WO2000002085A1 - Commutateur optique matriciel et multiplexeur optique a insertion-extraction - Google Patents

Commutateur optique matriciel et multiplexeur optique a insertion-extraction Download PDF

Info

Publication number
WO2000002085A1
WO2000002085A1 PCT/JP1999/003490 JP9903490W WO0002085A1 WO 2000002085 A1 WO2000002085 A1 WO 2000002085A1 JP 9903490 W JP9903490 W JP 9903490W WO 0002085 A1 WO0002085 A1 WO 0002085A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
output
switch
optical switch
input
Prior art date
Application number
PCT/JP1999/003490
Other languages
English (en)
French (fr)
Inventor
Yukinobu Nakabayashi
Jun Yokoyama
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10185787A external-priority patent/JP2000019569A/ja
Priority claimed from JP11108529A external-priority patent/JP2000298295A/ja
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US09/720,787 priority Critical patent/US6597830B1/en
Priority to EP99959126A priority patent/EP1098219A4/en
Publication of WO2000002085A1 publication Critical patent/WO2000002085A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0013Construction using gating amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches

Definitions

  • the present invention relates to a waveguide-type matrix optical switch that performs optical path switching control using an optical waveguide provided in a substrate. Further, the present invention relates to an optical ADM (Optical Add-Drop Multiplexer) having a function of through, drop (Add) and add (Add) of an optical signal.
  • optical ADM Optical Add-Drop Multiplexer
  • optical communication systems have been put into practical use, optical communication systems with higher capacity and higher functionality have been desired.
  • a single element having an optical path switching function is called an optical switch
  • a device or an optical circuit that enables multiple input and multiple output paths by combining a plurality of optical switches is a matrix optical switch.
  • the combination of optical switches in a matrix optical switch is called a network.
  • the amount of crosstalk is desirably as small as possible.
  • EDFA Erbium Dop ed Fiber Am 1 ifi er
  • a matrix optical switch for reconfiguring an optical transmission line is generally incorporated into a repeater of a multi-wavelength communication system.Therefore, the matrix optical switch itself must have a function of adjusting the power of each optical channel. It is also desirable from the viewpoint of downsizing of the intermediate and connecting devices.
  • FIG. 7 shows a configuration of a conventional optical ADM.
  • the optical ADM is provided in the middle of an optical transmission path having a plurality of channels (for example, 32 channels).
  • An optical amplifier (AMP) 2001 is connected to the upstream side, and a demultiplexer (Demultiplexer) 2002 is connected to the optical amplifier 2001 to split the multiplexed optical signal into different wavelengths.
  • Each of the output lines of the demultiplexer 2002 is connected to a 1 ⁇ 2 optical switch 2003 having the same configuration.
  • One output terminal is a drop (Drop) terminal, and the other output terminal is a 2 ⁇ 1 optical switch.
  • One input terminal of 2004 is connected.
  • the other input terminal of the 2X1 optical switch 2004 is used as an add (Ad d) terminal.
  • the output terminal of the 2X1 optical switch 2004 is connected to an attenuator (ATT) 2005 S, and each output terminal of the attenuator 2005 is connected to each input of the multiplexer (Multipl exer) 2006 Terminals are connected one to one. Further, an output terminal of the multiplexer 2006 is connected to an optical amplifier (AMP) 2007 for amplifying and outputting the multiplexed optical signal downstream.
  • AMP optical amplifier
  • the connection of the optical elements such as the optical switches 2003 and 2004 is performed by an optical fiber.
  • a An optical fiber connecting the capacitor 2000 and the multiplexer 2000 is optically coupled with a photodetector (PD) 2008, and the photodetector 2008 is coupled to the antenna.
  • the automatic level adjuster (ALC) for controlling the data 205 is connected to the power supply.
  • the optical ADM in Fig. 7 is installed at point C in the middle of each of the optical transmissions laid between points A and B, which are remote locations.
  • the multiplexed optical signal from the point A is amplified by the optical amplifier 2001, and then demultiplexed by the demultiplexer 2002.
  • Each of the demultiplexed signals is dropped at point C (extracted outside) in response to switching of 1 ⁇ 2 optical switch 203, or transmitted to point B without dropping. It is sent to the 2 ⁇ 1 optical switch 204 in order to do so.
  • the signal is transmitted to the attenuator 205 via the 2X1 optical switch 204, and the attenuation is adjusted for adjusting the output level.
  • the attenuation of the attenuator 200 is adjusted by the automatic level adjuster 209 based on the photoelectric conversion signal from the photodetector 209. This is done by controlling The optical signal from each of the attenuators 2000 is multiplexed by the multiplexer 206 and then multiplexed, amplified by the optical amplifier 2007, and transmitted to the point B.
  • the 2 ⁇ 1 optical switch 204 is switched to the add (A dd) side, optical information from the point C is input to the 2 ⁇ 1 optical switch 204 and the multiplexed optical signal from the point A is input. (A dd).
  • optical ADM optical ADM
  • 1580mn band all-optical and node prototype equipped with fast automatic level control 24th European Conference on Optical Communication: 1988.9.20-24
  • Masaki Fukui et al. Have been.
  • Another object of the present invention is to reduce the size, suppress crosstalk, adjust the level of the optical signal at the drop (Drop) and add (A dd) terminals without performing a troublesome connection work, and
  • An object of the present invention is to provide an optical ADM that can be easily provided with multiple functions. Disclosure of the invention
  • the matrix optical switch according to the present invention has m (m is a positive integer) 1-input n-output optical switch (n is a positive integer) output port and n m-input / 1-output optical switch input port.
  • the n-th (n 1 is a positive integer) output port of the n-th (n is a positive integer) output port of the n-th (m is a positive integer) 1-input n-output optical switch m is a matrix optical switch that forms a branch-selection network by connecting to the first input port, wherein the 1-input n-output optical switch and the m-input 1-output optical switch force ⁇ the refractive index is reduced by applying an electric field.
  • Gate members, each of which is provided between the output port of the 1-input / n-output optical switch and the input port of the m-input / 1-output optical switch and has a variable transmittance. Is provided.
  • the matrix optical switch of the present invention is constituted by a branching-selection type network, and is provided with a one-input one-output optical switch (gate) capable of changing the transmittance at the central stage.
  • cross-talk light can be attenuated by shutting off gates arranged on unused paths. Also, by controlling the gate transmittance, the power of the optical channel can be adjusted as needed. it can.
  • the crosstalk light can be attenuated by installing m X n gates at the center stage and shutting off the gates arranged on the path when they are not used. Also, by controlling the transmittance of an appropriate gate, the output power from each channel can be adjusted.
  • a waveguide-type optical switch that performs optical path switching control by using an optical waveguide provided in a substrate, the crosstalk force between channels is reduced, and the power of the optical channel is adjusted as necessary. Can be.
  • a semiconductor device comprising: a substrate; and a first output port (drop terminal) or an optical signal formed on the substrate and input from the first input port.
  • a first optical switch for outputting to any one of the first and second input ports; and an optical signal or a second input port formed on the substrate and output from the through terminal of the first optical switch.
  • a second optical switch for outputting any one of the optical signals from the first and second terminals to a second output port.
  • the first and second optical switches constituting the optical ADM and the optical components connected thereto are formed on one substrate. Therefore, the size, weight and cost of the optical ADM can be reduced. Furthermore, by increasing the number of switches according to the channels, it becomes easy to form an array and multifunction on the substrate, and thus it is suitable for multi-channel.
  • the present invention provides a substrate, and a first output port (drop terminal) formed on the substrate, the optical signal being input from the first input port. Or a first optical switch for outputting to any of the through terminals; and an optical signal formed on the substrate and output from the through terminal of the first optical switch, or a second input port. A second optical switch for outputting any one of the optical signals from the first optical switch to the second output port; and a second optical switch formed on the substrate, the second optical switch being connected to the first optical switch.
  • First level adjustment to adjust the level of the incoming optical signal A second level adjuster formed on the substrate, for adjusting a level of an optical signal output to the drop terminal; and a second light formed on the substrate, from the add terminal. And a third level adjusting unit for adjusting the level of the optical signal input to the switch.
  • the first level adjuster is provided between the first and second optical switches for performing drop and add, the level of the passing light is adjusted, and the optical signal to be dropped is dropped.
  • the level of the optical signal is adjusted by the second level adjuster, and the level of the optical signal to be added (A dd) is adjusted by the third level adjuster. Furthermore, each member is
  • FIG. 1 is a diagram showing an example of a network configuration of a matrix optical switch according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing another example of the network configuration of the matrix optical switch according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing an optical waveguide and electrode structure of a Mach-Zehnder type optical switch on a lithium niobate substrate used in one embodiment of the present invention.
  • FIG. 4 is a diagram showing operating characteristics obtained with a Mach-Zehnder type optical switch on a lithium niobate substrate used in one embodiment of the present invention.
  • FIG. 5 is a diagram showing a waveguide layout of a 2 ⁇ 2 matrix optical switch constituted by the Mach-Zehnder type optical switch shown in FIG. 1,
  • FIG. 6 is a diagram showing a waveguide layout of a 4 ⁇ 4 matrix optical switch constituted by the Mach-Zehnder type optical switch shown in FIG. 1,
  • FIG. 7 is a configuration diagram showing a configuration of a conventional optical ADM.
  • FIG. 8 is a configuration diagram showing a first embodiment of the optical ADM of the present invention
  • FIG. 9 is a connection diagram in which the optical circuit portion for one channel of the optical ADM in FIG. 8 is rewritten so that an optical signal is directed from an input to an output.
  • FIG. 10 is a connection diagram showing an MZ type optical switch used for the optical switch and the level adjusting unit of the present invention.
  • FIGS. 11A and 11B are perspective views showing a structural example due to a difference in electrode arrangement of the MZ optical switch.
  • FIG. 12 is a connection diagram showing a configuration in which the optical circuit portion for one channel shown in FIG. 9 is replaced by n channels.
  • FIG. 13 is a connection diagram showing a modification of the optical circuit unit shown in FIG.
  • FIG. 14 is a connection diagram showing another modified example of the optical circuit unit shown in FIG.
  • FIG. 15 is a configuration diagram showing a configuration in which an electric control system is added to the optical circuit unit in FIG. 13.
  • FIGS. 16A, 16B, and 16 C show optical waveguides in the optical switch or level adjustment unit of the present invention.
  • FIG. 4 is a plan view showing an example of a layout;
  • FIG. 17 is a configuration diagram showing a second embodiment of the optical ADM of the present invention
  • FIG. 18 is a configuration diagram showing a third embodiment of the optical ADM of the present invention.
  • FIG. 1 is a diagram showing an example of a network configuration of a matrix optical switch according to one embodiment of the present invention.
  • FIG. 1 is a network diagram for explaining the operation principle according to one embodiment of the present invention in the case of a 2 ⁇ 2 matrix optical switch.
  • This network has a so-called TREE configuration when only the first and third stages are viewed.
  • a gate is inserted in the second stage, which is the center stage. ing. That is, optical switches (gates) 3 to 6 whose transmittance can be adjusted between switches 1 and 2 connected to inputs # 1 and # 2 and switches 7 and 8 connected to outputs # 1 and # 2. Is inserted.
  • the crosstalk light generated from the switch 1 is guided to the gate 3. Therefore, by blocking the gate 3, the crosstalk light generated from the switch 1 is attenuated by the extinction ratio of the gate 3.
  • Switch 8 is also set to output # 2 from gate 6 to direct light from input # 2 to output # 2. Therefore, the attenuated crosstalk light guided from the gate 5 is further attenuated by the switch 8.
  • the amount of crosstalk in the matrix optical switch using the present network is reduced to 160 dB when the extinction ratio of each optical switch and the gate is, for example, 20 dB.
  • the transmittance of gate 1 ⁇ gate 4 in this state the optical power output from output 1 and output 2 can be adjusted.
  • FIG. 2 is a diagram showing another example of the network configuration of the matrix optical switch according to one embodiment of the present invention.
  • FIG. 2 is a network diagram for explaining an operation principle according to an embodiment of the present invention in the case of an m ⁇ n matrix optical switch (m and n are positive integers).
  • the input stage has m 1 x n switches 1 1 1 1 to 1 1-m, and the output stage has n m x 1 switches 12 1-1 to 1 2-n.
  • m x n gates 13 By installing m x n gates 13 in the center, a matrix optical switching power with low crosstalk is constructed. Also, by adjusting the transmittance of the appropriate gate, the output power from each channel can be adjusted.
  • FIG. 3 is a diagram showing an optical waveguide and electrode structure of a Mach-Zehnder (MZ) type optical switch on an LN (lithium niobate) substrate used in one embodiment of the present invention.
  • MZ Mach-Zehnder
  • LN lithium niobate
  • Waveguide fabrication is performed by the Ti diffusion method on a normal LN substrate.
  • This polarization independent switch has electrodes 21 to 23, a switch 24, and a power supply 25.
  • FIG. 4 is a diagram showing operating characteristics obtained with a Mach-Zehnder (MZ) type optical switch on an LN substrate used in one embodiment of the present invention.
  • Fig. 4 shows the operating characteristics normally obtained with this optical switch when a single signal electrode and a ground electrode are arranged so as to surround the fabricated MZ-type optical interference system.
  • MZ Mach-Zehnder
  • the cross state where the operating voltage of typically about 50 V leads the input # 1 to the output # 2 and the input # 2 to the output # 1 To the opposite bar state.
  • FIG. 5 is a diagram showing a waveguide lay-out of a 2 ⁇ 2 matrix optical switch constituted by the MZ type optical switch shown in FIG.
  • the gates 33 to 32 arranged between switches 31 and 32 connected to inputs # 1 and # 2 and switches 37 and 38 connected to outputs # 1 and # 2, that is 36 also uses an MZ optical switch.
  • the crosstalk level at this time was typically about 60 dB.
  • the output power to outputs # 1 and # 2 could be adjusted by adjusting the applied voltage to gate 33 and gate 35.
  • FIG. 6 is a diagram showing a waveguide layout of a 4 ⁇ 4 matrix optical switch constituted by the MZ type optical switch shown in FIG. In the figure, connect to inputs # 1 to # 4 Between the four 1 x 4 switches 4 1 and the four 41 switches 43 connected to the outputs # 1 to # 4, that is, the gate stage 4 2 installed at the center stage also uses the MZ type optical switch. Used.
  • the crosstalk level at this time was typically –60 dB.
  • the input loss of the present matrix switch could be arbitrarily adjusted from 7 dB to 25 dB.
  • One embodiment of the present invention describes in detail a case where an MZ type optical switch on an X-cut LN crystal substrate is used for an optical switch and a gate.
  • the optical path switching circuit according to the embodiment of the present invention does not depend on the type of optical element used for the optical switch and the gate.
  • a semiconductor optical gate for the gate stage used at the center.
  • a semiconductor optical amplifier is a device that does not allow current injection and sometimes absorbs light, and has an optical amplification function by appropriate current injection. Therefore, when the semiconductor optical amplifier gate is used as the gate switch in one embodiment of the present invention, the insertion loss of the 1 ⁇ N switch installed at the preceding and subsequent stages is compensated, and a lower-loss matrix is formed. can do.
  • the optical output power is actually changed from a plurality of output optical waveguides. It is also possible to apply a directional coupler type optical switch having the function of selecting the waveguide to be used.
  • the 1xN switch and the gate have the refractive index of each of a plurality of output optical waveguides connected in a Y-branch shape to one input optical waveguide configured as an optical waveguide made of, for example, an electro-optic crystal by electric field change.
  • a digital optical switch that has the function of selecting a waveguide that can actually obtain optical output power from multiple output optical waveguides.
  • the transmittance is changed by the electro-optic effect
  • the power consumption is reduced and the operation speed is reduced as compared with the method using the thermo-optic effect. The advantage of a higher speed is obtained.
  • m (m is a positive integer) 1-input and n-output (n is a positive integer) optical switch output ports and n m-input and 1-output optical switches are provided.
  • the input port is the ml-th (ml is a positive integer) 1-input n-output optical switch output port, the nl-th (n1 is a positive integer) output port, and the n-th 1 m-input 1 output
  • a matrix optical switch that forms a branch-selection type network by connecting to the m-th input port of the optical switch, one of a 1-input 1-output variable optical attenuator and a variable optical amplifier with variable transmittance is used.
  • FIG. 8 shows a first embodiment of the optical ADM according to the present invention.
  • the optical ADM of the present invention is provided in the middle of an optical transmission line having a plurality of channels (for example, 32 channels).
  • An optical amplifier (AMP) 2 11 1 is connected to the upstream side, and the optical amplifier 2 11 1 is a demultiplexer for demultiplexing the multiplexed optical signal into different wavelengths. Power connection.
  • Each of the output lines of the demultiplexer 2 12 is connected to a 1 ⁇ 2 optical switch 2 13 having the same configuration.
  • One output terminal of the 1 X 2 optical switch 2 13 is connected to a level adjuster 2 14, and its input terminal functions as a drop terminal.
