WO2000004588A1 - Elektrooptische baugruppe - Google Patents

Elektrooptische baugruppe Download PDF

Info

Publication number
WO2000004588A1
WO2000004588A1 PCT/DE1999/002145 DE9902145W WO0004588A1 WO 2000004588 A1 WO2000004588 A1 WO 2000004588A1 DE 9902145 W DE9902145 W DE 9902145W WO 0004588 A1 WO0004588 A1 WO 0004588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
heat
base module
module
optical
Prior art date
Application number
PCT/DE1999/002145
Other languages
English (en)
French (fr)
Inventor
Volker Plickert
Lutz Melchior
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2000004588A1 publication Critical patent/WO2000004588A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the invention is in the field of electro-optical modules for message transmission, which are also referred to as electro-optical modules.
  • electro-optical modules have at least one electro-optically active element, which is also called an electro-optical converter.
  • An electro-optical converter is used to convert electrical to optical or optical to electrical signals.
  • the optical signals are usually transmitted from one module to a corresponding further module via optical fibers and allow interference-free data transmission at an extraordinarily high speed.
  • an electro-optical assembly which comprises both an optical transmitter and an optical receiver.
  • the transmitter can contain a laser diode as an electro-optical converter and the receiver can contain a photodiode as a converter.
  • the respective converter With the respective converter, one optical fiber end of a transmission cable, which is held centrally in a plug pin of a connector, can be optically coupled via precise assembly-side alignment sleeves.
  • the transducers and other electronic components used for signal processing or signal processing are housed in a common plastic housing that also holds the alignment sleeves.
  • the housing is provided with cooling fins and ventilation slots in order to be able to dissipate heat loss emitted by the transducers and the electronic components due to operational reasons.
  • the resulting heat transfer between the module temperature and the ambient temperature is described by the so-called external thermal contact resistance. This depends on the heat sink geometry and the speed of the external cooling air.
  • the cooling fins on the housing side - e.g. B. be conceived accordingly by special cooling fin geometries more powerful.
  • the object of the invention is to create an electro-optical assembly which can be adapted as precisely as possible to the circumstances and individual conditions of use with regard to its heat dissipation behavior.
  • an electro-optical module with a base module which is equipped with a heat sink which is selected from a plurality of alternative heat sinks taking into account the necessary heat dissipation, the base module containing a plurality of electronic components and having a heat sink , to which the components emit heat loss generated during operation, the heat sink forming a thermal interface on an outside of the base module, and where at the thermal interface with the selected heat sink is thermally connected.
  • An essential aspect of the invention is to provide an electro-optical assembly which consists of a separate base module and a heat sink specifically selected according to the respective heat dissipation requirements.
  • the basic module contains the electro-optical or electronic functional elements and the heat sink with a geometric and corresponding thermal interface.
  • the heat sink can be implemented, for example, as a uniform base plate forming an outside of the base module.
  • the base plate preferably forms the upper side of the base module.
  • the heat sink can be used to thermally connect the heat sink, which is optimally dimensioned for the respective application - completely independent of the manufacture of the basic module. This creates an assembly whose basic module is equipped with a heat sink based on the modular principle, which is selected from a large number of heat sinks that are finely graded in terms of their performance and size.
  • the user thus advantageously obtains an assembly whose heat dissipation behavior is precisely matched to the individual system conditions.
  • the user thus advantageously avoids wasted space (as would exist if the heat sink was dimensioned too large), the acquisition costs remaining limited to the heat sink actually required.
  • Another advantage of the assembly according to the invention is that even with subsequent changes in the cooling circumstances according to the modular principle, the previous heat sink can be replaced by a heat sink adapted to the changed conditions.
  • Another significant advantage of the assembly according to the invention is that only a single basic module has to be manufactured during manufacture, while the heat sinks are selected according to the respective application and are made available for the final assembly of the assembly can. This means that costly warehousing of different assemblies is no longer necessary.
  • the heat sink on the one hand and the heat sink on the other hand can be optimized independently of one another according to different criteria.
  • the surface of the heat sink can be designed with a low roughness in order to guarantee a good electrical and thermal connection with the electrical components.
  • the heat sink can have an increased roughness and be black anodized to ensure particularly effective heat dissipation to the ambient air.
  • the function of the respective individual heat sink can be performed by a common heat sink according to an advantageous development of the invention in that further base modules are fitted with the heat sink.
  • FIG. 1 shows a first assembly before final assembly
  • FIG. 2 shows several of the assemblies shown in FIG. 1 in the assembled state
  • Figure 3 shows a variant of assemblies and Figure 4 assemblies before assembly with a common heat sink.
  • the electro-optical assembly comprises a base module 1 and a heat sink 2.
  • the heat sink is selected from a large number of alternative heat sinks, taking into account the special thermal requirements.
  • the heat sink has a thermal interface 3 on it
  • the base module 1 has, in a manner known per se and therefore not explained in detail, an input-side plug socket 8 for coupling an optical waveguide plug connector, not shown.
  • Optical fiber ends held in the optical fiber plug connector are thus optically aligned with a transmitting unit 10 or receiving unit 12 which is arranged in the interior of the module 1 and is therefore only shown in broken lines.
  • the units 10, 12 contain the electro-optical converters described in the introduction (EP 0 709 699 A2).
  • the base module contains a large number of further electronic components or components 14, 16 which, like the units 10, 12, have power loss due to operational reasons. This power loss is converted into heat loss and dissipated to a heat sink 20 in the form of a cover plate of the base module 4.
  • the components 14, 16 or the transducers 10, 12 are in thermal contact with the heat sink 20.
  • the heat sink 20 can be designed as a metallic plate and advantageously form the entire upper side 21 of the module 4. Laterally recognizable connection contacts 22 are used for electrical external contacting of the module.
  • the heat loss is first led to the heat sink 20, from there to the top 21 functioning as a thermal interface 23.
  • the heat reaches the interface 3 of the heat sink 2 via the heat-conducting film 5 and is in particular dissipated to the ambient air by means of cooling vanes 25 of the heat sink 2 by convection. This dissipation performance depends on the heat sink geometry and the speed of the cooling air.
  • the base module 1 can be manufactured separately and, for example, mounted on a printed circuit board 30 before ever the heat sink 2 is mounted.
  • the heat sink 2 with its interface 3 suitable for coupling to the interface 23 is selected from a large number of alternative heat sinks. After mounting the heat sink 2 on the base module 1, an electro-optical assembly is thus created which is optimally adapted to the respective conditions of use with regard to heat dissipation.
  • FIG. 2 shows several assemblies according to FIG. 1, the heat sinks 2 being mounted on the respective base module 1.
  • the specific heat dissipation conditions can be taken into account in the case of a plurality of assemblies installed one behind the other, which are cooled by a common air flow (air).
  • air flow direction in the direction of arrow A the cooling effect for the right-hand module R is greater than for the left-hand module L because the cooling air flow is already more strongly heated when the left module is reached due to the heat loss from the previous modules. If the temperature gradient of the air flow turns out to be critical, the user uses a correspondingly more powerful heat sink 2 for the left module.
  • heat sinks 40 In order to be able to take into account the specific cooling conditions, a configuration of heat sinks 40 according to FIG. 3 with wider cooling fins 42 is provided.
  • the heat sinks 40 are compatible with the interface 23 (FIG. 1) and are therefore components of the heat sink range available according to the modular principle.
  • FIG. 4 shows a modification of FIGS. 2 or 3 basic modules 1 before they are connected to a common heat sink 50.
  • the heat sink 50 is preferably releasably connected to the base modules 1, which both replacement of the heat sink 50 enables, as well as a possibly necessary replacement of a z. B. defective base modules 1.

Abstract

Die elektrooptische Baugruppe umfaßt ein Basismodul (1), das mit einem Kühlkörper (2) bestückt ist, der im Baukastenprinzip aus mehreren alternativen Kühlkörpern (2, 40, 50) unter Berücksichtigung der erforderlichen Wärmeabfuhr ausgewählt ist. Das Basismodul (1) enthält mehrere elektronische Komponenten (14, 16), die ihre betriebsbedingte Verlustwärme an eine gemeinsame Wärmesenke (20) abgeben. Die Wärmesenke (20) bildet an einer Außenseite (21) des Basismoduls (1) eine thermische Schnittstelle (23), die mit dem ausgewählten Kühlkörper (2) wärmeleitend verbunden ist.

Description

Beschreibung
Elektrooptische Baugruppe
Die Erfindung liegt auf dem Gebiet der elektrooptischen Baugruppen zur Nachrichtenübermittlung, die auch als elektrooptische Module bezeichnet werden. Derartige Baugruppen weisen zumindest ein elektrooptisch aktives Element auf, das auch elektrooptischer Wandler genannt wird. Ein elektrooptischer Wandler dient zur Umsetzung elektrischer in optische bzw. optischer in elektrische Signale. Die optischen Signale werden üblicherweise über Lichtwellenleiter von der einen Baugruppe zu einer korrespondierenden weiteren Baugruppe übertragen und erlauben eine störungssichere Datenübertragung mit außeror- dentlich hoher Geschwindigkeit.
Aus der EP 0 709 699 A2 ist eine elektrooptische Baugruppe (Transceiver) bekannt, die sowohl einen optischen Sender als auch einen optischen Empfänger umfaßt. Der Sender kann bei- spielsweise als elektrooptischen Wandler eine Laserdiode und der Empfänger als Wandler eine Fotodiode enthalten. Mit dem jeweiligen Wandler ist über präzise baugruppenseitige Ausrichthülsen je ein zentral in einem Steckerstift eines Steckverbinders gehaltenes Lichtwellenleiterende eines Übertra- gungskabels optisch koppelbar. Die Wandler und weitere der Signalverarbeitung oder Signalaufbereitung dienende elektronische Komponenten sind in einem gemeinsamen Kunststoffgehäuse untergebracht, das auch die Ausrichthülsen hält. Das Gehäuse ist im rückwärtigen Bereich mit Kühlrippen und Lüf- tungsschlitzen versehen, um betriebsbedingt von den Wandlern und den elektronischen Komponenten abgegebene Verlustwärme abführen zu können. Der sich dabei einstellende Wärmeübergang zwischen der Baugruppentemperatur und der Umgebungstemperatur wird durch den sog. externen thermischen Übergangswiderstand beschrieben. Dieser ist von der Kühlkδrpergeometrie und der Geschwindigkeit der äußeren Kühlluft abhängig. Bei verstärkter Wärmeentwicklung und/oder ungünstigen Konvek- tionsStrömungen (beispielsweise bei einer Vielzahl von in Luftströmungsriehtung hintereinander angeordneten elektrooptischen Baugruppen) müssen die gehäuseseitigen Kühlrippen - z. B. durch spezielle Kühlrippengeometrien -entsprechend leistungsfähiger konzeptioniert werden.
Daraus ergibt sich die Problematik, daß mangels genauer Kenntnis der jeweiligen anwenderspezifischen Kühlsituation bezüglich der Wärmeabfuhrfähigkeit der elektrooptischen Baugruppe Maximalanforderungen erfüllt werden müssen; d. h., die Baugruppe muß derart ausgelegt werden, daß auch unter ungünstigsten Kühlungsbedingungen eine Überhitzung der Baugruppe verhindert wird. Dies bedeutet andererseits, daß ein Anwender einer derartigen Baugruppe bei tatsächlich günstigen Kühlverhältnissen aufgrund der dann vorliegenden Überdimensionierung Nachteile hinsichtlich der Kosten und des Raumbedarfs in Kauf nehmen muß. Weitere Probleme können sich ergeben, wenn bei bereits montierten Baugruppen sich die Kühlungsverhältnisse beispielsweise dadurch verändern (verschlechtern) , daß zusätzliche Baugruppen nachträglich installiert werden, die zusätzlich vom bestehenden Kühlungsluftström partizipieren.
Die Aufgabe der Erfindung besteht in der Schaffung einer elektrooptischen Baugruppe, die hinsichtlich ihres Wärmeabfuhrverhaltens möglichst genau den Gegebenheiten und individuellen Einsatzbedingungen angepaßt werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine elektro- optische Baugruppe mit einem Basismodul, das mit einem Kühlkörper bestückt ist, der im Baukastenprinzip aus mehreren alternativen Kühlkörpern unter Berücksichtigung der erforderlichen Wärmeabfuhr ausgewählt ist, wobei das Basismodul mehrere elektronische Bauelemente enthält und eine Wärmesenke auf- weist, an die die Bauelemente betriebsbedingt erzeugte Verlustwärme abgeben, wobei die Wärmesenke an einer Außenseite des Basismoduls eine thermische Schnittstelle bildet und wo- bei die thermische Schnittstelle mit dem ausgewählten Kühlkörper wärmeleitend verbunden ist.
Ein wesentlicher Aspekt der Erfindung besteht darin, eine elektrooptische Baugruppe vorzusehen, die aus einem separaten Basismodul und einem spezifisch nach den jeweiligen Wärmeabfuhranforderungen ausgesuchten Kühlkörper besteht. Das Basismodul enthält die elektrooptischen bzw. elektronischen Funktionselemente und die Wärmesenke mit einer geometrischen und entsprechend thermischen Schnittstelle. Die Wärmesenke kann beispielsweise als eine eine Außenseite des Basismoduls bildende einheitliche Basisplatte realisiert sein. Bevorzugt bildet die Basisplatte die Oberseite des Basismoduls. Mit der Wärmesenke kann - von der Fertigung des Basismoduls vollkom- men unabhängig - bedarfsweise der für den jeweiligen Anwendungsfall optimal dimensionierte Kühlkörper thermisch verbunden werden. Damit ist eine Baugruppe geschaffen, deren Basis- modul nach dem Baukastenprinzip mit einem Kühlkörper bestückt ist, der aus einer Vielzahl in ihrer Leistungsfähigkeit und Baugröße fein gestufter Kühlkörper ausgewählt ist.
In vorteilhafter Weise erhält der Anwender damit eine Baugruppe, die in ihrem Wärmeabführverhalten genau den jeweiligen individuellen Systemgegebenheiten angepaßt ist. Der An- wender vermeidet damit vorteilhafterweise eine Bauraumverschwendung (wie sie bei zu groß dimensioniertem Kühlkörper bestehen würde) , wobei die Anschaffungskosten auf den tatsächlich benötigten Kühlkörper begrenzt bleiben. Ein weiterer Vorteil der erfindungsgemäßen Baugruppe besteht darin, daß auch bei nachträglicher Änderung der Kühlungsumstände nach dem Baukastenprinzip der bisherige Kühlkörper durch einen den veränderten Bedingungen angepaßten Kühlkörper ersetzt werden kann. Ein weiterer erheblicher Vorzug der erfindungsgemäßen Baugruppe besteht darin, daß bei der Herstellung nur ein ein- heitliches Basismodul zu fertigen ist, während die Kühlkörper entsprechend der jeweiligen Applikation ausgesucht und zur abschließenden Konfektion der Baugruppe bereitgestellt werden können. Damit ist eine kostenintensive Lagerhaltung von verschiedenen Baugruppen nicht mehr erforderlich.
Bei der erfindungsgemäßen Baugruppe besteht außerdem der Vorteil, daß der Kühlkörper einerseits und die Wärmesenke andererseits unabhängig voneinander nach unterschiedlichen Kriterien optimiert werden können. So kann die Oberfläche der Wärmesenke mit geringer Rauhigkeit ausgebildet sein, um eine gute elektrische und thermische Verbindung mit den elektrischen Bauelementen zu garantieren. Dagegen kann der Kühlkörper eine erhöhte Rauhigkeit aufweisen und schwarz eloxiert sein, um eine besonders effektive Wärmeableitung an die Umgebungsluft sicherzustellen.
Bei der Anordnung mehrerer Basismodule beispielsweise in einem gemeinsamen Einschub oder auf einer gemeinsamen Leiterplatte kann die Funktion des jeweiligen individuellen Kühlkörpers nach einer vorteilhaften Weiterbildung der Erfindung dadurch von einem gemeinsamen Kühlkörper wahrgenommen werden, daß mit dem Kühlkörper weitere Basismodule bestückt sind.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand einer Zeichnung weiter erläutert; es zeigen: Figur 1 eine erste Baugruppe vor der Endmontage, Figur 2 mehrere der in Figur 1 dargestellten Baugruppen im montierten Zustand,
Figur 3 eine Variante von Baugruppen und Figur 4 Baugruppen vor der Montage mit einem gemeinsamen Kühlkörper.
Gemäß Figur 1 umfaßt die elektrooptische Baugruppe ein Basismodul 1 und einen Kühlkörper 2. Der Kühlkörper ist aus einer Vielzahl alternativer Kühlkörper unter Berücksichtigung der speziellen wärmetechnischen Anforderungen ausgewählt. Der Kühlkörper weist eine thermische Schnittstelle 3 an seiner
Unterseite auf, die mit einer thermischen Schnittstelle 4 des Basismoduls 1 über eine Wärmeleitfolie 5 verbunden wird. Es ist auch möglich, den Kühlkörper unter Zwischenlage einer Wärmeleitpaste unmittelbar mit der Schnittstelle zu verschrauben.
Das Basismodul 1 weist in an sich bekannter und daher nicht näher erläuterter Weise eine eingangsseitige Steckbucht 8 zur Ankopplung eines nicht dargestellten Lichtwellenleitersteckverbinders auf. In dem Lichtwellenleitersteckverbinder gehaltene Lichtwellenleiterenden werden damit optisch auf eine im Inneren des Moduls 1 angeordnete und daher nur gestrichelt dargestellte Sendeeinheit 10 bzw. Empfangseinheit 12 ausgerichtet. Die Einheiten 10, 12 enthalten in an sich bekannter Weise (EP 0 709 699 A2) die eingangs beschriebenen elektrooptischen Wandler. In dem Basismodul ist eine Vielzahl weiterer elektronischer Komponenten oder Bauelemente 14, 16 enthalten, die wie die Einheiten 10, 12 betriebsbedingt Verlustleistung aufweisen. Diese Verlustleistung wird in Verlustwärme umgesetzt und zu einer Wärmesenke 20 in Form einer Deckplatte des Basismoduls 4 abgeführt. Dazu stehen die Komponenten 14, 16 bzw. die Wandler 10, 12 in thermischem Kontakt mit der Wärmesenke 20. Die Wärmesenke 20 kann als metallische Platte ausgebildet sein und vorteilhafterweise die gesamte Oberseite 21 des Moduls 4 bilden. Seitlich erkennbare Anschlußkontakte 22 dienen zur elektrischen externen Kontaktierung der Baugruppe.
Um eine unzulässige Aufheizung des Basismoduls zu verhindern, wird die Verlustwärme zunächst an die Wärmesenke 20, von dort auf die als thermische Schnittstelle 23 fungierende Oberseite 21 geführt. Über die Wärmeleitfolie 5 gelangt die Wärme zur Schnittstelle 3 des Kühlkörpers 2 und wird insbesondere über Kühlfahnen 25 des Kühlkörpers 2 durch Konvektion an die Umgebungsluft abgeleitet. Diese Ableitungsleistung ist abhängig von der Kühlkörpergeometrie und der Geschwindigkeit der Kühl- luft.
Dabei kann das Basismodul 1 separat gefertigt und beispielsweise auf eine Leiterplatte 30 montiert werden, bevor über- haupt der Kühlkörper 2 montiert wird. Je nach individueller spezifischer Anforderung ist der Kühlkörper 2 mit seiner zur Kopplung an die Schnittstelle 23 geeigneten Schnittstelle 3 aus einer Vielzahl alternativer Kühlkörper ausgewählt. Nach der Montage des Kühlkörpers 2 auf dem Basismodul 1 ist somit eine elektrooptische Baugruppe geschaffen, die optimal an die jeweiligen Einsatzbedingungen hinsichtlich der Wärmeabführung angepaßt ist.
Figur 2 zeigt in diesem Zusammenhang mehrere Baugruppen gemäß Figur 1, wobei die Kühlkörper 2 auf dem jeweiligen Basismodul 1 montiert sind. Mit den erfindungsgemäßen Baugruppen kann den spezifischen Wärmeabfuhrbedingungen bei mehreren hintereinander montierten Baugruppen Rechnung getragen werden, die von einem gemeinsamen Luftstrom (Luft) gekühlt werden. Bei einer LuftStromrichtung in Richtung des Pfeiles A ist die Kühlwirkung für die rechte Baugruppe R größer als für die linke Baugruppe L, weil der Kühlluftstrom beim Erreichen der linken Baugruppe durch die Verlustwärme der vorhergehenden Baugruppen bereits stärker erwärmt ist. Sollte sich das Temperaturgefälle des Luftstromes als kritisch erweisen, verwendet der Anwender für die linke Baugruppe einen entsprechend leistungsfähigeren Kühlkörper 2.
Um den spezifischen Kühlungsbedingungen Rechnung tragen zu können, ist eine Ausgestaltung von Kühlkörpern 40 gemäß Figur 3 mit breiteren Kühlrippen 42 vorgesehen. Die Kühlkörper 40 sind mit der Schnittstelle 23 (Figur 1) kompatibel und somit Bestandteile des nach dem Baukastenprinzip zur Verfügung ste- henden Kühlkörpersortiments .
Figur 4 zeigt in Abwandlung der Figuren 2 oder 3 Basismodule 1 vor ihrer Verbindung mit einem gemeinsamen Kühlkörper 50.
Auch hier wird der Kühlkörper 50 vorzugsweise lösbar mit den Basismodulen 1 verbunden, was sowohl einen bedarfsweisen Aus- tausch des Kühlkörpers 50 ermöglicht, als auch einen ggf. notwendigen Austausch eines z. B. defekten Basismodules 1.

Claims

Patentansprüche
1. Elektrooptische Baugruppe mit einem Basismodul, das mit einem Kühlkörper (2) bestückt ist, der im Baukastenprinzip aus mehreren alternativen Kühlkörpern (2,40,50) unter
Berücksichtigung der erforderlichen Wärmeabfuhr ausgewählt ist,
- wobei das Basismodul (1) mehrere elektronische Bauelemente
(14,16) enthält und eine Wärmesenke (20) aufweist, an die die Bauelemente (14,16) betriebsbedingt erzeugte Verlustwärme abgeben,
- wobei die Wärmesenke (20) an einer Außenseite (21) des Basismoduls (1) eine thermische Schnittstelle (23) bildet und - wobei die thermische Schnittstelle (23) mit dem ausgewählten Kühlkörper (2) wärmeleitend verbunden ist.
2. Baugruppe nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t , daß mit dem Kühlkörper (50) weitere Basismodule (1) bestückt sind.
PCT/DE1999/002145 1998-07-14 1999-07-09 Elektrooptische baugruppe WO2000004588A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19832710A DE19832710A1 (de) 1998-07-14 1998-07-14 Elektrooptische Baugruppe
DE19832710.2 1998-07-14

Publications (1)

Publication Number Publication Date
WO2000004588A1 true WO2000004588A1 (de) 2000-01-27

Family

ID=7874770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002145 WO2000004588A1 (de) 1998-07-14 1999-07-09 Elektrooptische baugruppe

Country Status (2)

Country Link
DE (1) DE19832710A1 (de)
WO (1) WO2000004588A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013227A1 (de) * 2005-03-18 2006-09-28 Infineon Technologies Fiber Optics Gmbh Optoelektronische Sende- und/oder Empfangsvorrichtung und optoelektronische Anordnung mit einer Mehrzahl derartiger optoelektronischer Sende- und/oder Empfangsvorrichtungen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522857C2 (sv) 2001-11-23 2004-03-09 Optillion Ab Värmestyrd optoelektrisk enhet
WO2003044916A1 (en) 2001-11-23 2003-05-30 Optillion Ab Optoelectrical transceiver
DE10249205B3 (de) * 2002-10-22 2004-08-05 Siemens Ag Leistungsbauelementanordnung zur mechatronischen Integration von Leistungsbauelementen
DE102005056096B4 (de) * 2005-11-24 2009-05-14 OCé PRINTING SYSTEMS GMBH Kühlanordnung für mindestens eine in einen Baugruppenträger einsteckbare elektrische Baugruppe sowie Verfahren zum Kühlen einer solchen elektrischen Baugruppe und Baugruppenträger mit einer Baugruppe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161449A (ja) * 1984-09-03 1986-03-29 Nec Corp マルチチップ集積回路パッケ−ジ
EP0213426A1 (de) * 1985-08-30 1987-03-11 Siemens Aktiengesellschaft Gehäuse mit Bodenwanne und Aussendeckel für ein elektrisches Schaltungsbauteil
WO1991006126A1 (en) * 1989-10-16 1991-05-02 Eastman Kodak Company High-speed ccd sensor mounting system with improved signal to noise operation and thermal contact
DE4238417A1 (de) * 1991-11-14 1993-05-19 Mitsubishi Electric Corp
JPH05315483A (ja) * 1992-05-14 1993-11-26 Fuji Facom Corp プリント配線板装着素子の放熱フィンへの固定方法
US5568683A (en) * 1993-02-26 1996-10-29 Lsi Logic Corporation Method of cooling a packaged electronic device
JPH08288437A (ja) * 1995-04-17 1996-11-01 Hitachi Ltd 放熱フィンおよびそれを使用した半導体装置並びに半導体装置の実装構造体
JPH09139451A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 放熱フィン付半導体装置およびその実装方法ならびに取り外し方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8221756U1 (de) * 1982-07-30 1982-11-04 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur Wärmeableitung von thermisch belasteten flächigen Bauelementen der Nachrichtentechnik
DE8508595U1 (de) * 1985-03-22 1985-06-13 Brown, Boveri & Cie Ag, 6800 Mannheim Gleichstromstellergerät
DE8815418U1 (de) * 1988-12-12 1989-02-16 Isensee-Electronic-Gmbh, 7012 Fellbach, De
CA2161718A1 (en) * 1994-10-31 1996-05-01 Hiromi Kurashima Optical module having structure for defining fixing position of sleeve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161449A (ja) * 1984-09-03 1986-03-29 Nec Corp マルチチップ集積回路パッケ−ジ
EP0213426A1 (de) * 1985-08-30 1987-03-11 Siemens Aktiengesellschaft Gehäuse mit Bodenwanne und Aussendeckel für ein elektrisches Schaltungsbauteil
WO1991006126A1 (en) * 1989-10-16 1991-05-02 Eastman Kodak Company High-speed ccd sensor mounting system with improved signal to noise operation and thermal contact
DE4238417A1 (de) * 1991-11-14 1993-05-19 Mitsubishi Electric Corp
JPH05315483A (ja) * 1992-05-14 1993-11-26 Fuji Facom Corp プリント配線板装着素子の放熱フィンへの固定方法
US5568683A (en) * 1993-02-26 1996-10-29 Lsi Logic Corporation Method of cooling a packaged electronic device
JPH08288437A (ja) * 1995-04-17 1996-11-01 Hitachi Ltd 放熱フィンおよびそれを使用した半導体装置並びに半導体装置の実装構造体
JPH09139451A (ja) * 1995-11-15 1997-05-27 Hitachi Ltd 放熱フィン付半導体装置およびその実装方法ならびに取り外し方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 224 (E - 425) 5 August 1986 (1986-08-05) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 120 (E - 1516) 25 February 1994 (1994-02-25) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 03 31 March 1997 (1997-03-31) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 09 30 September 1997 (1997-09-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013227A1 (de) * 2005-03-18 2006-09-28 Infineon Technologies Fiber Optics Gmbh Optoelektronische Sende- und/oder Empfangsvorrichtung und optoelektronische Anordnung mit einer Mehrzahl derartiger optoelektronischer Sende- und/oder Empfangsvorrichtungen

Also Published As

Publication number Publication date
DE19832710A1 (de) 2000-01-27

Similar Documents

Publication Publication Date Title
DE102012205893B4 (de) System und Verfahren zur ausgewogenen Kühlung für gestapelte Käfige hoher Dichte
DE102010002697B4 (de) Paralleles optisches Sender- und/oder Empfänger-Modul und Verfahren zum Wärmedissipieren in einem parallelen optischen Sender- und/oder Empfänger-Modul
DE19501539C2 (de) Elektrooptischer Sende-/Empfangsmodul
DE69937726T2 (de) Optisches Modul
DE19655315B4 (de) Entfernbares Sender/Empfänger-Modul und -Aufnahme
US6320750B2 (en) Sub-modular configurable avionics
CN110690616B (zh) 用于电连接器的热沉组件
EP0055376B1 (de) Anschlussteil für das lösbare Verbinden eines Halbleiterchips mit ihm
EP0133224B1 (de) Kupplung für eine Lichtleitfaser
US20090093137A1 (en) Optical communications module
EP0168444A1 (de) Schaltung mit optischem bus.
DE102013223966A1 (de) Verfahren und Systeme zum Dissipieren von Wärme in optischen Kommunikationsmodulen
EP0966698B1 (de) Optisch-elektrisches modul
DE102013214921A1 (de) Ein Seiten-Kanten montierbares paralleles optisches Kommunikationsmodul, ein optisches Kommunikationssystem, welches das Modul enthält, und ein Verfahren
DE102012103217B3 (de) Steuerungsgerät für ein Gebäudeinstallationssystem
DE202019102461U1 (de) Steckverbinderteil mit einer Lüftereinrichtung
WO2000004588A1 (de) Elektrooptische baugruppe
DE102012014011A1 (de) Elektrogerät
DE202010017443U1 (de) Elektrische Baugruppe
DE102010031023B9 (de) Parallele optische Kommunikationsvorrichtungen mit schweißbaren Einsätzen, sowie zugehörige Verfahren zum Festmachen
DE102008037372A1 (de) Gehäuse für temperatursensible Komponenten
EP2731205B1 (de) Verbinder und Verwendung
CN110031940B (zh) 光模块的插拔装置
WO1994007284A1 (de) Geschirmter elektrischer kabelstecker
US5339220A (en) Host structure for adaptors for terminals belonging to a distributed data processing architecture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase