WO2000011785A1 - Ansteuerschaltung für induktive lasten - Google Patents

Ansteuerschaltung für induktive lasten Download PDF

Info

Publication number
WO2000011785A1
WO2000011785A1 PCT/DE1999/002012 DE9902012W WO0011785A1 WO 2000011785 A1 WO2000011785 A1 WO 2000011785A1 DE 9902012 W DE9902012 W DE 9902012W WO 0011785 A1 WO0011785 A1 WO 0011785A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control circuit
semiconductor switch
control
switching transistor
Prior art date
Application number
PCT/DE1999/002012
Other languages
English (en)
French (fr)
Inventor
Rainald Sander
Chihao Xu
Gerold Schrittesser
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2000011785A1 publication Critical patent/WO2000011785A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • H02H9/047Free-wheeling circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load

Definitions

  • the invention relates to a control circuit for inductive loads with a high-side semiconductor switch for connecting and disconnecting the load with or from an operating voltage, and an acutation function for protecting the semiconductor switch against countervoltages induced by switching operations.
  • a counter voltage When switching inductive loads, a counter voltage is known to be induced, which can become very large, particularly when the current flowing through such a load is interrupted, and can lead to damage to other components.
  • this counter voltage can reach the breakdown voltage, which means that the semiconductor switch, which is generally a (MOS) transistor, has to absorb the counter current generated and thereby initiate the commutation process.
  • MOS metal-oxide-semiconductor
  • FIG. 4 shows a correspondingly connected, known control circuit 10 for a high-side semiconductor circuit.
  • a first MOS switching transistor T1 serves to connect or disconnect an inductive load ZL to / from an operating voltage Vbb.
  • the first switching transistor T1 is on the positive side of the load ZL, that is to say between this and the positive connection of the operating voltage Vbb, is at a transition of the first switching transistor Tl to the blocked state and the resulting separation of the load ZL from the operating voltage Vbb at point 1 builds a negative counter voltage, which without additional precautions up to Breakdown voltage of the first switching transistor Tl can rise.
  • a zener diode ZDl is usually connected between the gate and drain of the first switching transistor Tl, which pulls the gate of the first switching transistor Tl to positive potential when the zener voltage is reached, so that the latter is switched on and the counter voltage is reduced.
  • a diode Dl protects the gate in the switched-on state of the first switching transistor Tl from self-discharge.
  • Resistors Rl, R2 serve to limit the current through the diodes ZDl, Dl.
  • a disadvantage here, however, is that the value of the Zener diode voltage must always be designed for the maximum possible value of the reverse voltage of the first switching transistor Tl and thus for the maximum operating voltage Vbb at which the first switching transistor Tl is switched on to protect against the counter voltage.
  • the consequence of this is that the commutation voltage is determined via the maximum operating voltage and thus via the Zener diode voltage.
  • the invention has for its object to provide a control circuit of the type mentioned for inductive loads, in which the commutation voltage independently of other voltages, in particular the operating voltage
  • control circuit of the type mentioned at the outset which is characterized in that the commutation device is formed by a first voltage limiter circuit between a control connection of the semiconductor switch and a ground potential
  • the first voltage limiter circuit can be formed by a first Zener diode, a first diode being located between the first Zener diode and the control connection of the semiconductor switch, which prevents the control connection from being discharged.
  • the first voltage limiter circuit can be connected in series with a series circuit comprising a second diode and a first resistor that leads to ground potential, and can be controlled by applying current to the series circuit.
  • the first voltage limiter circuit can also be connected in series with a second switching transistor leading to the ground potential, with which the limiter circuit can be controlled by applying a switching voltage.
  • the second switching transistor is preferably a p-channel MOS transistor, a positive reference voltage being preferably chosen instead of the ground potential.
  • FIG. 1 is a schematic diagram of a first embodiment of the invention
  • FIG. 2 shows a basic circuit diagram of a second embodiment of the invention
  • 3 shows a basic circuit diagram of a third embodiment of the invention
  • FIG. 4 shows a basic circuit diagram of a known control circuit.