  • the other output terminal of the 1 X 2 optical switch 2 13 is connected to a level adjuster 2 15, and one input terminal of the 2 XI optical switch 2 16 is connected to this level adjuster 2 15. Have been.
  • a level adjuster 2 17 is connected to the other input terminal of the 2 XI optical switch 2 16, and its input terminal functions as an add (Add) terminal.
  • Each input terminal of a multiplexer (Mu 1 tip 1 exer) 218 is connected to each output terminal of the 2 ⁇ 1 optical switch 216 on a one-to-one basis.
  • the output terminal of the multiplexer 218 is connected to an optical amplifier (AMP) 219.
  • the amplified output from the optical amplifier 219 is sent downstream.
  • Level adjusters 2 14, 2 15, 2 17, 2 X 1 optical switch 2 16 and multiplexor 2 18 are provided on one substrate (for example, X-cut LN crystal substrate) Have been. Each of the optical switches and the level adjusters 2 14, 2 15, 217, the 1 ⁇ 2 optical switch 2 13, the demultiplexer 2 12, and the 2 ⁇ 1 optical switch 2 16 and the multiplexer 2 18 , Connected by an optical waveguide.
  • the MZ (Mach-Zehnder: Mach-Zehnder) type optical switch, a variable optical amplifier (semiconductor optical amplifier gate), or the like can be used for 4, 2, 15 and 217.
  • An MZ optical switch formed on an X-cut LN (lithium niobate) crystal substrate has the advantage that a low-power drive can provide a switching function and a level adjustment function.
  • a semiconductor optical amplifier gate is an element that absorbs an optical signal when there is no current injection and has an optical amplifying function by appropriate current injection. Therefore, when semiconductor optical amplifiers are used for the optical switches 2 13, 2 16 and the level adjusters 2 14, 2 15, 21 7, the 1 XN (or NXI) The insertion loss of the switch is compensated, making it possible to construct a lower-loss optical ADM.
  • the optical switches 2 13, 2 16 and the level adjusters 214, 2 15, 2 17 include digital optical switches (for example, an electro-optical crystal or an optical waveguide made of a material having a thermo-optical effect).
  • digital optical switches for example, an electro-optical crystal or an optical waveguide made of a material having a thermo-optical effect.
  • the optical switches 2 13, 2 16 and the level adjusters 2 14, 2 15, 2 17 are provided with directional coupler type optical switches (for example, an optical waveguide composed of an electro-optical crystal.
  • directional coupler type optical switches for example, an optical waveguide composed of an electro-optical crystal.
  • a directional coupler having a function of selecting a waveguide that can actually obtain an optical output power from a plurality of output optical waveguides
  • a heater is provided at an appropriate position in the optical waveguide, so that a change in the refractive index can be applied to the heater. And the optical path can be switched.
  • the optical ADM is provided at a point C in the middle of the optical transmission line laid between the points A and B.
  • the multiplexed optical signal from the point A is amplified by the optical amplifier 211 and then demultiplexed by the demultiplexer 212.
  • the signal is subjected to a predetermined attenuation by the level adjuster 2 14 (Drop).
  • the 1 X 2 optical switch 2 13 is switched to the level adjuster 2 15
  • the optical signal is subjected to a predetermined attenuation (or amplification) adjustment for adjusting the output level by the level adjuster 2 15.
  • the signal is input to the multiplexer 218 through the 2 ⁇ 1 optical switch 216 and multiplexed with another optical signal.
  • the optical signal taken from point C is replaced by the 2 X 1 optical switch 2 instead of the optical signal from the level adjuster 2 15. It can be fed into multiplexer 2 18 via 16 (A dd). At this time, the optical signal taken in from the point C is subjected to predetermined attenuation (or amplification) adjustment for adjusting the output level by the level adjustment unit 217.
  • the optical signal from each of the 2 ⁇ 1 optical switches 216 is multiplexed with another optical signal by a multiplexer 218, multiplexed, and then amplified by an optical amplifier 219, to a point B. Sent out.
  • FIG. 9 shows a connection diagram in which the optical circuit portion for one channel of the optical ADM of FIG. 8 is rewritten so that the optical signal is directed from the input to the output.
  • the configuration excluding the demultiplexer 212 and the multiplexer 218 shown in FIG. 8 is shown, and the level adjusters 214, 215, and 217 have MZs operating as gates (Gate).
  • a pattern light switch is used.
  • Input # 1 corresponds to the Add terminal
  • input # 2 corresponds to the output of the demultiplexer 212
  • output # 1 corresponds to the output of the 2 ⁇ 1 optical switch 211
  • output # 2 Corresponds to the Drop terminal.
  • the optical waveguides 221 and 222 are connected to the inputs # 1 and # 2, and a level adjuster 217 is provided in the optical waveguide 221.
  • An optical switch 2 13 is provided.
  • the two output ends of the 1 ⁇ 2 optical switch 2 13 are connected to the optical waveguides 223 and 225 in the optical waveguide 223, and the level adjusting unit 215 is provided in the optical waveguide 223.
  • Level adjustment unit 2 14 powers are provided.
  • a 2 ⁇ 1 optical switch 216 is provided between the optical waveguide 223 and the level adjuster 217 and the output # 1.
  • FIG. 10 shows the configuration of a X-type optical switch used for the 1 ⁇ 2 optical switch 2 13, the 2 ⁇ 1 optical switch 2 16, and the level adjusters 216, 215, 217.
  • This type III optical switch is configured by providing an optical waveguide and electrodes on an LN substrate. That is, an optical waveguide is provided on a substrate using an X-cut LN crystal by a Ti diffusion method. When the propagation direction of this optical waveguide is made to coincide with the Z axis, a polarization-independent switch in which the operating voltage and the like do not change due to the input polarization can be formed.
  • two directional couplers A and B are formed by two optical waveguides 230a and 230b, and a signal is located in the middle of the optical waveguide between directional couplers A and B. Electrodes 232 are provided, and ground electrodes 231 and 233 are provided on both sides of the optical waveguide. The signal electrode 232 and the ground electrodes 231, 233 are connected to each other by a power line pattern 236 a, 236 b, and the signal electrode 232 is connected to a wiring pattern 236 b. Wiring patterns 236a and 236b are connected to switch 234, and a power supply 235 is connected in parallel with switch 234.
  • FIG. 4 shows the operating characteristics of the MZ optical switch of FIG.
  • FIGS. 11A and 11B show examples of the structure of the MZ-type optical switch due to the difference in electrode arrangement.
  • FIG. 11A is a perspective view of an MZ optical switch having a three-electrode configuration shown in FIG. 10, and
  • FIG. 11B is a perspective view of an MZ optical switch having a two-electrode configuration.
  • a part of two optical waveguides 230 a and 230 b is brought close to the LN substrate 251 to form a directional coupler, and the optical waveguides 230 a and 230 adjacent to the directional coupler are formed.
  • a band-like signal electrode 232 is provided in the middle of b, and band-like ground electrodes 231 and 233 are provided outside the optical waveguides 230a and 230b.
  • a voltage is applied to the optical waveguides 230a and 230b in the lateral direction.
  • two optical waveguides 230a and 230b are formed on the substrate 252 in the same manner as in FIG.
  • Electrodes 253, 254 force S are provided on the outside. A voltage is applied between the electrodes 253 and 254 and a ground electrode (not shown). In this configuration, a phase shift force is generated by applying a voltage to the optical waveguides 230a and 230b in the vertical direction.
  • the 1 ⁇ 2 optical switch 2 13 has a function of selecting an optical signal from the input # 2 to be output to the output # 1 or the output # 2.
  • the level adjusting unit 215 selects such that either the optical signal input from the input 1 or the input # 2 is output from the output # 1.
  • the level adjuster 214 has a transmittance power of an optical signal that enters from the input # 2 and exits from the output # 2 ⁇ !
  • the level adjuster 2 15 adjusts the transmittance, that is, the attenuation rate, of the optical signal that enters from the input # 2 and exits from the output # 1.
  • the level adjuster 2 17 adjusts the transmittance of the optical signal that enters from the input # 1 and exits from the output # 1.
  • the optical signal input from the input # 1 is guided to the output # 1 via the level adjusters 2 17 and 2 XI optical switch 2 16 and the optical signal input from the input # 2 is the 1 X 2 optical switch. It is led to output # 1 or output # 2 via switch 2 1 3.
  • the optical signal incident from input # 2 is selected to exit from either output # 1 or output # 2 by a 1 ⁇ 2 optical switch 2 13.
  • the optical signal input from the input # 1 or the input # 2 is selected by the 2 ⁇ 1 optical switch 2 16 so that one of them is output from the output # 1.
  • the optical signal input from the input # 2 is normally output to the output # 1 via the 1 ⁇ 2 optical switch 2 13, the level adjuster 2 15, and the 2 ⁇ 1 optical switch 2 16. Be guided. However, when an optical signal is also input to the input # 1, the optical signal leaked through the level adjuster 2 17 and the 2 ⁇ 1 optical switch 2 16 is guided to the output # 1. At the same time, the optical signal input from the input # 2 is guided to the output # 2 via the 1 ⁇ 2 optical switch 2 13 and the level adjusting section 214. In such a situation, the extinction ratio of the optical waveguide on the LN substrate shown in Fig. 10 was 20 dB. In other words, when the optical signal incident from input # 1 was guided to output # 1, the insertion loss could be adjusted with a width of 20 dB by the level adjuster 215.
  • the insertion loss could be adjusted in a 20 dB width by the level adjuster 2 17. Then, when the optical signal input from the input # 2 was guided to the output # 2, the insertion loss could be adjusted to a width of 20 dB by the level adjustment unit 214. Further, when an optical signal incident from input # 2 is led to output # 2 through IX 2 optical switch 2 13 and level adjusting section 214, optical signal leaks to output # 1 through level adjusting section 2 15. You. However, this leak light signal could be reduced to -60 dB or less by adjusting the 1 ⁇ 2 optical switch 2 13, the level adjuster 2 15, and the 2 ⁇ 1 optical switch 2 16. .
  • a small and inexpensive optical ADM can be obtained with a simple configuration. Then, the loss variation of each path can be adjusted. Furthermore, since an optical circuit component of a waveguide type having an electro-optical characteristic whose refractive index changes by application of an electric field is used, it is possible to easily form an array-array composite.
  • the level adjusters 214, 215, 217 are shown in FIG. 10 or FIG.
  • the MZ-type optical switch shown in (1) it can be operated as a variable attenuator. In order to operate as a variable attenuator, the applied voltage may be changed so as to obtain a desired attenuation rate. This makes it possible to easily adjust the loss variation of each path.
  • FIG. 12 shows a configuration in which the optical circuit section for one channel shown in FIG. 9 is replaced with n channels.
  • the optical circuit section 260 shown in FIG. 12 is arrayed using a plurality of sets of the optical circuit sections shown in FIG. 9, and the optical circuit sections 26 1, 262, 263, and 264 (same configuration) of a total of eight channels are combined.
  • the demultiplexer 2 12 and the multiplexer 2 18 are not shown.
  • the optical circuit section 251 will be described.
  • the optical waveguides 221 a, 222 a, 223 a, 224 a, and 225 a correspond to the optical waveguides 221 to 225 in FIG. a
  • 2 17 a correspond to the level adjusters 2 14, 2 15, 2 17 in FIG. 9, and the optical switches 2 13 a, 2 16 a correspond to the 1 ⁇ 2 optical switches 2 1 3 in FIG. , 2 X 1 optical switch equivalent to 2 16.
  • the optical waveguides 221b, 222b, 223b, 224b, 225b, 221c, 222c, 223c, 224c, 225c, 221d, 222d of the optical circuits 262 to 264 , 223 d, 224 d, and 225 d correspond to the optical waveguides 221 to 225 in FIG. 9, and the level adjusters 214 b, 215 b, 217 b, 217 c, 215 c, 2 17 c, 2 14 d, 2 15 d, and 2 17 d correspond to the level adjustment sections 2 14, 2 15, 2 17 in FIG. 9, and the optical switches 2 13 b, 2 16 b , 2 13 c, 2 16 c, 2 13 d, and 2 16 d correspond to the 1 ⁇ 2 optical switch 2 13 and the 2 ⁇ 1 optical switch 2 16 in FIG.
  • the optical circuit units 261 to 264 are independent, and these optical circuit units independently execute the 2-input / 2-output switch operation and the level adjustment operation (gate operation) described in FIG. In this way, by adding a 2-input 2-output optical circuit as needed, an optical ADM with an arbitrary input X output can be configured. Therefore, with a simple configuration, a small and inexpensive optical ADM can be obtained, and even if the number of inputs and outputs increases, the loss distribution of each path can be adjusted.
  • FIG. 13 shows a modification of the optical circuit section shown in FIG. In the present embodiment, 1 X 2
  • the optical switch 2 13, the 2 ⁇ 1 optical switch 2 16, and the level adjusters 2 14, 2 15, and 2 17 are all configured using directional coupler type optical switches.
  • the level adjuster 2 15 is connected to the 1 ⁇ 2 optical switch 2 13 and the 2 ⁇ 1 optical switch 2 16 via optical waveguides 223-1 and 222-2.
  • FIG. 14 shows another modification of the optical circuit section shown in FIG.
  • a directional coupler type optical switch is used for the 1 ⁇ 2 optical switch 2 13 and the 2 ⁇ 1 optical switch 2 16, and the MZ is provided for the level adjusters 214, 215, and 217. It is configured using a pattern light switch.
  • the MZ optical switch can form an on-Z off state or a variable attenuator depending on the state of the applied voltage. Therefore, when used in the on-Z-off state, leakage can be prevented, and when used as a variable attenuator, the level of a monster road can be adjusted.
  • FIG. 15 shows a configuration in which an electric control system is added to the optical circuit unit of FIG.
  • the 1X2 optical switch 2 13 has a signal electrode 2 13A and ground electrodes 2 13B and 2 13C, and a directional coupler is formed at two places in the optical waveguide.
  • the 2 ⁇ 1 optical switch 2 16 includes a signal electrode 2 16 A and ground electrodes 2 16 B and 2 16 C, and a directional coupler force is formed at two places in the optical waveguide.
  • the level adjustment unit 214 includes a signal electrode 214 A and ground electrodes 214 B and 214 C
  • the level adjustment unit 215 includes a signal electrode 215 A and a ground electrode 215 B and 215 C.
  • the level adjuster 2 17 has a signal electrode 2 17 A and ground electrodes 2 17 B and 2 17 C. Each level adjuster is formed with a directional coupler force at two places in the optical waveguide. ing.
  • the wiring pattern 291 is connected to the signal electrode 214 A
  • the wiring pattern 292 is connected to the signal electrode 216 A
  • the wiring pattern 293 is connected to the signal electrode 217 A.
  • the ground electrodes 214B, 214C, 215B, 215C, 215B, and 217C are commonly connected by a wiring pattern 294.
  • a DC power supply 295 is connected between the wiring pattern 29 1 and the rooster line pattern 294, and a DC power supply 296 is connected between the rooster line pattern 292 and the rooster line pattern 294. 297 DC power supply between 293 and wiring pattern 294 Have been.
  • the signal electrodes 2 13 A and 2 16 A are connected by a wiring pattern 298, and the ground electrodes 2 14 B, 214 C, 2 16 B, and 2 16 C are commonly connected by a wiring pattern 299. ing.
  • a DC power supply 100 is connected to the wiring pattern 298 and the rooster pattern 299.
  • the DC power supplies 295 to 297 and 100 can be arbitrarily changed in a range of, for example, 0 to 50 V, and generate a voltage according to a required operation state (on-Z-off state or desired transmittance).
  • Set. The voltage can be set individually for the level adjusters 214, 215, and 217 by the DC power supplies 295, 296, and 297, and the attenuation rate changes according to the voltage values set individually for the DC power supplies 295 to 297. I do.
  • the same voltage is applied to the optical switches 2 13 and 2 16 by the DC power supply 100. Therefore, when a voltage of V is applied to the optical switches 2 1 3 and 2 16, input # 1 and output # 1 communicate, and when a voltage of V 2 is applied to the optical switches 2 1 3 and 2 16 Input # 2 and output # 1 communicate.
  • FIGS. 16A to 16C show a layout example of an optical waveguide in the optical switch or the level adjusting unit of the present invention.
  • Figure 16A shows the level adjustment unit, which is composed of Y-branch 3 dB force bras 103 and 104 on both sides of the optical waveguides 101 and 102, and has 1 XI (1 input 1 Output) Operates as an attenuator.
  • Fig. 16B has a configuration that can be used for both the optical switch and the level adjustment unit. The input is a Y-branch type 3 dB power bracket 103, and the output is an asymmetric X-structure 1X2 optical switch 105. It has become.
  • Fig. 16C also shows a configuration that can be used for both the optical switch and the level adjuster.
  • the directional coupler type 3 dB force bras 106, 107 are provided on both sides of the optical waveguides 101, 102. And operate as a 2x2 optical switch.
  • FIG. 17 shows a second embodiment of the optical ADM of the present invention.
  • the level adjustment units 214, 215, 217 are removed from the configuration of FIG. According to this configuration, the level adjustment of each path cannot be performed, but the optical ADM can be configured on one substrate. By not providing the level adjusters 214, 215, 217, it is possible to reduce the size and cost of the optical ADM due to the reduction in the number of components.
  • FIG. 18 shows a third embodiment of the optical ADM of the present invention.
  • the configuration of Fig. 8 The level adjustment units 214 and 217 are removed from FIG. In this configuration, it is not possible to adjust the levels of the routes Dro P and Ad d. However, the level between the optical switches can be adjusted by the level adjustment unit 215. Also according to this configuration, it is possible to reduce the size and cost of the optical ADM due to the reduction in the number of components.
  • a configuration in which only the level adjustment units 2 15 are removed from the configuration in FIG. 8 is also possible.
  • a configuration in which the level adjusting units 214 and 215 are provided and the level adjusting unit 217 is removed, or a configuration in which the level adjusting unit 215 and the level adjusting unit 217 are provided and the level adjusting unit 214 is removed is also possible.
  • the first and second optical switches for performing the drop and the add are configured on one substrate, so that the size and the array can be easily reduced.
  • multi-functionalization can be achieved, and furthermore, low price can be achieved.
  • the first level adjusting unit is provided between the first and second optical switches for performing the drop and the add, and the level of the optical signal to be dropped is adjusted to the second level.
  • the level is adjusted by the level adjuster, the level of the optical signal to be added is adjusted by the third level adjuster, and each member is integrated on a single substrate.
  • the optical ADM can be reduced in size, weight, and cost. , And complex functions, etc., as well as the level adjustment of optical signals in the paths of Drop and Add.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

I
マトリクス光スィッチおよび光 A D M 技術分野
本発明は、 基板中に設けられた光導波路を用いて光路の切替え制御を行う導波 型のマトリクス光スィッチに関する。 また、 本発明は、 光信号のスルー、 ドロッ プ (D r o p) 及びアド (Ad d) の機能を有する光 ADM (Optical Add-Drop Multiplexer) に関する。 背景技術
近年、 光通信システムの実用化が進むにつれ、 さらに大容量や高機能の光通信 システムが望まれている。 特に、 多くの光伝送路をより安定かつ効率的に運用す るためには伝送路の故障やトラフィックに応じて適切に光伝送路の組直しをする こと力必要になってきている。 また、 光伝送装置内においても光デバイスの故障 等に応じて装置内での光経路の組直しをすることが必要になってきている。
これらの要求に対し、 例えばニオブ酸リチウム (LN) に代表される電気光学 結晶に主にチタン等を基板表面から熱拡散によってド一プした拡散型光導波路を 用いた光スィツチを使用すること力報告されている。
この光スィッチについては、 「大規模導波路型光マトリクススィッチ」 [岡山 秀彰 '川原 正人、 信学技法、 TECHNI CAL REPORT OF TE I CE S SE 94— 2 14, OC S 94— 95 ( 1 995— 02)、 p p 67 -72], または 「 S t u d i e s o n a 1 28— L i n e Ph o t o n i c Sp a c e— D i v i s i o n Sw i t c h i n g Ne t wo r k U s i n g L i N b 03 Sw i t c h Ma t r i c e s a n d Op t i c a l Amp 1 i f i e r s」 (C. Bu r k e, M. F u j i w a r a , M. Yama gu c h i , H. N i s h i mo t o, H. Ho nmo n, OSA P r o c e e d i n g on p h o t o n i c sw i t c h i n g, 1 99 1 , Vo l . 8, p p 2— 6) で報告されている。 また、 これらの光スィッチを集積したマトリクス光スィッチに関しては、 「P o l a r i z a t i o n 1 n d e p e n d e n t— DC D r ι τ t F r e e T i : L i N b 03 x4 Ma t r i x Op t i c a l S w i t c h」 [Y. N ak ab ay a s h i , J. Us h i o d a, M. K i t a m u r a , 2 n d Op t o e l e c t r on i c s Commun i c a t i on s Co n f a r e n c e (OECC' 97) Te c hn i c a l D i g e s t , J u l y 1 997, S e o u l , KOREA, 9 C 5 - 3, p p 202 - 203] に報告されている。
また、 例えば石英系やポリマ系の光導波路の一部に装加されたヒータを用いて 熱光学効果による光導波路屈折率変化を利用したマトリクス光スィツチもある。 この光スィッチについては、 「DC— d r i f t F r e e - P o l a r i z a t i o n i n d e p e n d e n t T i : L i N b 03 8 x 8 O p t i c a 1 Ma t r i Sw i t c h」 [Y. Nak ab ay a s h i , M. K i t a m u r a , T , S awan o, 22 n d Eu r o p e an C o n f e r e n c e o n Op t i c a l Commun i c a t i o n— ECOC' 96, O s l o, ThD. 2. 4, 4. 1 57-4. 1 60] に報告されている。 尚、 ここでは光経路切替え機能をもつ単一素子を光スィッチと呼び、 複数の光 スィッチを糸且合わせることでより多入力、 多出力の経路切替えを可能にするデバ イスもしくは光回路をマトリクス光スィツチと呼び、 またマトリクス光スィツチ 内での光スィッチの組合わせ方をネットワークと呼ぶ。
上述した従来の伝送経路切替えに用いられるマトリクス光スィツチでは、 クロ スト一ク量を概ね— 40 dB以下に低減すること力 ^伝送品質の確保のために求め られている。
また、 装置内における経路切替えにマトリクス光スィツチを用いる場合にもク ロスト一ク量はできるだけ少ない方力 ^望ましい。 しかしながら、 従来までに報告 されている光スィッチの多くは光スィツチ自身の性能としてこのような低クロス トーク量を満たすことは困難である。
さらに、 EDFA (E r b i um Dop e d F i b e r Am 1 i f i e r) を用いた多波長通信システム等では ED FAの持つ光増幅率の波長依存性 等によって各波長チャネル同士の光パワーに不均一を生じ、 このこと力伝送距離 の制限となること力知られている。 したがって、 EDF Aを用いた多波長通信シ ステム等における中継装置には、 各波長チャネル同士の光パワーの不均一を解消 する機能が必要となっている。
光伝送路の組直しをするマトリクス光スィツチは多波長通信システムの中継装 置に組込まれることが一般的であり、 したがって、 マトリクス光スィッチ自体に 各光チャネルのパワーを調整する機能を持つことが、 中,継装置の小型化の面から も望ましい。
そこで、 本発明の目的は上記の問題点を解消し、 チャネル間クロストークを低 減することができ、 必要に応じて光チャネルのパワーを調整することができるマ トリクス光スィッチを提供することにある。 一方、 図 7は、 従来の光 A DMの構成を示す。
この光 ADMは、 複数のチャンネル (例えば、 32チャンネル) を有する光伝 送路の途中に設けられる。 上流側には光増幅器 (AMP) 2001力 ^接続され、 この光増幅器 2001には多重化された光信号を異なる波長毎に分波するデマル チプレクサ (Demu l t i p l ex e r) 2002カ接続されている。 デマル チプレクサ 2002の出力線の各々には同一構成の 1 X 2光スィツチ 2003 力接続され、 その一方の出力端子はドロップ (D r op) 端子となり、 他方の出 力端子には 2 X 1光スィツチ 2004の一方の入力端子が接続されている。 2 X 1光スィッチ 2004の他方の入力端子はアド (Ad d) 端子として用いら れる。 2 X 1光スィッチ 2004の出力端子には、 アツテネ一タ (ATT) 2 005力 S接続され、 アツテネ一タ 2005の各出力端子の各々にはマルチプレク サ(Mu l t i p l exe r) 2006の各入力端子が 1対 1で接続されている。 さらに、 マルチプレクサ 2006の出力端子には、 多重光信号を下流へ増幅して 出力するための光増幅器 (AMP) 2007力 妾続されている。 ここで、 光スィ ツチ 2003, 2004等の光素子の接続は、 光ファイバによって行われる。 ァ ッテネ一タ 2 0 0 5とマルチプレクサ 2 0 0 6を接続する光ファイバには、 光検 出器 (P D ) 2 0 0 8力結合されており、 この光検出器 2 0 0 8にはアツテネ一 タ 2 0 0 5を制御するための自動レベル調整器 (A L C ) 2 0 0 9力 妾続されて いる。
図 7の光 AD Mは、 遠隔地である A地点と B地点間に敷設された光伝送!^各の 途中の C地点に設けられている。 A地点からの多重光信号は光増幅器 2 0 0 1で 増幅された後、 デマルチプレクサ 2 0 0 2によって分波される。 分波された信号 のそれぞれは、 1 X 2光スィツチ 2 0 0 3の切リ替えに応じて C地点でド口ッ プされ (外部に取り出され)、 或いは、 ドロップせずに B地点へ伝送すべく 2 X 1光スィッチ 2 0 0 4へ送出される。 2 X 1光スィッチ 2 0 0 4へ送出された 場合、 2 X 1光スィッチ 2 0 0 4を介してアツテネータ 2 0 0 5に送られ、 出 カレベル合わせのための減衰量の調整が行われる。 アツテネータ 2 0 0 5の減衰 量の調整は、 光検出器 2 0 0 8による光一電気変換信号に基づいて自動レベル調 整器 2 0 0 9がアツテネ一タ 2 0 0 5の利得又は光透過量を制御することにより 行われる。 アツテネ一タ 2 0 0 5のそれぞれからの光信号は、 マルチプレクサ 2 0 0 6による合波によって多重光にされた後、 光増幅器 2 0 0 7で増幅され、 B 地点へ向けて送出される。 また、 2 X 1光スィッチ 2 0 0 4をアド (A d d ) 側に切り替えた場合、 C地点からの光情報が 2 X 1光スィツチ 2 0 0 4に入力 され、 A地点からの多重光信号に合波 (A d d ) される。 このような光 A D Mは、 例 ば、 Masaki Fukui他著、 " 1580mn band all-optical and node prototype equipped with fast automatic level control" (24th European Conference on Optical Communication: 1988.9.20-24) 等に詳細に記載されている。
し力 し、 従来の光 A D Mによると、 光素子の接続を光ファイバで行っているた め、 小型化、 軽量化、 低価格化が難しい。 また、 1 X 2光スィッチの非出力端 子へのクロストークがあり、 消光比の向上が難しい。 例えば、 I X 2光スイツ チのドロップ (D r o p ) 端子に出力するときでもスルー用端子から 2 X 1光 スィッチに入力するが、 2 X 1光スィッチの下流にアツテネ一タを設けている ため、 これを防ぐことができない。 さらに、 2 X 1光スィッチの端子にアツテ ネ一タが設けられているため、 ドロップ (D r o p ) 及びアド (A d d ) の端子 の光信号のレベル調整ができず、 ここにレベル調整器を挿入しょうとすると、 光 ファイバの接続になるため、 作業が面倒であり、 大型化する。 そこで、 本発明の 他の目的は、 小型化、 クロストークの抑制、 面倒な接続作業を行わないでドロッ プ (D r o p ) 及びアド (A d d ) の端子の光信号のレベル調整ができ、 アレイ ィ匕、 複合機能化が容易な光 A D Mを提供することにある。 発明の開示
本発明によるマトリクス光スィッチは、 m個 (mは正の整数) の 1入力 n出力 光スィッチ (nは正の整数) の出力ポートと n個の m入力 1出力光スィッチの入 力ポートとを m l番目 (m lは正の整数) の 1入力 n出力の光スィッチの出力ポ ートの n 1番目 (n 1は正の整数) の出力ポートと n 1番目の m入力 1出力の光 スィッチの m 1番目の入力ポートとを接続した形態をもって分岐 選択型ネット ワークをなすマトリクス光スィツチであって、 前記 1入力 n出力光スィツチ及び 前記 m入力 1出力光スィッチ力 ^電界印加によって屈折率カ壞化する電気光学特性 を持つ材料からなり、 前記 1入力 n出力の光スィツチの出力ポートと前記 m入力 1出力の光スィッチの入力ポートとの間に夫々設けられかつ透過率を可変自在な ゲート部材を備える。
すなわち、 本発明のマトリクス光スィッチは、 分岐—選択型ネットワークによ つて構成され、 その中央段に透過率を可変できる 1入力 1出力の光スィッチ (ゲ —ト) 力待設けられる。
まず、 最も構成が簡単な 2入力 2出力 (以下、 2 x 2とする) の光スィッチの 場合の作用について説明する。 2 X 2マトリクス光スィツチの場合、 このネット ワークは 1段目及び 3段目のみを見ると、 いわゆる T R E E (ツリー) 構成と呼 ばれる構造であり、 中央段である 2段目にゲートを挿入する。
これによつて、 使用しない経路上に配置されたゲートをシャツトオフすること により、 クロストーク光を減衰させることができる。 また、 ゲートの透過率をコ ントロールすることによリ 必要に応じて光チャネルのパワーを調整することが できる。
