synchronism, the microcomputer 22 repeatedly performs control so as to shift from the synchronous operation to the start-up operation and then to the synchronous operation again, thereby achieving operational reliability and stability.
  • a high synchronous motor can be provided.
  • an auxiliary core 8b is provided on the main core 8a so as to extend in a direction opposite to the rotation direction of the permanent magnet rotor 5, and the magnetic permeability of the main core 8a is higher than that of the auxiliary core 8b.
  • stator core 8 can secure a wider core area and increase the space factor compared to a case where the armature coil 9 is stored in a slot in a two-pole, three-slot type motor, so that the number of turns of the armature coil 9 is increased. And the output efficiency of the motor can be increased.
  • the synchronous motor according to the present invention is applicable not only to a two-pole synchronous motor but also to a four-pole synchronous motor as shown in FIGS. 13 and 14.
  • the same members as those of the above-described two-pole synchronous motor according to the first embodiment are denoted by the same reference numerals, and the description is used.
  • the permanent magnet rotor 41 has a ring-shaped magnet 4 1b on the inner wall of the rotor yoke 41a, which is alternately magnetized to 90 poles of N and S poles at a total of 90 °. .
  • the stator core 42 of the four-pole synchronous motor extends to each end of the cross-shaped main core (laminated core) 42 a in a direction opposite to the rotation direction of the permanent magnet rotor 41.
  • An auxiliary core 42b is provided to eliminate the dead point of torque at the time of startup.
  • the stator core 42 is integrally fitted with the bobbin 43, and an armature coil 9 is formed around the bobbin 43 in one longitudinal direction of one of the main cores 42a. Wound around the bobbin 43 on both sides with the output shaft 4 as the center.
  • the rotating disk 44 has a light shielding portion 44 a and a light transmitting portion 44 b alternately at 90 ° according to the magnetic pole position of the magnet 41 b. It is formed in.
  • the rotating disk 44 is mounted integrally with the permanent magnet rotor 41, and rotates integrally with the output shaft 4.
  • the optical sensor 12 detects the rotation speed and the magnetic pole position of the permanent magnet rotor 5 using the rotating disk 44. Since the magnetic pole formed on the armature coil 9 changes each time the permanent magnet rotor 5 rotates 90 °, the four-pole synchronous motor changes the direction of the current flowing through the armature coil 9 during the start-up operation. 4 "I need to switch by switching control every time I rotates 90 degrees.
  • FIG. 16A is a cross-sectional explanatory view of a permanent magnet rotor
  • FIG. 16B is a partial cross-sectional explanatory view of a stator with the permanent magnet rotor removed.
  • Reference numerals 45 and 46 denote stators which also serve as a housing for accommodating the stator and the rotor, and are formed so that they can be divided into two parts (see FIG. 16B).
  • a permanent magnet rotor 48 is rotatably built around an output shaft 47.
  • the output shaft 47 is rotatably supported by bearing bearings (not shown) on the stator yokes 45 and 46 (see FIG. 16A).
  • a permanent magnet rotor 48 has a ring fixed to the N pole and the S pole by about 45 ° around a magnet fixing member 49 a fitted on the output shaft 47. Magnet 49b is retained.
  • the permanent magnet rotor 48 starts and rotates around the output shaft 47 due to repulsion from the magnetic pole formed by energizing the armature coil. It has become so.
  • a bobbin 50 force is fitted into a stator yoke 45.46 (see FIG. 16A), and the bobbin 50 has two coils, an A coil and a B coil.
  • An armature coil 51 divided into coil segments is wound (see FIG. 16B).
  • the main cores 45a and 46a are formed by bending at eight locations in the circumferential direction alternately in the axial direction on the peripheral edge of the stator yokes 45 and 46. Have been.
  • Auxiliary cores 45b, 46b extending in the direction opposite to the rotation direction of the permanent magnet rotor 48 are formed on the main cores 45a, 46a, respectively. Has been eliminated.
  • An optical sensor (not shown) is provided in the stator yokes 45, 46 as first detecting means for detecting the rotation speed and the magnetic pole position of the permanent magnet rotor 48.
  • the optical sensor detects the number of revolutions of the permanent magnet rotor 48 by a rotating disk (not shown) integrally attached to the output shaft 47, and the microcomputer (not shown) uses the A of the armature coil 5 "I. The direction and amount of rectified current flowing through the coil are controlled by switching control.
  • the synchronous motor according to the present invention has a microcomputer 22 integrated with a microcomputer 22 for driving and controlling the motor, or a part of a control circuit (e.g., a control circuit built in the main body of an electric appliance using the synchronous motor). (Including an AC power supply, start-up operation circuit, synchronous operation circuit, etc.).
  • a control circuit e.g., a control circuit built in the main body of an electric appliance using the synchronous motor.
  • the present invention can be widely applied to a synchronous motor generally called an inductor type system and a planar opposed type synchronous motor in which a flat plate-shaped magnet and a coil are opposed on a disk.
  • the synchronous motor according to the present invention includes a thermal fuse or a bimetal in a circuit portion which is always energized during operation, such as an induction motor generally used in the related art, in order to guarantee safety at an overload.
  • a high temperature detection switch of the type may also be incorporated.
  • the armature coil 9 is not limited to the one divided into the A coil and the B coil, and a single coil may be used if power consumption efficiency is ignored, for example, without departing from the spirit of the invention. Many modifications can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