  • an inductive load ZL is connected in series with a first MOS switching transistor T1, with one connection of the inductive load ZL to ground and the drain connection of the first switching transistor Tl is applied to the positive pole of an operating voltage Vbb.
  • the first switching transistor which is thus connected as a so-called "high-side switch", is used to switch the inductive load ZL on and off.
  • the gate of the first switching transistor T1 is connected to a drive circuit 10 known per se, with which the transistor is brought into the conductive or blocked state in a manner known per se.
  • the circuit has a third diode Dl, the cathode of which is connected to the gate terminal of the first switching transistor Tl and the anode of which is connected to the anode of a second Zener diode ZDl connected in series therewith.
  • the cathode of the second Zener diode ZD1 is connected to a positive connection of the operating voltage Vbb
  • Source terminal and the gate terminal of the first switching transistor T1 a second resistor R1. Also connected to the gate terminal is the cathode of a first diode D2, the anode of which is connected to the anode of a first Zener diode ZD2. The cathode of the first Zener diode ZD2 is grounded. The gate terminal of the first switching transistor T1 is finally connected via a third resistor R2 to the part of the control circuit 10 known per se.
  • the inductive load is separated from the operating voltage Vbb by appropriate activation of the first switching transistor T1
  • a (negative) counter voltage is induced, which is short-circuited to ground when the Zener voltage of the first Zener diode ZD2 is reached.
  • the resistors Rl, R2 limit the current through the diodes Dl, ZDl, and the second resistor Rl can also be supplemented with semiconductor elements (preferably MOS) in order to influence the current characteristic.
  • the second Zener diode ZDl and the third diode Dl (second Voltage limiter circuit) are also eliminated.
  • the second voltage limiter circuit is only necessary if additional avalanche protection is required.
  • the first voltage limiter circuit it is thus possible to set the absolute value of the (negative) commutation voltage by selecting the Zener voltage of the first Zener diode ZD2 independently of the operating voltage Vbb.
  • the first diode D2 prevents the gate of the first switching transistor T1 from discharging to ground. High voltage peaks can thus be avoided in the circuit arrangement. This is particularly advantageous in applications which are sensitive to electromagnetic interference radiation.
  • the cathode of the first zener diode ZD2 is connected to a current-carrying branch of any circuit 11 that is independent of the control circuit 10.
  • This branch establishes a connection to ground potential via a second diode D3 (or another element blocking in the current direction) and a first load resistor R3 connected in series.
  • the second diode D3 blocks the current to ground in the case of negative currents, such as those that occur during commutation.
  • This arrangement can then be used advantageously if the commutation is to take place very quickly and the voltage peaks which occur are not disruptive, such as e.g. B. with pulse width modulation. If this element is bridged, the circuit shown in FIG. 1 is produced functionally. A bridging can take place, for example, in the circuit 11, which is then a ground-related one
  • FIG. 3 shows a third embodiment, in which the series connection of the first diode D2 and the first Zener diode ZD2 is controlled via an internal or external switching voltage Us and the commutation voltage can thus be set to a desired value.
  • a second p-channel MOS switching transistor T2 (or a corresponding bipolar transistor) connected in series with the diodes, to which the switching voltage Us is applied.
  • the second switching transistor T2 is preferably connected to a positive reference voltage Vref and not to ground potential, so that negative voltages do not have to be applied between the gate and source of this switching transistor T2.
  • a suitable other reference potential could be selected instead of the ground potential, if necessary.
  • the second voltage limiter circuit in the form of the first Zener diode ZDl and the first diode Dl can again be omitted.

Landscapes

  • Electronic Switches (AREA)

Abstract

Es wird eine Ansteuerschaltung für induktive Lasten (ZL) mit einem Halbleiterschalter (T1) zum Verbinden und Trennen der Last mit/von einer Betriebsspannung (Vbb), sowie einer Abkommutierungsfunktion zum Schutz des Halbleiterschalters vor durch Schaltvorgänge induzierten Gegenspannungen beschrieben, die sich insbesondere dadurch auszeichnet, daß die Abkommutierungsfunktion durch eine Spannungs-Begrenzerschaltung (D2, ZD2) zwischen einem Steueranschluß des Halbleiterschalters (T1) und einem Massepotential gebildet ist.

Description

Beschreibung
Ansteuerschaltung für induktive Lasten
Die Erfindung betrifft eine Ansteuerschaltung für induktive Lasten mit einem High-Side-Halbleiterschalter zum Verbinden und Trennen der Last mit bzw. von einer Betriebsspannung, sowie einer Akommutierungsfunktion zum Schutz des Halbleiterschalters vor durch Schaltvorgänge induzierten Gegenspannun- gen.
Beim Schalten von induktiven Lasten wird bekanntlich eine Gegenspannung induziert, die insbesondere bei der Unterbrechung des durch eine solche Last fließenden Stroms sehr groß werden und zu Schäden an anderen Bauteilen führen kann. Bei der Verwendung eines Halbleiterschalters kann diese Gegenspannung die Durchbruchspannung erreichen, was dazu führt, daß der Halbleiterschalter, bei dem es sich im allgemeinen um einen (MOS-) Transistor handelt, den erzeugten Gegenstrom aufnehmen und dadurch den Abkommutierungsvorgang einleiten muß.
Da ein Transistor durch einen häufigen Betrieb im Bereich seiner Durchbruchspannung beschädigt oder sogar zerstört werden kann, wird die Abkommutierungsfunktion in vielen Fällen in die Ansteuerschaltung integriert. Figur 4 zeigt eine entsprechend beschaltete, bekannte Ansteuerschaltung 10 für eine High-Side-Halbleiterschaltung. Ein erster MOS- Schalttransistor Tl dient in Abhängigkeit von der Ansteuerung über seinen Gateanschluß zum Verbinden bzw. Trennen einer in- duktiven Last ZL mit / von einer Betriebsspannung Vbb. Da sich der erste Schalttransistor Tl auf der positiven Seite der Last ZL, das heißt zwischen dieser und dem positiven Anschluß der Betriebsspannung Vbb befindet, wird bei einem Übergang des ersten Schalttransistors Tl in den gesperrten Zustand und die dadurch bewirkte Trennung der Last ZL von der Betriebsspannung Vbb an dem Punkt 1 eine negative Gegenspannung aufgebaut, die ohne zusätzliche Vorkehrungen bis zur Durchbruchspannung des ersten Schalttransistors Tl ansteigen kann.
Um dies zu verhindern, wird üblicherweise zwischen Gate und Drain des ersten Schalttransistors Tl eine Zenerdiode ZDl geschaltet, die bei Erreichen der Zenerspannung das Gate des ersten Schalttransistors Tl auf positives Potential zieht, so daß dieser eingeschaltet und die Gegenspannung abgebaut wird. Eine Diode Dl schützt das Gate in eingeschaltetem Zustand des ersten Schalttransistors Tl vor einer Selbstentladung. Die
Widerstände Rl, R2 dienen zur Begrenzung des Stroms durch die Dioden ZDl, Dl.
Nachteilig hierbei ist jedoch, daß der Wert der Zenerdioden- Spannung immer auf den maximal möglichen Wert der Sperrspannung des ersten Schalttransistors Tl und somit auf die maximale Betriebsspannung Vbb ausgelegt sein muß, bei der der erste Schalttransistor Tl zum Schutz vor der Gegenspannung eingeschaltet wird. Dies hat zur Folge, daß die Abkommutierspan- nung über die maximale Betriebsspannung und somit über die Zenerdiodenspannung festgelegt ist.
Der Erfindung liegt die Aufgabe zugrunde, eine Ansteuerschaltung der eingangs genannten Art für induktive Lasten zu schaffen, bei der die Abkommutierspannung unabhängig von anderen Spannungen, insbesondere der Betriebsspannung einstell¬
Gelost wird diese Aufgabe gemäß Anspruch 1 mit einer Ansteu- erschaltung der eingangs genannten Art, die sich dadurch auszeichnet, daß die Abkommutierungseinπchtung durch eine erste Spannungs-Begrenzerschaltung zwischen einem Steueranschluß des Halbleiterschalters und einem Massepotential gebildet
Die Unteranspruche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt. Danach kann insbesondere die erste Spannungs- Begrenzerschaltung durch eine erste Zenerdiode gebildet sein, wobei zwischen der ersten Zenerdiode und dem Steueranschluß des Halbleiterschalters eine erste Diode liegt, die eine Entladung des Steueranschlusses verhindert.
Weiterhin kann die erste Spannungs-Begrenzerschaltung seriell mit einer an Massepotential führenden Reihenschaltung aus ei- ner zweiten Diode und einem ersten Widerstand beschaltet und durch Strombeaufschlagung der Reihenschaltung steuerbar sein.
Alternativ dazu kann die erste Spannungs-Begrenzerschaltung auch seriell mit einem an das Massepotential führenden zwei- ten Schalttransistor verbunden sein, mit dem durch Anlegen einer Schaltspannung die Begrenzerschaltung steuerbar ist.
Der zweite Schalttransistor ist dabei vorzugsweise ein p- Kanal MOS-Transistor, wobei anstelle des Massepotentials vor- zugsweise eine positive Referenzspannung gewählt wird.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von bevorzugten Ausführungsformen anhand der Zeichnung. Es zeigt:
Figur 1 ein Prinzipschaltbild einer ersten Ausführungsform der Erfindung; Figur 2 ein Prinzipschaltbild einer zweiten Ausführungsform der Erfindung; Figur 3 ein Prinzipschaltbild einer dritten Ausführungsform der Erfindung und Figur 4 ein Prinzipschaltbild einer bekannten Ansteuerschaltung.
Gemäß Figur 1 ist eine induktive Last ZL mit einem ersten MOS-Schalttransistor Tl in Reihe geschaltet, wobei ein Anschluß der induktiven Last ZL an Masse und der Drainanschluß des ersten Schalttransistors Tl an dem positiven Pol einer Betriebsspannung Vbb anliegt. Der erste Schalttransistor, der somit als sogenannter "Highsideschalter" geschaltet ist, dient zum Ein- und Ausschalten der induktiven Last ZL. Zu diesem Zweck ist das Gate des ersten Schalttransistors Tl mit einer an sich bekannten Ansteuerschaltung 10 verbunden, mit der der Transistor in an sich bekannter Weise in den leitenden oder gesperrten Zustand gebracht wird.
Die Schaltung weist eine dritte Diode Dl auf, deren Kathode mit dem Gateanschluß des ersten Schalttransistors Tl und deren Anode mit der Anode einer zu dieser in Reihe geschalteten zweiten Zenerdiode ZDl verbunden ist. Die Kathode der zweiten Zenerdiode ZDl liegt an einem positiven Anschluß der Be- triebsspannung Vbb. Weiterhin befindet sich zwischen dem
Sourceanschluß und dem Gateanschluß des ersten Schalttransistors Tl ein zweiter Widerstand Rl . Mit dem Gateanschluß ist ferner die Kathode einer ersten Diode D2 verbunden, deren Anode mit der Anode einer ersten Zenerdiode ZD2 verbunden ist. Die Kathode der ersten Zenerdiode ZD2 liegt an Masse. Der Gateanschluß des ersten Schalttransistors Tl ist schließlich über einen dritten Widerstand R2 mit dem an sich bekannten Teil der Ansteuerschaltung 10 verbunden.
Wenn die induktive Last durch entsprechende Ansteuerung des ersten Schalttransistors Tl von der Betriebsspannung Vbb getrennt wird, wird eine (negative) Gegenspannung induziert, die bei Erreichen der Zenerspannung der ersten Zenerdiode ZD2 nach Masse kurzgeschlossen wird. Dadurch wird der Abkommutie- rungsvorgang eingeleitet. Die Widerstände Rl , R2 begrenzen den Strom durch die Dioden Dl, ZDl, wobei der zweite Widerstand Rl zur Beeinflussung der Stromcharakteristik auch mit Halbleiterelementen (vorzugsweise MOS) ergänzt werden kann.
Da die Abkommutierspannung im allgemeinen so gewählt werden wird, daß sie unter der Betriebsspannung Vbb liegt, können die zweite Zenerdiode ZDl und die dritte Diode Dl (zweite Spannungs-Begrenzerschaltung) auch entfallen. Die zweite Spannungs-Begrenzerschaltung ist nur dann notwendig, wenn ein zusätzlicher Avalanche-Schutz gewünscht wird. Mit der ersten Spannungs-Begrenzerschaltung Schaltung ist es somit möglich, den absoluten Wert der (negativen) Abkommutierspannung durch entsprechende Wahl der Zenerspannung der ersten Zenerdiode ZD2 unabhängig von der Betriebsspannung Vbb einzustellen. Mit der ersten Diode D2 wird verhindert, daß sich das Gate des ersten Schalttransistors Tl nach Masse entlädt. Somit können in der Schaltungsanordnung hohe Spannungsspitzen vermieden werden. Dies ist vor allem bei Anwendungen, die bezüglich elektromagnetische Störstrahlungen empfindlich sind, vorteilhaft.
Bei der in Figur 2 gezeigten zweiten Ausführungsform ist die Kathode der ersten Zenerdiode ZD2 ist mit einem stromführenden Zweig einer beliebigen, von der Ansteuerschaltung 10 unabhängigen Schaltung 11 verbunden. Dieser Zweig stellt über eine zweite Diode D3 (oder ein anderes, in Stromrichtung sperrendes Element) sowie einen ersten, dazu in Reihe geschalteten Lastwiderstand R3, eine Verbindung zum Massepotential her. Die zweite Diode D3 sperrt bei negativen Strömen, wie sie bei der Abkommutierung auftreten, den Strom nach Masse. Diese Anordnung kann dann vorteilhaft verwendet werden, wenn die Abkommutierung sehr schnell erfolgen soll und die dabei auftretenden Spannungsspitzen nicht störend sind, wie z. B. bei einer Pulsweitenmodulation. Wenn dieses Element überbrückt wird, entsteht funktionell die in Figur 1 gezeigte Schaltung. Eine Überbrückung kann beispielsweise in der Schaltung 11 stattfinden, die dann einen massebezogenen
(steuerbaren) Schalter aufweist, die unabhängige Schaltung 11 muß dabei so ausgelegt sein, daß durch den negativen Stromfluß keine Beeinflussung auftritt. Auch bei dieser Ausführungsform können die zweite Zenerdiode ZDl und die dritte Diode Dl (zweite Spannungs-Begrenzerschaltung) entfallen. Figur 3 zeigt schließlich eine dritte Ausführungsform, bei der die Reihenschaltung aus der ersten Diode D2 und der ersten Zenerdiode ZD2 über eine interne oder externe Schaltspannung Us gesteuert und somit die Abkommutierspannung auf einen gewünschten Wert eingestellt werden kann. Hierzu dient ein in Reihe zu den Dioden geschalteter zweiter p-Kanal MOS-Schalttransistor T2 (oder ein entsprechender bipolarer Transistor) , der mit der Schaltspannung Us beaufschlagt wird. Der zweite Schalttransistor T2 ist vorzugsweise an eine posi- tive Referenzspannung Vref und nicht an Massepotential angeschlossen, damit zwischen Gate und Source dieses Schalttransistors T2 nicht negative Spannungen angelegt werden müssen.
Auch bei den beiden anderen Ausführungsformen könnte, sofern erforderlich, anstelle des Massepotentials ein geeignetes anderes Referenzpotential gewählt werden.
Die zweite Spannungs-Begrenzerschaltung in Form der ersten Zenerdiode ZDl und der ersten Diode Dl kann wiederum entfal- len.

Claims

Patentansprüche
1. Ansteuerschaltung für induktive Lasten mit einem High- Side-Halbleiterschalter zum Verbinden und Trennen der Last mit bzw. von einer Betriebsspannung, sowie einer Abkommutie- rungseinrichtung zum Schutz des Schalters vor durch Schaltvorgänge induzierten Gegenspannungen, d a d u r c h g e k e n n z e i c h n e t, daß die Abkommutierungseinrichtung durch eine erste Spannungs- Begrenzerschaltung (D2, ZD2) zwischen einem Steueranschluß des Halbleiterschalters (Tl) und einem Massepotential gebildet ist.
2. Ansteuerschaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die erste Spannungs-Begrenzerschaltung durch eine erste Zenerdiode (ZD2) gebildet ist, wobei zwischen der ersten Zenerdiode (ZD2) und dem Steueranschluß des Halbleiterschalters (Tl) eine erste Diode (D2) liegt, die eine Entladung des Steueranschlusses verhindert.
3. Ansteuerschalter nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß die erste Spannungs-Begrenzerschaltung seriell mit einer an Massepotential führenden Reihenschaltung aus einer zweiten Diode (D3) und einem ersten Widerstand (R3) beschaltet und durch Strombeaufschlagung der Reihenschaltung steuerbar ist.
4. Ansteuerschaltung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß die erste Spannungs-Begrenzerschaltung seriell mit einem an das Massepotential führenden zweiten Schalttransistor (T2) verbunden ist, mit dem durch Anlegen einer Schaltspannung die Begrenzerschaltung steuerbar ist.
5. Ansteuerschaltung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß der zweite Schalttransistor ein p-Kanal MOS-Transistor (T2) und anstelle des Massepotentials eine positive Referenzspannung (Vref) gewählt wird.
6. Ansteuerschaltung nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h eine zweite Spannungs-Begrenzerschaltung (Dl, ZDl), die zwischen den Steueranschluß des Halbleiterschalters (Tl) und die Betriebsspannung (Vbb) geschaltet ist.
7. Ansteuerschaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß zwischen die induktive Last (ZL) und den Steueranschluß des Halbleiterschalters (Tl) ein zweiter Widerstand (Rl) zur Be- grenzung des Stroms durch die mindestens eine Spannungs- Begrenzerschaltung geschaltet ist.
8. Ansteuerschaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß der Halbleiterschalter ein erster MOS-Schalttransistor (Tl) ist, der zwischen einen positiven Anschluß der Betriebsspannung (Vbb) und die induktive Last (ZL) geschaltet ist.
PCT/DE1999/002012 1998-08-21 1999-07-01 Ansteuerschaltung für induktive lasten WO2000011785A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19838109.3 1998-08-21
DE1998138109 DE19838109B4 (de) 1998-08-21 1998-08-21 Ansteuerschaltung für induktive Lasten

Publications (1)

Publication Number Publication Date
WO2000011785A1 true WO2000011785A1 (de) 2000-03-02

Family

ID=7878342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002012 WO2000011785A1 (de) 1998-08-21 1999-07-01 Ansteuerschaltung für induktive lasten

Country Status (2)

Country Link
DE (1) DE19838109B4 (de)
WO (1) WO2000011785A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249528A (zh) * 2017-02-13 2019-09-17 罗伯特·博世有限公司 用于提高电感负载的空载电压的电路装置以及输出级
GB2582577A (en) * 2019-03-25 2020-09-30 Ge Aviat Systems Ltd Method and apparatus for operating a power distribution system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135168A1 (de) * 2001-07-19 2003-02-13 Bosch Gmbh Robert Vorrichtung zum Schutz elektronischer Bauelemente
DE10149777A1 (de) * 2001-10-09 2003-04-24 Bosch Gmbh Robert Halbleiter-Schaltungsanordnung, insbesondere für Zündungsverwendungen, und Verwendung
DE102005027442B4 (de) * 2005-06-14 2008-10-30 Continental Automotive Gmbh Schaltungsanordnung zum Schalten einer Last
DE102007002377B4 (de) * 2006-05-22 2011-12-01 Texas Instruments Deutschland Gmbh Integrierte Schaltungsvorrichtung
DE502006003338D1 (de) 2006-10-02 2009-05-14 Infineon Technologies Austria Verfahren zur Datenübertragung über eine Potentialbarriere

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489935A1 (de) * 1990-11-09 1992-06-17 Siemens Aktiengesellschaft MOSFET-Schalter für eine induktive Last
US5357157A (en) * 1990-11-05 1994-10-18 Nissan Motor Co., Ltd. Power MOSFET circuit including short circuiting means for detecting the potential of the source terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287525B1 (de) * 1987-04-14 1992-06-10 STMicroelectronics S.r.l. Einschaltstromrückführung durch einen eine induktive Last treibenden Leistungsschalttransistor
FR2630276B1 (fr) * 1988-04-14 1992-07-03 Bendix Electronics Sa Circuit de commande d'une charge inductive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357157A (en) * 1990-11-05 1994-10-18 Nissan Motor Co., Ltd. Power MOSFET circuit including short circuiting means for detecting the potential of the source terminal
EP0489935A1 (de) * 1990-11-09 1992-06-17 Siemens Aktiengesellschaft MOSFET-Schalter für eine induktive Last

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILKINSON R ET AL: "PROTECTING POWER DEVICES IN CARS", ELECTRONIC ENGINEERING,GB,MORGAN-GRAMPIAN LTD. LONDON, vol. 66, no. 812, August 1994 (1994-08-01), pages 29-30, XP000468705, ISSN: 0013-4902 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110249528A (zh) * 2017-02-13 2019-09-17 罗伯特·博世有限公司 用于提高电感负载的空载电压的电路装置以及输出级
GB2582577A (en) * 2019-03-25 2020-09-30 Ge Aviat Systems Ltd Method and apparatus for operating a power distribution system
GB2582577B (en) * 2019-03-25 2022-03-23 Ge Aviat Systems Ltd Method and apparatus for operating a power distribution system
US11296491B2 (en) 2019-03-25 2022-04-05 Ge Aviation Systems Limited Method and apparatus for operating a power distribution system

Also Published As

Publication number Publication date
DE19838109A1 (de) 2000-02-24
DE19838109B4 (de) 2005-10-27

Similar Documents

Publication Publication Date Title
EP1410505B1 (de) Schalteinrichtung zum schalten bei einer hohen betriebsspannung
DE2638178C2 (de) Schutzvorrichtung für integrierte Schaltungen gegen Überspannungen
EP0572706B1 (de) Ansteuerschaltung für einen Leistungs-FET mit sourceseitiger Last
DE68913277T2 (de) Schutz für Leistungswandler gegen Spannungsspitzen.
DE112013001123B4 (de) Leistungsschaltung
EP0620957B1 (de) Schaltung zum schutz eines mosfet-leistungstransistors
DE19817767A1 (de) Halbleiter-Leistungsschaltung
DE102014219882A1 (de) Stromversorgungseinrichtung
EP0766395A2 (de) Leistungstransistor mit Kurzschlussschutz
EP3151405B1 (de) Schaltung zur symmetrierung von kondensatorspannungen an kondensatoren in einem gleichspannungskreis
EP0943974B1 (de) Spannungsregelschaltung
DE102018117528A1 (de) Entladeschaltungen zum Entladen von induktiven Elementen mit Temperaturschutz
DE3420003A1 (de) Anordnung zum verhindern uebermaessiger verlustleistung in einer leistungsschalthalbleitervorrichtung
WO2000011785A1 (de) Ansteuerschaltung für induktive lasten
DE19631751C1 (de) Ansteuerschaltung für einen Leistungs-FET mit sourceseitiger Last
EP1063772A1 (de) Treiberschaltung zum Ansteuern einer Halbbrücke
DE2135858C3 (de) Transistorschalteinrichtung zum Schalten eines induktiven Gleichstromkreises
DE102016210798B3 (de) Leistungshalbleiterschaltung
DE102007018237A1 (de) Schaltung mit verbessertem ESD-Schutz bei repetierender Pulsbelastung
DE3240280C2 (de)
DE102020202842A1 (de) Treiberschaltung für ein niederinduktives Leistungsmodul sowie ein niederinduktives Leistungsmodul mit erhöhter Kurzschlussfestigkeit
EP1453171B1 (de) Elektronische Schutzschaltung
DE4428115A1 (de) Steuergerät mit einer Schaltungsanordnung zum Schutz des Steuergerätes bei Unterbrechung der Steuergerätemasse
DE3536447C2 (de) Kurzschluß- und überlastfeste Transistorausgangsstufe
EP0590167A1 (de) Leistungsschalter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase