WO2000004394A1 - Socket for device measurement, and method of measuring device - Google Patents

Socket for device measurement, and method of measuring device Download PDF

Info

Publication number
WO2000004394A1
WO2000004394A1 PCT/JP1999/003811 JP9903811W WO0004394A1 WO 2000004394 A1 WO2000004394 A1 WO 2000004394A1 JP 9903811 W JP9903811 W JP 9903811W WO 0004394 A1 WO0004394 A1 WO 0004394A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
measuring
measurement
terminals
terminal
Prior art date
Application number
PCT/JP1999/003811
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Nagumo
Tsunehito Yokoi
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2000004394A1 publication Critical patent/WO2000004394A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/045Sockets or component fixtures for RF or HF testing

Definitions

  • the present invention relates to a device measuring socket for mounting a device for measuring various characteristics using a measuring instrument.
  • a filter or an amplifier as a high-frequency device is frequently used in an antenna input portion of a mobile phone that transmits and receives radio waves having a frequency of 800 MHz and 5 GHz.
  • these high-frequency devices have also been miniaturized, and are often formed as so-called surface-mounted devices.
  • FIG. 14 is a diagram showing a specific example of a conventional high-frequency device measuring jig.
  • the high-frequency device measuring jig 100 shown in FIG. 14 is an external connection terminal 100 connected via a coaxial cable or the like to a measuring instrument such as a network analyzer or a spectrum analyzer for measuring high-frequency characteristics. 2 and 104, and a conductive rubber 120 inserted between the high-frequency device 200 to be measured and the microstrip substrate 110.
  • a measuring instrument such as a network analyzer or a spectrum analyzer for measuring high-frequency characteristics. 2 and 104
  • a conductive rubber 120 inserted between the high-frequency device 200 to be measured and the microstrip substrate 110.
  • conductive pins penetrating between the front surface and the back surface are arranged at predetermined intervals, and formed on the front surface of the high-frequency device 200 through the conductive pins. Electrical connection is made between the device-side terminals and the measurement terminals formed on the microstrip substrate 110 surface.
  • FIG. 15 is a diagram showing another specific example of the conventional high-frequency device measuring jig.
  • the high-frequency device measurement jig 13 0 shown in FIG. 15 has external connection terminals 13 2 and 13 4 as well as a plurality of measurement terminals for making an electrical connection with the high-frequency device 200.
  • a microstrip substrate 140 provided with the movable pins 1336 of FIG. When the high-frequency device 200 is pressed against the surface of the microstrip substrate 140, the device-side terminals formed on the surface of the high-frequency device 200 have movable pins 13 6 provided on the microstrip substrate 140. Therefore, an electrical connection is made between the device side terminal and the measurement terminal.
  • the conventional high-frequency device measuring jig described above has a problem that the durability and the reliability are low and the high-frequency characteristics are poor even when any kind of the jig is used.
  • an electrical connection between the high-frequency device 200 and the measuring terminal is made by a conductive pin included in the conductive rubber 120. Therefore, if the tip of the conductive pin is bent by repeated use, a connection failure may occur. Also, a good connection state cannot be obtained unless the entire conductive rubber 120 is pressed with a large force.
  • the conductive pins of each are connected by a capacitor, so the device-side terminals of the high-frequency device 200 or the measurement terminals of the microstrip substrate 110 are short-circuited. As a result, the high frequency characteristics were not considered to be good.
  • the movable pin 13 36 may be caught and go to the device side terminal. Contact becomes insufficient.
  • the movable pins 13 6 are realized by using a panel.However, since equivalently includes a coil and a large contact resistance, it becomes a complicated equivalent circuit especially for signals in the high frequency range, and This hinders the intrinsic property measurement of device 200.
  • the present invention has been made in view of the above points, and its purpose is to provide durability, An object of the present invention is to provide a high-frequency device measuring jig having excellent reliability and excellent frequency characteristics.
  • the substrate on which the measuring terminals are formed is formed of a flexible sheet-shaped member, the measuring terminals are provided on a plurality of device-side terminals provided on the device. It can be easily contacted with it.
  • the terminals are brought into direct contact with each other, the structure is simple, and the durability and reliability can be improved.
  • good frequency characteristics can be obtained.
  • the external connection terminal connected to the measuring instrument and the measuring terminal are connected by a coplanar single line or a microstrip line.
  • a coplanar line By using a coplanar line, a conductor layer can be formed only on one surface of the substrate, and the substrate can have sufficient flexibility, and the measurement terminals and device-side terminals can be securely connected. Can be contacted. Also, by using a coplanar line or microstrip line, it is possible to reduce the loss and reflection when a high-frequency signal is input and output between the device and the measuring instrument. In doing so, accurate measurement becomes possible.
  • the contact between the measurement terminals and the device-side terminals can be further ensured.
  • the projections using bumps commonly used for device connection, etc., it becomes easy to manufacture a substrate including the projections.
  • a flexible supporting member having a predetermined thickness on one surface of the substrate opposite to the surface on which the measuring terminals are formed.
  • the support member and the board are housed in a case, the connection to the measuring instrument is performed using the external connection terminal fixed to the case, and the wiring between the measurement terminal and the external connection terminal is provided on the board. It is preferable to use the formed pattern electrode. By using pattern electrodes, wide wiring can be easily formed and transmission lines Can be easily reduced in impedance.
  • the external connection terminal and the pattern electrode on the substrate are partially pressed by a pressing means to make an electrical connection therebetween. Since the electrical connection is made by pressing, the substrate can be easily attached and detached, and if the substrate needs to be replaced due to wear of the measurement terminals, the labor required for the replacement can be reduced. .
  • the periphery of the measurement terminal is easily deformed, and the unevenness of the device surface shape is more easily absorbed by the flexibility of the substrate. A good contact state between terminals can be realized with a small pressing force.
  • the plurality of measurement terminals formed on the surface of the substrate are preferably formed by photoetching. An unnecessary portion of the metal film or the like can be removed by photoetching to form a terminal having a desired shape, and fine processing can be performed, so that the distance between the terminals can be reduced.
  • FIG. 1 is a perspective view showing a configuration of a device measurement socket according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view including a conductor and conductors arranged on both sides of the conductor.
  • FIG. 3 is a cross-sectional view showing a contact state when devices with different terminal heights are attached to the device measuring socket of the present embodiment.
  • FIG. 4 is a diagram showing a modification of the device measurement socket.
  • FIG. 5 is a view showing a modification in which a groove is added to the substrate shown in FIG. 4
  • FIG. 6 is a view showing another modification of the device measuring socket
  • FIG. 7 is a perspective view showing another modification of the device measuring socket.
  • FIG. 8 is a diagram showing an example of use of the device measuring socket shown in FIG. 7,
  • FIG. 9 is a perspective view showing a partial configuration of the device measuring socket
  • FIG. 10 is a partial cross-sectional view of the device measuring socket including the coaxial connector.
  • FIG. 11 is a cross-sectional view taken along the line A—A of FIG.
  • FIG. 12 is a diagram showing the internal structure of the pogo pin
  • FIG. 13 is a perspective view of a substrate on which a microstrip line is formed
  • FIG. 14 is a diagram showing a specific example of a conventional high-frequency device measurement jig
  • -FIG. 15 is a diagram of a conventional high-frequency device measurement jig It is a figure showing a specific example.
  • FIG. 1 is a perspective view showing a configuration of a device measuring socket according to an embodiment.
  • the device measurement socket 10 shown in the figure includes a board 16 on which coaxial connectors 12 and 14 as external connection terminals connected to a measuring instrument (not shown) via a coaxial line are attached. And a supporting member silicon rubber 18 as a supporting member disposed adjacent to the substrate 16.
  • the substrate 16 is a flexible sheet-like member, and has on its surface a conductor 20 having a predetermined width extending from one coaxial connector 12 and a conductor 2 having a predetermined width extending from the other coaxial connector 14. 2 and a conductor 24 surrounding the conductors 20 and 22 over a wide area.
  • the conductor 20 and the conductor 24 adjacent thereto form a coplanar line connecting the coaxial connector 12 and one of the device-side terminals formed on the surface of the high-frequency device 30.
  • the conductor 22 and the conductor 24 adjacent thereto form a coplanar line connecting the coaxial connector 14 and another device side terminal formed on the surface of the high-frequency device 30 c.
  • the substrate 16 is, for example, a flexible substrate using polyimide resin, and conductors 20, 22, 24 are formed on the surface of the substrate 16 by a Cu thin film.
  • the various conductors 20, 22, 24 formed on the surface of the substrate 16 described above are preferably formed by photoetching. By removing unnecessary portions of the metal film or the like by photoetching, a measuring terminal (described later) having a desired shape can be formed, and fine processing can be performed. It can be easily narrowed.
  • the device to be combined with the device measuring socket 10 is a surface-mounted element in which various device-side terminals are formed on the surface facing the substrate 16.
  • various device-side terminals are formed on the surface facing the substrate 16.
  • the high-frequency device 30 is combined with the device measuring socket 10.
  • a passive element such as a filter
  • input / output terminals 32, 34, and a ground terminal 36 as device-side terminals are formed on one surface of the high-frequency device 30.
  • an active element such as an amplifier
  • a bias terminal is added in addition to these terminals.
  • measurement terminals for electrically connecting to the various device-side terminals described above when the high-frequency device 30 is pressed are formed on the surface of the substrate 16.
  • the tips of the conductors 20 and 22 are used as the board-side input / output terminals 42 and 44 corresponding to the input / output terminals 32 and 34 of the high-frequency device 30, respectively.
  • a part of the body 24 is used as a board-side ground terminal 46 corresponding to the ground terminal 36 of the high-frequency device 30.
  • one device-side input / output terminal 32 is connected to the board-side input / output terminal 42, and the other device-side input / output terminal 34 is set to the board-side input / output terminal.
  • These measurement terminals formed on the surface of the substrate 16 are arranged on the substrate 44 such that the device-side ground terminal 36 contacts the substrate-side ground terminal 46.
  • a silicon rubber 18 for supporting the substrate having a predetermined thickness (for example, 5 mm) is disposed so as to contact almost the entire surface.
  • FIG. 2 is an enlarged cross-sectional view including the conductor 20 and the conductors 24 arranged on both sides thereof.
  • the width A of the conductor 20 is set to 2.2 mm, and the distances B and C between the conductors 24 on both sides thereof are set to 10.
  • the thickness D of the substrate 16 is 3 5
  • the thickness E of the conductors 20, 22, 24 is set to 35 m, respectively.
  • a coplanar line is formed by forming the conductors 20, 22, 24 as a thin film on the surface of the extremely thin substrate 16, and the entire structure is formed in the thickness direction of the substrate 16. It is easy to deform.
  • the device measurement socket 10 of the present embodiment has such a configuration. Next, details of the case where the high-frequency device 30 is actually set will be described.
  • Figure 3 shows two input / output terminals 32, 34 and one grounding terminal 36 on the underside of the high-frequency device 30.
  • FIG. 9 is a cross-sectional view showing a contact state of each terminal when the terminal is formed and only the surface on which the ground terminal 36 is formed is lower than the surface on which the other two terminals are formed.
  • the input / output terminals 32, 34 and the grounding terminal 36 of the high-frequency device 30 are connected to the substrate 1
  • the high-frequency device 30 is placed at a predetermined position on the substrate 16 so as to correspond to the input / output terminals 42, 44 of 6 and those of the ground terminal 46.
  • the lower surface of the substrate supporting silicon rubber 18 disposed on the lower side of the substrate 16 or the upper surface of the high-frequency device 30 is pressed. Since the substrate supporting silicon rubber 18 is flexible, and the substrate 16 is also formed of a flexible and flexible polyimide resin, the input / output terminals 32, 3 4 of the high-frequency device 30 are provided.
  • the ground terminal 46 of the substrate 16 Even when the surfaces of the ground terminal 36 and the ground terminal 36 are not formed at the same height, the ground terminal 46 of the substrate 16 partially pressed by the substrate As a result, the ground terminal 36 of the high-frequency device 30 and the ground terminal 46 of the substrate 16 can be reliably brought into contact with each other.
  • the structure is simple, and the durability and reliability can be improved.
  • the terminals are in direct contact with each other for electrical connection, excess inductance and resistance components can be reduced, and good frequency characteristics (particularly high-frequency characteristics) can be obtained.
  • the conductors 20 and the like constituting the coplanar line on the substrate 16 with pattern electrodes, the electrodes for grounding or the power supply line can be formed in an arbitrary wide shape. It is easy to reduce the impedance of the line.
  • FIG. 4 is a view showing a modification of the [high frequency] device measuring socket, showing a structure in which the conductor 24 on the substrate 16 facing the high frequency device 30 is partially removed. Have been.
  • the area surrounded by the two-dot chain line indicated by F is the area facing the high-frequency device 30, and the conductors around the input / output terminals 42, 44 at the tips of the conductors 20, 22 are shown. 24 has been removed, and the polyimide resin forming the substrate 16 has been exposed.
  • the flexibility of this portion can be increased. Therefore, the input / output terminals 42, 44 and the ground terminal 46 formed around the periphery are easily deformed according to the shape of the high-frequency device 30, and the electrical connection with the corresponding device-side terminal is ensured. Can be performed.
  • FIG. 5 is a view showing a modification in which a groove is added to the substrate shown in FIG.
  • grooves 50, 52 penetrating between the front and back are formed along the outer shape of the conductors 20, 22 around the input / output terminals 42, 44.
  • FIG. 6 is a view showing another modification of the device measuring socket.
  • the position corresponding to each terminal A projection 54 is formed at the bottom.
  • These projections 54 are formed by forming bumps of gold, solder, or the like at predetermined positions on the conductor 20, and then covering the surface with a hard protective metal having excellent wear resistance.
  • the protrusion 54 may be formed by soldering a Cu ball, the surface of which is plated with Ni or the like, to a predetermined position of the conductor 20 or the like.
  • the input / output terminals 42, 44 of the substrate 16 and the ground terminal 46 By forming the input / output terminals 42, 44 of the substrate 16 and the ground terminal 46 using the high-frequency device 30 having a complicated surface shape, the input / output terminals The input / output terminals 42 and 44 on the substrate 16 can be reliably brought into contact with the input / output terminals 32 and 34 of the high-frequency device 30 also for the formed high-frequency device 30. Also, by using bumps and balls commonly used for wiring and mounting of various ICs, the protrusions 54 can be easily formed. Cut.
  • FIG. 7 is a perspective view showing another modified example of the device measuring socket.
  • the metal lid portion 82 made of aluminum or the like is housed in the case 80 so as to press the entire board 16 and the mounting holes 8 4
  • the lid 82 is fixed to the case 80 with the metal screw 86 passed through the case 80.
  • the cover portion 82 has a groove formed in a portion corresponding to the conductors 20 and 22 on the substrate 16, and when the cover 16 is attached so as to press down the entire substrate 16, the conductor for grounding 2 is formed. Only 4 is almost in contact.
  • a large device setting through hole 88 for setting a high-frequency device later is formed substantially at the center.
  • the grounding conductor 24 on the board 16 is connected to the coaxial connectors 12 and 14 via the lid 82, screws 86, and case 80. It is electrically connected to the external conductor, and the conductor 24 on the board 16 is grounded.
  • various terminals on the device side and various terminals on the substrate side can be reliably contacted.
  • FIG. 8 is a diagram showing an example of use of the device measuring socket shown in FIG. As described above, the coaxial connectors 12 and 14 are attached to the case 80 accommodating the device measuring socket 10, and the input / output terminals 1 provided on the measuring instrument 100.
  • the coaxial connectors 12 and 14 are connected to the coaxial connectors 12 and 14 using coaxial lines 120 and 122, respectively.
  • the high-frequency device 30 is mounted at the position of the device set through hole 88 formed in the center of the lid portion 82, and the high-frequency device 30 is pressed downward from above to obtain a device.
  • An electrical connection is made between the measuring socket 10 and the high-frequency device 30.
  • the input / output terminals 42, 44 and the ground terminal 46 on the surface of the substrate 16 are partially worn or deformed. It is necessary to replace the entire board 16 on which the terminals are formed.
  • the fixation of the substrate 16 in the device measurement socket 10 is performed by attaching the lid portion 82 from above the case 80. Since the lid 80 is attached with four screws 86 passed through the attachment holes 84, the lid 80 can be easily removed by removing the screws.
  • the coaxial cables 120 and 122 are attached to the case 80 or the case 80 is connected to another device (for example, an automatic tester or a handler). The board 16 can be replaced even in the state where the board is fixed to), and the work of the replacement work can be reduced.
  • FIG. 9 is a perspective view showing a partial configuration of the device measuring socket, showing details of the vicinity of the center conductor of the coaxial connectors 12 and 14.
  • FIG. 10 is a partial cross-sectional view including a coaxial connector.
  • FIG. 11 is a sectional view taken along line AA of FIG. Note that the two coaxial connectors 12 and 14 and their peripheral parts have basically the same structure, and the following description will focus on one coaxial connector 12.
  • the center conductor 200 of the coaxial connector 12 is exposed inside the case 80 so as to penetrate the side wall of the case 80, and the conductor formed on the surface of the substrate 16 These electrical connections are made by contacting the ends of the cores 20 c.
  • the substrate 16 is disposed below the center conductor 200, and the center conductor 20 By pressing the position corresponding to 0 by the pressing means, these contacts are reliably performed.
  • the pressing means can be realized by using a pogo pin 210 as shown in FIGS.
  • FIG. 12 is a diagram showing the internal structure of the pogo pin 210.
  • the pogo pin 210 accommodates the panel 222 and a part of the movable part 224 in a cylindrical accommodation part 220.
  • the distal end portion 226 of the movable portion 224 presses the substrate 16 toward the center conductor 200 in the direction of expansion and contraction of the panel 222.
  • the tip portion 226 is preferably formed of a material having a low dielectric constant, such as a rubber port.
  • a coplanar line composed of the conductors 20, 22 and 24 was formed on the surface of the substrate 16, but as shown in FIG.
  • a microstrip substrate 16A formed on the entire surface opposite to the surface on which 0 and 22 are formed may be used.
  • a microstrip line is formed by the conductors 20 and 24 or by the conductors 22 and 24.
  • the conductor layers are formed on both sides of the substrate, which reduces the flexibility of the substrate.However, since a flexible substrate formed of polyimide resin or the like is used, a certain degree of flexibility must be secured. This makes it possible to reliably contact various types of measurement terminals formed on the surface of the substrate with device terminals formed on one surface of the high-frequency device.
  • the high-frequency device 30 is attached to the device measurement socket 10, but a device other than the high-frequency device 30 may be attached.
  • a device other than the high-frequency device 30 may be attached.
  • it may be used by connecting to a semiconductor test apparatus for testing various semiconductor devices such as a semiconductor memory and a logic LSI.
  • the substrate on which the measurement terminals are formed is formed of a flexible sheet-shaped member, so that the substrate is provided in the high-frequency device.
  • a conductor layer is formed only on one surface of the substrate, so that the substrate can have sufficient flexibility, and the measurement terminals and The device terminals can be reliably contacted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

A reliable, durable tool having good high-frequency characteristics for measuring high-frequency devices. A tool (10) for measuring high-frequency devices includes a substrate (16) on which a coplanar circuit is provided to connect between I/O terminals (42, 44) and coaxial connectors (12, 14). This substrate (16) is composed of a flexible material such as polyimide resin, and silicone rubber backing (18) on the substrate acts to press a high-frequency device (30) set on the surface. As a result, the substrate is deformed to match the surface shape of the high-frequency device (30), and the corresponding terminals come in reliable contact.

Description

明 細 書 デバィス測定用ソケッ トおよびデバィス測定方法 技術分野  Description Device measurement device socket and device measurement method
本発明は、 測定器を用いて各種の特性を測定するためにデバイスの取り付けを 行うデバィス測定用ソケットに関する。  The present invention relates to a device measuring socket for mounting a device for measuring various characteristics using a measuring instrument.
背景技術 Background art
最近の各種機器の処理の高速化、 信号伝送の高帯域化等の要求に伴って、 各種 の高周波デバイスが用いられている。 例えば、 8 0 0 M H z l . 5 G H zとい つた周波数の電波を送受する携帯電話のアンテナ入力部分に、 高周波デバイスと してのフィル夕やアンプ等が多用されている。 また、 最近の製品の小型化の要求 に伴い、 これらの高周波デバイスも小型化が進み、 いわゆる表面実装型の素子と して形成される場合が多い。  Recently, various high-frequency devices have been used in accordance with demands for faster processing of various devices and higher bandwidth of signal transmission. For example, a filter or an amplifier as a high-frequency device is frequently used in an antenna input portion of a mobile phone that transmits and receives radio waves having a frequency of 800 MHz and 5 GHz. In addition, with the recent demand for miniaturization of products, these high-frequency devices have also been miniaturized, and are often formed as so-called surface-mounted devices.
このような高周波デバイスの製造時にあるいは製品への組み付け時に各種の特 性を測定する場合があるが、 扱われる信号が高周波であるために、 特有の測定治 具 (テストフィクスチヤ) が用いられる。  Various characteristics may be measured at the time of manufacturing or assembling such high-frequency devices, but since the signals to be handled are high-frequency, special measurement jigs (test fixtures) are used.
図 1 4は、 従来の高周波デバイス測定治具の具体例を示す図である。 図 1 4に 示す高周波デバイス測定治具 1 0 0は、 ネヅトワークアナライザやスぺクトラム アナライザ等の高周波特性の測定を行う測定器に同軸線等を介して接続される外 部接続端子 1 0 2、 1 0 4を有するマイクロストリップ基板 1 1 0と、 測定対象 となる高周波デバイス 2 0 0とマイクロストリップ基板 1 1 0との間に挿入され る導電性ゴム 1 2 0とを含んで構成されている。 この導電性ゴム 1 2 0は、 表面 と裏面との間を貫通する導電性ピンが所定間隔で配置されており、 この導電性ピ ンを介して、 高周波デバイス 2 0 0の表面に形成されたデバイス側端子とマイク ロストリップ基板 1 1 0表面に形成された測定用端子との間の電気的な接続が行 われる。  FIG. 14 is a diagram showing a specific example of a conventional high-frequency device measuring jig. The high-frequency device measuring jig 100 shown in FIG. 14 is an external connection terminal 100 connected via a coaxial cable or the like to a measuring instrument such as a network analyzer or a spectrum analyzer for measuring high-frequency characteristics. 2 and 104, and a conductive rubber 120 inserted between the high-frequency device 200 to be measured and the microstrip substrate 110. ing. In the conductive rubber 120, conductive pins penetrating between the front surface and the back surface are arranged at predetermined intervals, and formed on the front surface of the high-frequency device 200 through the conductive pins. Electrical connection is made between the device-side terminals and the measurement terminals formed on the microstrip substrate 110 surface.
また、 図 1 5は従来の高周波デバイス測定治具の他の具体例を示す図である。 図 1 5に示す高周波デバイス測定治具 1 3 0は、 外部接続端子 1 3 2、 1 3 4を 有するとともに、 高周波デバイス 2 0 0との間で電気的な接続を行う複数の測定 用端子としての可動ピン 1 3 6が備わったマイクロストリップ基板 1 4 0によつ て構成されている。 高周波デバイス 2 0 0をマイクロストリヅプ基板 1 4 0の表 面に押圧すると、 高周波デバイス 2 0 0の表面に形成されたデバイス側端子がマ イクロストリヅプ基板 1 4 0に備わった可動ピン 1 3 6に接触するため、 デバイ ス側端子と測定用端子との間の電気的な接続が行われる。 FIG. 15 is a diagram showing another specific example of the conventional high-frequency device measuring jig. The high-frequency device measurement jig 13 0 shown in FIG. 15 has external connection terminals 13 2 and 13 4 as well as a plurality of measurement terminals for making an electrical connection with the high-frequency device 200. A microstrip substrate 140 provided with the movable pins 1336 of FIG. When the high-frequency device 200 is pressed against the surface of the microstrip substrate 140, the device-side terminals formed on the surface of the high-frequency device 200 have movable pins 13 6 provided on the microstrip substrate 140. Therefore, an electrical connection is made between the device side terminal and the measurement terminal.
ところで、 上述した従来の高周波デバイス測定治具は、 いずれの種類のものを 用いた場合であっても耐久性、 信頼性が低く、 しかも高周波特性が悪いという問 題があった。 例えば、 図 1 4に示した高周波デバイス測定治具 1 0 0では、 導電 性ゴム 1 2 0に含まれる導電性ピンによって高周波デバイス 2 0 0と測定用端子 との間の電気的接続を行っているため、 繰り返しの使用によって導電性ピンの先 端部が折れ曲がってしまうと、 接続不良となるおそれがある。 また、 導電性ゴム 1 2 0全体を大きな力で加圧しないと良好な接続状態が得られない。 しかも、 高 周波領域の信号に対しては、 それそれの導電性ピン同士がコンデンサ結合になる ため、 高周波デバイス 2 0 0のデバイス側端子同士あるいはマイクロストリップ 基板 1 1 0の測定用端子同士が短絡してしまい、 高周波特性が良好であるとはい えなかった。  By the way, the conventional high-frequency device measuring jig described above has a problem that the durability and the reliability are low and the high-frequency characteristics are poor even when any kind of the jig is used. For example, in the high-frequency device measuring jig 100 shown in FIG. 14, an electrical connection between the high-frequency device 200 and the measuring terminal is made by a conductive pin included in the conductive rubber 120. Therefore, if the tip of the conductive pin is bent by repeated use, a connection failure may occur. Also, a good connection state cannot be obtained unless the entire conductive rubber 120 is pressed with a large force. In addition, for signals in the high-frequency range, the conductive pins of each are connected by a capacitor, so the device-side terminals of the high-frequency device 200 or the measurement terminals of the microstrip substrate 110 are short-circuited. As a result, the high frequency characteristics were not considered to be good.
また、 図 1 5に示した高周波デバイス測定治具 1 3 0では、 可動ピン 1 3 6の 周辺に異物やばりがあると、 可動ピン 1 3 6が引つかかる場合があり、 デバイス 側端子への接触が不充分になる。 また、 パネを用いて可動ピン 1 3 6を実現する 場合が多いが、 等価的にはコイルや大きな接触抵抗が含まれるため、 特に高周波 領域の信号に対して複雑な等価回路となって、 高周波デバイス 2 0 0の本来の特 性測定を妨げることになる。  In the high-frequency device measurement jig 130 shown in Fig. 15, if there is foreign matter or burrs around the movable pin 13 36, the movable pin 13 36 may be caught and go to the device side terminal. Contact becomes insufficient. In many cases, the movable pins 13 6 are realized by using a panel.However, since equivalently includes a coil and a large contact resistance, it becomes a complicated equivalent circuit especially for signals in the high frequency range, and This hinders the intrinsic property measurement of device 200.
なお、 上述した各種の問題は高周波デバイス特有のものではなく、 高周波デバ イスを含む各種のデバイスについて適用されるものである。 発明の開示  The above-mentioned various problems are not specific to the high-frequency device, but are applied to various devices including the high-frequency device. Disclosure of the invention
本発明は、 このような点に鑑みて創作されたものであり、 その目的は、 耐久性、 信頼性に優れ、 周波数特性が良好な高周波デバイス測定治具を提供することにあ る。 - 本発明のデバイス測定用ソケッ トは、 測定用端子が形成された基板が可撓性を 有するシート状の部材によって形成されているため、 デバイスに設けられた複数 のデバイス側端子に測定用端子のそれそれを容易に接触させることができる。 特 に、 端子同士を直接接触させるため、 構造が単純であり、 耐久性、 信頼性を向上 させることができる。 また、 デバイス側端子と測定用端子との間が最短な経路で 接続されるため、 良好な周波数特性を得ることができる。 The present invention has been made in view of the above points, and its purpose is to provide durability, An object of the present invention is to provide a high-frequency device measuring jig having excellent reliability and excellent frequency characteristics. -In the device measuring socket of the present invention, since the substrate on which the measuring terminals are formed is formed of a flexible sheet-shaped member, the measuring terminals are provided on a plurality of device-side terminals provided on the device. It can be easily contacted with it. In particular, since the terminals are brought into direct contact with each other, the structure is simple, and the durability and reliability can be improved. In addition, since the device side terminal and the measurement terminal are connected via the shortest path, good frequency characteristics can be obtained.
また、 上述した基板において、 測定器に接続される外部接続端子と測定用端子 との間をコプレナ一線路あるいはマイクロストリップ線路によって接続すること が好ましい。 コプレナ一線路を用いることにより、 基板の一方の面のみに導体層 を形成することができ、 基板に充分な柔軟性を持たせることが可能になり、 測定 用端子とデバイス側端子とを確実に接触させることができる。 また、 コプレナ一 線路やマイクロストリップ線路を用いることにより、 デバイスと測定器との間で 周波数が高い信号を入出力した場合の損失や反射等を減らすことができるため、 デバイスの各種の特性を測定する際に正確な測定が可能になる。  In the above-mentioned substrate, it is preferable that the external connection terminal connected to the measuring instrument and the measuring terminal are connected by a coplanar single line or a microstrip line. By using a coplanar line, a conductor layer can be formed only on one surface of the substrate, and the substrate can have sufficient flexibility, and the measurement terminals and device-side terminals can be securely connected. Can be contacted. Also, by using a coplanar line or microstrip line, it is possible to reduce the loss and reflection when a high-frequency signal is input and output between the device and the measuring instrument. In doing so, accurate measurement becomes possible.
また、 基板上の測定用端子に導電性の突起部を形成することにより、 測定用端 子とデバイス側端子との接触をさらに確実にすることができる。 特に、 この突起 部を、 デバイスの接続等に汎用されているバンプによって形成することにより、 突起部を含む基板の製造が容易となる。  Further, by forming the conductive protrusions on the measurement terminals on the substrate, the contact between the measurement terminals and the device-side terminals can be further ensured. In particular, by forming the projections using bumps commonly used for device connection, etc., it becomes easy to manufacture a substrate including the projections.
また、 基板の一方の面であって測定用端子の形成面と反対側に、 柔軟性を有す る所定厚さの支持部材を配置することが好ましい。 柔軟性のある支持部材で基板 の裏側を加圧することにより、 デバイスの表面形状に沿って基板形状が変形する ため、 デバイス側端子形成面に凹凸がある場合であっても確実にデバイス側端子 と測定用端子を接触させることができる。  Further, it is preferable to dispose a flexible supporting member having a predetermined thickness on one surface of the substrate opposite to the surface on which the measuring terminals are formed. By pressing the back side of the substrate with a flexible support member, the substrate shape is deformed according to the surface shape of the device. The measurement terminals can be brought into contact.
また、 この支持部材と基板をケースに収容し、 このケースに固定された外部接 続端子を用いて測定器に対する接続を行うとともに、 測定用端子と外部接続端子 との間の配線を基板上に形成されたパターン電極によって行うことが好ましい。 パターン電極を用いることにより、 幅広の配線が形成しやすくなり、 伝送ライン の低インピーダンス化が容易となる。 In addition, the support member and the board are housed in a case, the connection to the measuring instrument is performed using the external connection terminal fixed to the case, and the wiring between the measurement terminal and the external connection terminal is provided on the board. It is preferable to use the formed pattern electrode. By using pattern electrodes, wide wiring can be easily formed and transmission lines Can be easily reduced in impedance.
また、 このケース内において、 外部接続端子と基板上のパターン電極とを押圧 手段によって部分的に押圧することによってこれらの間の電気的な接続を行うこ とが好ましい。 押圧によって電気的な接続を行っているため、 基板の着脱が容易 であり、 測定用端子の摩耗等によって基板の交換が必要になった場合においてそ の交換作業に要する手間を軽減することができる。  Further, in this case, it is preferable that the external connection terminal and the pattern electrode on the substrate are partially pressed by a pressing means to make an electrical connection therebetween. Since the electrical connection is made by pressing, the substrate can be easily attached and detached, and if the substrate needs to be replaced due to wear of the measurement terminals, the labor required for the replacement can be reduced. .
また、 測定用端子の周辺に貫通した溝部を形成することにより、 測定用端子周 辺が変形しやすくなり、 デバイスの表面形状の凹凸を基板の柔軟性で吸収するこ とがさらに容易になり、 少ない加圧力で良好な端子間の接触状態を実現すること ができる。  Also, by forming a penetrating groove around the periphery of the measurement terminal, the periphery of the measurement terminal is easily deformed, and the unevenness of the device surface shape is more easily absorbed by the flexibility of the substrate. A good contact state between terminals can be realized with a small pressing force.
また、 基板の表面に形成される複数の測定用端子は、 フォトエッチングによつ て形成することが好ましい。 フォトエッチングによって不要な部分の金属膜等を 除去して所望の形状を有する端子を形成することができ、 しかも微細加工が可能 になるため、 端子間の間隔を狭くすることができる。 図面の簡単な説明  Further, the plurality of measurement terminals formed on the surface of the substrate are preferably formed by photoetching. An unnecessary portion of the metal film or the like can be removed by photoetching to form a terminal having a desired shape, and fine processing can be performed, so that the distance between the terminals can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 一実施形態のデバイス測定用ソケットの構成を示す斜視図、 図 2は、 導体とその両側に配置された導体を含む横断面の拡大図、  FIG. 1 is a perspective view showing a configuration of a device measurement socket according to an embodiment. FIG. 2 is an enlarged cross-sectional view including a conductor and conductors arranged on both sides of the conductor.
図 3は、 本実施形態のデバイス測定用ソケットに端子の高さが異なるデバイス を取り付けた際の接触状態を示す断面図、  FIG. 3 is a cross-sectional view showing a contact state when devices with different terminal heights are attached to the device measuring socket of the present embodiment.
図 4は、 デバイス測定用ソケットの変形例を示す図、  FIG. 4 is a diagram showing a modification of the device measurement socket.
図 5は、 図 4に示した基板に対して溝部を追加した変形例を示す図、 図 6は、 デバイス測定用ソケットの他の変形例を示す図、  FIG. 5 is a view showing a modification in which a groove is added to the substrate shown in FIG. 4, FIG. 6 is a view showing another modification of the device measuring socket,
図 7は、 デバイス測定用ソケットの他の変形例を示す斜視図、  FIG. 7 is a perspective view showing another modification of the device measuring socket.
図 8は、 図 7に示したデバイス測定用ソケッ卜の使用例を示す図、  FIG. 8 is a diagram showing an example of use of the device measuring socket shown in FIG. 7,
図 9は、 デバイス測定用ソケットの部分的な構成を示す斜視図、  FIG. 9 is a perspective view showing a partial configuration of the device measuring socket,
図 1 0は、 デバイス測定用ソケットの同軸コネクタを含む部分的な断面図、 図 1 1は、 図 1 0の A— A線断面図、  FIG. 10 is a partial cross-sectional view of the device measuring socket including the coaxial connector. FIG. 11 is a cross-sectional view taken along the line A—A of FIG.
図 1 2は、 ポゴピンの内部構造を示す図、 図 1 3は、 マイクロストリップ線路が形成された基板の斜視図、 図 1 4は、 従来の高周波デバイス測定治具の具体例を示す図、 - 図 1 5は、 従来の高周波デバイス測定治具の具体例を示す図である。 発明を実施するための最良の形態 FIG. 12 is a diagram showing the internal structure of the pogo pin, FIG. 13 is a perspective view of a substrate on which a microstrip line is formed, FIG. 14 is a diagram showing a specific example of a conventional high-frequency device measurement jig,-FIG. 15 is a diagram of a conventional high-frequency device measurement jig It is a figure showing a specific example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した一実施形態のデバイス測定用ソケットについて、 図面 を参照しながら説明する。  Hereinafter, a device measuring socket according to an embodiment of the present invention will be described with reference to the drawings.
図 1は、 一実施形態のデバイス測定用ソケットの構成を示す斜視図である。 同 図に示すデバイス測定用ソケット 1 0は、 測定器 (図示せず) と同軸線を介して 接続される外部接続端子としての同軸コネクタ 1 2、 1 4が取り付けられた基板 1 6と、 この基板 1 6に隣接配置された支持部材としての基板支持用シリコンゴ ム 1 8とを含んで構成されている。  FIG. 1 is a perspective view showing a configuration of a device measuring socket according to an embodiment. The device measurement socket 10 shown in the figure includes a board 16 on which coaxial connectors 12 and 14 as external connection terminals connected to a measuring instrument (not shown) via a coaxial line are attached. And a supporting member silicon rubber 18 as a supporting member disposed adjacent to the substrate 16.
基板 1 6は可撓性を有するシート状部材であり、 その表面に、 一方の同軸コネ クタ 1 2から延びる所定幅の導体 2 0と、 他方の同軸コネクタ 1 4から延びる所 定幅の導体 2 2と、 これらの導体 2 0、 2 2の周囲を広範囲にわたって包囲する 導体 2 4とが形成されている。 導体 2 0とこれに隣接する導体 2 4とによって、 同軸コネクタ 1 2と高周波デバイス 3 0の表面に形成されたいずれかのデバイス 側端子とを接続するコプレナ一線路が形成されている。 同様に、 導体 2 2とこれ に隣接する導体 2 4とによって、 同軸コネクタ 1 4と高周波デバイス 3 0の表面 に形成された他のデバィス側端子とを接続するコプレナ一線路が形成されている c 基板 1 6は、 例えばポリイミ ド樹脂を用いたフレキシブル基板であり、 その表面 に C uの薄膜によって導体 2 0、 2 2、 2 4が形成されている。  The substrate 16 is a flexible sheet-like member, and has on its surface a conductor 20 having a predetermined width extending from one coaxial connector 12 and a conductor 2 having a predetermined width extending from the other coaxial connector 14. 2 and a conductor 24 surrounding the conductors 20 and 22 over a wide area. The conductor 20 and the conductor 24 adjacent thereto form a coplanar line connecting the coaxial connector 12 and one of the device-side terminals formed on the surface of the high-frequency device 30. Similarly, the conductor 22 and the conductor 24 adjacent thereto form a coplanar line connecting the coaxial connector 14 and another device side terminal formed on the surface of the high-frequency device 30 c. The substrate 16 is, for example, a flexible substrate using polyimide resin, and conductors 20, 22, 24 are formed on the surface of the substrate 16 by a Cu thin film.
上述した基板 1 6の表面に形成される各種の導体 2 0、 2 2、 2 4は、 フォト エッチングによって形成することが好ましい。 フォトエッチングによって不要な 部分の金属膜等を除去することにより、 所望の形状を有する測定用端子 (後述す る) を形成することができ、 しかも微細加工が可能になるため、 端子間の間隔を 容易に狭くすることができる。  The various conductors 20, 22, 24 formed on the surface of the substrate 16 described above are preferably formed by photoetching. By removing unnecessary portions of the metal film or the like by photoetching, a measuring terminal (described later) having a desired shape can be formed, and fine processing can be performed. It can be easily narrowed.
また、 このデバイス測定用ソケッ ト 1 0と組み合わされるデバイスは、 基板 1 6との対向面に各種のデバイス側端子が形成された表面実装型の素子である。 例 えば、 デバイス測定用ソケット 1 0に高周波デバイス 3 0が組み合わされるもの として以下の説明を行う。 高周波デバイス 3 0としてフィル夕等の受動素子を考 えた場合には、 高周波デバイス 3 0の一の面にデバイス側端子としての入出力端 子 3 2、 3 4および接地端子 3 6が形成されている。 なお、 高周波デバイス 3 0 として増幅器等の能動素子を考えた場合には、 これらの端子の他に、 バイアス端 子が加わる。 The device to be combined with the device measuring socket 10 is a surface-mounted element in which various device-side terminals are formed on the surface facing the substrate 16. An example For example, the following description will be made assuming that the high-frequency device 30 is combined with the device measuring socket 10. When a passive element such as a filter is considered as the high-frequency device 30, input / output terminals 32, 34, and a ground terminal 36 as device-side terminals are formed on one surface of the high-frequency device 30. I have. When an active element such as an amplifier is considered as the high-frequency device 30, a bias terminal is added in addition to these terminals.
また、 基板 1 6の表面には、 高周波デバイス 3 0を押圧したときに、 上述した 各種のデバイス側端子と電気的接続を行うための測定用端子が形成されている。 具体的には、 導体 2 0、 2 2のそれそれの先端部分が、 高周波デバイス 3 0の入 出力端子 3 2、 3 4に対応する基板側入出力端子 4 2、 4 4として用いられ、 導 体 2 4の一部が、 高周波デバイス 3 0の接地端子 3 6に対応する基板側接地端子 4 6として用いられる。 基板 1 6の表面に高周波デバイス 3 0を押圧したときに、 一方のデバイス側入出力端子 3 2が基板側入出力端子 4 2に、 他方のデバイス側 入出力端子 3 4が基板側入出力端子 4 4に、 デバイス側接地端子 3 6が基板側接 地端子 4 6に接触するように、 基板 1 6の表面に形成されたこれらの測定用端子 が配置されている。  Further, on the surface of the substrate 16, measurement terminals for electrically connecting to the various device-side terminals described above when the high-frequency device 30 is pressed are formed. Specifically, the tips of the conductors 20 and 22 are used as the board-side input / output terminals 42 and 44 corresponding to the input / output terminals 32 and 34 of the high-frequency device 30, respectively. A part of the body 24 is used as a board-side ground terminal 46 corresponding to the ground terminal 36 of the high-frequency device 30. When the high-frequency device 30 is pressed against the surface of the board 16, one device-side input / output terminal 32 is connected to the board-side input / output terminal 42, and the other device-side input / output terminal 34 is set to the board-side input / output terminal. These measurement terminals formed on the surface of the substrate 16 are arranged on the substrate 44 such that the device-side ground terminal 36 contacts the substrate-side ground terminal 46.
また、 基板 1 6のコプレナ一線路の形成面と反対側の面には、 所定厚さ (例え ば 5 mm) の基板支持用シリコンゴム 1 8がほぼ全面に接触するように配置され ている。  On the surface of the substrate 16 opposite to the surface on which the coplanar line is formed, a silicon rubber 18 for supporting the substrate having a predetermined thickness (for example, 5 mm) is disposed so as to contact almost the entire surface.
図 2は、 導体 2 0とその両側に配置された導体 2 4を含む横断面の拡大図であ る。 例えば、 導体 2 0の幅 Aが 2 . 2 mmに、 その両側の導体 2 4との間の間隔 B、 Cが 1 0 にそれぞれ設定されている。 また、 基板 1 6の厚さ Dが 3 5 FIG. 2 is an enlarged cross-sectional view including the conductor 20 and the conductors 24 arranged on both sides thereof. For example, the width A of the conductor 20 is set to 2.2 mm, and the distances B and C between the conductors 24 on both sides thereof are set to 10. The thickness D of the substrate 16 is 3 5
〃mに、 導体 2 0、 2 2、 2 4の厚さ Eが 3 5 mにそれぞれ設定されている。 このように、 極めて薄い基板 1 6の表面に導体 2 0、 2 2、 2 4を薄膜として形 成することにより、 コプレナ一線路が形成されており、 全体が基板 1 6の厚さ方 向に変形しやすくなつている。 The thickness E of the conductors 20, 22, 24 is set to 35 m, respectively. Thus, a coplanar line is formed by forming the conductors 20, 22, 24 as a thin film on the surface of the extremely thin substrate 16, and the entire structure is formed in the thickness direction of the substrate 16. It is easy to deform.
本実施形態のデバイス測定用ソケット 1 0はこのような構成を有しており、 次 に実際に高周波デバイス 3 0をセットする場合の詳細を説明する。 図 3は、 高周 波デバイス 3 0の下面に 2つの入出力端子 3 2、 3 4と 1つの接地用端子 3 6が 形成されている場合であって、 接地用端子 3 6の形成面のみが他の 2つの端子の 形成面より低くなつている場合の各端子の接触状態を示す断面図である。 この高 周波デバイス 3 0を本実施形態のデバイス測定用ソケッ ト 1 0にセットする場合 には、 高周波デバイス 3 0の入出力端子 3 2、 3 4と接地用端子 3 6のそれぞれ が、 基板 1 6の入出力端子 4 2、 4 4と接地端子 4 6のそれそれに対応するよう に、 基板 1 6の所定位置に高周波デバイス 3 0を載せる。 その後、 基板 1 6の下 側に配置された基板支持用シリコンゴム 1 8の下面、 あるいは高周波デバイス 3 0の上面を加圧する。 基板支持用シリコンゴム 1 8は柔軟性があり、 しかも基板 1 6も可撓性、 柔軟性を有するポリイミ ド樹脂によって形成されているため、 高 周波デバイス 3 0の入出力端子 3 2、 3 4および接地端子 3 6の表面が同一高さ に形成されていない場合であっても、 これらの段差部分に基板支持用シリコンゴ ム 1 8によって部分的に押圧された基板 1 6の接地端子 4 6が入り込むため、 高 周波デバイス 3 0の接地端子 3 6と基板 1 6の接地端子 4 6とを確実に接触させ ることができる。 The device measurement socket 10 of the present embodiment has such a configuration. Next, details of the case where the high-frequency device 30 is actually set will be described. Figure 3 shows two input / output terminals 32, 34 and one grounding terminal 36 on the underside of the high-frequency device 30. FIG. 9 is a cross-sectional view showing a contact state of each terminal when the terminal is formed and only the surface on which the ground terminal 36 is formed is lower than the surface on which the other two terminals are formed. When the high-frequency device 30 is set in the device measuring socket 10 of the present embodiment, the input / output terminals 32, 34 and the grounding terminal 36 of the high-frequency device 30 are connected to the substrate 1 The high-frequency device 30 is placed at a predetermined position on the substrate 16 so as to correspond to the input / output terminals 42, 44 of 6 and those of the ground terminal 46. Thereafter, the lower surface of the substrate supporting silicon rubber 18 disposed on the lower side of the substrate 16 or the upper surface of the high-frequency device 30 is pressed. Since the substrate supporting silicon rubber 18 is flexible, and the substrate 16 is also formed of a flexible and flexible polyimide resin, the input / output terminals 32, 3 4 of the high-frequency device 30 are provided. Even when the surfaces of the ground terminal 36 and the ground terminal 36 are not formed at the same height, the ground terminal 46 of the substrate 16 partially pressed by the substrate As a result, the ground terminal 36 of the high-frequency device 30 and the ground terminal 46 of the substrate 16 can be reliably brought into contact with each other.
特に、 基板 1 6の柔軟性を利用して、 対応する端子間を接触させているため、 構造が単純であり、 耐久性、 信頼性を向上させることができる。 また、 端子同士 を直接接触させて電気的な接続を行っているため、 余分なィンダクタンス成分や 抵抗成分を低減することができ、 良好な周波数特性 (特に高周波特性) を得るこ とができる。 また、 基板 1 6上のコプレナ一線路を構成する導体 2 0等をパター ン電極によって形成することにより、 接地用あるいは電源ライン用の電極等を任 意の幅広形状に形成することができ、 伝送ラインの低インピーダンス化等が容易 となる。  In particular, since the corresponding terminals are brought into contact using the flexibility of the substrate 16, the structure is simple, and the durability and reliability can be improved. In addition, since the terminals are in direct contact with each other for electrical connection, excess inductance and resistance components can be reduced, and good frequency characteristics (particularly high-frequency characteristics) can be obtained. Further, by forming the conductors 20 and the like constituting the coplanar line on the substrate 16 with pattern electrodes, the electrodes for grounding or the power supply line can be formed in an arbitrary wide shape. It is easy to reduce the impedance of the line.
ところで、 上述した実施形態では、 基板 1 6上の導体 2 0、 2 2を除く領域の ほとんどを接地端子 4 6が含まれる導体 2 4で覆うようにしたが、 高周波デバイ ス 3 0に対向する領域については、 接地端子 4 6に対応する部分を除いて導体 2 4で覆う必要がないため、 この領域の導体 2 4を取り除くことによって基板の柔 軟性をさらに改善することができる。  By the way, in the above-described embodiment, most of the area except the conductors 20 and 22 on the substrate 16 is covered with the conductor 24 including the ground terminal 46, but is opposed to the high-frequency device 30. Since the region does not need to be covered with the conductor 24 except for the portion corresponding to the ground terminal 46, the flexibility of the substrate can be further improved by removing the conductor 24 in this region.
図 4は、 [高周波] デバイス測定用ソケットの変形例を示す図であり、 高周波 デバイス 3 0に対向する基板 1 6上の導体 2 4を部分的に取り除いた構造が示さ れている。 図 4において、 Fで示される二点鎖線で囲まれた範囲が高周波デバイ ス 3 0に対向する領域であり、 導体 2 0、 2 2の先端の入出力端子 4 2、 4 4の 周辺の導体 2 4が取り除かれて、 基板 1 6を構成するポリイミ ド樹脂が露出した 状態となっている。 FIG. 4 is a view showing a modification of the [high frequency] device measuring socket, showing a structure in which the conductor 24 on the substrate 16 facing the high frequency device 30 is partially removed. Have been. In FIG. 4, the area surrounded by the two-dot chain line indicated by F is the area facing the high-frequency device 30, and the conductors around the input / output terminals 42, 44 at the tips of the conductors 20, 22 are shown. 24 has been removed, and the polyimide resin forming the substrate 16 has been exposed.
このように、 高周波デバイス 3 0に対向する領域の導体 2 4を取り除くことに より、 この部分の柔軟性を増すことができる。 したがって、 その周辺に形成され た入出力端子 4 2、 4 4や接地端子 4 6が高周波デバイス 3 0の形状に沿って変 形しやすくなり、 対応するデバイス側端子との電気的な接続を確実に行うことが できる。  Thus, by removing the conductor 24 in the region facing the high-frequency device 30, the flexibility of this portion can be increased. Therefore, the input / output terminals 42, 44 and the ground terminal 46 formed around the periphery are easily deformed according to the shape of the high-frequency device 30, and the electrical connection with the corresponding device-side terminal is ensured. Can be performed.
図 5は、 図 4に示した基板に対して溝部を追加した変形例を示す図である。 図 5に示すように、 入出力端子 4 2、 4 4の周辺に導体 2 0、 2 2の外形に沿って 表裏の間を貫通した溝部 5 0、 5 2が形成されている。 このように、 入出力端子 4 2、 4 4に対応する導体 2 0、 2 2の端部をその周辺から分離することにより、 この分離された導体 2 0、 2 2の端部が容易に変形するようになるため、 基板 1 6の入出力端子 4 2、 4 4を高周波デバイス 3 0の入出力端子 3 2、 3 4に確実 に接触させることができる。  FIG. 5 is a view showing a modification in which a groove is added to the substrate shown in FIG. As shown in FIG. 5, grooves 50, 52 penetrating between the front and back are formed along the outer shape of the conductors 20, 22 around the input / output terminals 42, 44. By separating the ends of the conductors 20 and 22 corresponding to the input / output terminals 42 and 44 from the periphery in this way, the ends of the separated conductors 20 and 22 can be easily deformed. Therefore, the input / output terminals 42 and 44 of the substrate 16 can be reliably brought into contact with the input / output terminals 32 and 34 of the high-frequency device 30.
図 6は、 デバイス測定用ソケットの他の変形例を示す図である。 基板 1 6上の 導体 2 0、 2 2、 2 4の一部を入出力端子 4 2、 4 4や接地端子 4 6として用い る場合に、 図 6に示すように、 各端子に対応した位置に突起部 5 4が形成されて いる。 これらの突起部 5 4は、 金や半田等のバンプを導体 2 0等の所定位置に形 成した後に、 その表面を耐摩耗性に優れる硬い保護用金属で覆うことにより形成 される。 あるいは、 N i等によって表面がメツキされた C uボールを導体 2 0等 の所定位置に半田付けすることによって突起部 5 4を形成するようにしてもよい < このように、 突起部 5 4を用いて基板 1 6の入出力端子 4 2、 4 4や接地端子 4 6を形成することにより、 複雑な表面形状を有する高周波デバイス 3 0に対して、 特に微少隙間に入出力端子 3 2等が形成された高周波デバイス 3 0に対しても、 基板 1 6側の入出力端子 4 2、 4 4を高周波デバイス 3 0の入出力端子 3 2、 3 4に確実に接触させることができる。 また、 各種 I Cの配線や実装に汎用されて いるバンプやボールを用いることにより、 容易に突起部 5 4を形成することがで ぎる。 FIG. 6 is a view showing another modification of the device measuring socket. When a part of the conductors 20, 22, 24 on the board 16 is used as the input / output terminals 42, 44 or the ground terminal 46, as shown in Fig. 6, the position corresponding to each terminal A projection 54 is formed at the bottom. These projections 54 are formed by forming bumps of gold, solder, or the like at predetermined positions on the conductor 20, and then covering the surface with a hard protective metal having excellent wear resistance. Alternatively, the protrusion 54 may be formed by soldering a Cu ball, the surface of which is plated with Ni or the like, to a predetermined position of the conductor 20 or the like. By forming the input / output terminals 42, 44 of the substrate 16 and the ground terminal 46 using the high-frequency device 30 having a complicated surface shape, the input / output terminals The input / output terminals 42 and 44 on the substrate 16 can be reliably brought into contact with the input / output terminals 32 and 34 of the high-frequency device 30 also for the formed high-frequency device 30. Also, by using bumps and balls commonly used for wiring and mounting of various ICs, the protrusions 54 can be easily formed. Cut.
図 7は、 デバイス測定用ソケットの他の変形例を示す斜視図である。 上側のみ が開口したアルミニウム等の金属製のケース 8 0に、 図 1に示した基板支持用シ リコンゴム 1 8と基板 1 6 (同軸コネクタ 1 2、 1 4を除く) とを順に収納した 後、 ケース 8 0の対向する 2つの側面に同軸コネクタ 1 2、 1 4を取り付ける。 このとき、 同軸コネクタ 1 2、 1 4の外部導体がケース 8 0に固定され、 同軸コ ネクタ 1 2、 1 4から延びた中心導体が基板 1 6上に形成されている導体 2 0、 2 2のそれそれの端部に接続される。 このようにして同軸コネクタ 1 2、 1 4の 取り付けが終了した後、 アルミニウム等の金属製の蓋部 8 2を基板 1 6の全体を 押さえるようにケース 8 0内に収納し、 取り付け穴 8 4に通した金属製のねじ 8 6によってケース 8 0に蓋部 8 2を固定する。 この蓋部 8 2は、 基板 1 6上の導 体 2 0、 2 2に対応する部分に溝が形成されており、 基板 1 6の全体を押さえる ように取り付けた際に、 接地用の導体 2 4のみがほぼ全面にわたって接するよう になっている。 また、 高周波デバイスを後からセットするための大きなデバイス セット用貫通穴 8 8がほぼ中央に形成されている。 ケース 8 0に蓋部 8 2を取り 付けた状態では、 基板 1 6上の接地用の導体 2 4が蓋部 8 2、 ねじ 8 6、 ケース 8 0を介して同軸コネクタ 1 2、 1 4の外部導体に電気的に接続され、 基板 1 6 上の導体 2 4が接地される。 実際に高周波デバイス 3 0の特性を測定する場合に は、 蓋部 8 2のほぼ中央に形成されたデバイスセット用貫通穴 8 8に高周波デバ イス 3 0をセットし、 その上面を加圧するだけで、 デバイス側の各種端子と基板 側の各種端子とを確実に接触させることができる。  FIG. 7 is a perspective view showing another modified example of the device measuring socket. After storing the board supporting silicon rubber 18 and the board 16 (excluding the coaxial connectors 12 and 14) shown in Fig. 1 in a metal case 80 made of aluminum or the like with only the upper side opened, Attach the coaxial connectors 12 and 14 to the two opposite sides of the case 80. At this time, the outer conductors of the coaxial connectors 12 and 14 are fixed to the case 80 and the center conductors extending from the coaxial connectors 12 and 14 are the conductors 20 and 22 formed on the substrate 16. Connected to the end of each. After the mounting of the coaxial connectors 12 and 14 is completed in this manner, the metal lid portion 82 made of aluminum or the like is housed in the case 80 so as to press the entire board 16 and the mounting holes 8 4 The lid 82 is fixed to the case 80 with the metal screw 86 passed through the case 80. The cover portion 82 has a groove formed in a portion corresponding to the conductors 20 and 22 on the substrate 16, and when the cover 16 is attached so as to press down the entire substrate 16, the conductor for grounding 2 is formed. Only 4 is almost in contact. In addition, a large device setting through hole 88 for setting a high-frequency device later is formed substantially at the center. When the lid 82 is attached to the case 80, the grounding conductor 24 on the board 16 is connected to the coaxial connectors 12 and 14 via the lid 82, screws 86, and case 80. It is electrically connected to the external conductor, and the conductor 24 on the board 16 is grounded. To actually measure the characteristics of the high-frequency device 30, simply set the high-frequency device 30 in the through hole for device setting 88 formed almost in the center of the lid 82 and pressurize the top surface. In addition, various terminals on the device side and various terminals on the substrate side can be reliably contacted.
図 8は、 図 7に示したデバイス測定用ソケットの使用例を示す図である。 上述 したように、 デバイス測定用ソケット 1 0が収容されたケース 8 0には同軸コネ クタ 1 2、 1 4が取り付けられており、 測定器 1 0 0に備わった入出力用端子 1 FIG. 8 is a diagram showing an example of use of the device measuring socket shown in FIG. As described above, the coaxial connectors 12 and 14 are attached to the case 80 accommodating the device measuring socket 10, and the input / output terminals 1 provided on the measuring instrument 100.
1 0、 1 1 2とこれらの各同軸コネクタ 1 2、 1 4とが同軸線 1 2 0、 1 2 2を 用いて接続される。 測定時には、 蓋部 8 2の中央に形成されたデバイスセット用 貫通穴 8 8の位置に高周波デバイス 3 0が取り付けられ、 さらに上部からこの高 周波デバイス 3 0を下方向に押圧することにより、 デバイス測定用ソケット 1 0 と高周波デバイス 3 0との間の電気的な接続が行われる。 また、 このようにして高周波デバイス 3 0の着脱を繰り返すと、 基板 1 6表面 の入出力端子 4 2、 4 4や接地端子 4 6が部分的に摩耗したり変形したりするた め、 これらの端子が形成された基板 1 6の全体を交換する必要が生じる。 上述し たように、 デバイス測定用ソケット 1 0における基板 1 6の固定は、 ケース 8 0 の上部から蓋部 8 2を取り付けることによって行われている。 この蓋部 8 0は、 取り付け穴 8 4に通した 4本のねじ 8 6によって取り付けられているため、 これ を外すことにより容易に取り外すことができる。 しかも、 このような構造とする ことにより、 同軸線 1 2 0、 1 2 2がケース 8 0に取り付けられた状態、 あるい はケース 8 0が他の機器 (例えば、 自動試験器やハンドラ一等) に固定された状 態でも、 基板 1 6の交換を行うことができ、 交換作業の手間を軽減することがで きる。 The coaxial connectors 12 and 14 are connected to the coaxial connectors 12 and 14 using coaxial lines 120 and 122, respectively. At the time of measurement, the high-frequency device 30 is mounted at the position of the device set through hole 88 formed in the center of the lid portion 82, and the high-frequency device 30 is pressed downward from above to obtain a device. An electrical connection is made between the measuring socket 10 and the high-frequency device 30. Also, when the high frequency device 30 is repeatedly attached and detached in this manner, the input / output terminals 42, 44 and the ground terminal 46 on the surface of the substrate 16 are partially worn or deformed. It is necessary to replace the entire board 16 on which the terminals are formed. As described above, the fixation of the substrate 16 in the device measurement socket 10 is performed by attaching the lid portion 82 from above the case 80. Since the lid 80 is attached with four screws 86 passed through the attachment holes 84, the lid 80 can be easily removed by removing the screws. In addition, by adopting such a structure, the coaxial cables 120 and 122 are attached to the case 80 or the case 80 is connected to another device (for example, an automatic tester or a handler). The board 16 can be replaced even in the state where the board is fixed to), and the work of the replacement work can be reduced.
また、 基板 1 6のみを容易に交換するためには、 基板 1 6表面に形成された導 体 2 0等と同軸コネクタ 1 2、 1 4の中心導体との電気的な接続の仕方を工夫す る必要がある。  Also, in order to easily replace only the board 16, a method of electrically connecting the conductors 20 formed on the surface of the board 16 to the center conductors of the coaxial connectors 12 and 14 must be devised. Need to be
図 9は、 デバイス測定用ソケットの部分的な構成を示す斜視図であり、 同軸コ ネクタ 1 2、 1 4の中心導体近傍の詳細が示されている。 また、 図 1 0は同軸コ ネクタを含む部分的な断面図である。 図 1 1は、 図 1 0の A— A線断面図である。 なお、 2つの同軸コネクタ 1 2、 1 4およびそれらの周辺部は、 基本的に同じ構 造を有しており、 以下では一方の同軸コネクタ 1 2に着目して説明を行うものと する。  FIG. 9 is a perspective view showing a partial configuration of the device measuring socket, showing details of the vicinity of the center conductor of the coaxial connectors 12 and 14. FIG. 10 is a partial cross-sectional view including a coaxial connector. FIG. 11 is a sectional view taken along line AA of FIG. Note that the two coaxial connectors 12 and 14 and their peripheral parts have basically the same structure, and the following description will focus on one coaxial connector 12.
これらの図に示すように、 同軸コネクタ 1 2の中心導体 2 0 0は、 ケース 8 0 の側壁を貫通するようにケース 8 0内部に露出しており、 基板 1 6表面に形成さ れた導体 2 0の端部に接触することによりこれらの電気的な接続がなされている c 具体的には、 中心導体 2 0 0の下側に基板 1 6が配置され、 さらに下側から中心 導体 2 0 0に対応する位置を押圧手段によって押圧してこれらの接触が確実に行 われる。 押圧手段としては、 図 1 0および図 1 1に示すように、 ポゴピン 2 1 0 を用いて実現することができる。  As shown in these figures, the center conductor 200 of the coaxial connector 12 is exposed inside the case 80 so as to penetrate the side wall of the case 80, and the conductor formed on the surface of the substrate 16 These electrical connections are made by contacting the ends of the cores 20 c. Specifically, the substrate 16 is disposed below the center conductor 200, and the center conductor 20 By pressing the position corresponding to 0 by the pressing means, these contacts are reliably performed. The pressing means can be realized by using a pogo pin 210 as shown in FIGS.
図 1 2は、 ポゴピン 2 1 0の内部構造を示す図である。 図 1 2に示すように、 ポゴピン 2 1 0は、 筒状の収容部 2 2 0にパネ 2 2 2と可動部 2 2 4の一部が収 容されており、 パネ 2 2 2の伸縮方向に可動部 2 2 4の先端部 2 2 6が基板 1 6 を中心導体 2 0 0側に押圧するようになつている。 この先端部 2 2 6は、 テマ口 ン等の誘電率の低い材料で形成することが好ましい。 FIG. 12 is a diagram showing the internal structure of the pogo pin 210. As shown in FIG. As shown in FIG. 12, the pogo pin 210 accommodates the panel 222 and a part of the movable part 224 in a cylindrical accommodation part 220. The distal end portion 226 of the movable portion 224 presses the substrate 16 toward the center conductor 200 in the direction of expansion and contraction of the panel 222. The tip portion 226 is preferably formed of a material having a low dielectric constant, such as a rubber port.
基板 1 6の交換は、 可動部 2 2 4の先端部 2 2 6を押し下げて、 基板 1 6と同 軸コネクタ 1 2の中心導体 2 0 0を離間した状態で基板 1 6を抜き取った後、 新 しい基板 1 6を中心導体 2 0 0と先端部 2 2 6の間に挿入し、 その後、 再度ポゴ ピン 2 1 0で基板 1 6を中心導体 2 0 0側に押圧することにより行われる。 押圧 による接触によって電気的な接続を行っているため、 基板 1 6の着脱が容易であ り、 入出力端子 4 2、 4 4の摩耗等によって基板 1 6の交換が必要になった場合 においてその交換作業に要する手間を軽減することができる。  To replace the board 16, push down the tip 2 2 6 of the movable part 2 2 4, pull out the board 16 with the center conductor 200 of the coaxial connector 12 separated from the board 16, This is performed by inserting a new substrate 16 between the center conductor 200 and the tip end portion 222 and then pressing the substrate 16 again toward the center conductor 200 with the pogo pins 210. Since the electrical connection is made by contact by pressing, the board 16 can be easily attached and detached.If the board 16 needs to be replaced due to wear of the input / output terminals 42, 44, etc. The labor required for the replacement work can be reduced.
なお、 本発明は上記実施形態に限定されるものではなく、 本発明の要旨の範囲 内で種々の変形実施が可能である。 例えば、 上述した実施形態では、 基板 1 6の 表面に導体 2 0、 2 2、 2 4によるコプレナ一線路を形成したが、 図 1 3に示し たように、 接地用の導体 2 4を導体 2 0、 2 2の形成面と反対側の全面に形成し たマイクロストリヅプ基板 1 6 Aを用いるようにしてもよい。 導体 2 0と導体 2 4によって、 あるいは導体 2 2と導体 2 4によってマイクロストリップ線路が形 成される。 この場合には、 基板の両面に導体層が形成されるため、 基板の柔軟性 は低下するが、 ポリイミ ド樹脂等によって形成されるフレキシブル基板を用いて いるため、 ある程度の柔軟性を確保することができ、 基板の表面に形成された各 種の測定用端子と高周波デバイスの一の面に形成されたデバイス用端子とを確実 に接触させることができる。  Note that the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in the embodiment described above, a coplanar line composed of the conductors 20, 22 and 24 was formed on the surface of the substrate 16, but as shown in FIG. A microstrip substrate 16A formed on the entire surface opposite to the surface on which 0 and 22 are formed may be used. A microstrip line is formed by the conductors 20 and 24 or by the conductors 22 and 24. In this case, the conductor layers are formed on both sides of the substrate, which reduces the flexibility of the substrate.However, since a flexible substrate formed of polyimide resin or the like is used, a certain degree of flexibility must be secured. This makes it possible to reliably contact various types of measurement terminals formed on the surface of the substrate with device terminals formed on one surface of the high-frequency device.
また、 上述した実施形態では、 デバイス測定用ソケット 1 0に高周波デバイス 3 0が取り付けられるものとしたが、 高周波デバイス 3 0以外のデバイスを取り 付けるようにしてもよい。 例えば、 半導体メモリやロジック L S I等の各種半導 体デバイスの試験を行う半導体試験装置に接続して用いるようにしてもよい。 産業上の利用可能性  Further, in the above-described embodiment, the high-frequency device 30 is attached to the device measurement socket 10, but a device other than the high-frequency device 30 may be attached. For example, it may be used by connecting to a semiconductor test apparatus for testing various semiconductor devices such as a semiconductor memory and a logic LSI. Industrial applicability
上述したように、 本発明によれば、 測定用端子が形成された基板を、 可撓性を 有するシ一ト状の部材によって形成することにより、 高周波デバイスに設けられ た複数のデバイス用端子に測定用端子のそれそれを容易に接触させることができ、 構造が単純であつて耐久性や信頼性の向上が可能であるとともに良好な高周波特 性を得ることができる。 特に、 上述した基板にコプレナ一線路を形成することに より、 基板の一方の面のみに導体層が形成されるため、 基板に充分な柔軟性を持 たせることが可能になり、 測定用端子とデバイス側端子とを確実に接触させるこ とができる。 As described above, according to the present invention, the substrate on which the measurement terminals are formed is formed of a flexible sheet-shaped member, so that the substrate is provided in the high-frequency device. In addition, it is possible to easily contact each of the measurement terminals with multiple device terminals, and the structure is simple, durability and reliability can be improved, and good high-frequency characteristics can be obtained. . In particular, by forming a coplanar line on the above-described substrate, a conductor layer is formed only on one surface of the substrate, so that the substrate can have sufficient flexibility, and the measurement terminals and The device terminals can be reliably contacted.

Claims

請 求 の 範 囲 The scope of the claims
1 . 測定器に接続され、 いずれかの面に入出力端子を含む複数のデバイス側端子 が形成されたデバイスが電気的に接続されるデバイス測定用ソケットであって、 可撓性を有するシート状の基板を有しており、 前記基板の一方の面に、 前記測 定器と前記デバイスとの間で入出力する各種の信号に対応した複数の測定用端子 を形成することを特徴とするデバイス測定用ソケッ ト。  1. A device-measuring socket that is electrically connected to a device that is connected to a measuring instrument and that has a plurality of device-side terminals including input / output terminals on any surface, and that is electrically connected. A plurality of measurement terminals corresponding to various signals input and output between the measuring instrument and the device on one surface of the substrate. Measurement socket.
2 . 前記基板は、 一方の面にコプレナ一線路が形成されており、 前記測定器に接 続される外部接続端子と前記測定用端子との間を前記コプレナ一線路を介して接 続することを特徴とする請求の範囲第 1項記載のデバイス測定用ソケット。 2. The coplanar line is formed on one surface of the substrate, and an external connection terminal connected to the measuring instrument and the measuring terminal are connected via the coplanar line. 2. The device measuring socket according to claim 1, wherein:
3 . 前記基板は、 一方の面にマイクロストリップ線路が形成されており、 前記測 定器に接続される外部接続端子と前記測定用端子との間を前記マイクロストリッ ブ線路を介して接続することを特徴とする請求の範囲第 1項記載のデバイス測定 用ソケット。 3. The substrate has a microstrip line formed on one surface, and an external connection terminal connected to the measuring instrument and the measuring terminal are connected via the microstrip line. 2. The device measuring socket according to claim 1, wherein:
4 . 前記測定用端子に導電性の突起部を形成することを特徴とする請求の範囲第 1項記載のデバイス測定用ソケット。  4. The device measurement socket according to claim 1, wherein a conductive projection is formed on the measurement terminal.
5 . 前記導電性の突起部はバンプであることを特徴とする請求の範囲第 4項記載 のデバイス測定用ソケット。  5. The device measuring socket according to claim 4, wherein the conductive protrusion is a bump.
6 . 前記基板の前記測定用端子の形成面と反対側の面に、 柔軟性を有する所定厚 さの支持部材が配置されていることを特徴とする請求の範囲第 1項記載のデバイ ス測定用ソケット。  6. The device measurement according to claim 1, wherein a flexible support member having a predetermined thickness is disposed on a surface of the substrate opposite to a surface on which the measurement terminals are formed. Socket.
7 . 前記基板と前記指示部材とを収容するケースと、 前記ケースに固定されて前 記測定器に接続される外部接続端子とを備え、 前記測定用端子と前記外部接続端 子との間の配線を前記基板上に形成されたパターン電極によって行うことを特徴 とする請求の範囲第 6項記載のデバィス測定用ソケット。  7. A case accommodating the substrate and the indicating member, and an external connection terminal fixed to the case and connected to the measuring instrument, wherein a connection between the measurement terminal and the external connection terminal is provided. 7. The device measuring socket according to claim 6, wherein the wiring is performed by a pattern electrode formed on the substrate.
8 . 前記外部接続端子と前記基板上に形成された前記パターン電極とを部分的に 押圧して接触させる押圧手段を備えることにより、 前記外部接続端子と前記パタ ーン電極との間の電気的な接続を行うことを特徴とする請求の範囲第 7項記載の デバイス測定用ソケット。  8. An electric connection between the external connection terminal and the pattern electrode is provided by providing a pressing unit that partially presses and contacts the external connection terminal and the pattern electrode formed on the substrate. 8. The device measuring socket according to claim 7, wherein the device measuring socket makes a secure connection.
9 . 前記基板の一部であって前記測定用端子の周囲に、 前記基板の両面の間を貫 通して形成される溝部を有することを特徴とする請求の範囲第 1項記載のデバイ ス測定用ソケッ ト。 -9. A part of the substrate, around the measuring terminal, passing between both sides of the substrate 2. The device measuring socket according to claim 1, comprising a groove formed through the device. -
1 0 . 前記基板の表面にフォトエッチングによって形成された複数の前記測定用 端子を有することを特徴とする請求の範囲第 1項記載のデバイス測定用ソケッ ト10. The device measurement socket according to claim 1, comprising a plurality of the measurement terminals formed on the surface of the substrate by photoetching.
1 1 . 可撓性を有する基板の表面に形成され、 測定器に接続された複数の測定用 端子に、 デバイスのいずれかの面に形成された入出力端子を含む複数のデバイス 側端子のそれそれを接触させることにより、 前記測定器と前記デバイスとの間で 各種の信号の入出力を行うことを特徴とするデバィス測定方法。 1 1. A plurality of measurement terminals formed on the surface of a flexible substrate and connected to a measuring instrument, and a plurality of device-side terminals including input / output terminals formed on any surface of the device. A device measurement method comprising: inputting and outputting various signals between the measuring device and the device by bringing the device into contact with the device.
1 2 . 前記基板の前記測定用端子の形成面と反対側の面に、 柔軟性を有する所定 厚さの支持部材を配置し、 前記デバィスを前記測定用端子の形成面側から押圧す ることを特徴とする請求の範囲第 1 1項記載のデバイス測定方法。  12. A flexible supporting member having a predetermined thickness is arranged on the surface of the substrate opposite to the surface on which the measurement terminals are formed, and the device is pressed from the surface on which the measurement terminals are formed. 11. The device measuring method according to claim 11, wherein:
PCT/JP1999/003811 1998-07-16 1999-07-15 Socket for device measurement, and method of measuring device WO2000004394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21853198 1998-07-16
JP10/218531 1998-07-16

Publications (1)

Publication Number Publication Date
WO2000004394A1 true WO2000004394A1 (en) 2000-01-27

Family

ID=16721395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003811 WO2000004394A1 (en) 1998-07-16 1999-07-15 Socket for device measurement, and method of measuring device

Country Status (2)

Country Link
TW (1) TW436631B (en)
WO (1) WO2000004394A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510826A1 (en) * 2003-08-25 2005-03-02 Delaware Capital Formation, Inc. Integrated printed circuit board and test contactor for high speed semiconductor testing
WO2006115110A1 (en) * 2005-04-20 2006-11-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor inspection device and inspection method
WO2009101801A1 (en) * 2008-02-15 2009-08-20 Panasonic Corporation Capacitor inspection apparatus and inspection method using the same
JP2020153947A (en) * 2019-03-22 2020-09-24 株式会社ヨコオ Inspection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146525B1 (en) 2005-06-30 2012-05-25 엘지디스플레이 주식회사 Jig for fixing display plate and Method thereof
CN103344795A (en) * 2013-06-25 2013-10-09 苏州速腾电子科技有限公司 Radio frequency resonator frequency-selecting fixture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375876U (en) * 1986-11-06 1988-05-20
JPH04233480A (en) * 1990-09-14 1992-08-21 Internatl Business Mach Corp <Ibm> Flexible-tape type probe
JPH0536772A (en) * 1991-07-29 1993-02-12 Murata Mfg Co Ltd Jig for high-frequency characteristic measuring
JPH0566243A (en) * 1991-09-06 1993-03-19 Nec Corp Jig for lsi evaluation
JPH05196686A (en) * 1992-01-20 1993-08-06 Nec Yamagata Ltd Semiconductor measuring jig
JPH07211416A (en) * 1994-01-10 1995-08-11 Texas Instr Japan Ltd Socket

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375876U (en) * 1986-11-06 1988-05-20
JPH04233480A (en) * 1990-09-14 1992-08-21 Internatl Business Mach Corp <Ibm> Flexible-tape type probe
JPH0536772A (en) * 1991-07-29 1993-02-12 Murata Mfg Co Ltd Jig for high-frequency characteristic measuring
JPH0566243A (en) * 1991-09-06 1993-03-19 Nec Corp Jig for lsi evaluation
JPH05196686A (en) * 1992-01-20 1993-08-06 Nec Yamagata Ltd Semiconductor measuring jig
JPH07211416A (en) * 1994-01-10 1995-08-11 Texas Instr Japan Ltd Socket

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510826A1 (en) * 2003-08-25 2005-03-02 Delaware Capital Formation, Inc. Integrated printed circuit board and test contactor for high speed semiconductor testing
JP2005070050A (en) * 2003-08-25 2005-03-17 Delaware Capital Formation Inc Contactor for inspecting test interface system, and semiconductor package for semiconductor circuit
US7173442B2 (en) 2003-08-25 2007-02-06 Delaware Capital Formation, Inc. Integrated printed circuit board and test contactor for high speed semiconductor testing
KR100749431B1 (en) * 2003-08-25 2007-08-14 델라웨어 캐피탈 포메이션, 인코포레이티드 Integrated printed circuit board and test contactor for high speed semiconductor testing
WO2006115110A1 (en) * 2005-04-20 2006-11-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor inspection device and inspection method
US7839151B2 (en) 2005-04-20 2010-11-23 Panasonic Corporation Solid electrolytic capacitor inspection device and inspection method
WO2009101801A1 (en) * 2008-02-15 2009-08-20 Panasonic Corporation Capacitor inspection apparatus and inspection method using the same
JP2009194193A (en) * 2008-02-15 2009-08-27 Panasonic Corp Capacitor inspection apparatus and inspection method using the same
JP2020153947A (en) * 2019-03-22 2020-09-24 株式会社ヨコオ Inspection device
JP7206140B2 (en) 2019-03-22 2023-01-17 株式会社ヨコオ inspection equipment

Also Published As

Publication number Publication date
TW436631B (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US7663387B2 (en) Test socket
US7656175B2 (en) Inspection unit
US7825676B2 (en) Contactor and test method using contactor
US7990168B2 (en) Probe card including a sub-plate with a main supporter and a sub-supporter with the sub-supporter having probe needles
JP2004170182A (en) Inspection tool for radio frequency / high-speed device and contact probe
JPH0517705B2 (en)
JPH11329648A (en) Ic device socket
EP0304868A2 (en) Multiple lead probe for integrated circuits in wafer form
JP2734412B2 (en) Semiconductor device socket
WO2000004394A1 (en) Socket for device measurement, and method of measuring device
US10024883B2 (en) Contact unit and inspection jig
US20020011855A1 (en) Microwave probe for surface mount and hybrid assemblies
JP2002098736A (en) Semiconductor device testing device
US6498299B2 (en) Connection structure of coaxial cable to electric circuit substrate
JP2006214943A (en) Probe device
US7126364B2 (en) Interface comprising a thin PCB with protrusions for testing an integrated circuit
JPH0555319A (en) Socket for ic
KR20010076322A (en) Contact structure having contact bumps
JP3458705B2 (en) High frequency probe device
JPH0750324A (en) Probe device
US11821942B2 (en) Apparatus and method for probing device-under-test
KR100560113B1 (en) Tester for Electric Devices
JPH0541416A (en) Probe card and frog ring
JP2002190506A (en) Probe card
JPH06260568A (en) Ic socket

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000560461

Format of ref document f/p: F