明細書 同期モータ 技術分野
本発明は、 同期モータに関する。 背景技術
近年、 例えば OA機器には、 冷却用の DC或いは ACファンモータが装備され ている。 特に高回転数を要する機器には 2極或いは 4極の ACファンモータが好 適に用 Ι <Οれる。
発明者は既に、 電機子コイルに接続する整流回路にダイオード、 ブラシ、 コミ ュテータを装備し、 交流電源よリ供給された交流電流を整流しながら永久磁石口 一タを付勢するように回転させて直流モータとして起動運転し、 永久磁石ロータ の回転を同期回転付近まで立ち上げ、 その時点でコミュ亍ータを機械的に整流回 路から脱除して交流電源による同期運転に切り換える同期モータを提案した (特 願平 7— 232268号、 特願平 8— 1 06929号他) 。
この同期モータは、 2極の場合、 回転数が 3000 r p m ( 50 H z ) 又は 3 600 r pm (60 H z) の高回転数を有し、 小型でしかも効率が良く汎用性も 高いので、 例えば A Cファンモータ等には好適に用いられる。
例えばアウターロータ方式の 2極同期モータの構成について図 1 7及び図 1 8 を参照して説明する。 先ず、 ロータ側の構成について説明すると、 コミュテータ 1 01は、 出力軸 1 02の軸方向に移動可能に設けられており、 後述するように 起動運転から同期運転への切換えを機械的に行う。 この出力軸 1 02には、 1 8 0。 ずつ 2極に着磁されたリング状の永久磁石ロータ (図示せず) 力 コミュ亍 ータ 1 01 と同軸に設けられている。 この永久磁石ロータは電機子コイル 1 03 に通電して形成される磁極との反発により起動回転する。 またコミュ亍ータ 1 0 1の外周には中心角が 1 80° より小さい導電性摺動リング 1 04が設けられて いる。 このコミュテータ 1 01は、 永久磁石ロータが起動運転から同期回転数付近に 到達すると、 図示しないウェイ トの遠心力によりコイルパネ (図示せず) の付勢 力に抗して軸方向に移動する。 この結果、 単相交流電源 1 05と整流回路 1 06 との接続から単相交流電源 1 05と電機子コイル 1 03との接続へ切換えスイツ チ 1 07を切り換えるようになつている。
次にステ一タ側の構成について説明すると、 電機子コイル 1 03は、 Aコイル 及び Bコイルを有する 2つのコイルセグメントから成っている。 この Aコイル及 び Bコイルは、 モータの回転方向に合わせて所定の巻き方向に所定の巻数で図示 しないボビンに巻き付けられている。 給電ブラシ 1 08 a , 1 08 bは、 コミュ テータ 1 01の外周に設けられた導電性摺動リンゲ 1 04に摺接して交互に給電 を行うため、 1 80° 位相が異なる位置に対向配置されている。 また、 A側受電 ブラシ 1 09 a. 1 09 bは Aコイルに整流電流を供給するものであり、 B側受 電ブラシ 1 1 0 a, 1 1 0 bは Bコイルに整流電流を供給するものである。 この A側受電ブラシ 1 09 a , 1 09 b及び B側受電ブラシ 1 1 0 a, 1 1 0 bは、 少なくとも一方が導電性摺動リング 1 04に摺接して交互に受電が行われるため、 ほぼ 1 80° 位相が異なる位置に対向配置されている。 A側受電ブラシ 1 09 a, 1 09 b及び B側受電ブラシ 1 1 0 a , "1 1 0 bにはダイオード 1 1 1 a , 1 1 1 b及びダイォード 1 1 2 a , 1 1 2 bにより単相交流電源 1 05からの交流電 流を半波整流して A, Bコイルにそれぞれ供給する (図 1 7参照) 。
給電ブラシ 1 08 a , 1 08 b, A側受電ブラシ 1 09 a . 1 09 b及び B側 受電ブラシ 1 1 0 a, 1 1 O bは、 ハウジング 1 1 3に設けられた導電性を有す る板バネ 1 1 4 a, 1 1 4 b, 板バネ 1 1 5 a, 1 1 5 b及び板バネ "I 1 6 a, 1 1 6 bによって径方向中心に付勢されており (図 1 8参照) 、 導電性摺動リン グ 1 04に摺接可能になっている (図 1 7参照) 。
電機子コイル 1 03に接続する整流回路 1 06に単相交流電源 1 05より供給 された交流電流を整流しながら永久磁石ロータを付勢するように回転させて直流 モータとして起動運転し、 該永久磁石ロータの回転を同期回転付近まで立ち上げ る。 この時点でコミュテータ 1 01 を機械的に整流回路 1 06から脱除して切換 えスィッチ 1 07を切り換えて単相交流電源 1 05と電機子コイル 1 03を短絡 して永久磁石ロータ 1 0 3を同期運転に移行するようになっている。 尚、 図 1 7 おいて C, , C 2 , C 3 はサージ電流を吸収するためのコンデンサである。
上述した特願平 7— 2 3 2 2 6 8号、 特願平 8— 1 0 6 9 2 9号などに開示さ れた同期モータは、 直流モータで同期回転数付近まで起動運転し、 同期回転数付 近に到達するとコミュテータ 1 0 1を機械的に軸方向にスライ ドさせることで整 流回路 1 0 6との接続を切り離すよう切換えスィツチ 1 0 7の切換えを行うよう に設計されていたため、 モータの消費電力効率は従来の誘導モータに比べて格段 に向上できるメリッ卜がある反面、 部品点数が多く機構的に複雑化するうえに、 モータを小型化する上で限界があった。
また、 起動運転から 1回の同期引き込み動作で同期運転に移行すればよいが、 コミュ亍ータのスライ ドによる切換えがスムーズに行われなかつたり、 負荷によ つては脱調して起動運転から再度立ち上げ直す必要があり切換え動作の確実性に 問題点があった。
また、 複数のブラシと導電性摺動リングとの接離動作を繰り返すため、 ブラシ の摩耗ゃ摺接が不十分となり易く、 5 0 W以上の高出力のモータにおいては起動 運転において電流方向を切り換えるとスパークが発生し易く、 同期モータの安全 性、 信頼性に問題点があった。 発明の開示
本発明の目的は、 上記従来技術の課題を解決し、 時代の要請に応える省エネタ イブの同期モータを実現するために、 起動運転から同期運転への移行を確実に行 え、 信頼性も高く、 しかも小型化を実現した同期モータを提供することにある。 上記目的を達成するため本発明は以下に述べる構成を備える。
即ち、 第 1の構成は、 ハウジング内に出力軸を中心に回転可能に設けられた永 久磁石ロータと、 永久磁石ロータの回転数及び磁極位置を検出する第 1の検出手 段と、 交流電源の周波数を検出する第 2の検出手段と、 ステータコアの周囲に電 機子コイルが巻回されたステータと、 交流電源より供給された交流電流を整流ブ リッジ回路により整流し、 永久磁石ロータの回転角度に応じてスィツチング手段 を切り換えて電機子コイルへ流れる整流電流の向きを変えて永久磁石ロータを直 流ブラシレスモータとして起動運転する起動運転回路と、 交流電源と電機子コィ ルとを短絡して、 永久磁石ロータを交流同期モータとして同期運転する同期運転 回路と、 交流電源と電機子コイルとの間に設けられ、 起動運転回路又は同期運転 回路へ接続を切り換える運転切換えスィツチと、 起動運転回路により起動運転し、 第 1の検出手段によリ検出された永久磁石ロータの回転数が第 2の検出手段によ リ検出される電源周波数に対して同期回転数付近に到達したときに、 運転切換え スィツチを起動運転回路から同期運転回路へ切り換えて同期運転に移行するよう 制御する制御手段とを備えたことを特徴とする。
また、 制御手段は、 起動運転回路の電機子コイルに交互に流れる整流電流が反 転する範囲内で非反転側に対して反転側の入力を抑えて起動運転するように制御 することを特徴とする。 例えば永久磁石ロータが 1回転する間に電機子コイルに 流れる整流電流が反転する範囲内で通電範囲を時分割でスィッチング制御しても 良い。
電機子コイルへの通電方向を規定するためのスリッ卜が周方向に形成されたセ ンサ板と、 該スリッ トを検出可能な光センサとを有する第 3の検出手段を備えて おり、 制御手段は起動運転において該光センサの出力信号によリ電機子コイルへ の通電方向を切り換え制御することを特徴とする。
また、 第 3の検出手段は、 センサ板に電機子コイルへの通電範囲を規定するス リッ卜が周方向に形成されており、 制御手段は起動運転において該光センサの出 力信号により整流電流が反転する範囲内で所定回転角度だけ電機子コイルへ通電 するようにスィツチング制御することを特徴とする。
また、 第 1の検出手段は、 電機子コイルへの通電方向及び通電範囲を各々規定 するための周縁部にスリッ卜及び遮光部が磁極間を奇数分割されて交互に形成さ れたセンサ板及び該スリツ卜及び遮光部を検出可能な光センサを備えており、 制 御手段は起動運転において該光センサの出力信号により永久磁石ロータの回転角 度及び磁極位置を検出しながら電機子コイルへの通電方向を切り換えると共に整 流電流が反転する範囲内で所定回転角度だけ電機子コイルへ通電するようにスィ ッチング制御することを特徴とする。
また、 制御手段は、 同期モータが脱調した場合に、 同期運転から一旦起動運転 に移行した後、 再度同期運転に移行するよう運転切換えスィツチを繰り返し制御 することを特徴とする。
また、 制御手段は、 起動運転より同期運転に移行する際に、 起動運転回路に整 流電流を流すためのスィツチング手段をひ F Fしてから、 運転切換えスィツチを 同期運転回路へ切換えて同期運転に移行するよう制御することを特徴とする。 また、 電機子コイルは Aコイル及び Bコイルに分割されて直列に巻回されてお リ、 起動運転回路は Aコイルのみを用いて直流ブラシレスモータとして起動運転 し、 同期運転回路は Aコイル及び Bコイルを用いて交流同期モータとして同期運 転することを特徴とする。
また、 ス亍ータコアは、 主コアに永久磁石ロータの回転方向と逆方向に延出す る補助コアが設けられており、 主コアの透磁率は補助コアより大きくなるように 設計されていることを特徴とする。
また、 ステータは、 ステータコアに装着され、 永久磁石ロータの回転中心と直 交する方向に伸びる巻芯及び該巻芯の両端にフランジを有するボビンに、 電機子 コイルが連続して巻回されていることを特徴とする。
また、 第 2の構成は、 ハウジング内に出力軸を中心に回転可能に設けられた永 久磁石ロータと、 永久磁石ロータの回転数及び磁極位置を検出する第 1の検出手 段と、 交流電源の周波数を検出する第 2の検出手段と、 ステータコアの周囲に A コイル及び Bコイルが中間タップを介して直列に巻回された電機子コイルを有す るステータと、 整流手段とスイッチング手段を含み、 交流電源の交流電流を整流 し、 整流電流を永久磁石ロータの回転角度に対応して Aコイル及び Bコィルに交 互に流して永久磁石ロータを直流ブラシレスモータとして起動運転する起動運転 回路と、 交流電源と電機子コイルとを短絡して、 永久磁石ロータを交流同期モー タとして同期運転する同期運転回路と、 交流電源と中間タップとの間に設けられ, 起動運転回路又は同期運転回路へ接続を切り換える運転切換えスィツチと、 起動 運転回路のスィッチング手段を制御し、 Aコィル及び Bコィルに流れる整流電流 の電流方向を交互に切換えて起動運転し、 第 1の検出手段により検出された永久 磁石ロータの回転数が第 2の検出手段により検出される電源周波数に対して同期 回転数付近に到達したときに、 運転切換えスィッチを同期運転回路へ切り換えて 同期運転に移行するよう制御する制御手段とを備えたことを特徴とする。
また、 制御手段は、 永久磁石ロータが 1回転する間の起動運転回路の電機子コ ィルへの通電角度範囲を、 Aコイルが前記 Bコイルより大きくなるようスィツチ ング手段をスィッチング制御して整流電流が Aコィルへ収斂するように起動運転 することを特徴とする。
また、 起動運転回路の Bコイルへ接続するスイッチング手段を省略して、 起動 運転において Aコイルが Bコイルより整流電流が多く流れるように設計されてい ることを特徴とする。
また、 第 1の検出手段は、 Aコイル及び Bコイルへ通電する電流方向及び通電 する範囲を各々規定するスリッ卜が形成されたセンサ板及び該センサ板のスリッ トを検出する光センサを備えており、 該光センサの出力信号に基づいて制御手段 は起動運転において起動運転回路のスィッチング手段をスィッチング制御して A コイルが Bコイルより整流電流が多く流れるように制御することを特徴とする。 また、 制御手段は、 同期モータが脱調した場合に、 同期運転から一旦起動運転に 移行した後、 再度同期運転に移行するよう運転切換えスィツチを繰り返し制御す ることを特徴とする。
また、 ステータコアは、 主コアに永久磁石ロータの回転方向と逆方向に延出す る補助コアが設けられており、 主コアの透磁率は補助コアより大きくなるように 設計されていることを特徴とする。
また、 制御手段は、 起動運転より同期運転に移行する際に、 起動運転回路のう ち Bコイル側に整流電流を流すためのスィッチを O F Fしてから、 運転切換えス イッチを同期運転回路へ切換えると共に Aコィル側に整流電流を流すためのスィ ツチを O Nして同期運転に移行するよう制御することを特徴とする。
また、 ステータは、 ステータコアに装着され、 永久磁石ロータの回転中心と直 交する方向に伸びる巻芯及び該巻芯の両端にフランジを有するボビンに、 Aコィ ル及び Bコィルが連続して巻回されていることを特徴とする。
上記第 1の構成によれば、 制御手段は、 交流電源より整流ブリッジ回路を経て 電機子コイルに交互に流れる整流電流の通電方向及び通電範囲をスィッチング制 御して起動運転回路によリ起動運転し、 第 1の検出手段によリ検出された永久磁 石ロータの回転数が第 2の検出手段により検出される電源周波数に対して同期回 転数付近に到達したときに、 運転切換えスィッチを起動運転回路から同期運転回 路へ切り換えて同期運転に移行するよう制御する。 よって、 起動運転から同期運 転への移行が確実かつスムーズに行える。
上記第 2の構成によれば、 制御手段は、 起動運転回路において永久磁石ロータ が 1回転する間の電機子コイルへの通電角度範囲を Aコイルが Bコイルよリ大き くなるようスィッチング制御して整流電流が該 Aコィルへ収斂するように起動運 転し、 永久磁石ロータの回転数が同期回転数付近に到達すると、 運転切換えスィ ッチを同期運転回路へ切リ換えて同期運転に移行するよう制御するので、 起動運 転から同期運転への移行が確実かつスムーズに行える。
また、 上記第 1 , 第 2の構成によれば、 起動運転回路にブラシやコミュテータ が不要であるため、 起動運転において電流方向を切り換える際にスパークの発生 を防止して信頼性、 安全性の高い同期モータを提供できる。 また、 従来のように コミュテータやブラシ、 スィッチなどの機械部品を省略できるので、 モータの小 型化も促進でき、 製造コストも低減できる。
また、 第 1 . 第 2の構成によれば、 制御手段は、 同期モータが脱調した場合に、 同期運転から一旦起動運転に移行した後、 再度同期運転に移行するよう運転切換 えスィッチの繰り返し制御を行うことにより、 動作信頼性、 安定性の高い同期モ ータを提供することができる。
また、 制御手段は、 起動運転より同期運転に移行する際に、 第 1の構成におい ては、 起動運転回路に整流電流を流すためのスィツチンゲ手段を O F Fしてから、 運転切換えスィッチを同期運転回路へ切換えて同期運転に移行するよう制御する と、 起動運転回路のショートを防止して同期運転に移行することができる。
また、 第 2の構成においては、 起動運転回路のうち Bコイル側に整流電流を流 すためのスィツチを◦ F Fしてから、 運転切換えスィツチを同期運転回路へ切換 えると共に Aコィル側に整流電流を流すためのスィッチを O Nして同期運転に移 行するよう制御するようにすると、 起動運転回路のショートを防止して同期運転 に移行することができる。
また、 上記第 1, 第 2の構成によれば、 ス亍一タコアは主コアに永久磁石ロー タの回転方向と逆方向に延出する補助コアが設けられており、 主コアの透磁率は 補助コアより大きくなるように設計された場合には、 起動時における永久磁石口 ータの回転死点を解消して回転方向性を安定化することが可能である。 また、 2 極 3スロッ卜型のモータおいて、 ス亍ータコアに電機子コイルを収納する場合に 比べて巻芯エリアを広く確保して占積率を高めたので、 電機子コイルの巻数を増 やして、 モータの出力効率を高めることができる。
また、 ステータは、 ステ一タコアに装着され、 永久磁石ロータの回転中心と直 交する方向に伸びる巻芯及び該卷芯の両端にフランジを有するボビンに、 Aコィ ル及び Bコイルが連続して巻回されている場合には、 ステータコアを挿通する出 力軸による無駄な空間が生じないので、 巻芯エリアを拡大して占積率を高め、 モ —タの出力効率を高めることができる。
また、 同期モータは、 電源周波数が 5 0 H ζ、 6 0 Η Ζ、 Ι Ο Ο Η ζ等に変化 しても細かい機械設計を変更することなく同一の同期モータを用いることができ るので、 極めて汎用性の高い同期モータを提供することができる。 図面の簡単な説明
図 1は第 1実施例に係る 2極同期モータの起動運転回路及び同期運転回路の説 明図である。
図 2 A、 図 2 Bは 2極同期モータのハウジング内に装備された永久石ロータの 外観図及び 2極同期モータの上視図である。
図 3 A〜図 3 Dは 2極同期モータ正断面説明図、 上ハウジングの内視図、 底面 図及びステータコイルの上視図である。
図 4 Aは電源交流波形、 図 4 Bは整流波形、 図 4 Cは時分割制御による電機子 コイルに印加される電圧波形と永久磁石ロータの回転角度との関係を示すグラフ 図、 図 4 Dは回転角度制御による電機子コイルに印加される電圧波形と永久磁石 ロータの回転角度との関係を示すグラフ図である。
図 5は回転角度制御における光センサとセンサ板の構成を示す説明図である。 図 6は他例に係る 2極同期モータ正断面説明図及びステータコイルの上視図で ある。 図 7は他例にかかる 2極同期モータ用の光センサとセンサ板の構成を示す説明 図である。
図 8は他例にかかる 4極同期モータ用の光センサとセンサ板の構成を示す説明 図である。
図 9は第 2実施例に係る 2極同期モータの起動運転時の回路構成図である。 図 1 0は 2極同期モータの同期運転時の回路構成図である。
図 1 1は起動運転回路の電機子コイルに印加される電圧波形と永久磁石ロータ の回転角度との関係を示すグラフ図である。
図 1 2は光センサに備えたセンサ板の説明図である。
図 1 3は第 3実施例に係る 4極同期モータの一部破断説明図である。
図 1 4は 4極同期モータの軸断面説明図である。
図 1 5は 4極同期モータの光センサに装備される回転円板の説明図である。 図 1 6 A、 図 1 6 Bは第 4実施例に係る 8極同期モータの永久磁石ロータの軸 断面説明図及び永久磁石ロータを取り外したステータの一部断面説明図である。 実施例
以下、 本発明の好適な実施の態様を添付図面に基づいて詳細に説明する。 〔第 1実施例〕
先ず、 図 2及び図 3を参照して 2極同期モータの全体構成について説明する。 図 2 Aにおいて、 1は回転子及び固定子を収容するハウジング本体であり、 そ の上下は上ハウジング 2及び下ハウジング 3により覆われている。 ハウジング 1 内には出力軸 4を中心に永久磁石ロータ 5が回転可能に内蔵されている。 出力軸 4は上ハウジング 2及び下ハウジング 3において、 ベアリング軸受 6 , 7により 回転可能に支持されている。 このベアリング軸受 6 , 7としては、 電機子コイル に形成される磁界の乱れを考慮して、 非磁性の材料、 例えばステンレスが好適に 用いられる。 また、 図 3 Cに示すように、 下ハウジング 3には、 後述する電機子 コイル 9に配線するための配線用穴 3 aが形成されている。
また、 永久磁石ロータ 5は、 筒状のロータヨーク 5 aの内壁に N極及び S極に ほぼ 1 8 0 ° ずつで着磁されたリンク状のマグネット 5 bが保持されている。 こ の永久磁石ロータ 5は電機子コイルに通電して形成される磁極との反発により出 力軸 4を中心に起動回転するようになっている。 このマグネッ卜 5 bとしては、 例えば、 フェライ ト, ゴムマグネット, プラスチックマグネット, サマリユウム コバルト, 希土類のマグネット, ネオジ鉄ボロンなどを原材料として安価に製造 することができる。
図 3 Aにおいて、 永久磁石ロータ 5に囲まれた空間部には、 ステータコア 8の 周囲に Aコィル及び Bコィルが直列に巻回された電機子コィル 9を有するステー タ 1 0が内蔵されている。 このステータコア 8は、 図 3 Dに示すように、 主コア 8 aと該主コア 8 aの周囲には永久磁石ロータ 5の回転方向と逆方向に延出する 補助コア 8 bが設けられている。 また、 主コア 8 aの透磁率は補助コア 8 bより 大きくなるように設計されており、 主コア 8 aはゲイ素鋼板よりなる積層コアが 好適に用いられ、 補助コア 8 bとしては S P C材 (冷間圧延鋼板) が好適に用い られる。 永久磁石ロータ 5は各磁極が主コア 8 aと補助コア 8 bとの磁気抵抗が 最小になる位置 (即ち、 主コア 8 aと対向する位置より補助コア 8 b側にずれた 位置) で停止するようになる。 よって、 起動時におけるトルクの死点を解消する ことができ、 永久磁石ロータ 5の起動時の回転方向性を安定化することができる。 また、 ステ一夕コア 8はボビン 1 1 と一体に嵌め込まれ、 該ボビン 1 1の周囲 には電機子コィル 9が Aコィル及び Bコィル毎に各々分けることなく連続して巻 回されている。 このように、 ホビン 1 1に対して巻芯エリアを広く確保して占積 率を高めて巻回されているので、 2極 3スロット型のモータに比べて電機子コィ ル 9の巻数を増やして、 モータの出力効率の向上に寄与できる。
図 2 A及び図 3 Aにおいて、 上ハウジング 2内には、 永久磁石ロータ 5の回転 数及び磁極位置を検出する第 1の検出手段として光センサ 1 2が装備されている。 この光センサ 1 2は、 例えば投光用光源と受光素子を備えた光検出素子 1 2 aと、 マグネット 5 bの磁極位置に応じて遮光部 1 3 aと透光部 1 3 bとが 1 8 0。 ず つ形成された回転円板 1 3とを装備している。 回転円板 1 3は、 永久磁石ロータ 5と一体に取り付けられており、 これらは出力軸 4を中心に一体となつて回転す る (図 3 B参照) 。 光センサ 1 2は回転円板 1 3により永久磁石ロータ 5の回転 数及び磁極位置を検出するもので、 光検出素子 1 2 aは回転数に応じたパルスを 発生させ、 磁極位置に応じて後述する制御手段により所定のタイミンゲで起動運 転回路 1 4をスイッチング制御したりする。 光検出素子 1 2 aは、 図 2 A、 図 2 Bに示すように、 上ハウジング 2の内壁に螺子止めにより固定されている。
尚、 光センサ 1 2は、 光透過型に限らず、 反射型のセンサを用いても良い。 ま た、 光センサ 1 2の他の回転数検出手段として、 ホール素子、 磁気抵抗素子、 コ ィルなどを用いた磁気センサ、 高周波誘導による方法、 キャパシタンス変化によ る方法など様々をものが適用可能である。
次に、 2極同期モータを起動運転する起動運転回路、 同期運転回路及びこれら の回路をスィツチンゲ制御する制御手段の構成について図 1 を参照して説明する。 図 1において、 起動運転回路 1 4は、 単相交流電源 1 5の交流電流を整流ブリツ ジ回路 2 0によリ整流し、 永久磁石ロータ 5の回転角度に応じてスィツチング手 段を切り換えて整流電流の向きを変えるように電機子コイル 9のうち Aコイルの みへ通電して永久磁石ロータ 5を直流ブラシレスモータとして起動運転する。 同 期運転回路 2 1は、 交流電源 1 5と電機子コイル 9とを短絡して、 永久磁石ロー タ 5を交流同期モータとして同期運転する。 交流電源 1 5と Aコイル、 Bコイル との間には運転切換えスィツチとしてトライアツク S W 1 、 S W 2が各々設けら れている。 このトライアツク S W 1 、 S W 2は、 交流電流の極性にかかわらずゲ ートパルスを印加することにより O N Z O F Fして、 起動運転回路 1 4又は同期 運転回路 2 1へ接続が切換えられる。
図 1において、 Aコイルと整流プリッジ回路 2 0との間にはスィツチンゲ手段 として第 1 , 第 2 トランジスタ 1 6, 1 7が各々直列に接続されている。 また A コイルと整流ブリッジ回路 2 0との間にはスィツチンゲ手段として第 3 . 第 4 ト ランジスタ 1 8 , 1 9が各々直列に接続されている。
2 2は制御手段としてのマイクロコンピュータであり、 起動運転においてスィ ツチンゲ制御によリ起動運転回路 1 4に流れる電流量や電流方向を制御したリ、 起動運転から同期運転へ移行する際の運転切換えスィッチの切換え制御などを行 う。 2 3はマイクロコンピュータ駆動用の低電圧電源である。 即ち、 起動運転回 路 1 4の各スイッチング手段を制御し、 Aコイルに流れる整流電流の電流方向を 交互に切換えて非反転側に対して反転側の入力を抑えて起動運転し、 光センサ 1 2により検出された永久磁石ロータ 5の回転数が同期回転数付近に到達したとき に、 第 1〜第 4 トランジスタ 1 6~ 1 9を O F Fにし、 トライアツク SW1、 S W2を ONさせて同期運転回路 2 1へ切り換えて同期運転に移行するよう制御す る。
具体的には、 マイクロコンピュータ 22には、 第 2の検出手段としての電源周 波数検出部 24により交流電源 1 5の周波数が検出されて入力端子 I N 1に入力 される。 また、 光センサ 1 2により、 永久磁石ロータ 5の回転数及び磁極位置を 検出されて入力端子 I N 2に入力される。
また、 出力端子 OU T 1よリ トライアツク SW1、 SW2への切換え信号が出 力され、 出力端子 OU T 2及び出力端子 OU T 3より第 1 , 第 2 トランジスタ 1 6 , 1 7及び第 3, 第 4 トランジスタ 1 8, 1 9を各々◦ NZO F Fさせるため の出力信号が出力される。 マイクロコンピュータ 22は、 光センサ 1 2によリ検 出された永久磁石ロータ 5の磁極位置にタイミングを合わせて、 0° 〜 1 80° の回転角度範囲では、 出力端子 OU T 2よりベース電流を出力して第 1 , 第 2 ト ランジスタ 1 6, 1 7のみ ONさせ (このとき起動運転回路 1 4には実線矢印① に示す整流電流が流れる) 、 1 80° 〜360° の回転角度範囲では出力端子 O U T 3よリベース電流を出力して第 3. 第 4 トランジスタ 1 8, 1 9のみ ONさ せて (このとき起動運転回路 1 4には破線矢印②に示す整流電流が流れる) 、 A コイルに流れる整流電流の向きを 1 80° ずつ切り換える。
また、 光センサ 1 2により検出される永久磁石ロータ 5の回転数が電源周波数 検出部 24により検出される交流電源 1 5の周波数に近づくと、 第 1〜第 4 トラ ンジスタ 1 6〜 1 9を全て◦ F Fさせて、 トライアツク SW1、 SW2を ONに する切換え信号が出力されて、 同期運転回路 2 1に二点鎖線矢印③に示す交流電 流が流れる。
ここで、 起動運転回路 1 4に整流電流①, ②が流れる場合について図 1 を参照 して具体的に説明する。 永久磁石ロータ 5の回転角度が 0° ~ 1 80° の範囲で は、 出力端子◦ U T 2よりベース電流を出力して、 第 1 , 第 2 トランジスタ 1 6, 1 7が同時に ON状態になる。 このとき、 Aコイルには整流ブリッジ回路 20を 経て整流電流①が流れる。 また、 永久磁石ロータ 5の回転角度が 1 80° 〜36 0° の範囲では、 出力端子 OU T 3よりベース電流を出力して、 第 3, 第 4 トラ ンジスタ 1 8, 1 9が同時に ON状態になる。 このとき、 Aコイルには整流プリ ッジ回路 20を経て整流電流②が流れる。
また、 マイクロコンピュータ 22は、 永久磁石ロータ 5が 1回転する間に、 A コイルに流れる整流電流が反転波形となる範囲 (図 4 B及び図 4 Cの正弦波形の うち破線部) において通電角度範囲を時分割によリスイッチング制御する。 図 1 に示す起動運転回路 1 4において Aコイルに流れる整流電流が①に流れ出す向き を +側とし、 ②に流れ出す向きを一側として Aコイルに印加される電圧波形を図 4 Cに示す。 尚、 図 4において斜線部は通電角度範囲を示すものとする。
マイクロコンピュータ 22は、 起動運転において永久磁石ロータ 5の回転角度 が 1 80° 〜360° の範囲で予め設定された時間分割に従って起動運転回路 1 4の第 3, 第 4 トランジスタ 1 8. 1 9をスイッチング制御する。 永久磁石ロー タ 5の回転角度は、 光センサ 1 2によリ回転円板 1 3の遮光部 1 3 a及び透光部 1 3 bを検出することにより得られる。 例えば、 図 4 Cに示すように、 Aコイル に反転波形となる整流電流②が流れる通電範囲において、 マイクロコンピュータ 22は、 出力端子 OU T 3より任意の時間分割でベース電流を出力して、 第 3, 第 4 トランジスタ 1 8, 1 9を ONZO F Fさせてスィツチンゲ制御を行う。 こ のように、 Aコィルに交互に流れる整流電流が反転する範囲内で非反転側に対し て反転側の入力を抑え、 永久磁石ロータ 5の回転数が電源周波数の本来の電流方 向 (反転しない電流方向) に収斂するように起動運転する。 そして、 永久磁石口 ータ 5の回転数が増加するにしたがって、 該永久磁石ロータ 5の回転角度にタイ ミングを合わせて第 3, 第 4トランジスタ 1 8, "I 9の ONZO F Fさせること により同期回転数付近まで立ち上げる。
そして、 永久磁石ロータ 5が同期回転数付近に到達したことを光センサ 1 2に より検出すると、 図 1においてマイクロコンピュータ 22は第 1〜第 4 トランジ スタ 1 6 ~ 1 9を全て O F Fしてから、 トライアツク SW1 , SW2を ONして 起動運転回路 1 4から同期運転回路 2 1へ切換える。 このとき、 電機子コイル 9 には、 Aコイル及び Bコイルが直列で図 1の二点矢印③に示す交流電流が流れ、 該電機子コイル 9の磁極の変化に同期して永久磁石ロータ 5は回転し、 交流同期 モータとして回転駆動される。 電機子コイル 9には、 Aコイル及び Bコイルが直 列に連結されているため、 同期運転に必要なトルクを発生させるだけの負荷に見 合った交流電流が流れる。 尚、 第 1〜第 4 トランジスタの回路的なショートを防 止するため、 第 1〜第 4 トランジスタ 1 6 〜 1 9を O F Fにしてからトライアツ ク S W 1 , S W 2を O Nするようにしている。 尚、 反転電流側の入力を抑制しな いと整流ブリッジ回路 2 0によリ本来の電流方向と反転電流方向とで各々 5 0 % の確率で同期運転に移行する動作をするため、 反転電流方向で同期運転に移行し た場合には脱調して再起動を繰り返すことになる。 このような、 不具合を防止す るため、 反転電流側を抑制している。
また、 同期モータが負荷の変動などにより脱調した場合には、 マイクロコンビ ユータ 2 2は一旦永久磁石ロータ 5の回転数が同期回転移行時より所定値まで落 ち込んだ後起動運転に移行し、 再度同期運転に移行するよう繰り返し制御を行う ようになつている。 例えば、 電源周波数が 6 0 H zで駆動する 2極同期モータの 場合、 起動運転から同期運転へ移行する際の永久磁石ロータ 5の回転数のしきい 値を 3 5 5 0 r p mに設定し、 同期運転に入れずに脱調したときに起動運転へ移 行する際の永久磁石ロータ 5の回転数のしきい値を 3 2 0 0 r p mに設定して繰 リ返し制御することにより、 安定したモータの駆動動作が実現できる。 起動運転 から同期運転へ、 同期運転から起動運転へ移行する際のしきい値は、 各モータの 出力特性、 用途、 サイズなどにより最適な値を設定すれば良い。
また、 本実施例に示す 2極同期モータは、 起動運転から同期運転への移行動作 をマイクロコンピュータ 2 2に制御されて行われるため、 電源周波数が 5 0 H z 、 6 0 H z 、 1 0 0 H z等に変化しても細かい機械設計を変更することなく同一の 2極同期モータを用いることができるので、 極めて汎用性の高い同期モータを提 供することができる。
また、 起動運転において Aコイルに交互に流れる整流電流が反転する範囲で、 スイッチング制御する他の構成について説明する。 永久磁石ロータ 5の回転数及 び磁極位置を検出する光センサ 1 2及び回転円板 1 3 (第 1の検出手段) の他に, 図 5に示すように、 Aコイルへ通電する通電方向及び通電範囲を各々規定するス リット 2 5 a , 2 5 bが形成されたセンサ板 2 5及び光センサ 2 6 a , 2 6 b ( 第 3の検出手段) を備えていても良い。 スリット 2 5 aは Aコイルの通電方向を 決定するものとし、 光センサ 2 6 aにより検出結果に応じた出力信号を出力する。 スリット 2 5 bは Aコイルの通電範囲を決定するものとし、 光センサ 2 6 bによ リ検出結果に応じた出力信号を出力する。
この光センサ 2 6 a, 2 6 bの検出信号に基づいて、 マイクロコンピュータ 2 2は、 起動運転において Aコイルに流れる整流電流が 1 8 0 ° 毎に反転する範囲 において、 第 3 , 第 4 トランジスタ 1 8 , 1 9を O N Z O F Fし、 このとき Aコ ィルには、 例えば図 4 Dに示す整流電流が流れる。 図 4 Dに示すように、 永久磁 石ロータ 5の回転方向に対して 1 8 0 ° のうち前後 3 0 ° だけ Aコイルに反転電 流は流れないように規制されている。 この場合、 Aコイルに対する通電方向及び 通電範囲をセンサ板 2 5により規定しているので、 マイクロコンピュータ 2 2に よリ煩雑なスィツチング動作をする必要がなくなるため、 制御動作を簡略化でき る。 尚、 センサ板 2 5に Aコイルに対する通電方向を規定するスリット 2 5 aの みが形成され、 該スリット 2 5 aを検出する光センサ 2 6 aのみを備えて、 通電 範囲は整流電流が 1 8 0 ° 反転する範囲においてマイクロコンピュータ 2 2が時 分割によリスイツチンゲ制御するようにしても良い。
上記 2極同期モータを用いれば、 マイクロコンピュータ 2 2は、 交流電源 1 5 より整流ブリッジ回路 2 0を経て電機子コイル 9に流れる整流電流の通電方向及 び通電範囲をスィッチング制御して非反転側に対して反転側の入力を抑えて起動 運転し、 光センサ 1 2により検出された永久磁石ロータ 5の回転数が電源周波数 検出部 2 5によリ検出される電源周波数に対して同期回転数付近に到達したとき に、 トライアツク S W 1 . S W 2を O Nして同期運転回路 2 1へ切り換えて同期 運転に移行するよう制御するので、 起動運転から同期運転への移行が確実かつス ムーズに行える。
また、 起動運転回路 1 4にブラシやコミュテータが不要であるため、 起動運転 において電流方向を切り換える際にスパークの発生を防止して信頼性、 安全性の 高く、 任意の電源周波数に対して同期運転可能な同期モータを提供できる。 また、 従来のようにコミュテータゃブラシなどの機械部品を省略でき、 スィツチング手 段の構成も簡略化できるので、 モータの小型化も促進でき、 製造コストも低減で きる。
また、 マイクロコンピュータ 2 2は、 同期モータが脱調した場合に、 同期運転 から一旦起動運転に移行した後、 再度同期運転に移行するよう繰り返し制御を行 うことにより、 動作信頼性、 安定性の高い同期モータを提供することができる。 また、 ステータコア 8は、 主コア 8 aに永久磁石ロータ 5の回転方向と逆方向 に延出する補助コア 8 bが設けられており、 該主コア 8 aの透磁率は該補助コア 8 bより大きくなるように設計された場合には、 起動運転における永久磁石ロー タ 5の回転死点を解消して回転方向性を安定化することが可能である。
また、 ス亍ータコア 8は 2極 3スロッ ト型のモータにおいてスロッ 卜に電機子 コイル 9を収納する場合に比べて巻芯エリアを広く確保して占積率を高められる ので、 電機子コイル 9の巻数を増やして、 モータの出力効率を高めることができ る。
また、 2極同期モータに限定されるが、 図 6 Aに示すように、 永久磁石ロータ 5は、 出力軸 4の一端がロータヨーク 5 aに連繋しており、 ロータヨーク 5 aに ロータヨーク受け部材 2 7が連繋していてもよい。 また、 ステータ 1 0は、 ス亍 ータコア 8がステータ固定部材 2 8に固定されており、 該ステータ固定部材 2 8 は下ハウジング 3に嵌め込まれている。 永久磁石ロータ 5は、 上ハウジング 2に 設けられたベアリング軸受 6及びロータヨーク受け部材 2 7と下ハウジング 3と の間に設けたベアリング軸受 7を介して回動可能になっている。
また、 ロータヨーク 5 aの一部及びロータヨーク受け部材 2 7の一部には放熱 穴 5 c及び放熱穴 2 7 aが穿孔されている。 永久磁石ロータ 5が回転し始めると 放熱穴 5 c及び放熱穴 2 7 aによリモータの内外における空気の対流を起こして、 ステータ 1 0に発生した熱を外部に逃がすようになつている。
図 6 Bに示すように、 ス亍ータコア 8に装着され、 永久磁石ロータ 5の回転中 心と直交する方向に伸びる巻芯 1 1 a及び該巻芯 1 1 aの両端にフランジ 1 1 b を有するボビン 1 1に、 Aコイル及び Bコイルが連続して巻回されている。 よつ て、 ス亍一タコア 8に出力軸 4が揷通するための無駄な空間が生じないので、 巻 芯エリアを拡大して占積率を更に高め、 モータの出力効率を高めることができる c また、 永久磁石ロータ 5の回転数及び磁極位置を検出する第 1の検出手段の他 例について、 図 7及び図 8を参照して説明する。 センサ板 29は、 円板形状をし ており、 Aコイルへの通電方向及び通電範囲を各々規定するため、 周縁部に遮光 部 29 aとスリット 29 bとが磁極間を奇数分割して交互に形成されている。 セ ンサ板 29は光センサ 1 2の検出位置において N極位置又は S極位置に対応して 停止する。
センサ板 29のスリット 29 bは、 2極の場合永久磁石ロータ 5が 1 80° 対 向して着磁されているので、 1 80° を奇数分割 (図 7では 1 3分割) すること より、 光センサ 1 2の検出位置において必ずスリット 29 bと遮光部 29 aと力《 対向配置するように形成されている。 よって、 永久磁石ロータ 5が N極側で停止 しているのか、 S極側で停止しているのかを確実に判定できるようになっている (図 7参照) 。
また、 4極の場合、 永久磁石ロータ 5が 90° 毎に N極、 S極に着磁されてい るので、 90° を奇数分割 (図 8では 1 3分割) することより、 光センサ 1 2の 検出位置において必ずスリッ卜 29 bと遮光部 29 aとが交互に配置するように 形成されている。 よって、 永久磁石ロータ 5が N極側で停止しているのか、 S極 側で停止しているのかを確実に判定できるようになつている (図 8参照) 。
光センサ 1 2は、 例えば図 7において、 N極の位置で停止している場合 (セン サ ON) には、 永久磁石ロータ 5の回転方向が順方向となるように、 マイクロコ ンピュータ 22は Aコイルに図 1の矢印①に示す方向に整流電流を流して、 起動 回転させる。 また、 S極の位置で停止している場合 (センサ O F F) には、 永久 磁石ロータ 5の回転方向が順方向となるように、 マイクロコンピュータ 22は A コイルに図 1の矢印②に示す方向に整流電流を流して、 起動回転させる。
また、 Aコイルへの通電方向の切換えは、 センサ板 29のスリット 29 bを光 センサ 1 2によりカウン卜して行われ、 永久磁石ロータ 5の回転角度が 0° 〜 1 80° では第 1 , 第 2 トランジスタ 1 6, 1 7のみを同時に ONさせ、 1 80° 〜360° では第 3, 第 4 トランジスタ 1 8. ^ 9のみを同時に O Nさせて切換 え制御する。 また、 Aコイルへの通電範囲は、 整流電流が反転する範囲において, N極側又は S極側に対応するセンサ板 29の一部のスリット 29 bの数だけ光セ ンサ 1 2によりカウントして、 所定回転角度だけ Aコイルへ通電するよう第 3, 第 4 トランジスタ 1 8 , 1 9を O N Z O F Fさせて通電抑制制御する。
このように、 単一のセンサ板 2 9と光センサ 1 2の組み合わせで、 永久磁石口 ータ 5の回転数、 回転角度、 磁極位置、 Aコイルへの通電方向及び通電範囲など の種々の情報を検出して制御動作が行えるので、 部品点数が少なく、 モータの構 成を簡略化して小型化できる。
上記センサ板 2 9は、 2極、 4極同期モータの場合について説明したが、 スリ ッ卜と遮光部とが磁極間で奇数分割されて形成されていれば、 これらに限定され るものではない。 一般に、 センサ板の分割角度 = ( 3 6 0 ° ノ極数) ノ奇数によ リ設計されていれば、 6極以上のモータに対しても適用可能である。 尚、 電機子 コイル 9に流れる整流電流を規制する反転波形側の通電範囲は、 マイクロコンビ ユータ 2 2により任意に設定することが可能である。 また、 本方式は、 光センサ に限定されるものではなく、 例えば多極着磁された円筒マグネットを用い、 ホー ル素子にて検出する方式でも良い。
〔第 2実施例〕
次に他例に係る 2極同期モータについて説明する。 尚、 2極同期モータの全体 構成は、 ステータ 1 0がステータコア 8の周囲に Aコイル及び Bコイルが中間タ ップ 3 0を介して直列に巻回された電機子コイル 9を有している他は、 第 1実施 例 (図 3及び図 4参照) と同様であるので、 同一部材には同一番号を付して説明 を援用する。
よって、 2極同期モータを起動運転する起動運転回路、 同期運転回路及びこれ らの回路をスィツチング制御する制御手段の構成について図 9及び図 1 0を参照 して説明する。
図 9において、 起動運転回路 1 4は、 整流手段とスイッチング手段を含み、 単 相交流電源 1 5の交流電流を整流し、 整流電流を永久磁石ロータ 5の回転角度に 対応して Aコイル及び Bコイルに交互に流して永久磁石ロータ 5を直流ブラシレ スモータとして起動運転する。 図 1 0において、 同期運転回路 2 1は、 交流電源 1 5と電機子コイル 9とを短絡して、 永久磁石ロータ 5を交流同期モータとして 同期運転する。 交流電源 1 5と中間タップ 3 0との間には運転切換えスィッチ S W 1が設けられており、 該運転切換えスィツチ S W 1によリ起動運転回路 1 4又 は同期運転回路 2 1への接続が切換えられる。
図 9において、 Aコイルにはスイッチング手段として第 1 , 第 2 FET (電界 効果トランジスタ) 3 1 , 32が直列に対向して接続されている。 また第 1 , 第 2 F E T 3 1 , 32には、 整流手段として第 "!, 第 2ダイオード 33. 34が各 々並列に接続されている。 また Bコイルにはスイッチング素子として第 3, 第 4 FE T (電界効果トランジスタ) 35, 36が直列に対向して接続されている。 また第 3, 第 4 FET 35, 36には、 整流素子として第 3, 第 4ダイオード 3 7, 38が各々並列に接続されている。 尚、 図 9において、 Aコイル及び Bコィ ルには、 破線で示すようにコンデンサ C "1 , C 2が各々並列に接続されていても 良い。 このコンデンサ C I , C 2は、 電機子コイル 9に消費される電力の力率を 向上させて出力損失を補うと共に高圧のサージ電流を吸収する。
22は制御手段としてのマイクロコンピュータであり、 起動運転において起動 運転回路 1 4はスイッチング制御により起動運転回路 1 4に流れる電流量や電流 方向を制御したり、 起動運転から同期運転へ移行する際の運転切換えスィツチ S \ΛΜの切換え制御などを行う。 即ち、 起動運転回路 1 4の各スイッチング手段を 制御し、 Αコィル及び Bコィルに流れる整流電流の電流方向を交互に切換えて起 動運転し、 光センサ 1 2により検出された永久磁石ロータ 5の回転数が同期回転 数付近に到達したときに、 運転切換えスィッチ SW1を起動運転回路 1 4から同 期運転回路 2 1へ切り換えて同期運転に移行するよう制御する。
具体的には、 マイクロコンピュータ 22には、 第 2の検出手段としての電源周 波数検出部 24により交流電源 1 5の周波数が検出されて入力端子 I N 1に入力 される。 また、 光センサ 1 2により、 永久磁石ロータ 5の回転数及び磁極位置を 検出されて入力端子 I N 2に入力される。
また、 出力端子 OU T 1 より運転切換えスィッチ SW1への切換え信号が出力 され、 出力端子 OU T 2~OU T 5によりスィッチ SW2〜スィッチ SW5を各 々ONZO F Fさせるための出力信号が出力され、 第 1 FET 3 1 , 第 2 FET 32, 第 3 F ET 35, 第 4 F E T 36の各ゲートに F E Tドライブ用電源 39 よりゲートパルスが選択的に印加される。 マイクロコンピュータ 22は、 光セン サ 1 2により検出された永久磁石ロータ 5の磁極位置にタイミングを合わせて、 スィツチ SW2及びスィツチ SW4を ONZO F Fさせ (ONのとき起動運転回 路 1 4には①及び③に示す整流電流が流れる) 、 スィッチ SW3及びスィッチ S W5を O F FZON (◦ Nのとき起動運転回路 1 4には②及び④に示す整流電流 が流れる) するようにして第 1 FET 3 1 , 第 2 FE丁 32. 第 3 F ET 35, 第 4 F E T 36の動作を制御する。 尚、 スィッチ SW 1〜スィッチ SW5は、 リ レー又は半導体スィッチ (例えばトライアツク, ホトカブラ, トランジスタ, I GBT等) を用いても良い。
起動運転回路 1 4に整流電流①及び③が流れる場合について図 1 を参照して具 体的に説明する。 スィッチ SW2及びスィッチ SW4のみ O Nすると、 第 1 , 第 3 FET 3 1 , 35が電流方向①, ③のとき各々 0 N状態になる。 このとき、 A コイルには第 1 F ET 3 1、 第 2ダイオード 24を経て整流電流①が流れ、 Bコ ィルには第 3 FE T 35、 第 4ダイオード 38を経て整流電流③が各々交流波形 に従って交互に流れる。
また、 起動運転回路 1 4に整流電流②及び④が流れる場合には、 スィッチ SW 3及びスィッチ SW5のみ ONすると第 2, 第 4 FET 32. 36が ON状態に なる。 このとき、 Aコイルには第 2 F E T 32、 第 1 ダイオード 33を経て整流 電流②が流れ、 Bコイルには第 4 FET 36、 第 3ダイオード 37を経て整流電 流④が各々交流波形に従って交互に流れる。
また、 マイクロコンピュータ 22は、 永久磁石ロータ 5が 1回転する間の電機 子コイル 9への通電角度範囲を Aコイルが Bコイルよリ大きくなるようにして整 流電流が Aコイルへ収斂するように起動運転する。 図 1 1は交流電源 1 5により 電機子コイル 9に印加される電圧波形と永久磁石ロータ 5の回転角度との関係を 示すグラフ図である。 図 9に示す起動運転回路 1 4において交流電源 1 5より流 れる整流電流を①及び④に流れ出す向きを +側とし、 ②及び③に流れ出す向きを 一側として電圧波形を示す。 図 1 1において斜線部は通電角度範囲を示すものと する。
マイクロコンピュータ 22は、 起動運転において予め設定された通電角度範囲 に従って起動運転回路 1 4のスィッチ SW2〜スィッチ SW5をスイッチング制 御する。 例えば、 図 1 1に示すように、 スィツチ SW4及びスィツチ SW5のみ 任意の時間分割で◦ NZO F Fを繰り返すスィツチング制御を行うことで、 Bコ ィルに流れる整流電流③, ④を抑えて Aコイルに流れる整流電流①, ②を多く し て、 全体として整流電流が Aコイルに収斂するように制御する。 そして、 永久磁 石ロータ 5の回転数が増加するにしたがって、 該永久磁石ロータ 5の回転にタイ ミングを合わせてスィツチ SW2〜スィツチ SW5を切換えることにより同期回 転数付近まで立ち上げる。
そして、 永久磁石ロータ 5が同期回転数付近に到達したことを光センサ 1 2に より検出すると、 図 1 0においてマイクロコンピュータ 22は起動運転回路 1 4 から同期運転回路 2 1へ運転切換えスィツチ SW1 を切換える。 具体的にはスィ ツチ SW4及びスィツチ SW5を O F Fにし、 次に運転切換えスィツチ SW 1 を 切り換え、 同時にスィツチ SW2及びスィツチ SW3を共に ON状態にして第 1 FET 3 1及び第 2 F E T 32を O N状態にして同期運転に移行する。 このとき、 電機子コイル 9には、 Aコイル及び Bコイルが直列で図 1 0の⑤及び⑥に示す交 流電流が流れ、 該電機子コイル 9の磁極の変化に同期して永久磁石ロータ 5は回 転し、 交流同期モータとして回転駆動される。 電機子コイル 9には、 Aコイル及 び Bコィルが直列に連結されているため、 同期運転に必要なトルクを発生させる だけの負荷に見合った交流電流が流れる。 尚、 スィッチ SW1〜スィッチ SW5 の回路的なショートを防止するため、 スィツチ SW4及びスィツチ SW5を O F Fにしてから運転切換えスィツチ SW1 を切換えるようにしている。
また、 同期モータが負荷の変動などにより脱調した場合には、 マイクロコンビ ユータ 22は一旦永久磁石ロータ 5の回転数が同期回転移行時よリ所定値まで落 ち込んだ後起動運転に移行し、 再度同期運転に移行するよう繰り返し制御を行う ようになつている。 例えば、 電源周波数が 60 H zで駆動する 2極同期モータの 場合、 起動運転から同期運転へ移行する際の永久磁石ロータ 5の回転数のしきい 値を 3550 r pmに設定し、 同期運転に入れずに脱調したときに起動運転へ移 行する際の永久磁石ロータ 5の回転数のしきい値を 3200 r pmに設定して繰 リ返し制御することにより、 安定したモータの駆動動作が実現できる。 起動運転 から同期運転へ、 同期運転から起動運転へ移行する際のしきい値は、 各モータの 出力特性、 用途、 サイズなどにより最適な値を設定すれば良い。 また、 本実施例に示す 2極同期モータは、 電源周波数が 50 H z、 60 H Z、 1 00 H Z等に変化しても細かい機械設計を変更することなく同一の 2極同期モ ータを用いることができるので、 極めて汎用性の高い同期モータを提供すること ができる。
また、 起動運転において整流電流が Bコイルより Aコイルに多く流れるように して、 該整流電流が Aコイルへ収斂させるための他の手段について説明する。 例えば、 起動運転回路 1 4において、 Bコイルへ接続するスイッチング手段を省 略するようにしても良い。 具体的には、 図 9において、 スィッチ SW4及び第 3 F E T 35又はスィツチ SW5及び第 4 F E T 36を省略するようにしても良い。 このようにすることで、 起動運転においてスィツチング制御する起動運転回路 1 4を簡素化して制御を容易にし、 部品点数も省略できるので安価に製造でき、 モータの小型化にも寄与できる。
また、 他の手段について説明すると、 図 1 2に示すように、 Aコイル及び Bコ ィルへ通電する電流方向及び通電する範囲を各々規定するスリット 40 a, 40 bが形成されたセンサ板 40を備え、 該スリット 40 a, 40 bを光センサ 1 2 (図 9参照) により検出するようにしても良い。 例えば、 円弧長の長いスリット 40 aは Aコイル及び Bコイルへ通電する電流方向を規定しており、 円弧長の短 ぃスリット 40 bは Bコイルへ通電する範囲を各々規定している (尚、 図 1 2の 40 cはスリット 26 a側のセンサ位置を示し、 40 dはスリット 40 b側のセ ンサ位置を示している) 。
このセンサ板 40に形成された各スリット 40 a, 40 bを検出する光センサ 1 2の検出信号に基づいて、 マイクロコンピュータ 22は、 起動運転において起 動運転回路 1 4のスィッチ SW2〜SW5の ONZO F Fをスィツチング制御す ることにより、 Aコィルが Bコイルより整流電流が多く流れるようにしても良し、。 この場合、 Aコイル及び Bコイルに対する通電角度範囲をセンサ板 40によリ規 定しているので、 マイクロコンピュータ 22により逐一煩雑なスィツチの切換え 制御する必要がなくなるため、 制御動作を簡略化できる。
上記 2極同期モータを用いれば、 マイクロコンピュータ 22は、 起動運転回路 1 4において永久磁石ロータ 5が 1回転する間の電機子コイル 9への通電角度範 囲を Aコイルが Bコイルよリ大きくなるようスィツチング手段を制御して整流電 流が該 Aコイルへ収斂するように起動運転する。 そして、 永久磁石ロータ 5の回 転数が同期回転数付近に到達すると、 運転切換えスィッチ S W 1 を同期運転回路 2 "1へ切り換えて同期運転するよう制御するので、 起動運転から同期運転への移 行が確実かつスムーズに行える。 また、 起動運転回路 1 4にブラシゃコミュテー タが不要であるため、 電流方向を切り換える際にスパークの発生を防止して信頼 性、 安全性の高い同期モータを提供できる。 また、 従来のようにコミュテータや ブラシなどの機械部品を省略できるので、 モータの小型化も促進でき、 製造コス 卜も低減できる。
また、 マイクロコンピュータ 2 2は、 同期モータが脱調した場合に、 同期運転 から一旦起動運転に移行した後、 再度同期運転に移行するよう繰り返し制御を行 うことにより、 動作信頼性、 安定性の高い同期モータを提供することができる。 また、 ステータコア 8は、 主コア 8 aに永久磁石ロータ 5の回転方向と逆方向 に延出する補助コア 8 bが設けられており、 該主コア 8 aの透磁率は該補助コア 8 bより大きくなるように設計された場合には、 起動運転における永久磁石ロー タ 5の回転死点を解消して回転方向性を安定化することが可能である。
また、 ステータコア 8は 2極 3スロッ ト型のモータにおいてスロッ 卜に電機子 コイル 9を収納する場合に比べて巻芯エリアを広く確保して占積率を高められる ので、 電機子コイル 9の巻数を増やして、 モータの出力効率を高めることができ る。
〔第 3実施例〕
本発明に係る同期モータは、 2極同期モータに限らず図 1 3及び図 1 4に示す ように 4極同期モータについても適用可能である。 尚、 前述した第 1実施例に係 る 2極同期モータと同一部材には同一番号を付して説明を援用するものとする。 図 1 3において、 永久磁石ロータ 4 1はロータヨーク 4 1 aの内壁に N極, S 極が交互に 9 0 ° ずつ合計 4極に着磁されたリング状のマグネット 4 1 bが保持 されている。
また、 図 1 4において、 4極同期モータのス亍ータコア 4 2は十字状の主コア (積層コア) 4 2 aの各端部に永久磁石ロータ 4 1の回転方向と逆方向に延出す る補助コア 4 2 bが設けられており、 起動時におけるトルクの死点を解消してい る。 また、 ステータコア 4 2はボビン 4 3と一体に嵌め込まれ、 該ボビン 4 3の 周囲には主コア 4 2 aの一方の長手方向に電機子コイル 9が Aコイルと Bコイル を 4極構造になるように出力軸 4を中心に両側のボビン 4 3に互いに反対向きに 巻き付けられている。
また、 図 1 5に示すように、 回転円板 4 4には、 マグネット 4 1 bの磁極位置 に応じて遮光部 4 4 aと透光する透光部 4 4 bとが 9 0 ° ずつ交互に形成されて いる。 回転円板 4 4は、 永久磁石ロータ 4 1 と一体に取り付けられており、 これ らは出力軸 4を中心に一体となって回転する。 光センサ 1 2は回転円板 4 4によ り永久磁石ロータ 5の回転数及び磁極位置を検出する。 4極同期モータは、 永久 磁石ロータ 5が 9 0 ° 回転する毎に電機子コイル 9に形成される磁極が変化する ため、 起動運転する際に電機子コイル 9に流れる電流の向きを永久磁石ロータ 4 "Iが 9 0 ° 回転する毎にスィツチング制御によリ切り換える必要がある。
また、 上述した 2極同期モータ及び 4極同期モータは、 アウターロータ方式に ついて説明したが、 これに限定されるものではなく、 インナーロータ方式であつ ても良い。
〔第 4実施例〕
次にインナーロータ方式の 8極同期モータについて図 1 6 、 図 1 6 Bを参照 して説明する。 図 1 6 Aは永久磁石ロータの軸断面説明図、 図 1 6 Bは永久磁石 ロータを取り外したステータの一部断面説明図である。
4 5 , 4 6は固定子及び回転子を収容するハウジングを兼用するステータョー クであり 2分割可能に形成されている (図 1 6 B参照) 。 ス亍ータヨーク 4 5 , 4 6内には出力軸 4 7を中心に永久磁石ロータ 4 8が回転可能に内蔵されている。 出力軸 4 7はステータヨーク 4 5 , 4 6において、 図示しないベアリング軸受に より回転可能に支持されている (図 1 6 A参照) 。
また、 図 1 6 Aにおいて、 永久磁石ロータ 4 8は、 出力軸 4 7に嵌め込まれた マグネッ卜固定部材 4 9 aの周囲に N極及び S極にほぼ 4 5 ° ずつ着磁されたリ ング状のマグネッ卜 4 9 bが保持されている。 この永久磁石ロータ 4 8は電機子 コイルに通電して形成される磁極との反発により出力軸 4 7を中心に起動回転す るようになっている。
永久磁石ロータ 4 8の外側には、 ステータヨーク 4 5 . 4 6内にボビン 5 0力《 嵌め込まれており (図 1 6 A参照) 、 該ボビン 5 0には Aコイル及び Bコイルの 2つのコイルセグメン卜に分割された電機子コイル 5 1が巻き付けられている (図 1 6 B参照) 。
また、 図 1 6 Bに示すように、 ス亍ータヨーク 4 5 , 4 6の周縁部には、 周方 向に 8か所に主コア 4 5 a , 4 6 aが軸方向に交互に折り曲げ形成されている。 この主コア 4 5 a , 4 6 aには永久磁石ロータ 4 8の回転方向と逆方向に延出す る補助コア 4 5 b , 4 6 bが各々形成されており、 起動時におけるトルクの死点 を解消している。
また、 ステータヨーク 4 5 , 4 6内には永久磁石ロータ 4 8の回転数及び磁極 位置を検出する第 1の検出手段として光センサ (図示せず) が装備されている。 光センサは出力軸 4 7に一体に取り付けられた回転円板 (図示せず) により永久 磁石ロータ 4 8の回転数を検出し、 図示しないマイクロコンピュータは電機子コ ィル 5 "Iのうち Aコイルに流れる整流電流の向きや電流量をスィツチンゲ制御に より制御する。
本発明に係る同期モータは、 モータを駆動制御するマイクロコンピュータ 2 2 を一体に装備している場合であっても、 或いは同期モータが用いられる電機機器 の装置本体に内蔵した制御回路の一部 (交流電源、 起動運転回路、 同期運転回路 などを含む) を用いてモータを駆動制御するタイプのいずれであっても良い。 また、 一般にィンダクタ一方式とよばれる同期モータや平盤状のマグネッ卜と コイルを円板上で対向させた平面対向方式の同期モータなどにも本発明を広く適 用できる。
また、 本発明に係る同期モータには、 従来一般的に使われている誘導型モータ のように、 過負荷時の安全を保証するために、 動作中に常に通電する回路部分に 温度ヒューズやバイメタル式の高温検出スィツチを組み込むこともできる。 また、 電機子コイル 9は、 Aコイル及び Bコイルに分割したものに限らず、 消 費電力効率を無視すれば単一のコイルを用いても良い等、 発明の精神を逸脱しな い範囲で多くの改変をなし得る。

Claims

請求の範囲
1 . ハウジング本体 1内に出力軸 4を中心に回転可能に設けられた永久磁石ロー タ 5と、
永久磁石ロータ 5の回転数及び磁極位置を検出する第 1の検出手段 1 2と、 交流電源 1 5の周波数を検出する第 2の検出手段 2 4と、
ステータコア 8の周囲に電機子コイル 9が巻回されたステータ 1 0と、 交流電源 1 5よリ供給された交流電流を整流プリッジ回路 2 0により整流し、 永久磁石ロータ 5の回転角度に応じてスイッチング手段 1 6〜 1 9を切り換えて 電機子コイル 9へ流れる整流電流の向きを変えて永久磁石ロータ 5を直流ブラシ レスモータとして起動運転する起動運転回路 1 4と、
交流電源 1 5と電機子コイル 9とを短絡して、 永久磁石ロータ 5を交流同期モ ータとして同期運転する同期運転回路 2 1 と、
交流電源 1 5と電機子コイル 9との間に設けられ、 起動運転回路 1 4又は同期 運転回路 2 1へ接続を切り換える運転切換えスィツチ S W 1及び S W 2と、 起動運転回路 1 4により起動運転し、 第 1の検出手段 1 2により検出された永 久磁石ロータ 5の回転数が第 2の検出手段 2 4によリ検出される電源周波数に対 して同期回転数付近に到達したときに、 運転切換えスィツチ S W 1及び S W 2を 起動運転回路 1 4から同期運転回路 2 1へ切り換えて同期運転に移行するよう制 御する制御手段 2 2とを備えたことを特徴とする同期モータ。
2 . 制御手段 2 2は、 起動運転回路 1 4の電機子コイル 9に交互に流れる整流電 流が反転する範囲内で非反転側に対して反転側の入力を抑えて起動運転するよう に制御することを特徴とする請求項 1記載の同期モータ。
3 . 永久磁石ロータ 5が 1回転する間に電機子コイル 9に流れる整流電流が反転 する範囲内で通電範囲を時分割でスイッチング制御することを特徴とする請求項 2記載の同期モータ。
4 . 電機子コイル 9への通電方向を規定するためのスリッ ト 2 5 aが周方向に形 成されたセンサ板 2 5と、 該スリット 2 5 aを検出可能な光センサ 2 6 aとを有 する第 3の検出手段を備えており、 制御手段 2 2は起動運転において該光センサ 2 6 aの出力信号によリ電機子コイル 9への通電方向を切り換え制御することを 特徴とする請求項 1 、 2又は請求項 3記載の同期モータ。
5 . 第 3の検出手段は、 センサ板 2 5に電機子コイル 9への通電範囲を規定する スリット 2 5 bが周方向に形成されており、 制御手段 2 2は起動運転において光 センサ 2 6 bの出力信号により整流電流が反転する範囲内で所定回転角度だけ電 機子コイル 9へ通電するようにスィツチング制御することを特徴とする請求項 4 記載の同期モータ。
6 . 第 1の検出手段 1 2は、 電機子コイル 9への通電方向及び通電範囲を各々規 定するための周縁部にスリット 2 9 b及び遮光部 2 9 aが磁極間を奇数分割され て交互に形成されたセンサ板 2 9及び該スリット 2 9 b及び遮光部 2 9 aを検出 可能な光センサ 1 2を備えており、 制御手段 2 2は起動運転において該光センサ 1 2の出力信号により永久磁石ロータ 5の回転角度及び磁極位置を検出しながら 電機子コィル 9への通電方向を切り換えると共に整流電流が反転する範囲内で所 定回転角度だけ電機子コイル 9へ通電するようにスィツチング制御することを特 徵とする請求項 1 、 2又は請求項 3記載の同期モータ。
7 . 制御手段 2 2は、 起動運転より同期運転に移行する際に、 起動運転回路 1 4 に整流電流を流すためのスイッチング手段 1 6〜 1 9を O F Fしてから、 運転切 換えスィツチ S W 1 , S W 2を切換えて同期運転に移行するよう制御することを 特徴とする請求項 1 、 2、 3、 4、 5又は請求項 6記載の同期モータ。
8 . 電機子コイル 9は Aコイル及び Bコイルに分割されて直列に巻回されており、 起動運転回路 1 4は Aコイルのみを用いて直流ブラシレスモータとして起動運転 し、 同期運転回路 2 1は Aコイル及び Bコイルを用いて交流同期モータとして同 期運転することを特徴とする請求項 1 、 2、 3、 4、 5、 6又は請求項 7記載の 同期モータ。
9 . 制御手段 2 2は、 同期モータが脱調した場合に、 同期運転から一旦起動運転 に移行した後、 再度同期運転に移行するよう運転切換えスィッチ S W 1 , S W 2 を繰り返し制御することを特徴とする請求項 1 、 2、 3、 4、 5、 6、 7又は請 求項 8記載の同期モータ。
1 0 . ステータコア 8は、 主コア 8 aに永久磁石ロータ 5の回転方向と逆方向に 延出する補助コア 8 bが設けられており、 主コア 8 aの透磁率は補助コア 8 bよ リ大きくなるように設計されていることを特徴とする請求項 1 、 2、 3、 4、 5、 6、 7、 8又は請求項 9記載の同期モータ。
1 1 - ステータ 1 0は、 ステータコア 8に装着され、 永久磁石ロータ 5の回転中 心と直交する方向に伸びる巻芯及び該巻芯の両端にフランジを有するボビン 1 1 に、 電機子コイル 9が連続して巻回されていることを特徴とする請求項 1 、 2、 3、 4、 5、 6、 7、 8、 9又は請求項 " I 0記載の同期モータ。
1 2 . ハウジング本体 1内に出力軸 4を中心に回転可能に設けられた永久磁石口 ータ 5と、
永久磁石ロータ 5の回転数及び磁極位置を検出する第 1の検出手段 1 2と、 交流電源 1 5の周波数を検出する第 2の検出手段 2 4と、
ステータコア 8の周囲に Aコイル及び Bコイルが中間タップ 3 0を介して直列 に巻回された電機子コイル 9を有するス亍ータ 1 0と、
整流手段 3 3 , 3 4 , 3 7 , 3 8とスイッチング手段 3 1 , 3 2 , 3 5, 3 6 を含み、 交流電源 1 5の交流電流を整流し、 整流電流を永久磁石ロータ 5の回転 角度に対応して Aコイル及び Bコイルに交互に流して永久磁石ロータ 5を直流ブ ラシレスモータとして起動運転する起動運転回路 1 4と、
交流電源 1 5と電機子コイル 9とを短絡して、 永久磁石ロータ 5を交流同期モ ータとして同期運転する同期運転回路 2 1 と、 交流電源 1 5と中間タップ 3 0との間に設けられ、 起動運転回路 1 4又は同期 運転回路 2 1へ接続を切り換える運転切換えスィッチ S W 1 と、 起動運転回路の スィッチング手段を制御し、 Aコイル及び Bコイルに流れる整流電流の電流方向 を交互に切換えて起動運転し、 第 1の検出手段 1 2により検出された永久磁石口 ータ 5の回転数が第 2の検出手段 2 4により検出される電源周波数に対して同期 回転数付近に到達したときに、 運転切換えスィツチ S W 1 を同期運転回路 2 1へ 切り換えて同期運転に移行するよう制御する制御手段 2 2とを備えたことを特徴 とする同期モータ。
1 3 . 制御手段 2 2は、 永久磁石ロータ 5が 1回転する間の起動運転回路 1 4の 電機子コイル 9への通電角度範囲を、 Aコイルが Bコイルよリ大きくなるようス イッチング手段 3 1 , 3 2, 3 5 , 3 6をスイッチング制御して整流電流が Aコ ィルへ収斂するように起動運転することを特徴とする請求項 1 2記載の同期モー タ。
1 4 . 起動運転回路 1 4の Bコイルへ接続するスィツチング手段 3 5又はスィッ チング手段 3 6を省略して、 起動運転において Aコイルが Bコイルよリ整流電流 が多く流れるように設計されていることを特徴とする請求項 1 2記載の同期モー タ。
1 5 . Aコイル及び Bコイルへ通電する電流方向及び通電する範囲を各々規定す るスリット 4 0 a , 4 0 bが形成されたセンサ板 4 0及び該スリット 4 0 a, 4 0 bを検出する第 1の検出手段 1 2を備えており、 該第 1の検出手段 1 2の出力 信号に基づいて制御手段 2 2は起動運転において起動運転回路 1 4のスィッチン グ手段 3 1 , 3 2 , 3 5, 3 6をスイッチング制御して Aコイルが Bコイルより 整流電流が多く流れるように制御することを特徴とする請求項 1 2記載の同期モ —タ。
1 6 . 制御手段 2 2は、 同期モータが脱調した場合に、 同期運転から一旦起動運 転に移行した後、 再度同期運転に移行するよう運転切換えスィッチ SW1 を繰り 返し制御することを特徴とする請求項 1 2、 1 3、 1 4又は請求項 1 5記載の同 期モータ。
1 7. 制御手段 22は、 起動運転より同期運転に移行する際に、 起動運転回路の 1 4うち Bコイル側に整流電流を流すためのスィツチ SW4及び SW5を O F F してから、 運転切換えスィツチ SW"!を同期運転回路 2 1へ切換えると共に Aコ ィル側に整流電流を流すためのスィツチ SW2及び SW3を O Nして同期運転に 移行するよう制御することを特徴とする請求項 1 2、 1 3、 1 4、 1 5又は請求 項 1 6記載の同期モータ。
1 8. ステータコア 8は、 主コア 8 aに永久磁石ロータ 5の回転方向と逆方向に 延出する補助コア 8 bが設けられており、 主コア 8 aの透磁率は補助コア 8 ょ リ大きくなるように設計されていることを特徴とする請求項 1 2、 1 3、 1 4、
1 5、 1 6又は請求項 1 7記載の同期モータ。
1 9. ステータ 1 0は、 ステータコア 8に装着され、 永久磁石ロータ 5の回転中 心と直交する方向に伸びる巻芯及び該巻芯の両端にフランジを有するボビン 1 1 に、 Aコイル及び Bコイルが連続して巻回されていることを特徴とする請求項 1
2、 1 3、 1 4、 1 5、 1 6、 1 7又は請求項 1 8記載の同期モータ。
PCT/JP1999/002541 1998-09-25 1999-05-14 Moteur synchrone WO2000019593A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99919610A EP1130757A4 (en) 1998-09-25 1999-05-14 SYNCHRONOUS MOTOR
US09/787,754 US6424114B1 (en) 1998-09-25 1999-05-14 Synchronous motor
HK02101403.7A HK1040576A1 (zh) 1998-09-25 2002-02-23 同步馬達

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27182398A JP3163285B2 (ja) 1998-06-12 1998-09-25 同期モータ
JP10/271829 1998-09-25
JP10271829A JP3050851B2 (ja) 1998-07-06 1998-09-25 同期モータ
JP10/271823 1998-09-25

Publications (1)

Publication Number Publication Date
WO2000019593A1 true WO2000019593A1 (fr) 2000-04-06

Family

ID=26549905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002541 WO2000019593A1 (fr) 1998-09-25 1999-05-14 Moteur synchrone

Country Status (6)

Country Link
US (1) US6424114B1 (ja)
EP (1) EP1130757A4 (ja)
KR (1) KR100559178B1 (ja)
HK (1) HK1040576A1 (ja)
TW (1) TWI221057B (ja)
WO (1) WO2000019593A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211787A1 (en) * 2000-11-27 2002-06-05 ELCO S.p.A. Electric motor with electronic control
WO2005112226A1 (ja) * 2004-05-17 2005-11-24 Fumito Komatsu 4極同期モータ
RU2605088C1 (ru) * 2015-07-10 2016-12-20 Акционерное общество "ТВЭЛ" (АО "ТВЭЛ") Устройство для электропитания синхронного гистерезисного двигателя

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895176B2 (en) * 2002-09-12 2005-05-17 General Electric Company Method and apparatus for controlling electronically commutated motor operating characteristics
KR100437058B1 (ko) * 2002-10-01 2004-06-23 엘지전자 주식회사 단상 모터
US20050046366A1 (en) * 2003-08-29 2005-03-03 Johnson Controls Technology Company Circuit for providing power to multiple electrical devices
US20050046367A1 (en) * 2003-08-29 2005-03-03 Johnson Controls Technology Company Circuit for providing power to multiple electrical devices
DE502004009632D1 (de) * 2003-12-12 2009-07-30 Wifag Maschf Ag Aussenläuferantrieb
JP4681953B2 (ja) * 2005-06-09 2011-05-11 西部電機株式会社 電子制御ユニットによるインバータ制御装置
KR20070082819A (ko) * 2006-02-18 2007-08-22 심영숙 초효율 전동발전장치
CN102624314B (zh) * 2006-07-24 2015-02-18 株式会社东芝 可变磁通电动机驱动器系统
KR20080026872A (ko) * 2006-09-21 2008-03-26 엘지전자 주식회사 스위치드 릴럭턴스 모터
JP4030571B1 (ja) * 2006-10-26 2008-01-09 有限会社ケイ・アールアンドデイ 単相交流同期モータ
US8193748B2 (en) * 2008-10-10 2012-06-05 Smi Holdings, Inc. Integrated brushless DC motor and controller
JP5644184B2 (ja) * 2010-05-31 2014-12-24 ミネベア株式会社 単相交流同期モータ
US20140167538A1 (en) * 2012-09-12 2014-06-19 Keila Bentin Electronic engine
CN103731127B (zh) * 2012-10-16 2016-12-21 通用电气公司 用于同步控制串联连接的电子开关的电路
JP6283161B2 (ja) 2012-12-19 2018-02-21 株式会社マキタ 操作棹を有する作業機
DE102013201173A1 (de) * 2013-01-24 2014-07-24 Mahle International Gmbh Elektromotor
EP2800248B1 (en) * 2013-04-30 2021-03-24 General Electric Technology GmbH Stator winding of an electric generator
CN103281021B (zh) * 2013-05-13 2016-05-04 中国船舶重工集团公司第七一二研究所 一种船用永磁传动装置
CN109769407B (zh) * 2016-08-16 2022-04-15 罗伯特·博世有限公司 用于估计电动机中转子位置的光学传感器和方法、及包括光学传感器的电动机
CN112886876A (zh) 2017-03-29 2021-06-01 Qm电力公司 用于多速交流电动机的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556495A (en) * 1978-10-18 1980-04-25 Toshiba Corp A.c. motor controller
JPS58170346A (ja) * 1982-03-30 1983-10-06 Fumito Komatsu 同期モ−タ
JPS59188383A (ja) * 1983-04-06 1984-10-25 Fumito Komatsu 同期モ−タの起動方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706923A (en) * 1971-04-28 1972-12-19 Sperry Rand Corp Brushless d.c. motor acceleration system
JPH09135559A (ja) 1995-09-08 1997-05-20 Fumito Komatsu 同期モータ
JPH0984316A (ja) 1995-09-11 1997-03-28 Fumito Komatsu 同期モータ
US5914582A (en) * 1997-01-27 1999-06-22 Hitachi, Ltd. Permanent magnet synchronous motor controller and electric vehicle controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556495A (en) * 1978-10-18 1980-04-25 Toshiba Corp A.c. motor controller
JPS58170346A (ja) * 1982-03-30 1983-10-06 Fumito Komatsu 同期モ−タ
JPS59188383A (ja) * 1983-04-06 1984-10-25 Fumito Komatsu 同期モ−タの起動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1130757A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211787A1 (en) * 2000-11-27 2002-06-05 ELCO S.p.A. Electric motor with electronic control
WO2005112226A1 (ja) * 2004-05-17 2005-11-24 Fumito Komatsu 4極同期モータ
RU2605088C1 (ru) * 2015-07-10 2016-12-20 Акционерное общество "ТВЭЛ" (АО "ТВЭЛ") Устройство для электропитания синхронного гистерезисного двигателя

Also Published As

Publication number Publication date
US6424114B1 (en) 2002-07-23
EP1130757A4 (en) 2005-10-19
KR20010079877A (ko) 2001-08-22
HK1040576A1 (zh) 2002-06-14
EP1130757A1 (en) 2001-09-05
KR100559178B1 (ko) 2006-03-13
TWI221057B (en) 2004-09-11

Similar Documents

Publication Publication Date Title
WO2000019593A1 (fr) Moteur synchrone
CA2091500C (en) Integral motor and control
JP2832307B2 (ja) 電動機
JPH0353858B2 (ja)
JP3163285B2 (ja) 同期モータ
JP3050851B2 (ja) 同期モータ
JP2000166287A (ja) 同期モ―タ
EP1211787B1 (en) Electric motor with electronic control
JP3447795B2 (ja) ブラシレスモータ
JPH07143715A (ja) モータ
EP1804369A2 (en) Apparatus and method for varying speed of hybrid induction motor
JP2000083398A (ja) 2極同期モ―タ
JP2533598B2 (ja) Dcブラシレスモ―タ
JPH09215372A (ja) 動力発生装置及びその応用機器たる掃除機
KR900000102B1 (ko) 브러시레스 모우터
KR910008678Y1 (ko) 무정류자 자기콘트롤 전동기
JP2004222460A (ja) 同期モータ
KR20160091779A (ko) 전력소자에 연결된 브러시를 구비한 모터
JPH0474956B2 (ja)
JPH07322589A (ja) ブラシレスモータ及びその回転制御方法
RU2103788C1 (ru) Нереверсивный бесконтактный электродвигатель постоянного тока
JPH11113230A (ja) 2極同期モータ
JP2014023285A (ja) 正逆回転可能なdcブラシレスモータ
JP2008301603A (ja) 単相dcブラシレスモータの駆動装置
JP2004187347A (ja) ブラシレスモータの制御方法およびその制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999919610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09787754

Country of ref document: US

Ref document number: 1020017003582

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017003582

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999919610

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017003582

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999919610

Country of ref document: EP