また、 一般的に、 m x nマトリクス光スィッチの場合には入力段に m個の 1 X nスィッチがあり、 出力段に n個の m x 1スィッチがある。 この構成において、 中央段に m X n個のゲートを設置し、 使用しなレ、経路上に配置されたゲートをシ ャットオフすることにより、 クロストーク光を減衰させることができる。 また、 適当なゲートの透過率をコントロールすることによリ、 各チャネルからの出力パ ヮーを調整することができる。
従って、 基板中に設けられた光導波路を用レ、て光路の切替え制御を行う導波型 の光スィッチにおいて、 チャネル間クロストーク力低減され、 かつ必要に応じて 光チャネルのパワーを調整することができる。
また、 本発明は、 上記の他の目的を達成するため、 基板と、 前記基板上に形成 され、 第 1の入力ポートから入力された光信号を第 1の出力ポート (ドロップ用 端子) 又はスルー用端子のいずれかへ出力する第 1の光スィッチと、 前記基板上 に形成され、 前記第 1の光スィツチの前記スル一用端子から出力された光信号又 は第 2の入力ポート (アド用端子) からの光信号のいずれかを第 2の出力ポート へ出力する第 2の光スィッチとを備える光 A D Mを提供する。
この構成によれば、 光 A D Mを構成する第 1, 第 2の光スィッチと、 これらに 接続される光部品が 1枚の基板上に形成されている。 したがって、 光 AD Mの小 型化、 軽量化及び低価格が図れる。 更に、 スィッチ数をチャンネルに応じて増や すことによリ基板上でアレイ化及び複合機能化が容易になるため、 多チャンネル 化に適している。
さらに、 本発明は、 上記の他の目的を達成するため、 基板と、 前記基板上に形 成され、 第 1の入力ポ一トから入力された光信号を第 1の出力ポート (ドロップ 用端子) 又はスルー用端子のいずれかへ出力する第 1の光スィッチと、 前記基板 上に形成され、 前記第 1の光スィッチの前記スルー用端子から出力された光信号 又は第 2の入力ポート (アド用端子) からの光信号のいずれかを第 2の出力ポ一 トへ出力する第 2の光スィッチと、 前記基板上に形成され、 前記第 1の光スイツ チから前記第 2の光スィッチに向かう光信号のレベルを調整する第 1のレベル調 整部と、 前記基板上に形成され、 前記ドロップ用端子へ出力する光信号のレベル を調整する第 2のレベル調整部と、 前記基板上に形成され、 前記アド用端子から 前記第 2の光スィッチに入力される光信号のレベルを調整する第 3のレベル調整 部とを備える光 AD Mを提供する。
この構成によれば、 ドロップ及びアドを行うための第 1及び第 2の光スィッチ 間に第 1のレベル調整部が設けられて通過光のレベル調整が行われ、ドロップ (D r o p ) する光信号のレベルは第 2のレベル調整部で調整され、 アド (A d d ) する光信号のレベルは第 3のレベル調整部により調整される。 さらに、各部材は、
1つの基板上に一体化されている。 したがって、 光 ADMの小型ィ匕及び軽量化が 可能になるほか、 各経路の損失ばらつきの調整、 及び面倒な接続作業を行わない でドロップ及びアドの端子の光信号のレベル調整ができ、 アレイ化、 複合機能化 が容易になる。 図面の簡単な説明
図 1は、 本発明の一実施例のマトリクス光スィツチのネットワーク構成の一例を 示す図であり、
図 2は、 本発明の一実施例のマトリクス光スィッチのネットワーク構成の他の例 を示す図であり、
図 3は、 本発明の一実施例で用いたニオブ酸リチウム基板上のマッハツエンダ型 光スィッチの光導波路及び電極構造を示す図であリ、
図 4は、 本発明の一実施例で用いたニォブ酸リチウム基板上のマッハツェンダ型 光スィツチで得られる動作特性を示す図であり、
図 5は、 図 1に示したマッハツエンダ型光スィッチによって構成した 2 X 2マト リクス光スィッチの導波路レイアウトを示す図であり、
図 6は、 図 1に示したマッハツエンダ型光スィッチによって構成した 4 x 4マト リクス光スィッチの導波路レイアウトを示す図であり、
図 7は、 従来の光 A D Mの構成を示す構成図であリ、
図 8は、 本発明の光 A DMの第 1の実施の形態を示す構成図であり、 図 9は、 図 8の光 A DMの 1チャンネル分の光回路部を入力から出力に光信号が 向かうように書き換えた接続図であリ、
図 10は、 本発明の光スィッチ及びレベル調整部に用いられる MZ型光スィッチ を示す結線図であり、
図 1 1A、 1 1 Bは、 MZ型光スィッチの電極配置の相違による構造例を示す斜 視図であリ、
図 12は、 図 9に示した 1チヤンネル分の光回路部を nチヤンネル分にした構成 を示す結線図であり、
図 1 3は、 図 9に示した光回路部の変形例を示す結線図であり、
図 14は、 図 9に示した光回路部の他の変形例を示す結線図であり、
図 15は、 図 1 3の光回路部に電気制御系を加えた構成を示す構成図であり、 図 1 6A、 16B、 1 6 Cは、 本発明の光スィッチ又はレベル調整部における光 導波路のレイァゥト例を示す平面図であリ、
図 17は、 本発明の光 ADMの第 2の実施の形態を示す構成図であり、 図 18は、 本発明の光 A DMの第 3の実施の形態を示す構成図である。 発明を実施するための最良の形態
以下、 本発明のマトリクス光スィツチおよび光 ADMの実施例について図面を 参照して説明する。 図 1は本発明の一実施例のマトリクス光スィツチのネットヮ —ク構成の一例を示す図である。 図 1は 2 X 2マトリクス光スィッチの場合の本 発明の一実施例による動作原理を説明するためのネットワーク図である。
このネットワークは 1段目及び 3段目のみを見ると、 いわゆる TREE (ッリ ―) 構成と呼ばれる構造であり、 本発明の一実施例では中央段である 2段目にゲ —トを挿入している。 すなわち、 入力 # 1, #2に接続されるスィッチ 1, 2と 出力 # 1, #2に接続されるスィッチ 7, 8との間に透過率が調整自在な光スィ ツチ (ゲート) 3〜 6を挿入している。
まず、 2x2マトリクススィッチを入力 # 1から出力 # 1へ、 入力 #2から出 力 # 2へつなぐように設定するには、 入力 # 1からの光をスィッチ 1—ゲート 3 →スィッチ 7→出力せ 1と導くように各スィッチを調整する。 したがってゲート 3は光が透過する状態にしておく。
この時、 スィッチ 1から発生するクロストーク光はゲート 3に導かれる。 した がって、 ゲート 3を遮断しておくことで、 スィッチ 1から発生するクロストーク 光はゲ一ト 3の消光比分だけ減衰する。
また、 スィッチ 8は入力 # 2からの光を出力 # 2に導くためにゲート 6から出 力 # 2へ設定されている。 したがって、 ゲート 5から導かれる減衰したクロスト —ク光はスィッチ 8によってさらに減衰される。
以上によって、 本ネットワークを用いたマトリクス光スィッチにおけるクロス トーク量は各光スィッチ及びゲートの消光比を例えば 2 0 d Bとすると、 一 6 0 d Bまで削減される。この状態でゲート 1ゃゲート 4の透過率を調整することで、 出力 1及び出力 2から出力される光パワーを調整することができる。
図 2は本発明の一実施例によるマトリクス光スィッチのネットワーク構成の他 の例を示す図である。 図 2は m x nマトリクス光スィッチ (m, nは正の整数) の場合の本発明の一実施例による動作原理を説明するためのネットワーク図であ る。
入力段には m個の 1 x nスィッチ 1 1 一 1〜1 1— mがあり、 出力段には n個 の m x 1スィッチ 1 2— 1〜 1 2一 nがある。 中央段に m x n個のゲート 1 3を 設置することで、 低クロストークなマトリクス光スィッチ力構成される。 また、 適当なゲートの透過率を調整することで、 各チャネルからの出力パワーの調整が 可能となる。
図 3は本発明の一実施例で用いた L N (ニオブ酸リチウム) 基板上のマッハツ ェンダ (M Z ) 型光スィッチの光導波路及び電極構造を示す図である。 図におい て、 本発明の一実施例による光スィッチは、 Xカット L N結晶を用い、 導波路の 伝搬方向を Z軸と一致させることで、 入力偏光によって動作電圧等が変化しない 偏光無依存スィッチとなっている。
導波路作製は通常の L N基板上への T i拡散法によって行っている。 尚、 この 偏光無依存スィッチは電極 2 1〜2 3と、 スィッチ 2 4と、 電源 2 5とを備えて レヽる。
図 4は本発明の一実施例で用いた LN基板上のマッハツエンダ (MZ) 型光ス イッチで得られる動作特性を示す図である。 図 4は作製された MZ型光干渉系に 対して一本の信号電極及びそれを取囲むようにグラウンド電極を構成した場合に、 この光スィッチで通常得られる動作特性を示している。
電極 21〜23の長さを 6 mm程度に設定した場合、 典型的には 50 V程度の 動作電圧によって入力 # 1から出力 #2へ、 入力 #2から出力 # 1へ導かれるク 口ス状態から反対のバー状態へ移行する。
図 5は図 1に示した MZ型光スィッチによって構成した 2 X 2マトリクス光ス イッチの導波路レイ、アウトを示す図である。 図においては、 入力 # 1, #2に接 続されるスィッチ 31, 32と出力 # 1 , #2に接続されるスィッチ 37, 38 との間に、 つまり中央段に配設されるゲート 33〜36も MZ型光スィッチを用 いている。
全てのスィッチ 31, 32, 37, 38及びゲート 33〜 36に印可する電圧 をゼロ Vとした時には各スィツチ 31, 32, 37, 38の動作特性が図 4にし たがうことによって、 2 X 2マトリクススィッチとして入力 # 1から出力 #2へ、 入力 # 2から出力 # 1へのクロス状態が得られた。 この時のクロストークレベル は典型的に一 60 d B力 ^得られた。 この状態でゲ一ト 35への印可電圧を調整す ることで、 図 4に示す動作特性のクロスポートへの出力 生カーブにしたがって 出力 #2への出力パワーが調整できた。
また、 全てのスィッチ 31 , 32, 37, 38及びゲート 33〜36に 50 V を印可することで、 2 X 2マトリクススィッチとして入力 # 1から出力 # 1へ光 を導く、 いわゆるバー状態が得られた。
この時のクロスト一クレベルは典型的に一 60 d Bカ得られた。 この状態でゲ —ト 33及びゲート 35への印可電圧を調整することで、 出力 # 1, #2への出 力パワーが調整できた。
図 6は図 1に示した M Z型光スィツチによつて構成した 4x4マトリクス光ス イッチの導波路レイアウトを示す図である。 図において、 入力 # 1〜#4に接続 される 4つの 1 x 4スィッチ 4 1と出力 # 1〜# 4に接続される4っの4 1ス イッチ 4 3との間、 つまり中央段に設置したゲート段 4 2も M Z型光スィッチを 用いている。
入力 # 1から入力 # 4までの各入力をどの出力ポートに接続するかの状態設定 は、 概ね図 5に示す 2 x 2マトリクススィッチと同様である。 この時のクロスト ークレベルは典型的に— 6 0 d B力得られた。 また、 各状態設定において適当な ゲ一ト段のゲートに印可する電圧を調整することで、 本マトリクススィッチの揷 入損失は 7 d Bから 2 5 d Bまで任意に調整することができた。
本発明の一実施例では Xカット L N結晶基板上の M Z型光スィッチを光スイツ チ及びゲートに用いた場合について詳細に記載している。 上記の記載内容から明 らかなように、 本発明の一実施例による光路切替え回路は光スィツチ及びゲ一ト に用いる光素子の種類によるものではない。
例えば、 中央に用いるゲート段に半導体光ァンプゲ一トを用いることも可能で ある。 良く知られているように半導体光ァンプゲ一トは電流注入がなレ、時には光 を吸収し、 適当な電流注入によって光増幅作用を持つ素子である。 したがって、 本発明の一実施例におけるゲ一トスィツチに半導体光アンプゲ一トを用いる場合 には、 その前段及び後段に設置される 1 x Nスィッチの挿入損失を補償し、 より 低損失なマトリクスを構成することができる。
さらに、 1 x Nスィッチやゲートに、 例えば電気光学結晶からなる光導波路に 構成した方向性結合器の屈折率を電界変化によって変化させることで、 複数の出 力光導波路から実際に光出力カ¾られる導波路を選択する機能をもつ方向性結合 器型光スィツチを適用することもまた可能である。
さらにまた、 1 x Nスィッチやゲートには、 例えば電気光学結晶からなる光導 波路に構成した 1つの入力光導波路に Y分岐状に接続された複数の出力光導波路 の夫々の屈折率を電界変化によって変化させることで、 複数の出力光導波路から 実際に光出力力得られる導波路を選択する機能をもつディジタル型光スィッチを 適用することもまた可能である。 尚、 上述したように、 電気光学効果で透過率を 可変する方式では、 熱光学効果を用いる方式と比して消費電力の削減及び動作速 度の高速化という利点が得られる。
このように、 TREE構造ネットワークによって構成されるマトリクスの中央 段に透過率を可変できる 1入力 1出力の光スィッチ (ゲート) を設けることによ つて、 光通信において要求される低いクロストークレベルを容易に達成すること ができ、 さらに各出力ポートから出力される光強度レベルを調整することが可能 である。 これらの点からその工業的価値は大きい。
以上説明したように本発明によれば、 m個(mは正の整数)の 1入力 n出力(n は正の整数) の光スィツチの出力ポートと n個の m入力 1出力の光スィツチの入 力ポートとを m l番目 (m lは正の整数) の 1入力 n出力の光スィッチの出力ポ —トの n l番目 (n 1は正の整数) の出力ポートと n 1番目の m入力 1出力の光 スィツチの m 1番目の入力ポートとを接続した形態をもって分岐 選択型ネット ワークをなすマトリクス光スィツチにおいて、 透過率を可変自在な 1入力 1出力 の可変光減衰器及び可変光増幅器の一方を 1入力 n出力の光スィツチの出力ポー トと m入力 1出力の光スィッチの入力ポートとの間に夫々設けることによって、 チャネル間クロストークを低減することができ、 必要に応じて光チャネルのパヮ 一を調整することができるという効果がある。 次に、 本発明の光 ADMの実施例について図面を基に説明する。
図 8は、 本発明による光 A D Mの第 1の実施の形態を示す。
本発明の光 ADMは、 複数のチャンネル (例えば、 32チャンネル) を有する 光伝送路の途中に設けられる。 上流側には光増幅器(AMP) 2 1 1力 ^接続され、 この光増幅器 2 1 1には多重化された光信号を異なる波長毎に分波するデマルチ プレクサ (Demu l t i p l ex e r) 2 1 2力接続されている。 デマルチプ レクサ 2 1 2の出力線の各々には同一構成による 1 X 2光スィッチ 2 1 3が接 続されている。 1 X 2光スィッチ 2 1 3の一方の出力端子にはレベル調整部 2 14力 妾続され、 その入力端はドロップ (D r o p) 端子として機能する。 1 X 2光スィッチ 2 1 3の他方の出力端子にはレベル調整部 2 1 5が接続され、 このレベル調整部 2 1 5に 2 X I光スィッチ 2 1 6の一方の入力端子が接続さ れている。 2 X I光スィッチ 2 1 6の他方の入力端子にはレベル調整部 2 1 7 が接続され、 その入力端はアド (Ad d) 端子として機能する。 2 X 1光スィ ツチ 2 1 6のそれぞれの出力端子には、 マルチプレクサ (Mu 1 t i p 1 ex e r)2 1 8の各入力端子が 1対 1で接続されている。 このマルチプレクサ 2 1 8 の出力端子には、 光増幅器 (AMP) 2 1 9力 ^接続されている。 光増幅器 2 1 9 による増幅出力は、 下流へ送出される。
光増幅器 2 1 1, 2 1 9、 デマルチプレクサ 2 1 2、 I X 2光スィッチ 2 1
3、 レベル調整部 2 1 4, 2 1 5, 2 1 7、 2 X 1光スィツチ 2 1 6、 及びマ ルチプレクサ 2 1 8は、 1枚の基板 (例えば、 Xカット LN結晶基板) 上に設け られている。 そして、 各光スィッチとレベル調整部 2 14, 2 1 5, 21 7、 1 X 2光スィツチ 2 1 3とデマルチプレクサ 2 1 2、 及び 2 X 1光スィツチ 2 1 6とマルチプレクサ 2 1 8とは、 光導波路によって接続される。
1 X 2光スィツチ 2 1 3、 2 X 1光スィツチ 2 1 6、 及びレベル調整部 2 1
4, 2 1 5, 2 1 7には、 MZ (Ma c h Z e hn d e r :マッハツエンダ) 型光スィッチ、 可変光増幅器(半導体光アンプゲート)等を用いることができる。
Xカット LN (ニオブ酸リチウム) 結晶基板上に形成した MZ型光スィッチは、 低電力駆動によリスイツチ機能及びレベル調整機能が得られるという特長がある。 また、 周知のように、 半導体光アンプゲートは電流注入がない時には光信号を吸 収し、 適当な電流注入によって光増幅作用を持つ素子である。 したがって、 光ス イッチ 2 1 3, 2 1 6及びレベル調整部 2 14, 2 1 5, 2 1 7に半導体光アン プゲートを用いた場合、 これらの前段又は後段に設置された 1 XN (又は、 N X I ) スィッチの挿入損失が補償され、 より低損失の光 ADMを構成すること が可能になる。
また、 光スィッチ 2 1 3, 2 1 6及びレベル調整部 2 14, 2 1 5, 2 1 7に は、 ディジタル型光スィッチ (例えば、 電気光学結晶又は熱光学効果を持つ材料 力 らなる光導波路に構成した 1つの入力光導波路に Y分岐状に接続された複数の 出力光導波路のそれぞれの屈折率を電界変化によって変化させることによリ複数 の出力光導波路から実際に光出力が得られる導波路を選択する機能を持つ光スィ ツチ又はゲート) を用いることができる。 なお、 電気光学結晶による光スィッチ 又はレベル調整部は、 熱光学効果を用いた場合に比べ、 消費電力の削減及び動作 速度の高速化が図れるという特長がある。
或いは、 光スィッチ 2 1 3 , 2 1 6及びレベル調整部 2 1 4, 2 1 5 , 2 1 7 には、 方向性結合器型光スィッチ (例えば、 電気光学結晶からなる光導波路で構 成した方向性結合器の屈折率を電界変化によって変化させることによリ複数の出 力光導波路から実際に光出力力得られる導波路を選択する機能を持ったもの) を 用いることができる。 また、 石英に代表される熱光学効果を持つ材料を用いた光 導波路を使用する場合には、 光導波路の適当な位置にヒータを設置することによ リ、 屈折率変化をヒータに与える電流により調整し、 光経路を切り替えることが できる。
図 8の構成において、 光 A D Mは、 A地点と B地点間に敷設された光伝送線路 の途中の C地点に設けられている。 A地点からの多重光信号は光増幅器 2 1 1で 増幅された後、 デマルチプレクサ 2 1 2によって分波される。 分波された信号の それぞれは、 1 X 2光スィッチ 2 1 3がレベル調整部 2 1 4側に切り替えられ ているものについては、 レベル調整部 2 1 4で所定の減衰を受けた後、 外部に取 リ出される (D r o p )。 また、 1 X 2光スィッチ 2 1 3がレベル調整部 2 1 5 に切り替えられている場合、 -光信号はレベル調整部 2 1 5で出力レベル合わせの ための所定の減衰 (又は増幅) 調整が行われた後、 2 X 1光スィツチ 2 1 6を 通してマルチプレクサ 2 1 8に入力され、 他の光信号と合波される。
2 X 1光スィッチ 2 1 6がレベル調整部 2 1 7に切り替えられている場合、 レベル調整部 2 1 5からの光信号に代えて、 C地点から取り込んだ光信号を 2 X 1光スィッチ 2 1 6を介してマルチプレクサ 2 1 8に送り込むことができる (A d d )。 このとき、 C地点から取り込んだ光信号は、 レベル調整部 2 1 7に よって出力レベルを合わせるための所定の減衰 (又は増幅) 調整が行われる。 2 X 1光スィッチ 2 1 6のそれぞれからの光信号は、 マルチプレクサ 2 1 8によ リ他の光信号に合波して多重化された後、 光増幅器 2 1 9で増幅され、 B地点へ 向けて送出される。 図 9は、 図 8の光 A D Mの 1チャンネル分の光回路部を入力から出力に光信号 力向かうように書き換えた接続図を示す。 ここでは、 図 8に示したデマルチプレ クサ 21 2とマルチプレクサ 218を除いた構成が示されており、 レベル調整部 2 14, 2 1 5, 2 1 7には、 ゲート (Ga t e) として動作する M Z型光スィ ツチが用いられている。 また、 入力 # 1は Ad d端子に相当し、 入力 #2はデマ ルチプレクサ 2 12の出力に相当し、 出力 # 1は 2 X 1光スィッチ 2 1 6の出 力に相当し、 出力 #2は D r o p端子に相当する。
図 9に示すように、 入力 # 1, #2には光導波路 22 1, 222力接続され、 この光導波路 221内にはレベル調整部 21 7が設けられ、 光導波路 222内に は 1 X 2光スィッチ 2 1 3が設けられている。 1 X 2光スィッチ 2 1 3の 2つ の出力端には、 光導波路 223, 225力 ^接続され、 光導波路 223内にはレべ ル調整部 215力 ^設けられ、 光導波路 225内にはレベル調整部 2 14力設けら れている。 さらに、光導波路 223及びレベル調整部 217と出力 # 1の間には、 2 X 1光スィッチ 216力設けられている。
図 10は、 1 X 2光スィッチ 2 1 3、 2 X 1光スィッチ 2 1 6、 及びレベル 調整部 2 14, 2 1 5, 2 1 7に用いられる ΜΖ型光スィッチの構成を示す。 こ の ΜΖ型光スィツチは、 LN基板上に光導波路と電極を設けて構成されている。 すなわち、 Xカットの LN結晶を用いた基板上に、 T i拡散法により光導波路を 設けている。 この光導波路の伝搬方向を Z軸に一致させると、 入力偏光によって 動作電圧等が変化しない偏光無依存のスィツチを構成することができる。
図 10に示すように、 2本の光導波路 230 a, 230 bによって 2つの方向 性結合器 A, B力 ^形成されており、 方向性結合器 A, B間の光導波路の中間には 信号電極 232が配設され、光導波路を挟んで両側にダラゥンド(g r o un d) 電極 (接地電極) 23 1, 233力 ¾己設されている。 信号電極 232とグラウン ド電極 23 1, 233には、 酉己線パターン 236 a, 236 b力接続されており、 信号電極 232には配線バターン 236 b力接続されている。 配線バタ一ン 23 6 aと 236 bはスィッチ 234に接続され、 このスィッチ 234と並列に電源 235力 妾続されている。 図 4は、 図 1 0の MZ型光スィッチにおける動作特性を示す。 電極 23 1〜2 33のそれぞれの長さを 6 mm程度に設定した場合、 D C 50 V程度の動作電圧 によって入力 # 1 (Ad d) から出力 #2 (D r o p) へ、 及び入力 #2 (デマ ルチプレクサ 1 2の出力) から出力 # 1へと導かれるクロス状態からバ一状態へ と移行する。 図 1 1 A、 1 1 Bは MZ型光スィッチの電極配置の相違による構造 例を示す。 図 1 1 Aは図 1 0に示した 3電極構成の M Z型光スィッチの斜視図で あり、図 1 1 Bは 2電極構成の MZ型光スィツチの斜視図である。図 1 1 Aでは、 LN基板 251上に 2本の光導波路 230 a, 230 bの一部を接近させて方向 性結合器を形成し、 この方向性結合器に隣接する光導波路 230 a, 230 bの 中間に帯状の信号電極 232を設け、 光導波路 230 a, 230 bの外側に帯状 のグラウンド電極 23 1, 233を設けて構成される。 この構成では、 光導波路 230 a, 230 bに対し、 横方向に電圧が印加される。 図 1 1 Bの構成は、 基 板 252上に図 1 1 Aと同様に 2本の光導波路 230 a, 230 bカ形成され、 一部が光導波路 230 a, 230 b上に重なるようにして外側に電極 253, 2 54力 S設けられている。 この電極 253, 254と不図示のグラウンド電極との 間に電圧が印加される。 この構成では、 光導波路 230 a, 230 bに対して縦 方向に電圧を印加することにより位相シフト力行われる。
図 8及び図 9において、 1 X 2光スィッチ 2 1 3は、 入力 #2からの光信号 が出力 # 1又は出力 # 2に出射するように選択する機能を有している。 レベル調 整部 21 5は、 入力せ 1又は入力 # 2から入射した光信号の何れかが出力 # 1か ら出射されるように選択する。 また、 レベル調整部 2 14では、 入力 #2から入 射して出力 #2から出射する光信号の透過率力^!整され、 レベル調整部 2 1 5で は、 入力 #2から入射して出力 # 1から出射する光信号の透過率、 すなわち減衰 率が調整される。 更に、 レベル調整部 2 1 7では、 入力 # 1から入射して出力 # 1から出射する光信号の透過率カ'調整される。
次に、 図 9の構成における光スィッチの切替動作と経路の形成について説明す る。 入力 # 1から入射した光信号はレベル調整部 2 1 7、 2 X I光スィッチ 2 1 6を介して出力 # 1に導かれ、 入力 # 2から入射した光信号は 1 X 2光スィ ツチ 2 1 3を介して出力 # 1又は出力 # 2に導かれる。 入力 # 2から入射した光 信号は、 1 X 2光スィツチ 2 1 3によって出力 # 1又は出力 # 2の何れかから 出射するように選択される。 また、入力 # 1又は入力 # 2から入射した光信号は、 その一方が出力 # 1から出射されるように、 2 X 1光スィッチ 2 1 6によって 選択される。
光 ADMにおいては、 入力 # 2から入射した光信号は、 通常、 1 X 2光スィ ツチ 2 1 3、 レベル調整部 2 1 5、 及び 2 X 1光スィツチ 2 1 6を介して出力 # 1に導かれる。 しかし、 入力 # 1にも光信号が入射した場合、 レベル調整部 2 1 7と 2 X 1光スィツチ 2 1 6を通してリークした光信号が出力 # 1に導かれ る。 同時に、 入力 # 2から入射した光信号は、 1 X 2光スィッチ 2 1 3とレべ ル調整部 2 14を介して出力 #2に導かれる。 このような状況では、 図 1 0に示 した LN基板上の光導波路の消光比は 20 dBになった。 つまり、 入力 # 1から 入射した光信号を出力 # 1に導いたとき、 レベル調整部 2 1 5によって挿入損失 を 20 d Bの幅で調整することができた。
同様に、 入力 # 1から入射した光信号を出力 # 1に導いたとき、 レベル調整部 2 1 7により挿入損失を 20 dBの幅で調整することができた。 そして、 入力 # 2から入射した光信号を出力 # 2に導いたとき、 挿入損失はレベル調整部 2 14 によって 20 d Bの幅に調整することができた。 更に、 I X 2光スィッチ 2 1 3及びレベル調整部 2 14を通して入力 # 2から入射した光信号を出力 # 2に導 いたとき、 出力 # 1にはレベル調整部 2 1 5を通して光信号がリークされる。 し かし、 このリーク光信号は、 1 X 2光スィッチ 2 1 3、 レベル調整部 2 1 5、 及び 2 X 1光スィツチ 2 1 6の調整によって、 - 60 d B以下にすることがで きた。
以上説明したように、 図 9の構成によれば、 簡単な構成により、 小型で低価格 な光 ADMを得ることができる。 そして、 各経路の損失ばらつきを調整すること ができる。 更に、 電界印加によって屈折率変化する電気光学特性を持った導波路 型の光回路部品を用いているので、 アレイィヒ複合化を容易に図ることができる。 図 9において、 レベル調整部 2 14, 2 1 5, 2 1 7に図 1 0又は図 1 1 A. B に示した MZ型光スィッチを用いた場合、 可変減衰器として動作させることがで きる。 可変減衰器として動作させるには、 印加電圧を得たい減衰率になるように 変化させればよい。 これにより、 簡単に各経路の損失ばらつきを調整することが できる。
図 12は、 図 9に示した 1チャンネル分の光回路部を nチャンネル分にした構 成を示す。 図 1 2に示す光回路部 260は、 図 9に示した光回路部の複数組を用 いてアレイ化し、 合計で 8チャンネルの光回路部 26 1, 262, 263, 26 4 (同一構成) を構成したところに特徴がある。 ここでも、 デマルチプレクサ 2 1 2及びマルチプレクサ 2 1 8は図示を省略している。
光回路部 25 1について説明すると、 光導波路 22 1 a, 222 a, 223 a, 224 a, 225 a力 図 9の光導波路 22 1〜 225に相当し、 レベル調整部 2 1 a, 2 1 5 a, 2 1 7 aが図 9のレベル調整部 2 14, 2 1 5, 2 1 7に 相当し、 光スィッチ 2 1 3 a, 2 1 6 aが図 9の 1 X 2光スィッチ 2 1 3、 2 X 1光スィッチ 2 1 6に相当する。 同様に、 光回路部 262〜264の光導波 路 22 1 b, 222 b, 223 b, 224b, 225 b, 22 1 c, 222 c, 223 c, 224 c, 225 c, 22 1 d, 222 d, 223 d, 224 d, 2 25 dが図 9の光導波路 22 1〜 225に相当し、 レベル調整部 2 14 b, 2 1 5 b, 2 1 7 b, 2 14 c, 2 1 5 c, 2 1 7 c, 2 14 d, 2 1 5 d, 2 1 7 dが図 9のレベル調整部 2 14, 2 1 5, 2 1 7に相当し、 光スィツチ 2 1 3 b, 2 1 6 b, 2 1 3 c, 2 1 6 c, 2 1 3 d, 2 1 6 dが図 9の 1 X 2光スイツ チ 2 1 3及び 2 X 1光スィッチ 2 1 6に相当する。
光回路部 261〜264は独立しており、 これら光回路部は、 図 9で説明した 2入力 2出力のスィッチ動作及びレベル調整動作 (ゲート動作) を独自に実行す る。 このように、 2入力 2出力の光回路を必要に応じて増設することにより、 任 意の入力 X出力の光 ADMを構成することができる。 したがって、 簡単な構成 により、 小型で低価格な光 ADMを得ることができ、 また、 入力及び出力の数が どんなに増えても、 各経路の損失ばらっきを調整することが可能になる。
図 1 3は、 図 9に示した光回路部の変形例を示す。 本実施の形態は、 1 X 2 光スィッチ 2 1 3、 2 x 1光スィッチ 2 1 6、 及びレベル調整部 2 1 4, 2 1 5, 2 1 7の全てに方向性結合器型光スィッチを用いて構成している。 レベル調 整部 2 1 5は、 光導波路 223— 1, 223— 2により 1 X 2光スィツチ 2 1 3及び 2 X 1光スィッチ 2 1 6に接続されている。
また、 図 14は、 図 9に示した光回路部の他の変形例を示す。 本実施の形態は、 1 X 2光スィッチ 2 1 3及び 2 X 1光スィッチ 2 1 6に方向性結合器型光スィ ツチを用い、 レベル調整部 2 14, 2 1 5, 2 1 7に MZ型光スィッチを用いて 構成している。 この構成では、 上記したように、 MZ型光スィッチは、 印加電圧 の状態に応じてオン Zオフ状態又は可変減衰器を形成することができる。 したが つて、 オン Zオフ状態で用いたときにはリークを防止でき、 可変減衰器として用 いたときに ( 怪路のレベル合わせを行うことができる。
図 1 5は、 図 1 3の光回路部に電気制御系を加えた構成を示す。 1 X 2光ス イッチ 2 1 3は図 1 0で説明したように、 信号電極 2 1 3Aとグラウンド電極 2 1 3B, 2 1 3Cを備え、 光導波路の 2力所に方向性結合器が形成されている。 同様に、 2 X 1光スィッチ 2 1 6は、 信号電極 2 1 6 Aとグラウンド電極 2 1 6 B, 2 1 6Cを備え、 光導波路の 2力所に方向性結合器力形成されている。 ま た、 レベル調整部 2 14は信号電極 2 14 Aとグラウンド電極 2 14 B, 214 Cを備え、 レベル調整部 2 1 5は信号電極 2 1 5 Aとグラウンド電極 2 1 5B, 2 1 5Cを備え、 レベル調整部 2 1 7は信号電極 2 1 7 Aとグラウンド電極 2 1 7 B, 2 1 7 Cを備え、 各レベル調整部は光導波路の 2力所に方向性結合器力形 成されている。
更に、 信号電極 2 14 Aには配線パターン 29 1力接続され、 信号電極 2 1 6 Aには配線パターン 292カ接続され、 信号電極 2 1 7 Aには配線パターン 29 3カ接続されている。 また、 グラウンド電極 2 14B, 2 14C, 2 1 5 B, 2 1 5 C, 2 1 7 B, 2 1 7 Cは、 配線パターン 294によって共通接続されてい る。 配線パターン 29 1と酉己線パターン 294の間には直流電源 295力 妾続さ れ、 酉己線パターン 292と酉己線パターン 294の間には直流電源 296が接続さ れ、 酉己線パターン 293と配線パターン 294の間には直流電源 297カ 妾続さ れている。 また、 信号電極 2 1 3 Aと 2 1 6 Aは配線パターン 298によって接 続され、 グラウンド電極 2 14 B, 2 14C, 2 1 6 B, 2 1 6 Cは配線バタ一 ン 299により共通接続されている。 配線パターン 298と酉己線パターン 299 には直流電源 1 00力 ^接続されている。
直流電源 295〜 297及び 1 00は、 例えば、 0〜 50 Vの範囲で任意に可 変することができ、 要求される動作状態 (オン Zオフ状態、 又は所望の透過率) に応じて電圧を設定する。 レベル調整部 2 14, 2 1 5, 2 1 7は直流電源 29 5, 296, 297によって個別に電圧を設定することができ、 直流電源 295 〜297で個別に設定した電圧値に従って減衰率が変化する。 光スィッチ 2 1 3 と 2 1 6は、 直流電源 1 00によって同一値の電圧が印加される。 したがって、 光スィッチ 2 1 3, 2 1 6に V の電圧が印加されたときには入力 # 1と出力 # 1が連通し、 光スィッチ 2 1 3, 2 1 6に V2の電圧が印加されたときには入力 # 2と出力 # 1力連通する。
図 1 6 Α— 1 6Cは、 本発明の光スィッチ又はレベル調整部における光導波路 のレイアウト例を示す。 図 1 6 Aはレベル調整部であり、 光導波路 1 0 1, 1 0 2の両側に Y分岐型 3 dB力ブラ 1 03, 1 04を設けて構成されておリ、 1 X I ( 1入力 1出力) 減衰器として動作する。 図 1 6 Bは光スィッチとレベル 調整部のいずれにも利用可能な構成を有し、入力が Y分岐型 3 dB力ブラ 1 03、 出力が非対称 X構造の 1 X 2光スィツチ 1 05による構成になっている。 図 1 6 Cも光スィツチとレベル調整部のいずれにも利用可能な構成であリ、 光導波路 1 0 1, 1 02の両側に方向性結合器型 3 dB力ブラ 106, 107を設けて構 成され、 2 X 2光スィッチとして動作する。
図 1 7は、 本発明の光 ADMの第 2の実施の形態を示す。 本例は、 図 8の構成 からレベル調整部 2 14, 2 1 5, 2 1 7を除去したものである。 この構成によ れば、 各経路のレベル合わせは行えなくなるが、 1枚の基板上に光 ADMを構成 することができる。 レベル調整部 2 14, 2 1 5, 2 1 7を設けないことにより、 部品数の低減に伴う光 A D Mの小型化及び低価格化が可能になる。
図 1 8は、 本発明の光 ADMの第 3の実施の形態を示す。 本例は、 図 8の構成 からレベル調整部 214, 21 7を除去したものである。 この構成では、 D r o P及び Ad dの経路のレベル合わせは行えない。 しかし、 光スィッチ間の経路に ついては、 レベル調整部 215によるレベル調整が可能である。 この構成によつ ても、 部品数の低減に伴う光 A D Mの小型化及び低価格ィヒが可能になる。
また、 図 8の構成からレベル調整部 2 1 5のみを除去した構成も可能である。 或いは、 レベル調整部 214, 215を設けてレベル調整部 217を除去した構 成や、 レベル調整部 215とレベル調整部 217を設けてレベル調整部 214を 除去した構成等も可能である。
以上説明したように本発明の光 ADMによれば、 D r o p及び Ad dを行うた めの第 1及び第 2の光スィッチを 1枚の基板上に構成したため、 容易に小型化、 アレイ化、 及び複合機能化が図れ、 更には低価格ィ匕を図ることができる。
また、 本発明の光 ADMによれば、 D r o p及び Ad dを行うための第 1及び 第 2の光スィッチ間に第 1のレベル調整部を設け、 D r o pする光信号のレベル を第 2のレベル調整部で調整し、 Ad dする光信号のレベルを第 3のレベル調整 部で調整し、 かつ各部材を 1つの基板上に一体化したので、 光 ADMの小型化、 軽量化、 低価格、 及び複合機能化等が可能になるほか、 Dr op及び Ad dの経 路の光信号のレベル調整が可能になる。

Claims

錄 : の ¾ ^
1 . m個 (mは正の整数) の 1入力 n出力光スィッチ (nは正の整数) の出力 ポートと n個の m入力 1出力光スィッチの入力ポートとを m 1番目 (m lは正の 整数) の 1入力 n出力の光スィッチの出力ポートの n 1番目 (n lは正の整数) の出力ポートと η 1番目の m入力 1出力の光スィッチの m 1番目の入力ポートと を接続した形態をもって分岐一選択型ネットワークをなすマトリクス光スィツチ であって、 前記 1入力 n出力光スィツチ及び前記 m入力 1出力光スィツチが電界 印加によって屈折率が変化する電気光学特性を持つ材料からなリ、 前記 1入力 n 出力の光スィッチの出力ポートと前記 m入力 1出力の光スィッチの入力ポートと の間に夫々設けられかつ透過率を可変自在なゲート部材を有するマトリクス光ス ィツチ。
2 . 前記ゲート部材は、 1入力 1出力の可変光減衰器及び可変光増幅器の一方 からなる、 請求の範囲第 1項記載のマトリクス光スィツチ。
3 . 前記分岐一選択型ネットワークを構成するための前記光スィツチ及び前記 可変光減衰器の一方がマッハツェンダ干渉系からなる、 請求の範囲第 2項記載の マトリクス光スィッチ。
4 . 前記分岐一選択型ネットワークを構成するための前記光スィツチ及び前記 可変光減衰器の一方が方向性結合器からなる、 請求の範囲第 2項記載のマトリク ス光スィッチ。
5 . 前記分岐一選択型ネットワークを構成するための前記光スィッチ及び前記 可変光減衰器の一方が 1つの入力光導波路に Y分岐状に接続された複数の出力光 導波路の夫々の屈折率を電界変化によって変化させることで複数の出力光導波路 力 実際に光出力力得られる導波路を選択する機能をもつディジタル型光スイツ チからなる、 請求の範囲第 2項記載のマトリクス光スィッチ。
6 . 前記可変光減衰器及び前記可変光増幅器の一方が半導体光ァンプゲ一トか らなる、 請求の範囲第 2項記載のマトリクス光スィッチ。
7 . 前記マトリタス光スィツチ力^!気光学効果をもつ結晶材料中に形成された 光導波路からなり、 前記光導波路への印可電圧によって光経路の切替え及び透過 率の調整の一方を行う、 請求の範囲第 2項記載のマトリクス光スィツチ。
8 . 前記マトリクス光スィツチ力 ^電気光学効果をもつ結晶材料中に形成された 光導波路からなり、 前記光導波路への印可電圧によって光経路の切替え及び透過 率の調整の一方を行う、 請求の範囲第 3項記載のマトリクス光スィッチ。
9 . 前記マトリクス光スィツチが電気光学効果をもつ結晶材料中に形成された 光導波路からなり、 前記光導波路への印可電圧によつて光経路の切替え及び透過 率の調整の一方を行う、 請求の範囲第 4項記載のマトリクス光スィツチ。
1 0 . 基板と、 前記基板上に形成され、 第 1の入力ポートから入力された光 信号を第 1の出力ポート (ドロップ用端子) 又はスルー用端子のいずれかへ出力 する第 1の光スィッチと、
前記基板上に形成され、 前記第 1の光スィツチの前記スルー用端子から出力さ れた光信号又は第 2の入力ポート (アド用端子) からの光信号のいずれかを第 2 の出力ポ一トへ出力する第 2の光スィツチを備える光 ADM。
1 1 . 前記第 1及び第 2の光スィッチは、 電界の印加又は温度変化に応じて屈 折率を変化させ、 前記屈折率に応じて出力経路の切り替えを行う、 請求の範囲第
1 0項記載の光 A D M。
1 2 . 前記第 2の光スィッチは、 前記第 1の光スィッチからの光信号のレベル を調整するレベル調整部を介して前記第 1の光スィツチの前記スルー用端子に接 続される、 請求の範囲第 1 0項記載の光 A DM。
1 3 . 前記レベル調整部は、印加電圧又は注入電流に応じて透過率を変化させ、 前記透過率に応じて入力光信号の出力レベルを調整する、 請求の範囲第 1 2項記 載の光 A DM。
1 4 . 前記各光スィッチ及び前記レベル調整部は、 マッハツエンダ型光スイツ チ、 可変光増幅器、 可変光減衰器、 又は方向性結合器型光スィッチである、 請求 の範囲第 1 1項記載の光 A DM。
1 5 . 前記各光スィッチ及び前記レベル調整部は、 マッハツエンダ型光スイツ チ、 可変光増幅器、 可変光減衰器、 又は方向性結合器型光スィッチである、 請求 の範囲第 1 2項記載の光 A D M。
1 6 . 前記可変光減衰器又は可変光増幅器は、 半導体光アンプゲートである、 請求の範囲第 1 4項記載の光 A D M。
1 7 . 前記可変光減衰器文は可変光増幅器は、 半導体光アンプゲートである、 請求の範囲第 1 5項記載の光 A D M。
1 8 . 基板と、
前記基板上に形成され、 第 1の入力ポートから入力された光信号を第 1の出力 ポート (ドロップ用端子) 又はスルー用端子のいずれかへ出力する第 1の光スィ ツチと、
前記基板上に形成され、 前記第 1の光スィッチの前記スルー用端子から出力さ れた光信号又は第 2の入力ポート (アド用端子) からの光信号のいずれかを第 2 の出力ポートへ出力する第 2の光スィッチと、
前記基板上に形成され、 前記第 1の光スィツチから前記第 2の光スィツチに向 かう光信号のレベルを調整する第 1のレベル調整部と、
前記基板上に形成され、 前記ドロップ用端子へ出力する光信号のレベルを調整 する第 2のレベル調整部と、
前記基板上に形成され、 前記ァド用端子から前記第 2の光スィッチに入力され る光信号のレベルを調整する第 3のレベル調整部を備える光 A DM。
1 9 . 前記第 1及び第 2の光スィッチは、 電界の印加又は温度変化により屈折 率を変化させ、 前記屈折率に応じて出力経路の切り替えを行う、 請求の範囲第 1
8項記載の光 A DM。
2 0 . 前記第 1乃至第 3のレベル調整部は、 印加電圧又は電流注入に応じて透 過率を変化させ、 前記透過率に応じて入力光信号の出力レベルを調整する、 請求 の範囲第 1 8項記載の光 A DM。
2 1 . 前記各光スィッチ又は前記各レベル調整部は、 マッハツエンダ型光スィ ツチ、 可変光増幅器、 可変光減衰器、 又は方向' I生結合器型光スィッチである、 請 求の範囲第 1 9項記載の光 A D M。
2 2 . 前記各光スィッチ又は前記各レベル調整部は、 マッハツエンダ型光スィ ツチ、 可変光増幅器、 可変光減衰器、 又は方向性結合器型光スィッチである、 5冃 求の範囲第 20項記載の光 A DM
23. 前記可変光増幅器及び可変光減衰器は、 半導体光アンプゲートである、 請求の範囲第 21項記載の光 ADM
24. 前記可変光増幅器及び可変光減衰器は、 半導体光アンプゲートである、 請求の範囲第 22項記載の光 ADM
PCT/JP1999/003490 1998-07-01 1999-06-29 Commutateur optique matriciel et multiplexeur optique a insertion-extraction WO2000002085A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/720,787 US6597830B1 (en) 1998-07-01 1999-06-29 Matrix optical switch and optical ADM
EP99959126A EP1098219A4 (en) 1998-07-01 1999-06-29 MATRIX OPTICAL SWITCH AND OPTICAL MULTIPLEXER WITH INSERTION-EXTRACTION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10185787A JP2000019569A (ja) 1998-07-01 1998-07-01 光回路
JP10/185787 1998-07-01
JP11/108529 1999-04-15
JP11108529A JP2000298295A (ja) 1999-04-15 1999-04-15 光adm

Publications (1)

Publication Number Publication Date
WO2000002085A1 true WO2000002085A1 (fr) 2000-01-13

Family

ID=26448385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003490 WO2000002085A1 (fr) 1998-07-01 1999-06-29 Commutateur optique matriciel et multiplexeur optique a insertion-extraction

Country Status (3)

Country Link
US (1) US6597830B1 (ja)
EP (1) EP1098219A4 (ja)
WO (1) WO2000002085A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279056A1 (en) * 2000-03-27 2003-01-29 Lynx Photonic Networks Inc. Optical switching system with power balancing
US6760504B2 (en) * 2000-12-20 2004-07-06 Lynx Photonic Networks Inc. Optical switching system with power balancing

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076743B2 (en) * 2000-05-04 2006-07-11 I-Lor, Llc Method for adding a plurality of user selectable functions to a hyperlink
US20020141453A1 (en) * 2001-04-03 2002-10-03 Nasir Ghani Flexible add-drop multiplexer for optical telecommunication networks
US20030002104A1 (en) * 2001-06-29 2003-01-02 Caroli Carl A. Wavelength-selective add/drop arrangement for optical communication systems
EP1279999A1 (en) * 2001-07-23 2003-01-29 Corning Incorporated Polarization-insensitive variable optical attenuator
GB0119369D0 (en) * 2001-08-08 2001-10-03 Bookham Technology Plc Optic system
JP4676657B2 (ja) * 2001-08-30 2011-04-27 富士通株式会社 光アド・ドロップ多重化装置
US6788844B2 (en) * 2001-09-10 2004-09-07 Tropic Networks Inc. All-optical dynamic gain equalizer
US7236704B1 (en) * 2001-11-14 2007-06-26 Avanex Corporation Optical add/drop multiplexer utilizing variable optical attenuator
FR2832812B1 (fr) * 2001-11-29 2004-01-23 Commissariat Energie Atomique Dispositif de multiplexage d'une matrice de canaux optiques, application au multiplexage en longueur d'onde et a l'insertion-extraction
US6859567B2 (en) * 2001-11-30 2005-02-22 Photintech Inc. In-guide control of optical propagation
JP3970594B2 (ja) * 2001-12-05 2007-09-05 日本電気通信システム株式会社 光合分波システム
US6999652B2 (en) * 2002-11-06 2006-02-14 Nippon Telegraph And Telephone Corporation Optical module and optical switch constituting the same
FR2849305B1 (fr) * 2002-12-24 2005-04-29 Cit Alcatel Procede et dispositif perfectionnes de controle de la puissance delivree en sortie d'un noeud d'un reseau optique a commutation de bandes de longueurs d'onde
US7418205B2 (en) * 2003-03-25 2008-08-26 General Instrument Corporation Method and apparatus for controlling a frequency hopping laser
US20050259923A1 (en) * 2003-05-20 2005-11-24 Sriram Sriram S Optical coupler
JP4438350B2 (ja) * 2003-08-21 2010-03-24 横河電機株式会社 光スイッチ
JP4713837B2 (ja) * 2004-02-10 2011-06-29 株式会社日立製作所 光分岐挿入多重化装置
GB2419484A (en) * 2004-10-22 2006-04-26 Zhou Rong Optical N x M switch
JP4678647B2 (ja) * 2005-08-31 2011-04-27 富士通株式会社 光ノードのアップグレード方法および光ノード装置
WO2007120793A2 (en) * 2006-04-12 2007-10-25 Unifile, Llc Patient information storage and access
WO2011094435A1 (en) 2010-01-27 2011-08-04 Anand Gopinath Optical coupler
US9360629B2 (en) * 2011-02-15 2016-06-07 Nippon Telegraph And Telephone Corporation Waveguide type optical switch
JP6031785B2 (ja) 2012-03-19 2016-11-24 富士通株式会社 光スイッチ装置およびその制御方法
RU2702806C1 (ru) * 2018-12-03 2019-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ линейного оптического преобразования сигналов и интерферометр, реализующий такое преобразование
JP2020101599A (ja) 2018-12-20 2020-07-02 日本電信電話株式会社 光スイッチ素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300218A (ja) * 1987-05-30 1988-12-07 Nec Corp 光バイパススイッチモジュ−ル
JPH06337445A (ja) * 1993-05-31 1994-12-06 Nippon Telegr & Teleph Corp <Ntt> 集積化光スイッチ
JPH08220571A (ja) * 1994-12-08 1996-08-30 Alcatel Nv 小型ディジタル光学スイッチ
JPH10505212A (ja) * 1994-09-14 1998-05-19 シーメンス アクチエンゲゼルシヤフト ツリー構造における光1×nおよびn×nスイッチマトリクス
JPH10150433A (ja) * 1996-09-17 1998-06-02 Fujitsu Ltd 光通信システム
JPH10154961A (ja) * 1996-11-22 1998-06-09 Nec Corp 光送信装置及び光通信システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140790A (ja) 1983-02-01 1984-08-13 Nippon Telegr & Teleph Corp <Ntt> 光スイツチマトリクス
JPH06230438A (ja) 1993-02-02 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ
US5488500A (en) * 1994-08-31 1996-01-30 At&T Corp. Tunable add drop optical filtering method and apparatus
GB9516017D0 (en) * 1995-08-04 1995-10-04 Stc Submarine Systems Ltd Optical level control in wavelength add-drop multiplexing branching units
US5724167A (en) * 1995-11-14 1998-03-03 Telefonaktiebolaget Lm Ericsson Modular optical cross-connect architecture with optical wavelength switching
GB9617396D0 (en) * 1996-08-19 1996-10-02 Stc Submarine Systems Ltd Improvements in or relating to optical add/drop wavelength division multiplex systems
US5717798A (en) * 1996-09-12 1998-02-10 Lucent Technologies Inc. Optical waveguide system comprising a mode coupling grating and a mode discrimination coupler
JP2000235199A (ja) * 1999-02-15 2000-08-29 Oki Electric Ind Co Ltd 光スイッチ
JP2001066560A (ja) * 1999-08-26 2001-03-16 Nec Corp 光波長可変フィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300218A (ja) * 1987-05-30 1988-12-07 Nec Corp 光バイパススイッチモジュ−ル
JPH06337445A (ja) * 1993-05-31 1994-12-06 Nippon Telegr & Teleph Corp <Ntt> 集積化光スイッチ
JPH10505212A (ja) * 1994-09-14 1998-05-19 シーメンス アクチエンゲゼルシヤフト ツリー構造における光1×nおよびn×nスイッチマトリクス
JPH08220571A (ja) * 1994-12-08 1996-08-30 Alcatel Nv 小型ディジタル光学スイッチ
JPH10150433A (ja) * 1996-09-17 1998-06-02 Fujitsu Ltd 光通信システム
JPH10154961A (ja) * 1996-11-22 1998-06-09 Nec Corp 光送信装置及び光通信システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1998 NEN DENSHI JOUHOU TSUUSHIN GAKKAI SOCIETY TAIKAI KOUEN ROMBUNSHUU 2, (07-09-98), KUNINORI HATTORI et al., "B-10-89 Jidou Level Chousei Kinoutsuki PLCgata Hikari Ado Dropswitch", page 411. *
PROCEEDINGS OF 22nd EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, (ECOC'96) (OSLO, NORWAY), Regular and Invited Papers, Volume 4, (19 September 1996), Y. NAKABAYASHI et al., "DC-Drift Free-Polarization Independent Ti:LiNb03 8*8 Optical Matrix Switch", pages 4.157-4.160. *
PROCEEDINGS OF 24th EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC'98) (MADRID, SPAIN), Regular and Invited Papers, Volume 1, (September 1998), M. FUKUI et al., "1580nm Band All-Optical ADM Mode Prototype Equipped With Fast Automatic Level Control", pages 571-572. *
See also references of EP1098219A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279056A1 (en) * 2000-03-27 2003-01-29 Lynx Photonic Networks Inc. Optical switching system with power balancing
EP1279056A4 (en) * 2000-03-27 2007-11-14 Lynx Photonic Networks Inc OPTICAL INTERCONNECTION SYSTEM WITH PERFORMANCE COMPENSATION
US6760504B2 (en) * 2000-12-20 2004-07-06 Lynx Photonic Networks Inc. Optical switching system with power balancing

Also Published As

Publication number Publication date
US6597830B1 (en) 2003-07-22
EP1098219A1 (en) 2001-05-09
EP1098219A4 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
WO2000002085A1 (fr) Commutateur optique matriciel et multiplexeur optique a insertion-extraction
KR100380924B1 (ko) 광 전송 관련 장치 및 방법
US5953467A (en) Switchable optical filter
JP4739928B2 (ja) 波長選択光スイッチおよび波長選択光スイッチモジュール
US7428355B2 (en) Wavelength selective and level adjusting optical device
US4934775A (en) Optical space switches using cascaded coupled-waveguide optical gate arrays
JP3643249B2 (ja) 光回路およびネットワーク
JP5128254B2 (ja) 波長選択スイッチ
Doerr et al. 40-wavelength add drop filter
Suzuki et al. Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches
US6556736B2 (en) Dynamic passband shape compensation of optical signals
Suzuki et al. Low loss fully reconfigurable wavelength-selective optical 1/spl times/N switch based on transversal filter configuration using silica-based planar lightwave circuit
JPH0936834A (ja) 光分岐挿入回路
JP2000298295A (ja) 光adm
Nakamura et al. Silicon photonics based 1× 2 wavelength selective switch using fold-back arrayed-waveguide gratings
JP4197126B2 (ja) 光スイッチ及び光波長ルータ
JP2000019569A (ja) 光回路
JPH10243424A (ja) 光クロスコネクトシステム
US11194093B2 (en) Optical switch array and multicast switch
JP3727556B2 (ja) 光マトリクススイッチ
Doerr et al. 2 x 2 wavelength-selective cross connect capable of switching 128 channels in sets of eight
US6724952B2 (en) Wavelength selective cross-connect (WSC)
JP4634815B2 (ja) 光フィルタ
Doerr et al. Silica-waveguide 1× 9 wavelength-selective cross connect
JP4295269B2 (ja) スイッチングモジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999959126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09720787

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999959126

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999959126

Country of ref document: EP