WO1999067369A1 - Facteur de regulation du cycle cellulaire - Google Patents

Facteur de regulation du cycle cellulaire Download PDF

Info

Publication number
WO1999067369A1
WO1999067369A1 PCT/JP1999/003350 JP9903350W WO9967369A1 WO 1999067369 A1 WO1999067369 A1 WO 1999067369A1 JP 9903350 W JP9903350 W JP 9903350W WO 9967369 A1 WO9967369 A1 WO 9967369A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
compound
hcdsl
present
Prior art date
Application number
PCT/JP1999/003350
Other languages
English (en)
French (fr)
Inventor
Makoto Nakanishi
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to CA002331152A priority Critical patent/CA2331152A1/en
Priority to AU42895/99A priority patent/AU4289599A/en
Priority to EP99957181A priority patent/EP1090987A4/en
Publication of WO1999067369A1 publication Critical patent/WO1999067369A1/ja
Priority to US09/740,627 priority patent/US20020012964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4738Cell cycle regulated proteins, e.g. cyclin, CDC, INK-CCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/50Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving creatine phosphokinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a mammal-derived protein involved in cell cycle regulation and its gene.
  • the present invention provides mammal-derived genes having homology to scCdsl and spCdsl, and proteins thereof. Further, the present invention provides a vector, a transformed cell, and a method for producing a recombinant protein, which are used for producing the protein. The present invention also provides oligonucleotides used for detecting and isolating the gene, and antibodies used for detecting and purifying the protein. Furthermore, the present invention provides a compound that binds to the protein and a method of screening for a compound that promotes or inhibits the activity of the protein.
  • the present inventors searched for human Cdsl (hCdsl) having homology to scCdsl and spCdsl, which are yeast cell cycle regulators, based on the sequences of fission yeast spCdsl and baker's yeast scCdsl, based on GenBank EST.
  • hCdsl human Cdsl
  • spCdsl yeast cell cycle regulators
  • a consensus sequence was extracted by aligning the spCdsl gene, scCdsl gene, and the found dCdsl gene, and a degenerated primer was synthesized based on the sequence, and cDNA prepared from human cultured cells was used as a template.
  • a human-derived cDNA fragment was obtained by performing de-enerated PCR.
  • a primer based on the sequence of this cDNA fragment was prepared, and PCR was again performed using cMA prepared from human cultured cells as a template to finally isolate the full-length human Cdsl (hCdsl) gene.
  • hCdsl human Cdsl
  • a recombinant protein of “hCdsl” was prepared, and the kinase activity was detected in the in vivo mouth.
  • the protein efficiently converted cdc25 and histone HI.
  • a mutant protein that converted lysine 249 to methionine which appears to play an important role in kinase activity, abolished the phosphorylation of these substrates.
  • the “hCdsl” gene is characterized by very low expression in cell lines expressing the tumor suppressor protein p53 (normal type) and high expression in p53 mutant cell lines. Its expression was suppressed.
  • the protein of the present invention is considered to be involved in the regulation of the cell cycle, and can be used as an important tool in the development of new pharmaceuticals for diagnosis and treatment of proliferative diseases such as cancer.
  • compounds that inhibit the activity or expression of the protein of the present invention are expected to be applied to anticancer agents.
  • the present invention relates to a novel mammalian kinase protein involved in cell cycle regulation and its gene, a molecule used for detection, isolation, production, etc. of such protein and gene, and an activity of the protein. More specifically, regarding the screening of compounds that regulate
  • a protein having a kinase activity comprising one or more amino acids substituted, deleted, inserted, and / or added to the amino acid sequence of SEQ ID NO: 1;
  • a pharmaceutical composition comprising a compound that inhibits the kinase activity of the protein according to any one of (1) to (3),
  • a pharmaceutical composition comprising a compound that inhibits the expression of the DNA according to (4) in a cell
  • the present invention firstly relates to a novel mammal-derived protein involved in cell cycle regulation.
  • the amino acid sequence of a human-derived protein named "hCdsl" contained in the protein of the present invention is shown in SEQ ID NO: 1, and the nucleotide sequence of cDNA encoding the protein is shown in SEQ ID NO: 2.
  • the ⁇ hCdsl '' protein isolated by the present inventors has significant homology to the cell cycle regulators scCdsl and spCdsl known in yeast, and the expression of the ⁇ hCdsl '' gene in human tissues It was observed in many tissues, including (Example 2).
  • the hCdsl protein exhibits substrate-specific kinase activity in the mouth of the intestine, but plays an important role in the kinase activity assumed from the amino acid sequences of yeast and Drosophila-derived proteins. Mutation of the lysine at position 249 eliminated this kinase activity (Example 4).
  • the protein of the present invention can be prepared by a method known to those skilled in the art as a recombinant protein prepared by using a genetic recombination technique or as a natural protein.
  • a recombinant protein for example, a DNA encoding the protein of the present invention (for example, a DNA having the nucleotide sequence of SEQ ID NO: 2) is incorporated into an appropriate expression vector and introduced into host cells. Transformation obtained It can be prepared by a method such as purification from a transformant.
  • a natural protein for example, a column on which an antibody obtained by immunizing a small animal with the prepared recombinant protein is prepared, and a tissue or cell expressing the protein of the present invention (eg, testis)
  • the extract can be prepared by a method such as performing affinity chromatography using the column.
  • the present invention also relates to a protein functionally equivalent to the “hCdsl” protein.
  • a method for isolating such a protein a method for introducing a mutation into an amino acid in a protein is well known to those skilled in the art.
  • a method for modifying amino acids known to those skilled in the art for example, a method described in the document "New Cell Engineering Experimental Protocol, Tokyo University of Medical Science Research Institute Cancer Research Division, p241-248" can be mentioned. Mutations can also be introduced using a commercially available “QuikChange Site-Directed Mutagenesis Kit” (Stratagene).
  • the “hCdsl” protein shown in SEQ ID NO: 1 can be substituted with the “hCdsl” protein by appropriately substituting amino acids that do not affect the function. Isolation of a protein equivalent to is usually what can be done. Amino acid mutations can also occur in nature. As described above, the “hCdsl” has an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted and / or added in the amino acid sequence of the “hCdsl” protein (SEQ ID NO: 1). Proteins functionally equivalent to evening proteins are also included in the evening proteins of the present invention.
  • kinase activity in the present invention, a phosphate group (-P0 3 H 2) serine of substrate proteins were transferred to threonine or tyrosine residues, refers to activity resulting phosphoproteins.
  • the kinase activity of the protein can be detected according to the method described in Example 4 below.
  • Amino acids that mutate in proteins that are functionally equivalent to the “hCdsl” protein There is no particular limitation on the number of noic acids as long as they retain the same kinase activity as the “hCdsl” protein.
  • the mutation site may be any site as long as it retains the same kinase activity as the “hCdsl” protein.
  • a protein encoded by a DNA that hybridizes to a DNA encoding the hCdsl protein and a protein functionally equivalent to the hCdsl protein is also included in the protein of the present invention.
  • “Functionally equivalent” means that the protein has kinase activity equivalent to that of the “hCdsl” protein, as described above.
  • Organisms for isolating functionally equivalent proteins include, in addition to humans, mammals such as mice, rats, dogs, puppies, and monkeys. These proteins derived from mammals other than humans are useful, for example, in the development of animal model systems for drug development and the like.
  • the stringency of hybridization to isolate DNA encoding functionally equivalent proteins can be performed, for example, under the conditions of 10% formamide, 5xSSPE, lx Denhardt's solution, and lx salmon sperm DNA. . More preferable conditions (more stringent conditions) are 25% formamide, 5xSSPE, lx Denhardt's solution, and lx salmon sperm DNA. More preferable conditions (more stringent conditions) are 50% formamide. , 5xSSPE, 1x Denhardt's solution, 1x salmon sperm DNA.
  • the hybridization There may be a plurality of factors affecting the stringency other than the above-described formamide concentration, and those skilled in the art can realize the same stringency by selecting these factors as appropriate.
  • a part of the DNA (SEQ ID NO: 2) encoding the “hCdsl” protein may be isolated by a gene amplification method using a primer, for example, a PCR method. It is possible.
  • the mammalian DNA encoding a protein functionally equivalent to the “hCdsl” protein isolated by the hybridization technique or the gene amplification technique is generally a human-derived “hCdsl” described in SEQ ID NO: 2. It has high homology to DNA encoding proteins. High homology refers to sequence identity of at least 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more. For calculation of homology, for example, the method described in the literature (Proc. Natl. Acad. Sci. USA 80: 726, 1983) can be used.
  • the present invention also relates to a DNA encoding the protein of the present invention.
  • the DNA of the present invention is not particularly limited as long as it can encode the protein of the present invention, and includes cA, genomic MA, chemically synthesized DNA, and the like.
  • the DNA of the present invention can be prepared by a method generally used by those skilled in the art, for example, screening of a cDNA library or a genomic library using a part or all of the base sequence disclosed in SEQ ID NO: 2 as a probe, or a base sequence. Can be isolated by PCR using a part or all of the template as a template.
  • the DNA of the present invention can be used, for example, for the purpose of mass-producing the above-described protein of the present invention as a recombinant protein.
  • a DNA encoding the protein of the present invention (for example, the DNA of SEQ ID NO: 2) is inserted into an appropriate expression vector, and the vector is introduced into an appropriate cell.
  • the obtained transformant is cultured, and the expressed protein is purified.
  • the host-vector system used for the production of recombinant proteins is publicly available to those skilled in the art. Many systems of knowledge can be used.
  • the host cell is not particularly limited, and includes, for example, Escherichia coli, yeast, animal cells, and insect cells.
  • the vector for expressing the recombinant protein in the cell varies depending on the host cell. For example, for E. coli, pGEX (Pharmacia) and pET (Novagen) are preferably used.
  • PCDNA3.1 manufactured by Invitrogen
  • insect cells the Bac-to-Bac baculovirus expression system (manufactured by Gibco ML) is preferably used.
  • the vector can be introduced into a vector by a method known to those skilled in the art, for example, a method such as an electroporation method, a calcium phosphate method, a lipofection method, and a DEAE dextran method. Separation and purification of the recombinant protein expressed in the transformant can be performed by a conventional method, for example, when pGEX (Pharmacia) is used as a vector, Easily purify recombinant proteins (fused proteins) expressed by Onsepharose affinity chromatography or by nickel agarose affinity chromatography when pET (Novagen) is used. be able to.
  • the DNA of the present invention can be applied to gene therapy. Since the DNA of the present invention is involved in the regulation of the cell cycle, proliferative diseases such as cancer are mainly targeted diseases for gene therapy.
  • the DNA of the present invention is incorporated into a vector for expressing the DNA in a human body, for example, in vitro using a retrovirus method, a liposome method, an adenovirus method, or the like. It is introduced into the body by in vivo or ex vivo administration.
  • the present invention also relates to an antibody that binds to the protein of the present invention.
  • the form of the antibody of the present invention is not particularly limited, and includes a polyclonal antibody and a monoclonal antibody. It also includes antibodies such as chimeric antibodies, human antibodies, and human antibodies. Further, it includes not only a complete antibody but also a Fab fragment, an F (ab ') 2 fragment, a single chain scFv, and the like.
  • the antibody of the present invention is prepared by a method known to those skilled in the art. be able to.
  • a polyclonal antibody can be prepared by a known method, for example, by injecting the protein of the present invention into egrets and purifying the IG fraction by ammonium sulfate precipitation.
  • a hybridoma with myeloma cells is prepared using splenocytes of a mouse immunized with the protein of the present invention, and the monoclonal antibody secreted into the culture solution is prepared. It can be prepared by such methods as obtaining a large amount of monoclonal antibody by injecting it into the abdominal cavity.
  • the antibody thus prepared is used for affinity purification and detection of the protein of the present invention, and is also used for diagnosis of cell proliferative diseases such as cancer caused by abnormal expression of the protein of the present invention, etc. It may be applied to treatment and the like.
  • a humanized antibody or a human antibody is preferred from the viewpoint of immunogenicity.
  • the present invention also relates to a DNA that specifically hybridizes with a DNA encoding the protein of the present invention and has a chain length of at least 15 nucleotides.
  • “specifically hybridizes” means that the DNA hybridizes with DNA encoding other proteins under normal hybridization conditions, preferably under stringent hybridization conditions. Refers to no significant dicing.
  • Such a DNA can be used as a probe for detecting and isolating a DNA encoding the protein of the present invention, and as a primer for amplifying.
  • Specific primers include, for example, the primers described in SEQ ID NO: 5 or 6.
  • the present invention also relates to a method for screening a compound that binds to the protein of the present invention.
  • the screening method of the present invention includes (a) a step of bringing the protein of the present invention into contact with a test sample, and (b) a step of selecting a compound having an activity of binding to the protein of the present invention.
  • Test samples used for screening include, for example, purified proteins (including antibodies), gene library expression products, synthetic peptide libraries, cell extracts, cell culture supernatants, and synthetic low-molecular-weight compounds. But not limited to these.
  • As a method for selecting a compound having an activity of binding to the protein of the present invention many methods known to those skilled in the art can be used.
  • the protein that binds to the protein of the present invention may be, for example, a phage vector from a cell (eg, testis tissue cell) that is expected to express the protein that binds to the protein of the present invention.
  • proteins that bind to the protein of the present invention include “two hybrid systems” (“MATCHMARKER Two-Hybrid System j”, “Mammalian MATCHMAKER Two-Hybrid Assay Kit;”), and “MATCHMAKER One-Hybrid System j "HybriZAP Two-Hybrid Vector System” (manufactured by Stray Gene Co., Ltd.), literature "Dalton S, and Treisman R
  • SAP-1 a protein recruited by serum response factor to the c-fos serum response element.
  • Cell 68, 597-612 a protein recruited by serum response factor to the c-fos serum response element.
  • the protein of the present invention is fused with an SRF binding region or GAL4 binding region and expressed in yeast cells, and the protein that binds to the protein of the present invention is expressed.
  • a cDNA library is prepared from the cell which is expected to be fused with the VP16 or GAL4 transcription activation region, and is introduced into the yeast cell.
  • the cDNA derived from the library is isolated from the detected positive clones.
  • the protein that binds to the protein of the present invention is expressed in yeast cells, the binding of both proteins activates the repo overnight gene. And positive clones can be confirmed). Furthermore, the protein encoded by the cDNA can be obtained by introducing the isolated cDNA into E. coli or the like and purifying the protein expressed thereby.
  • a culture supernatant or cell extract of cells expected to express the protein of the present invention that binds to the protein of the present invention is placed on an affinity column on which the protein of the present invention is immobilized, and the specific column is used. It can also be prepared by purifying a protein that binds specifically. The amino acid sequence of the obtained protein is analyzed, oligo-MA is synthesized based on the amino acid sequence, and the DNA binding to the protein of the present invention is obtained by screening the cDNA library using the DNA as a probe. It is also possible to obtain DNA encoding
  • a method of allowing a synthetic compound, a natural product bank, or a random phage peptide display library to act on the immobilized protein of the present invention to screen binding molecules, and a high throughput by combinatorial chemistry technology Screening (Wrighton NC; Farrell FX; Chang R; Kashyap AK; Barbone FP; Mulcahy LS; Johnson DL; Barrett RW; Jol lif fe LK; Dower WJ., Small peptides as potent mimetics of the protein hormone erythropoietin, Science (UNITED STATES) Jul 26 1996, 273 p458-64, Verdine GL., The combinatorial chemistry of nature.Nature (ENGLAND) Nov 7 1996, 384 pi 13, Hogan JC Jr., Directed combinatorial chemistry.Nature (ENGLAND) Nov 7 1996, 384 binds to the protein of the present invention by P 17-9), low-molecular compounds, proteins (or
  • the thus obtained compound that binds to the protein of the present invention is a candidate for an agent for promoting or inhibiting the activity of the protein of the present invention.
  • the intracellular protein that binds to the protein of the present invention is considered to be closely related to the cell cycle regulatory function of the protein of the present invention, more specifically, to the kinase activity in vivo. Therefore, if an intracellular protein that binds to the protein of the present invention is obtained, a compound that inhibits the binding between the two is screened to develop a drug against diseases caused by abnormal cell cycle regulation such as cancer. It becomes possible.
  • the present invention also relates to a method for screening an inhibitor or promoter of the activity of the protein of the present invention.
  • the screening method of the present invention comprises: (a) a step of bringing the protein of the present invention into contact with its substrate in the presence of a test compound; (b) a step of measuring the kinase activity of the protein of the present invention on the substrate; and (C) selecting a compound that promotes or inhibits the kinase activity on the substrate of the protein of the present invention, as compared to the case where the measurement is performed in the absence of the test compound (control).
  • the test compounds used in the screening There is no particular limitation on the test compounds used in the screening.
  • libraries of synthetic low-molecular compounds for example, libraries of synthetic low-molecular compounds, purified proteins (including antibodies), expression products of gene libraries, libraries of synthetic peptides, cell extracts, cell cultures It is possible to use refining and the like.
  • a substrate used for detecting the kinase activity of the protein of the present invention for example, cdc25, histone Hl, or a fragment thereof can be used, but is not limited thereto.
  • the contact reaction between the protein of the present invention and a substrate can be performed, for example, as follows. Prepare a buffer containing the test compound, the protein of the present invention, the substrate, and ATP in which phosphorus is radiolabeled.
  • the kinase activity is detected.
  • Kinase activity is measured by detecting the radioactivity of phosphorus bound to the substrate.
  • the reaction solution was separated by electrophoresis (SDS-PAGE), and the gel was dried. The detection can be carried out by detecting the band of the phosphorylated substrate in step (1).
  • the kinase activity is similarly detected without adding a test compound. Compounds that result in a significant increase or decrease in kinase activity relative to controls are then selected.
  • hCdsl gene is low in various cell lines expressing functional p53 (known as a tumor suppressor protein), while the expression of hCdsl gene is high in p53 mutant cell lines. (Example 5). Furthermore, it was shown that the expression of the hCdsl gene was negatively regulated by p53 (Example 6). From these facts, it is considered that the expression of hCdsl is suppressed by p53 in normal cells, and the p53 pathway mainly functions in the DNA damage checkpoint mechanism.
  • drugs that inhibit hCdsl activity or drugs that specifically inhibit the hCdsl pathway in p53-mutated cancer cells are thought to have the effect of inducing cancer cell killing. Can be Taken together with the fact that the hCdsl pathway does not work well in normal cells, these drugs could be anticancer agents that work specifically for cancer cells without side effects.
  • Agents that specifically inhibit the hCdsl pathway in p53 mutant cancer cells include, for example, 53 mutant cell lines (eg, MDAH041 cell line, HeLa cell line, H937 cell line, SaOS2 cell line) , T98B cell line) with a candidate compound, and then detecting the expression of the hCdsl gene and selecting a compound that reduces the expression of the gene relative to a control not contacted with the candidate compound. It is possible to separate.
  • the hCdsl gene expression can be detected at the transcript level by a known method such as Northern blotting, or at the translation product level by a known method such as Western blotting. It is possible to do it.
  • a vector containing a reporter gene linked downstream of the promoter of the hCdsl gene may be introduced into cells, and the expression of the hCdsl gene may be detected based on the overnight activity of the repo.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the compound of the present invention which inhibits the kinase activity of a protein and a pharmaceutical composition comprising a compound which inhibits the expression of the protein of the present invention, preferably a pharmaceutical composition which is an anticancer agent.
  • Compounds obtained using the screening method of the present invention can be used to treat human mammals, for example, mice, rats, guinea pigs, egrets, chickens, cats, dogs, higgies, bushes, sea lions, monkeys, and baboons.
  • the isolated compound When used as a chimpanzee medicament, the isolated compound itself can be administered to a patient by formulating it by a known pharmaceutical method in addition to directly administering to the patient.
  • pharmacologically acceptable carriers or vehicles such as sterile water or saline, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, vehicles, It may be formulated by combining it with a preservative, a binder and the like in an appropriate amount and mixing it in a unit dosage form required for generally accepted pharmaceutical practice.
  • the amount of the active ingredient in these preparations is such that an appropriate dose in the specified range can be obtained.
  • Additives that can be incorporated into tablets and capsules include, for example, binders such as gelatin, corn starch, tragacanth gum, acacia, excipients such as crystalline cellulose, swelling agents such as corn starch, gelatin, and alginic acid. Agents, lubricants such as magnesium stearate, sucrose, lactose or saccharine Sweetening agents such as peppermint, flavoring agents such as peppermint, cocoa oil or cellulose are used.
  • the unit dosage form is a capsule, the above materials may further contain a liquid carrier such as an oil or fat.
  • Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous solutions for injection include, for example, saline, isotonic solutions containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizing agents.
  • glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizing agents.
  • alcohols specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 (TM), and HC0-50 may be used in combination.
  • Oily liquids include sesame oil and soybean oil, and may be used in combination with solubilizers such as benzyl benzoate and benzyl alcohol. It may also be combined with a buffer, for example, a phosphate buffer, a sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant.
  • a buffer for example, a phosphate buffer, a sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant.
  • the prepared injection solution is usually filled in a suitable ampoule.
  • Administration to patients is performed, for example, by intraarterial injection, intravenous injection, subcutaneous injection, etc., or intranasally, transbronchially, intramuscularly, transdermally, or orally by a method known to those skilled in the art. sell.
  • the dose varies depending on the weight and age of the patient, the administration method, and the like, but those skilled in the art can appropriately select an appropriate dose.
  • the compound can be encoded by DNA
  • the DNA may be incorporated into a vector for gene therapy to perform gene therapy.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, and the like, but can be appropriately selected by those skilled in the art.
  • the dose of the above compound varies depending on the symptoms, but in the case of oral administration, in general, for an adult (with a body weight of 60 kg), about 0.1 to 100 mg / day is preferable. Preferably it is about 1.0 to 50 mg, more preferably about 1.0 to 20 mg.
  • the single dose varies depending on the subject of administration, target organ, symptoms, and administration method.
  • parenteral injections it is usually used for adults (with a body weight of 60 kg) per day.
  • the dose can be administered in terms of the amount converted per 60 kg body weight or the amount converted per body surface area.
  • FIG. 1 is a diagram in which amino acids 1-260 of “hCdsl” are aligned with the amino acid sequences of “dCdsl” of Drosophila, spCdsl of fission yeast, and scCdsl of baker's yeast.
  • Amino acids are represented by one letter code. Amino acid gaps are indicated by hyphens. An asterisk indicates the position of the amino acid in the four species, and a dot indicates the position of the similar amino acid in the case of a similar amino acid.
  • FIG. 2 is a diagram in which amino acids 261 to 543 of the amino acid sequence of “hCdsl” are aligned with the amino acid sequences of “dCdsl” of Drosophila, spCdsl of fission yeast, and scCdsl of baker's yeast.
  • Amino acids are represented by one letter code. Amino acid gaps are indicated by hyphens. An asterisk indicates the position of the amino acid in the four species, and a dot indicates the position of the similar amino acid in the case of a similar amino acid.
  • FIG. 3 is a northern hybridization showing the expression of “hCdsl” in each human tissue.
  • FIG. 4 is a diagram showing the kinase activities of “hCdsl” and “KM mutant” in which lysine at position 249 has been converted to methionine.
  • WT below the bar in each lane represents the results of phosphorylation by “hCdsl” and phosphorylation by “KM” tt “KM mutant”.
  • Chkl WTj and" Chkl KM "indicate that human wild-type Chkl protein and Chkl mutant protein in which Lys at position 38 was converted to Met were used for phosphorylation. You. The substrate protein used for phosphorylation is indicated above the bar in each lane.
  • FIG. 5A is a Northern hybridization showing the expression of hCdsl in various cell lines.
  • Figure 5B shows Northern hybrids showing expression of hCdsl in cells obtained by transforming normal fibroblasts with SV40 Large T antigen, Papi's mouth virus E6 (HPV E6), and Papi's mouth virus E7 (HPV E7). It is a graph which showed the relative ratio of the dimension and the positive signal.
  • Genbank EST database was searched using BLAST.
  • the spCdsl gene, scCdsl gene, and dCdsl gene were aligned using the CLUSTAL V multiple-sequence alignment, and a consensus sequence was extracted.
  • MDAH041 cell cDNA was prepared by extracting total RNA from MDAH041 cells by the AGPC method (Analytical Biochem. 162, 156, 1987), then purifying mRNA using mRNA Purification Kit (Pharmacia), and improving Gubler and Hoffman. It was prepared using a cDNA synthesis kit (Gibco BRL) by the method (Gene, 25, 263, (1983)).
  • the DNA fragment obtained by the Digi-Enhanced PCR method is agarose gel After purification using Gene Clean Kit II (Funakoshi), the DNA was inserted into plasmid pGEM-T (Promega) and cloned.
  • the inserted DNA of the obtained plasmid had a partial sequence of 266 bases and showed homology to spCdsl.
  • cDNA fragments extended in the 5 ′ and 3 ′ directions by 5 ′ RACE method and 3 ′ RACE method were prepared and amplified.
  • the base sequence of each was determined, and based on the obtained base sequences, “Primer S_l” (SEQ ID NO: 5) and “Primer One-1” (SEQ ID NO: 6) were prepared.
  • the full-length "hmnan Cdsl (hCdsl)" cDNA was obtained by PCR using "primer S-1" and "primer one-1” and using the MDAH041 cDNA as a template.
  • the amplified fragment was subcloned into the EcoRI / XhoI site of pcDNA3.1 / myc-HisA (Invitrogen) to obtain the wild-type
  • the nucleotide sequence was determined using ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit with Aluminum DNA polymerase FS and 377A DNA sequencer (PerkinElmer). As a result, about 1.8 kb of about 1629 bp
  • 0.1 ml of co-transfection solution is slowly dropped onto a dish containing 0.5 ml of transfection solution A and Sf9 cells, left at 27 ° C for 4 hours, and then washed. Then, 1 ml of T-FH medium was added, the cells were cultured at 27 ° C for 5 days, and the supernatant was recovered to prepare a virus stock.
  • cell lysis buffer 50 mM HEPES pH 8.0, 150 mM NaCl, ImM EDTA, 2.5 mM EGTA, 103 ⁇ 4 glycerol, O.
  • NP-40 2 mg / ml aprotinin, O.lmM PMSF, ImM NaF, O.lmM Na 3 V0 4 , 10 mM 5-glycerol phosphate
  • the cell lysate was mixed with anti-myc antibody-bound protein A beads, and the desired recombinant “hCdsl” was bound to the beads. After washing the beads with cell lysis buffer, recombinant “hCdsl” was obtained as an immunoprecipitate.
  • a gene encoding a mutant (KM mutant) in which lysine 249 was converted to methionine was prepared by PCR.
  • the immunoprecipitates of the wild type and the mutant “hCdsl” were added to a kinase buffer (10 mM MgCl 2 , 50 mM HEPES pH 8.0, 2.5 mM EGTA, 1 mM DTT, 0.1 mM PMSF, Zmg / ml aprotinin, 10 mM 5 - glycerin port Fosufue Ichito, 0.
  • a kinase buffer (10 mM MgCl 2 , 50 mM HEPES pH 8.0, 2.5 mM EGTA, 1 mM DTT, 0.1 mM PMSF, Zmg / ml aprotinin, 10 mM 5 - glycerin port Fosufue Ichito, 0.
  • a fusion protein with evening thione S-transferase was prepared by the method described in the literature (Genes & Development 12, 382, 1998).
  • MRNA was purified from various cultured cells using the Pharmacia Quick prep.mRNA kit, 2 ⁇ g of each was transferred to a nylon membrane after agarose gel electrophoresis, and Northern blotting was performed using the hCdsl fragment as a probe. . As a control, detection using hGAPDH as a probe was also performed.
  • hCdsl As a result, in the cell lines MJ90, AT2KY and A172 expressing functional p53, Although the expression of hCdsl was very low, the expression of hCdsl was shown to be high in the p53 mutant cell lines MDAH041, HeLa, U937, SaOS2, and T98G (FIG. 5A). This revealed that hCdsl expression correlated very well with the presence or absence of mutations in the p53 gene. It was also suggested that the expression of hCdsl was regulated through p53.
  • Normal fibroblasts were transformed with SV40Large T, pap iloma virus E6, E7, respectively, and changes in hCdsl expression were analyzed by Northern blotting using the same method as described above.
  • each cell was infected with an adenovirus having wild-type p53, and the expression variation of hCdsl when exogenously expressing p53 was examined.
  • a protein and a gene derived from a mammal having a kinase activity are provided. Since the protein of the present invention is considered to be involved in cell cycle regulation, this has made it possible to develop new drugs for diagnosing and treating proliferative diseases such as cancer.
  • the gene encoding the protein of the present invention is expected to be applied to gene therapy for the above-mentioned diseases.
  • the present invention provides a host-vector system for producing the protein of the present invention. Mass production of protein has become possible.
  • the present invention provides an oligonucleotide that specifically hybridizes to DNA encoding the protein of the present invention, and an antibody that binds to the protein of the present invention. Isolation and the like can be easily performed.
  • the present invention provides a method of screening for a compound that binds to the protein of the present invention and a compound that promotes or inhibits the activity of the protein.
  • the compound thus isolated is useful as a drug candidate compound for diagnosis or treatment of the above-mentioned diseases.
  • compounds that inhibit the activity or expression of the protein of the present invention are expected to be used as anticancer agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細; 細胞周期調節因子 技術分野
本発明は、 細胞周期の調節に関与する哺乳動物由来のタンパク質およびその 遺伝子に関する。 背景技術
細胞の分裂、 増殖には、 遺伝子複製、 有糸分裂等の過程が存在し、 細胞周期 が形成されている。 細胞周期の進展は細胞周期チェックポイント(cell cycle checkpoint)により厳密に制御されており、 例えば、 DNAが損傷した場合には、 修復されるまで有糸分裂は停止する (Science 274, 1664, 1996; Science 246, 629, 1989)。 近年、 細胞周期チェックポイントにおいて重要な役割を果たすと 考えられる細胞周期調節因子が明らかになつてきた (Scienc& 277, 1450, 1997; Cell 91, 865, 1997)。 例えば、 パン酵母のサッカロミセス ' セレビジェ (Saccharomyces cerevisiae)を用いた研究により、 細胞周期調節因子としてキ ナーゼ活性を有する Rad53(scCdsl とも呼ばれる)が同定され (Genes & Development 8, 2401, 1994; Genes & Development. 10, 395, 1996)、 さらに、 分裂酵母のシゾサッカロミセス 'ボンべ(Schizosaccharomyces pombe)において も、 Rad53 (scCdsl)の相同分子 Cdsl(spCdslとも呼ばれる)が同定され (Nature 374, 817, 1995; Genes & development 12, 382, 1998)、 細胞周期調節因子の 機能が徐々に明らかになつてきた。
しかしながら、 哺乳動物細胞はパン酵母や分裂酵母とは異なり、 取り扱いが 困難なことから、 現在までに scCdslや spCdslに対応する分子は哺乳動物では 見いだされていない。 哺乳動物由来の遺伝子やタンパク質は、 細胞周期を調節 する医薬品開発への応用が可能であるため、 その単離および解析は極めて重要 である。 発明の開示
本発明は、 scCdslや spCdsl と相同性を有する哺乳動物由来の遺伝子、 およ びそのタンパク質を提供する。 また、 本発明は、 該タンパク質の製造などに利 用されるベクター、 形質転換細胞、 および組み換えタンパク質の製造方法を提 供する。 また、 本発明は、 該遺伝子の検出や単離などに利用されるオリゴヌク レオチド、および該タンパク質の検出や精製などに利用される抗体を提供する。 さらに、 本発明は、 該タンパク質に結合する化合物および該タンパク質の活性 を促進若しくは阻害する化合物をスクリーニングする方法を提供する。
本発明者等は、 酵母の細胞周期調節因子である scCdslや spCdsl と相同性を 有するヒト Cdsl (hCdsl )を探索するために、 分裂酵母の spCdsl及びパン酵母 の scCdsl配列を基に、ジェンバンク ESTデータベースを検索したところ、 spCdsl および scCdsl と有意な相同性を有するショウジヨウバエ(drosophi la)の相同 分子 dCdslを見いだした。 次いで、 spCdsl遺伝子、 scCdsl遺伝子、 および見出 した dCdsl遺伝子の整列化によりコンセンサス配列を抽出し、 該配列に基づき デジエネレーテド(degenerated)プライマ一を合成し、ヒト培養細胞から調製し た cDNAをテンプレー卜としてデジエネレーテド PCRを行うことにより、ヒ卜由 来の cDNA断片を得た。 さらに、 この cDNA断片の配列に基づくプライマ一を調 製し、再度ヒ ト培養細胞から調製した cMAをテンプレートとして PCRを行うこ とにより、 遂にヒト Cdsl (hCdsl )の遺伝子全長を単離することに成功した。 この遺伝子をプロ一ブにしたヒ ト組織のノーザン解析を行ったところ、 「hCdsl」は精巣で強く発現している他、 その他の組織でも広く発現が確認され た。 また、 「hCdsl」 の組換えタンパク質を調製して、 インビト口におけるキナ ーゼ活性の検出を行った結果、該夕ンパク質は cdc25およびヒストン HIを効率 よく リン酸化した。 さらに、 キナーゼ活性に重要な働きを示すと思われる 249 番のリジンをメチォニンに変換した変異タンパク質が、 これら基質のリン酸化 能を消失させた。
さらに、 「hCdsl」 遺伝子は、 癌抑制蛋白質である p53 (正常型) を発現して いる細胞株で発現が非常に低く、 p53 変異細胞株で発現が高いという特性を示 し、 p53の発現によりその発現が抑制された。
本発明のタンパク質は、 細胞周期の調節に関与していると考えられ、 癌など の増殖性疾患の診断や治療のための新たな医薬品の開発の重要なツールとして 利用しうる。 特に、 本発明のタンパク質の活性や発現を阻害する化合物には、 抗癌剤への応用が期待される。
本発明は、 細胞周期の調節に関係する新規な哺乳動物由来のキナーゼタンパ ク質およびその遺伝子、 これらタンパク質および遺伝子の検出、 単離、 製造な どに用いられる分子、 並びに該夕ンパク質の活性を調節する化合物のスクリー 二ングなどに関し、 より具体的には、
( 1 ) 配列番号 : 1に記載のアミノ酸配列からなるタンパク質、
( 2 ) 配列番号 : 1に記載のアミノ酸配列において 1若しくは複数のァミノ 酸が置換、 欠失、 挿入、 および/もしくは付加したアミノ酸配列からなり、 キ ナーゼ活性を有するタンパク質、
( 3 ) 配列番号 : 2に記載の塩基配列からなる DNAとハイプリダイズする哺 乳動物由来の DNAがコードするタンパク質であって、 キナーゼ活性を有する夕 ンパク質、
(4) ( 1 ) から (3) のいずれかに記載のタンパク質をコードする DNA、
( 5 ) (4) に記載の DNAが挿入されたべクタ一、
( 6) (4) に記載の MAを発現可能に保持する形質転換体、
(7) ( 6) に記載の形質転換体を培養する工程を含む、 ( 1 ) から (3) の いずれかに記載のタンパク質の製造方法、 (8) ( 1 ) から (3) のいずれかに記載のタンパク質に結合する抗体、
(9) (4) に記載の DNAと特異的にハイプリダイズし、 少なくとも 15ヌク レオチドの鎖長を有する DNA、
( 10) ( 1 ) から (3) のいずれかに記載のタンパク質に結合する活性を 有する化合物をスクリーニングする方法であって、
(a) ( 1 )から (3)のいずれかに記載のタンパク質に被検試料を接触させる 工程、
(b) ( 1 ) から ( 3 )のいずれかに記載のタンパク質に結合する活性を有する 化合物を選択する工程、 を含む方法、
( 1 1 ) ( 1 ) から ( 3 ) のいずれかに記載の夕ンパク質のキナーゼ活性を促 進もしくは阻害する化合物をスクリ一ニングする方法であって、
(a) 被検化合物の存在下で ( 1 ) から (3) のいずれかに記載のタンパク質 とその基質とを接触させる工程、
(b) ( 1 ) から ( 3)のいずれかに記載のタンパク質の基質に対するキナーゼ 活性を測定する工程、
(c) 被検化合物の非存在下において測定を行った場合(対照) と比較して、 ( 1 ) から (3) のいずれかに記載のタンパク質の基質に対するキナーゼ活性 を促進または阻害する化合物を選択する工程、 を含む方法、
( 12) ( 1 0 ) または ( 1 1 ) に記載の方法により単離しうる化合物、
( 13) タンパク質である、 ( 1 2) に記載の化合物、
( 14) タンパク質が抗体である、 ( 1 3) に記載の化合物、
( 1 5) ( 1 ) から (3) のいずれかに記載のタンパク質のキナーゼ活性を 阻害する化合物を含有する医薬組成物、
( 1 6) 細胞内において (4) に記載の DNAの発現を阻害する化合物を含有 する医薬組成物、
( 17) 抗癌剤である、 ( 1 5) または ( 1 6 ) に記載の医薬組成物、 を含む < 本発明は、 第一に、 細胞周期の調節に関与する哺乳動物由来の新規なタンパ ク質に関する。 本発明のタンパク質に含まれる 「hCdsl」 と命名されたヒト由来 のタンパク質のアミノ酸配列を配列番号 : 1に、 該タンパク質をコードする cDNA の塩基配列を配列番号: 2に示す。 本発明者らが単離した 「hCdsl」 タン パク質は、 酵母で知られている細胞周期調節因子 scCdslおよび spCdsl と有意 な相同性を有し、 ヒト組織における 「hCdsl」遺伝子の発現は精巣を含む多くの 組織で観察された (実施例 2 )。 また 「hCdsl」 タンパク質は、 インビト口にお いて基質特異的なキナーゼ活性を示す一方、 酵母やショウジヨウバエ由来の夕 ンパク質のアミノ酸配列から想定されたキナーゼ活性に重要な働きを示すと考 えられる 249番目のリジンを変異させると、 このキナーゼ活性を消失した (実 施例 4 )。 これらの事実は、 「hCdsl」力 酵母やショウジヨウバエ由来のタンパ ク質と同様に細胞周期の調節において機能し、 この機能においてタンパク質に おけるキナーゼ活性が重要な役割を担っていることを証明するものである。 さ らに、 このような 「hCdsl」 タンパク質と細胞周期の調節との関係は、 該タンパ ク質およびその遺伝子、 さらには「hCdsl」 タンパク質の機能を調節する化合物 力 癌などの細胞周期の異常に関連する疾患の診断や治療へ応用しうることを 示唆する。
実際、 「hCdsl」 遺伝子の発現は、 機能的 p53を発現する細胞株で低く、 変異 p53発現細胞で高かった (実施例 5 )。 また、 「hCdsl」 遺伝子の発現は、 p53に よる負の制御を受けていた (実施例 6 )。従って、 特に、 「hCdsl」 タンパク質の 機能や発現を阻害する化合物には、 抗癌剤への応用が期待される。
本発明のタンパク質は、 当業者に公知の方法により、 遺伝子組み換え技術を 用いて調製される組み換えタンパク質として、 また天然の夕ンパク質として調 製することが可能である。 組み換えタンパク質であれば、 例えば、 本発明の夕 ンパク質をコードする DNA (例えば、 配列番号: 2に記載の塩基配列を有する DNA)を適当な発現べクタ一に組み込み、 これを宿主細胞に導入して得た形質転 換体から精製するなどの方法により調製することが可能である。 また、 天然の タンパク質であれば、 例えば、 調製した組み換えタンパク質を小動物に免疫す ることにより得た抗体を固定したカラムを調製し、 本発明のタンパク質の発現 する組織もしくは細胞 (例えば、 精巣など) の抽出物に対し該カラムを用いた ァフィ二ティ一クロマトグラフィーを行うなどの方法により調製することが可 能である。
また、本発明は、 「hCdsl」タンパク質と機能的に同等なタンパク質に関する。 このようなタンパク質を単離するための方法としては、 タンパク質中のアミノ 酸に変異を導入する方法が当業者によく知られている。 当業者に公知のアミノ 酸を改変する方法としては、 例えば、 文献 「新細胞工学実験プロ トコ一ル 東 京大学医科学研究所 制癌研究部編 p241- 248」 に記載の方法が挙げられる。 また、 市販の 「QuikChange Site- Directed Mutagenesis Kit」 (ストラタジーン 社製) を利用して変異を導入することも可能である。 当業者にとっては、 これ らの方法を利用して、 配列番号: 1に示された 「hCdsl」 タンパク質において、 その機能に影響を与えないアミノ酸を適宜置換などして、 「hCdsl」 タンパク質 と機能的に同等なタンパク質を単離することは通常行いうることである。また、 アミノ酸の変異は自然界においても生じることもある。 このように「hCdsl」 夕 ンパク質 (配列番号: 1 ) 中のアミノ酸配列において 1 もしくは複数のァミノ 酸が置換、 欠失、 挿入および/も しくは付加されたアミノ酸配列を有し、 「hCdsl」夕ンパク質と機能的に同等なタンパク質も本発明の夕ンパク質に含ま れる。 ここで 「機能的に同等」 とは、 タンパク質が天然型の 「hCdsl」 タンパク 質と同等のキナーゼ活性を有することを指す。本発明において「キナーゼ活性」 とは、 リン酸基(-P03H2 )を基質タンパク質のセリン、 スレオニンあるいはチロ シン残基に転移させ、 リン酸化タンパク質を生ずる活性を指す。 タンパク質の キナーゼ活性は、 後述の実施例 4に記載の方法に従って検出することが可能で ある。 「hCdsl」 タンパク質と機能的に同等なタンパク質において変異するアミ ノ酸の数は、 「hCdsl」 タンパク質と同等のキナーゼ活性を保持する限り特に制 限はない。 通常、 50アミノ酸以内であり、 好ましくは 20アミノ酸以内であり、 さらに好ましくは 10ァミノ酸以内であり、さらに好ましくは 5ァミノ酸以内で ある。 また、 変異部位は、 「hCdsl」 タンパク質と同等のキナーゼ活性を保持す る限り、 いかなる部位であってもよい。
また、 機能的に同等なタンパク質を単離するための他の方法としては、 ハイ プリダイゼーション技術 (例えば、 Sambroo J et al . , Molecular Cloning 2nd ed.9.47-9.58, Cold Spring Harbor Lab. press, 1989参照) を利用する方法が当 業者によく知られている。 即ち、 当業者であれば、 「hCdsl」 タンパク質をコー ドする DNA (配列番号: 2 ) 若しくはその一部を基に、 これと相同性の高い DNA を単離して、 該 DNAから 「hCdsl」 タンパク質と機能的に同等なタンパク質を得 ることも通常行いうることである。 このように「hCdsl」 タンパク質をコ一ドす る DNAとハイプリダイズする DNAがコードするタンパク質であって、 「hCdsl」 タンパク質と機能的に同等なタンパク質もまた本発明のタンパク質に含まれる ここで 「機能的に同等」 とは、 上記と同様に、 タンパク質が 「hCdsl」 タンパク 質と同等のキナーゼ活性を有していることを指す。 機能的に同等なタンパク質 を単離するための生物としては、 ヒ ト以外に、 例えば、 マウス、 ラッ ト、 ィヌ、 ゥサギ、 サルなどの哺乳動物が挙げられる。 これらヒト以外の哺乳動物由来の タンパク質は、 例えば、 医薬品開発などのための動物モデル系の開発に有用で ある。 機能的に同等なタンパク質をコ一ドする DNAを単離するためのハイプリ ダイゼーシヨンのストリンジエンシーは、 例えば、 10%ホルムアミ ド、 5xSSPE、 lxデンハルト溶液、 lxサケ精子 DNAの条件で行うことができる。より好ましい 条件 (よりストリンジヱン卜な条件) としては、 25%ホルムアミ ド、 5xSSPE、 lxデンハルト溶液、 lxサケ精子 DNAの条件であり、 さらに好ましい条件(さら にストリンジヱントな条件) としては、 50%ホルムアミ ド、 5xSSPE、 lxデンハ ルト溶液、 lxサケ精子 DNAの条件である。 但し、 ハイブリダィゼ一シヨンのス トリンジエンシーに影響する要素としては上記ホルムアミ ド濃度以外にも複数 考えられ、 当業者であればこれら要素を適宜選択することで同様のストリンジ エンシーを実現することが可能である。 また、 ハイブリダィゼーシヨンにかえ て、 「hCdsl」 タンパク質をコードする DNA (配列番号: 2 ) の一部をプライマ 一に用いる遺伝子増幅法、 例えば、 PCR 法を利用して単離することも可能であ る。
これらハイプリダイゼーシヨン技術または遺伝子増幅技術により単離される 「hCdsl」タンパク質と機能的に同等なタンパク質をコードする哺乳動物由来の DNAは、 通常、 配列番号: 2に記載のヒト由来の 「hCdsl」 タンパク質をコード する DNAと高い相同性を有する。 高い相同性とは、 少なくとも 70%以上、 好ま しくは 80 %以上、 さらに好ましくは 90%以上、 さらに好ましくは 95 %以上の 配列の同一性を指す。 相同性の算出には、 例えば文献 ( Proc . Natl . Acad. Sc i . USA 80 : 726 , 1983) に記載の方法を用いることができる。
また、 本発明は、 上記本発明のタンパク質をコードする DNAに関する。 本発 明の DNAとしては、 本発明のタンパク質をコードしうるものであれば特に制限 はなく、 c A、 ゲノム MA、 化学合成 DNAなどが含まれる。 本発明の DNAは、 当業者に通常利用される方法、 例えば、 配列番号 : 2に開示された塩基配列の 一部若しくは全部をプローブとして利用した、 cDNAライブラリ一やゲノムライ ブラリーのスクリーニング、 あるいは塩基配列の一部若しくは全部をテンプレ ートとして利用した PCR法により単離することが可能である。本発明の DNAは、 例えば、 上記本発明の夕ンパク質を組み換えタンパク質として量産する目的に 利用しうる。 組み換えタンパク質の製造においては、 本発明のタンパク質をコ ードする DNA (例えば、 配列番号: 2に記載の DNA) を適当な発現ベクターに揷 入し、 該ベクタ一を適当な細胞に導入して得た形質転換体を培養し、 発現させ たタンパク質を精製する。
組み換えタンパク質の生産に用いる宿主一ベクター系としては、 当業者に公 知の多くの系を用いることが可能である。 宿主細胞としては、 特に制限されな いが、 例えば、 大腸菌、 酵母、 動物細胞、 昆虫細胞が挙げられる。 細胞内で組 み換えタンパク質を発現させるためのベクターは、 宿主細胞に応じて変動する が、 例えば、 大腸菌であれば pGEX (フアルマシア社製)、 pET (ノバ一ゲン社製) が好適に用いられ、 動物細胞であれば PCDNA3. 1 (インビトロゲン社製) が好適 に用 、られ、昆虫細胞であれ (ま Bac-to-Bac baculovirus expression system (ギ ブコ ML社製) が好適に用いられる。 細胞へのベクターの導入は、 当業者に公 知の方法、 例えば、 電気的穿孔法、 リン酸カルシウム法、 リポフエクシヨン法、 DEAEデキストラン法などの方法で行うことが可能である。形質転換体の培養、 および形質転換体に発現させた組換えタンパク質の分離、 精製は、 常法により 行うことが可能である。 ベクタ一として、 例えば、 pGEX (フアルマシア社製) を用いた場合にはグル夕チオンセフアロースァフィニティ一クロマトグラフィ —により、 また pET (ノバ一ゲン社製) を用いた場合にはニッケルァガロース ァフィ二ティークロマトグラフィーにより発現させた組み換えタンパク質 (融 合タンパク質) を容易に精製することができる。
また、 本発明の DNAは、 遺伝子治療への応用も考えられる。 本発明の DNAは、 細胞周期の調節に関与しているため、 特に癌などの増殖性疾患などが遺伝子治 療の主な対象疾患である。本発明の DNAを遺伝子治療目的で利用する場合には、 本発明の DNAをヒ ト体内で発現させるためのベクターに組み込み、例えば、レ 卜 ロウィルス法、リポソーム法、アデノウィルス法などを用いて、 in vivoまたは ex vivo投与により体内に導入する。
また、 本発明は、 本発明のタンパク質に結合する抗体に関する。 本発明の抗 体の形態には、 特に制限はなく、 ポリクロ一ナル抗体およびモノクローナル抗 体が含まれる。 また、 キメラ抗体、 ヒト型抗体、 およびヒト抗体などの抗体を 含む。 さらに、 完全な形態の抗体のみならず、 Fab断片、 F( ab' )2断片、 シング ルチェイン scFvなどを含む。本発明の抗体は、 当業者に公知の方法で調製する ことができる。 ポリクローナル抗体であれば、 例えば、 本発明のタンパク質を ゥサギなどに注入し、硫安沈殿により IG画分を精製するなど公知の方法で調製 することが可能である。 また、 モノクローナル抗体であれば、 例えば、 本発明 の夕ンパク質で免疫されたマウスの脾細胞を用いて骨髄腫細胞とのハイプリ ド 一マを調製し、 培養液中に分泌されるモノクローナル抗体を得て、 さらに腹腔 内に注入して大量のモノクローナル抗体を得るなどの方法で調製することが可 能である。 これにより調製された抗体は、 本発明のタンパク質のァフィ二ティ 一精製や検出のために用いられる他、 本発明のタンパク質の発現異常などに起 因する癌などの細胞増殖性疾患の診断や抗体治療などに応用することも考えら れる。 抗体治療に用いる場合には、 免疫原性の観点から、 ヒト化抗体もしくは ヒ ト抗体であることが好ましい。
また、 本発明は、 本発明のタンパク質をコードする DNAと特異的にハイプリ ダイズし、少なくとも 15ヌクレオチドの鎖長を有する DNAに関する。ここで「特 異的にハイブリダィズする」 とは、 通常のハイプリダイゼーシヨン条件下、 好 ましくはストリンジェン卜なハイプリダイゼーシヨン条件下で、 他の夕ンパク 質をコードする DNAとクロスハイプリダイゼ一ションが有意に生じないことを 指す。 このような DNAは、 本発明のタンパク質をコードする DNAを検出、 単離 するためのプローブとして、 また増幅するためのプライマ一として利用可能で ある。 具体的なプライマーとしては、 例えば、 配列番号 : 5または 6に記載の プライマーが挙げられる。
また、 本発明は、 本発明のタンパク質に結合する化合物のスクリーニング方 法に関する。本発明のスクリーニング法は、 (a )本発明のタンパク質と被験試 料とを接触させる工程、 および (b ) 本発明のタンパク質に結合する活性を有 する化合物を選択する工程を含む。スクリーニングに用いる被検試料としては、 例えば、 精製タンパク質 (抗体を含む)、 遺伝子ライブラリーの発現産物、 合成 ペプチドのライブラリー、 細胞抽出液、 細胞培養上清、 合成低分子化合物のラ イブラリーなどが挙げられるが、 これらに制限されない。 本発明のタンパク質 に結合する活性を有する化合物を選択する方法としては、 当業者に公知の多く の方法を用いることができる。
本発明のタンパク質を用いてこれに結合する化合物を単離する方法としては、 例えば、 以下の方法が当業者によく知られている。 本発明のタンパク質と結合 するタンパク質は、 例えば、 本発明のタンパク質と結合するタンパク質を発現 してることが予想される細胞 (例えば、 精巣組織細胞) よりファージベクター
( Agtll , ZAPなど) を用いた cDNAライブラリーを作製し、 これを LB-ァガロ ース上で発現させフィルターに発現させたタンパク質を固定し、 本発明の夕ン パク質をピオチンラベル、 あるいは GST夕ンパク質との融合夕ンパク質として 精製し、 これを上記フィルタ一と反応させ、 結合するタンパク質を発現してい るプラークを、 ス トレプトアビジン、 あるいは抗 GST抗体により検出する 「ゥ エストウエス夕ンブロッテイング法」 (Skolnik EY, Margol is B, Mohammad i M, Lo enstein E, Fischer R, Drepps A, Ul lrich A, and Schlessinger J
( 1991 ) Cloning of P I3 kinase - associated p85 uti l izing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cel l 65, 83-90) により調製することが可能である。 また、 本発明のタンパク質に結 合するタンパク質は、 「twoハイブリッ ドシステム」 (「MATCHMARKER Two- Hybrid Systemj , 「 Mammal ian MATCHMAKER Two-Hybrid Assay Kit;」 , 「 MATCHMAKER One-Hybrid Systemj (いずれもクロンテック社製)、 「HybriZAP Two-Hybrid Vector System」 (ス トラ夕ジーン社製)、 文献 「Dalton S, and Treisman R
( 1992 ) Characterizat ion of SAP - 1, a protein recruited by serum response factor to the c-fos serum response element . Cel l 68, 597 - 612」) を禾幅し て調製することも可能である。 two ハイブリッ ドシステムにおいては、 まず、 本発明のタンパク質を SRF結合領域または GAL4結合領域と融合させて酵母細胞 の中で発現させ、 本発明のタンパク質と結合するタンパク質を発現しているこ とが予想される細胞より、 VP16 または GAL4転写活性化領域と融合する形で発 現するような cDNAライブラリ一を作製し、 これを上記酵母細胞に導入する。次 いで、検出された陽性クローンからライブラリー由来 cDNAを単離する (酵母細 胞内で本発明の夕ンパク質と結合するタンパク質が発現すると、 両者の結合に よりレポ一夕一遺伝子が活性化され、 陽性のクローンが確認できる)。 さらに、 単離した cDNAを大腸菌などに導入し、これにより発現させたタンパク質を精製 することにより、 該 cDNAがコードするタンパク質を得ることができる
さらに、 本発明のタンパク質を固定したァフィ二ティ一カラムに本発明の夕 ンパク質と結合するタンパク質を発現していることが予想される細胞の培養上 清もしくは細胞抽出物をのせ、 カラムに特異的に結合するタンパク質を精製す ることにより調製することも可能である。 得られたタンパク質のアミノ酸配列 を分析し、 それを基にオリゴ MAを合成し、該 DNAをプローブとして cDNAライ ブラリ一をスクリ一ニングすることにより、 本発明の夕ンパク質と結合する夕 ンパク質をコードする DNAを得ることも可能である。
また、 固定した本発明のタンパク質に、 合成化合物、 または天然物バンク、 もしくはランダムファージぺプチドディスプレイライブラリーを作用させ、 結 合する分子をスクリ一ニングする方法や、 コンビナトリアルケミストリー技術 によるハイスループッ トを用いたスクリーニング (Wrighton NC ; Farrell FX; Chang R; Kashyap AK; Barbone FP ; Mulcahy LS; Johnson DL ; Barrett RW; Jol lif fe LK ; Dower WJ. , Smal l peptides as potent mimetics of the protein hormone erythropoietin, Science (UNITED STATES) Jul 26 1996, 273 p458- 64、 Verdine GL. , The combinatorial chemistry of nature . Nature ( ENGLAND ) Nov 7 1996 , 384 piト 13、 Hogan JC Jr. , Directed combinatorial chemistry. Nature (ENGLAND ) Nov 7 1996, 384 P17-9) により本発明のタンパク質に結合 する、 低分子化合物、 タンパク質 (またはその遺伝子)、 ペプチドなどを単離す る方法も当業者に周知の技術である。 これにより得られる本発明の夕ンパク質に結合する化合物は、 本発明の夕ン パク質の活性を促進または阻害するための薬剤の候補となる。 また、 本発明の 夕ンパク質に結合する細胞内タンパク質は、 生体内において本発明の夕ンパク 質の細胞周期の調節機能、 より具体的にはキナーゼ活性に密接に関連している と考えられる。 このため本発明のタンパク質に結合する細胞内タンパク質が得 られれば、この両者の結合を阻害する化合物をスクリ一ニングすることにより、 癌などの細胞周期の調節異常に起因する疾患に対する医薬品開発を行うことが 可能となる。
また、 本発明は、 本発明のタンパク質の活性の阻害剤または促進剤のスクリ —ニング方法に関する。本発明のスクリーニング法は、 (a )被検化合物の存在 下で本発明のタンパク質とその基質とを接触させる工程、 (b )本発明のタンパ ク質の基質に対するキナーゼ活性を測定する工程、 および (c ) 被検化合物の 非存在下において測定を行った場合 (対照) と比較して、 本発明のタンパク質 の基質に対するキナーゼ活性を促進または阻害する化合物を選択する工程、 を 含む。 スクリーニングに用いる被検化合物としては特に制限はなく、 例えば、 合成低分子化合物のライブラリー、 精製タンパク質 (抗体を含む)、 遺伝子ライ プラリーの発現産物、 合成ペプチドのライブラリー、 細胞抽出液、 細胞培養上 清などを用いることが可能である。 また、 本発明のタンパク質のキナーゼ活性 の検出に利用される基質としては、 例えば、 cdc25、 ヒストン Hl、 またはこれ らの断片などを用いることが可能であるが、 これらに制限されない。 本発明の タンパク質と基質との接触反応は、 例えば、 以下のように行うことができる。 被検化合物、 本発明のタンパク質、 基質、 およびリンが放射標識されている ATP を含む緩衝液を調製する。 適当な時間、 本発明のタンパク質と基質との反 応を行わせた後、 キナーゼ活性の検出を行う。 キナーゼ活性を、 基質に結合し たリンの放射活性を検出することにより測定する。 放射活性の検出は、 反応液 を電気泳動 (SDS- PAGE) にて分離し、 ゲルを乾燥した後、 オートラジオグラフ ィ一にてリン酸化された基質のバンドを検出することにより行うことができる。 一方、対照として、被検化合物を添加せずに同様にキナーゼ活性の検出を行う。 次いで、 対照と比較して、 有意なキナーゼ活性の増加若しくは低下をもたらし た化合物を選択する。 これにより得られる、 有意なキナーゼ活性の増加をもた らした化合物は、 本発明のタンパク質の促進剤の、 また有意なキナーゼ活性の 低下をもたらした化合物は、 本発明のタンパク質の阻害剤の候補となり、 癌な どの細胞周期の調節異常に起因する疾患に対する医薬品開発を行うことが可能 となる。
本発明において、 機能的 p53 (癌抑制タンパク質として知られている) を発 現している種々の細胞株で hCdsl遺伝子の発現が低く、 一方、 p53変異細胞株 で hCdsl遺伝子の発現が高いことが示された (実施例 5 )。 さらに、 hCdsl遺伝 子の発現が p53により負に制御されていることが示された(実施例 6 )。これら 事実から、正常細胞においては hCdslの発現は p53により抑制されており、 DNA 障害チェックボイント機構は p53経路が主に働いていると考えられる。 一方、 p53の変異により癌化した細胞では、 hCdslの発現誘導が起こり p53経路を介さ ず hCdsl経路により DNA障害チェックボイン 卜を制御していると考えられる。 従って、 hCdslの活性を阻害する薬剤や、 p53変異癌細胞において hCdsl経路を 特異的に阻害する薬剤 (hCdsl 遺伝子の発現を阻害する薬剤) には、 癌細胞の 致死を誘導する効果があると考えられる。 正常細胞で hCdsl経路があまり働い ていないことと考え併せると、 これら薬剤は、 副作用がなく癌細胞特異的に働 く抗ガン剤になり得ると考えられる。
p53変異癌細胞において hCdsl経路を特異的に阻害する薬剤(hCdsl遺伝子の 発現を阻害する薬剤) は、 例えば、 53変異細胞株 (例えば、 MDAH041細胞株、 HeLa細胞株、 H937細胞株、 SaOS2細胞株、 T98B細胞株) に、 候補化合物を接触 させ、 次いで、 hCdsl 遺伝子の発現を検出し、 該遺伝子の発現を候補化合物を 接触させていない対照と比較して低下させる化合物を選択することにより、 単 離することが可能である。 hCdsl 遺伝子の発現の検出は、 転写産物レベルであ れば、 例えば、 ノ一ザンブロッティング法などの公知の方法により、 翻訳産物 レベルであれば、 例えば、 ウエスタンブロッテイング法などの公知の方法によ り行なうことが可能である。 また、 hCdsl 遺伝子のプロモーターの下流に連結 されたレポーター遺伝子を含むベクターを細胞に導入し、 レポ一夕一活性を指 標に hCdsl遺伝子の発現を検出してもよい。
本発明は、 本発明の夕ンパク質のキナーゼ活性を阻害する化合物を含有する 医薬組成物および本発明のタンパク質の発現を阻害する化合物を含有する医薬 組成物、 好ましくは抗癌剤である医薬組成物を包含する。
本発明のスクリーニング方法を用いて得られる化合物をヒ トゃ哺乳動物、 例 えばマウス、 ラッ ト、 モルモッ ト、 ゥサギ、 ニヮ トリ、 ネコ、 ィヌ、 ヒッジ、 ブ夕、 ゥシ、 サル、 マントヒヒ、 チンパンジーの医薬として使用する場合には 、 単離された化合物自体を直接患者に投与する以外に、 公知の製剤学的方法に より製剤化して投与を行うことも可能である。 例えば、 必要に応じて糖衣を施 した錠剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤として経口的に、 あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、 又は懸 濁液剤の注射剤の形で非経口的に使用できる。 例えば、 薬理学上許容される担 体もしくは媒体、 具体的には、 滅菌水や生理食塩水、 植物油、 乳化剤、 懸濁剤 、 界面活性剤、 安定剤、 香味剤、 賦形剤、 べヒクル、 防腐剤、 結合剤などと適 宜組み合わせて、 一般に認められた製薬実施に要求される単位用量形態で混和 することによって製剤化することが考えられる。 これら製剤における有効成分 量は指示された範囲の適当な容量が得られるようにするものである。
錠剤、 カプセル剤に混和することができる添加剤としては、 例えばゼラチン 、 コーンスターチ、 トラガントガム、 アラビアゴムのような結合剤、 結晶性セ ルロースのような賦形剤、 コーンスターチ、 ゼラチン、 アルギン酸のような膨 化剤、 ステアリン酸マグネシウムのような潤滑剤、 ショ糖、 乳糖又はサッカリ ンのような甘味剤、 ペパーミント、 ァカモノ油又はチェリ一のような香味剤が 用いられる。 調剤単位形態がカプセルである場合には、 上記の材料にさらに油 脂のような液状担体を含有することができる。 注射のための無菌組成物は注射 用蒸留水のようなべヒクルを用いて通常の製剤実施に従って処方することがで きる。
注射用の水溶液としては、 例えば生理食塩水、 ブドウ糖やその他の補助薬を 含む等張液、 例えば D-ソルビトール、 D-マンノース、 D-マンニ トール、 塩化ナ トリウムが挙げられ、 適当な溶解補助剤、 例えばアルコール、 具体的にはエタ ノール、 ポリアルコール、 例えばプロピレングリコール、 ポリエチレングリコ —ル、 非イオン性界面活性剤、 例えばポリソルベート 80 (TM)、 HC0- 50と併用し てもよい。
油性液としてはゴマ油、 大豆油があげられ、 溶解補助剤として安息香酸ベン ジル、 ベンジルアルコールと併用してもよい。 また、 緩衝剤、 例えばリン酸塩 緩衝液、 酢酸ナトリウム緩衝液、 無痛化剤、 例えば、 塩酸プロ力イン、 安定剤 、 例えばべンジルアルコール、 フヱノール、 酸化防止剤と配合してもよい。 調 製された注射液は通常、 適当なアンプルに充填させる。
患者への投与は、 例えば、 動脈内注射、 静脈内注射、 皮下注射などのほか、 鼻腔内的、 経気管支的、 筋内的、 絰皮的、 または経口的に当業者に公知の方法 により行いうる。 投与量は、 患者の体重や年齢、 投与方法などにより変動する が、 当業者であれば適当な投与量を適宜選択することが可能である。 また、 該 化合物が DNAによりコードされうるものであれば、 該 DNAを遺伝子治療用べクタ —に組込み、 遺伝子治療を行うことも考えられる。 投与量、 投与方法は、 患者 の体重や年齢、 症状などにより変動するが、 当業者であれば適宜選択すること が可能である。
例えば、 上記化合物の投与量は、 症状により差異はあるが、 経口投与の場合 、 一般的に成人 (体重 60kgとして) においては、 1日あたり約 0. 1から 100mg、 好 ましくは約 1.0から 50mg、 より好ましくは約 1.0から 20mgである。
非経口的に投与する場合は、 その 1回投与量は投与対象、 対象臓器、 症状、 投与方法によっても異なるが、例えば注射剤の形では通常成人(体重 60kgとし て) においては、 1 日あたり約 0.01から 30mg、 好ましくは約 0. 1から 20mg、 より好ましくは約 0. 1から 10mg程度を静脈注射により投与するのが好都合であ る。他の動物の場合も、 体重 60kg当たりに換算した量、 あるいは体表面積あた りに換算した量を投与することができる。 図面の簡単な説明
図 1は、 「hCdsl」 のアミノ酸配列の 1〜260 番目を、 ショウジョゥバエの 「dCdsl」、 分裂酵母の spCdsl、 およびパン酵母の scCdslのアミノ酸配列とと もに整列化した図である。 アミノ酸は一文字表記で表した。 アミノ酸のギヤッ プはハイフンで表した。 4種でアミノ酸が一致する場合はアスタリスクで、 ま た類似したアミノ酸である場合はドッ 卜で、 その位置を示した。
図 2は、 「hCdsl」 のアミノ酸配列の 261〜543 番目を、 ショウジヨウバエの 「dCdsl」、 分裂酵母の spCdsl、 およびパン酵母の scCdsl のアミノ酸配列とと もに整列化した図である。 アミノ酸は一文字表記で表した。 アミノ酸のギヤッ プはハイフンで表した。 4種でアミノ酸が一致する場合はアスタリスクで、 ま た類似したアミノ酸である場合はドッ 卜で、 その位置を示した。
図 3は、 ヒトの各組織における 「hCdsl」の発現を示したノーザンハイブリダ ィゼ一ションである。
図 4は、 「hCdsl」および 249位のリジンをメチォニンに変換した「KM変異体」 のキナーゼ活性を示す図である。 各レーンのバーの下の 「WT」 は 「hCdsl」 によ るリン酸化反応、 「KM」tt「KM変異体」によるリン酸化反応の結果を表す。 「Chkl WTj および 「Chkl KM」 は、 それそれヒ 卜野生型 Chklタンパク質および 38番目 の Lysを Metに変換した Chkl変異タンパク質をリン酸化反応に用いたことを表 す。 各レーンのバーの上に、 リン酸化に用いた基質タンパク質を示した。
図 5 Aは、 各種細胞株における hCdslの発現を示したノーザンハイブリダィ ゼ一シヨンである。 図 5 Bは、 正常繊維芽細胞を SV40 Large T antigen, パピ 口一マウィルス E6(HPV E6 )、 パピ口一マウィルス E7(HPV E7)でそれぞれ形質転 換した細胞における hCdslの発現を示したノーザンハイブリダィゼーシヨン、 及び陽性シグナルの相対比を示したグラフである。 発明を実施するための最良の形態
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例に 制限されるものではない。
[実施例 1 ] 「hCdsl」 cDNAの同定
分裂酵母の spCdsl (ジェンバンク'ァクセッション番号 AJ222869 )及びパン酵 母の scCdsl 配列(ジェンバンク · ァクセッション番号 M55623 )を基に、 BLAST を用いてジェンバンク ESTデータベースを検索したところ、 spCdsl と 30.2°の 相同性を有し、 scCdsl とも相同性を有するショウジヨウバエ(drosophi la)の相 同分子 dCdslを新たに見いだした(ジェンバンク -ァクセッション番号 1187984)。 ついで、 spCdsl遺伝子、 scCdsl遺伝子、 dCdsl遺伝子を CLUSTAL Vマルチプル - シークェンス .ァラインメントを用いて整列化し、 コンセンサス配列を抽出す ることで、 デジエネレーテドプライマ一 1および 2 (配列番号: 3および 4 ) を合成した。 これらのプライマ一を用い、 MDAH041細胞から作製された cDNAを テンプレートとしてデジエネレーテド PCRを行った。 MDAH041細胞 cDNAの作製 は、 MDAH041細胞から AGPC法(Analytical Biochem. 162 , 156 , 1987)により全 RNAを抽出した後、 mRNAを mRNA Purification Kit (フアルマシア社)を用いて 精製し、 Gubler及び Hoffmanの改良法 (Gene, 25 , 263, ( 1983) ) により cDNA 合成キッ ト(ギブコ BRL社)を用いて作製した。
デジエネレーテド PCR法により得られた DNAフラグメントをァガロースゲル で電気泳動し、 Gene Clean Kit I I (フナコシ社)を用いて精製した後、 プラス ミ ド pGEM- T (プロメガ社)に挿入してクロ一ニングした。得られたプラスミ ドの 挿入 DNAは 266塩基長の部分配列を有し、 spCdsl と相同性を示した。
得られた部分配列を用いて、 MDAH041 細胞の m A をテンプレートとして、 5' RACE法及び 3' RACE法(ギブコ BRL社)により 5'方向及び 3'方向に伸長した cDNAフラグメントを作製し、 増幅した後、 それそれの塩基配列を決定し、 得ら れた塩基配列を基に 「プライマー S_l」 (配列番号: 5 )及び 「プライマ一ひ- 1」 (配列番号 : 6 )を作製した。 完全長の 「hmnan Cdsl (hCdsl )」 cDNAは、 「プライ マー S- 1」 及び 「プライマ一ひ- 1」 を用いて、 MDAH041の cDNAをテンプレート として PCR法により得た。 増幅したフラグメントは pcDNA3. 1/myc- HisA (ィン ビトロジェン社) の EcoRI/XhoI 部位にサブクロ一ニングすることで野生型の
「hCdsl」 の cDNAを含むベクタ一 pcDNA3. 1/myc- HisA- hCdslを単離した。
塩基配列は ABI PRISM Dye Terminator Cyc le Sequencing Ready Reaction Kit with Am l itaq DNA polymerase FS及び 377 A DNAシーケンサ一(パーキンエル マ一社)を用いて決定した。 その結果、 約 1629bpの 0RF全長を含む約 1.8kbの
「hCdsl」 cDNAの全長を得た (配列番号 : 2 )。 また、 該 cDNAがコードする夕 ンパク質は 543アミノ酸と推定された (配列番号 : 1 )。 分裂酵母の spCdsl、 パン酵母の scCdsl、 ショウジヨウバエの dCdsl と比較したところ、 キナ一ゼ活 性に重要な働きを示すと考えられる 249番目のリジンをはじめとして、 多くの 保存されたアミノ酸が確認された。 特に 220番目のチロシンから 396番目の口 ィシンにおてい高い保存性が認められた (図 1および図 2 )。
[実施例 2 ] ノーザンプロッティングによる検出
ノーザンプロッティングに用いるプローブには、 pcDNA3. 1/myc- HisA- hCdsl を EcoRI と Xholで制限酵素処理して得られた約 1800bpの断片を用いた。 この 断片を multiple DNA label ing systems (アマシャム社)を用いて [ひ-32 P]dCTP (222TBq/誦 ol :ニューィングランドニュ一クレア社)によりラベルし、 Multiple Tissue Northern Blots (クローンテック社)のフィル夕一に対して、 5 x SSPE, 5 x Denhardt' s, 50%ホルムアミ ド, 0.5% SDS, lOO^g/ml 熱変性サケ精子 DNA を含む水溶液で、 42°Cにて 24時間ハイブリダィゼーシヨンを行った。その結果、 精巣において強い発現が認められ、 その他の組織においても広く発現が確認さ れた (図 3 )。
[実施例 3 ] 「hCdsl」 タンパク質および変異体タンパク質の作製
バキュロウィルス DNAへの相同組み換えは、昆虫細胞として Sf9細胞(ファー ミンジェン社) を用い、 培地として T題- FH (ファ一ミンジェン社) を、 また、 トランスフエクションは Baculo Gold Transfection Kit(フ ーミンジヱン社) 用いて行った。 rhCdslj cDNAの揷入ベクター pcDNA3. 1/myc- HisA- hCdslより制 限酵素 EcoM と Pmelにより cDNAフラグメントを切り出した後、 トランスファ —ベクター PVL1392 の制限酵素サイ ト EcoRI / Smal に挿入した(pVL1392 hCds卜 myc/6 xHis )。 l x l O6個の Sf9細胞を 35删ディ ッシュに巻き込み、 常温 に 1時間放置し細胞を接着させた。細胞を昆虫細胞用無血清培地(Sf- 900 I I SFM, ギブコ社)で洗浄した後、 0.5 mlの卜ランスフエクション溶液 Aを加えた。コ · トランスフエクション溶液は、 pVL1392 hCdsl-myc/6 xHis 500ng、直鎖状 Baculo Gold virus DNA (ファーミンジェン社) 2.5ng、 滅菌水 0.05ml、 トランスフ ェクシヨン溶液 B 0.5ml を混合し、 室温で 15分間放置して作製した。 0.5 ml のトランスフエクション溶液 Aと Sf 9細胞を含むディ ッシュにコ · トランスフ ェクシヨン溶液 0. 1 mlをゆつく りと滴下し、 27°C、 4時間、 放置した後、 ディ ッシュを洗浄し、 1 mlの T匪- FH培地を加え、 27°Cで 5 日間培養した後、 上清 を回収することでウィルスストックを作製した。
バキュロウィルス DNAへの相同組換えはプラークアツセィにより確認した。 1 X 106個の Sf9細胞を 35 麵ディ ッシュに卷き込み、 10—1から に希釈したゥ ィルスストックを加えた後、 室温で 1時間振とうした。 ウィルスストックを取 り除いた後、 2.5 %バキュロウィルスァガロースと TNM-FH培地の 1 : 3の混合液 (42°C) 3ml を注ぎ、 ァガロースが固まった後、 27°Cで 5 日間培養した。 形成 したプラークをパスツールピぺッ トでビックアップし 0.5mlの培地に懸濁した 後、 4°Cで一晩放置し、 プラークピック溶液を作製した。
1X10 固の Sf9 細胞を 35 醒 ディッシュに卷き込み細胞を接着させた後、 0.1mlのプラークピック溶液を加え、 室温で 1時間静かに振とうした。 ディ ッ シュに 1.5mlの TNM- FH培地を加え、 さらに 27°Cで 5 日間培養した。 細胞と培 養上清を回収し、 3000rpni, 5分間の遠心分離操作により得られた上清を P- 1溶 液とした。 遠心分離操作により得られた細胞は、 プロテアーゼ Kおよび RNaseA で処理し、 さらにフエノール · クロ口ホルム処理によりタンパク質の除去を行 つた後、 PCR により目的とするインサートの挿入の有無を確認した。 目的とす るィンサー卜の存在の確認できた P- 1 溶液を保存し、 P- 1溶液のタイ夕一チェ ックを行った。
組換え 「hCdsl」 (recombinant hCdsl )の昆虫細胞での発現は以下の方法によ り行った。 lxlO6個の Sf9細胞を 35 mmディ ッシュに巻き込み、 Μ·Ο.Ι.=30で Ρ - 1溶液を感染させた。 27°Cで 3日間培養した後、 組換え 「hCdsl」 を発現する 細胞を回収した。 細胞を細胞融解バッファー(50mM HEPES pH8.0, 150mM NaCl, ImM EDTA, 2.5mM EGTA, 10¾ グリセロール, O. NP-40, 2mg/ml ァプロチニン, O.lmM PMSF, ImM NaF, O.lmM Na3V04, 10mM 5 -グリセ口フォスフェート)に溶解 し、 細胞溶解液を調製した。 細胞溶解液を抗 myc抗体結合プロテイン Aビーズ と混合し、 目的とする組換え 「hCdsl」 をビーズに結合させた。 ビーズを細胞融 解バッファ—にて洗浄した後、 組換え 「hCdsl」 を免疫沈降物として得た。 キナーゼ活性に関与する部位を特定する為に、 249 番のリジンをメチォニン に変換した変異体 (KM変異体) をコードする遺伝子を PCR法により作製した。 野生型の 「hCdsl」 cDNA を錶型として、 「プライマ一 S- 1」 と 「インナープライ マ一 2」 (配列番号: 7)、 及び「プライマ一ひ- 1」 と 「ィンナ一プライマー 1」 (配列番号: 8) を用いて PCRを行った後、 増幅したフラグメントを混合し、 ムム
プライマ一 S- 1 とプライマ一ひ- 1で再度 PCRを行い、 増幅したフラグメントを pcDNA3. 1/myc- HisAの EcoRI / Xhol部位にサブクローニングした。 変異体タン パク質の昆虫細胞での発現は野生型の発現と同様の方法により行った。
[実施例 4 ] キナーゼ活性の検出
野生型および変異体「hCdsl」の免疫沈降物をキナーゼバッファ一(10 mM MgCl2, 50 mM HEPES pH 8.0, 2.5 mM EGTA, 1 mM DTT, 0. 1 mM PMSF , Zmg/ml ァプロチ ニン, 10 mM 5 -グリセ口フォスフエ一ト, 0. 1 mM Na,V04 ! 1 mM NaF , 10 mM ATP, 185 kBq [ァ- 32P]ATP(222TBq/mmol (ニューイングランドニュ一クレア社)) に懸 濁した後、 グル夕チオン S_トランスフェラ一ゼ(GST )との融合蛋白として製造 した 「GST- cdc25c (全長)(ァクセッション番号 L26584 )」、 「GST- cdc25c( 200〜 250アミノ酸)」、 「GST- weel (ァクセッシヨン番号 U10564 )」、及びヒストン H1 (J. Biochem. 100, 359, 1986 )、 ヒ ト Chkl (ァクセッション番号 AF016582 )蛋白質を 基質として加え、 30°C、 30分間ィンキュベ一卜した。反応液を SDS- PAGE( 12% ) にて分離し、 ゲルを乾燥した後、 オートラジオグラフィ一にてリン酸化蛋白質 のバンドを検出した。その結果、組換え「Cdsl」は効率的に「GST- cdc25c (全長)」、 「GST - cdc25( 200〜250アミノ酸)」、ヒス トン HIをリン酸化したが、 「GST- weel」、 ヒト Chkl タンパク質はほとんどリン酸化しなかった (図 4 )。 また、 249番の リジンをメチォニンに変換した変異体(KM 変異体)ではいずれの基質もリン酸 化しなかった。 なお、 グル夕チオン S-トランスフェラ一ゼ(GST)との融合蛋白 は、 文献 ( Genes & Development 12, 382, 1998) に記載の方法により作製した。
[実施例 5 ] p53変異と hCdsl発現の相関
各種培養細胞から、 Pharmacia Quick prep. mRNA kitを用いて mRNAを精製 し、 それそれ 2〃g をァガロースゲル電気泳動後ナイロン膜に転写し、 hCdsl フラグメントをプローブとして用いてノ一ザンプロッティングを行った。また、 対照として hGAPDHをプローブとして用いた検出も行った。
その結果、 機能的 p53を発現している細胞株 MJ90、 AT2KY、 A172においては hCdslの発現が非常に低いが、 p53変異細胞株である MDAH041、HeLa、U937、 SaOS2、 T98Gにおいては hCds lの発現が高いことが示された (図 5 A )。 このことから、 hCdslの発現は p53遺伝子の変異の有無と非常によく相関することが明らかに なった。 また、 hCdslの発現制御が p53 を介して起こっていることが示唆され た。
[実施例 6 ] p53強制発現による hCdsl発現への影響
正常繊維芽細胞をそれそれ SV40Large T, pap i loma v i rus E6 , E7で形質転換 させ、 hCds l の発現変化を上記と同様の方法を用いてノーザンブロッテイング 法で解析した。 また、 それそれの細胞に野生型 p53をもつアデノウイルスを感 染させて、 p53を外来的に発現させたときの hCds lの発現変動を調べた。
その結果、 正常繊維芽細胞を SV40Large T, papi l oma virus E6, E7で形質転 換させた細胞においては hCdslの発現が強く誘導されていることが明らかにな つた。 また、 Large Tおよび E6で形質転換させた細胞では、 正常 p53の発現に より hCdslの発現が抑制されたが、 E7で形質転換させた細胞においては影響が なかった (図 5 B )。 このことは Large Tおよび E6は p53の機能を阻害するこ とで細胞の形質転換を引き起こすが、 E7は Rbを抑制し p53には影響がないと の報告と一致する。 すなわち、 hCdslの発現は p53により負に制御されている ことが示された。 産業上の利用の可能性
本発明により、 キナーゼ活性を有する哺乳動物由来のタンパク質および遺伝 子が提供された。 本発明のタンパク質は、 細胞周期の調節に関与していると考 えられるため、 これにより癌などの増殖性疾患の診断や治療のための新たな医 薬品の開発が可能となった。また、本発明のタンパク質をコ一ドする遺伝子は、 上記疾患の遺伝子治療への応用が期待される。 また、 本発明により、 本発明の タンパク質を製造するための宿主一ベクター系が提供され、 これにより本発明 のタンパク質の量産が可能となった。 さらに、 本発明により、 本発明のタンパ ク質をコードする DNAに特異的にハイプリダイズするオリゴヌクレオチドゃ本 発明のタンパク質に結合する抗体が提供され、 これにより本発明のタンパク質 やその遺伝子の検出や単離などを容易に行うことが可能となった。 さらに、 本 発明により、 本発明の夕ンパク質に結合する化合物および該夕ンパク質の活性 を促進若しくは阻害する化合物をスクリーニングする方法が提供された。 これ により単離される化合物は、 上記疾患の診断や治療のための医薬品候補化合物 として有用である。 特に、 本発明のタンパク質の活性や発現を阻害する化合物 には、 抗癌剤としての利用が期待される。

Claims

請求の範囲
I . 配列番号: 1に記載のアミノ酸配列からなるタンパク質。
2 . 配列番号: 1に記載のアミノ酸配列において 1若しくは複数のアミノ酸 が置換、 欠失、 挿入、 および/もしくは付加したアミノ酸配列からなり、 キナ —ゼ活性を有するタンパク質。
3 . 配列番号: 2に記載の塩基配列からなる DNAとハイプリダイズする哺乳 動物由来の DNAがコ一ドするタンパク質であって、 キナーゼ活性を有するタン パク質。
4 . 請求項 1から 3のいずれかに記載のタンパク質をコード.する DNA。
5 . 請求項 4に記載の DNAが挿入されたべクタ一。
6 . 請求項 4に記載の DNAを発現可能に保持する形質転換体。
7 . 請求項 6に記載の形質転換体を培養する工程を含む、 請求項 1から 3の いずれかに記載のタンパク質の製造方法。
8 . 請求項 1から 3のいずれかに記載のタンパク質に結合する抗体。
9 . 請求項 4に記載の DNAと特異的にハイブリダイズし、 少なくとも 15ヌク レオチドの鎖長を有する DNA。
1 0 . 請求項 1から 3のいずれかに記載のタンパク質に結合する活性を有す る化合物をスクリーニングする方法であって、
( a ) 請求項 1から 3のいずれかに記載のタンパク質に被検試料を接触させる 工程、
( b ) 請求項 1から 3のいずれかに記載のタンパク質に結合する活性を有する 化合物を選択する工程、 を含む方法。
I I . 請求項 1から 3のいずれかに記載の夕ンパク質のキナーゼ活性を促 進もしくは阻害する化合物をスクリーニングする方法であって、
( a ) 被検化合物の存在下で請求項 1から 3のいずれかに記載のタンパク質と その基質とを接触させる工程、
(b) 請求項 1から 3のいずれかに記載のタンパク質の基質に対するキナーゼ 活性を測定する工程、
(c) 被検化合物の非存在下において測定を行った場合(対照) と比較して、 請求項 1から 3のいずれかに記載のタンパク質の基質に対するキナーゼ活性を 促進または阻害する化合物を選択する工程、 を含む方法。
12. 請求項 1 0または 1 1に記載の方法により単離しうる化合物。
13. タンパク質である、 請求項 1 2に記載の化合物。
14. タンパク質が抗体である、 請求項 1 3に記載の化合物。
1 5. 請求項 1から 3のいずれかに記載のタンパク質のキナーゼ活性を阻害 する化合物を含有する医薬組成物。
16. 細胞内において請求項 4に記載の DNAの発現を阻害する化合物を含有 する医薬組成物。
17. 抗癌剤である、 請求項 1 5または 1 6に記載の医薬組成物。
PCT/JP1999/003350 1998-06-23 1999-06-23 Facteur de regulation du cycle cellulaire WO1999067369A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002331152A CA2331152A1 (en) 1998-06-23 1999-06-23 Cell cycle regulating factor
AU42895/99A AU4289599A (en) 1998-06-23 1999-06-23 Cell cycle regulatory factor
EP99957181A EP1090987A4 (en) 1998-06-23 1999-06-23 CELL CYCLE REGULATION FACTOR
US09/740,627 US20020012964A1 (en) 1998-06-23 2000-12-19 Cell cycle regulating factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/192467 1998-06-23
JP19246798 1998-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/740,627 Continuation-In-Part US20020012964A1 (en) 1998-06-23 2000-12-19 Cell cycle regulating factor

Publications (1)

Publication Number Publication Date
WO1999067369A1 true WO1999067369A1 (fr) 1999-12-29

Family

ID=16291788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003350 WO1999067369A1 (fr) 1998-06-23 1999-06-23 Facteur de regulation du cycle cellulaire

Country Status (5)

Country Link
US (1) US20020012964A1 (ja)
EP (1) EP1090987A4 (ja)
AU (1) AU4289599A (ja)
CA (1) CA2331152A1 (ja)
WO (1) WO1999067369A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002099110A1 (ja) * 2001-06-04 2004-09-16 中西 真 細胞周期調節因子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274971A (ja) * 1994-04-05 1995-10-24 Res Dev Corp Of Japan 細胞周期遺伝子と、細胞の有糸分裂抑制因子
JPH09263600A (ja) * 1996-01-24 1997-10-07 Takeda Chem Ind Ltd 細胞周期制御因子およびその遺伝子
WO1999020747A2 (en) * 1997-10-22 1999-04-29 Janssen Pharmaceutica N.V. HUMAN CHECKPOINT KINASE, hCDS1, COMPOSITIONS AND METHODS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274971A (ja) * 1994-04-05 1995-10-24 Res Dev Corp Of Japan 細胞周期遺伝子と、細胞の有糸分裂抑制因子
JPH09263600A (ja) * 1996-01-24 1997-10-07 Takeda Chem Ind Ltd 細胞周期制御因子およびその遺伝子
WO1999020747A2 (en) * 1997-10-22 1999-04-29 Janssen Pharmaceutica N.V. HUMAN CHECKPOINT KINASE, hCDS1, COMPOSITIONS AND METHODS
WO1999025843A2 (en) * 1997-10-22 1999-05-27 The Scripps Research Institute Human checkpoint kinase, hcds1, compositions and methods

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIERMANN B., JOHNSON E. M.,FELDMAN L. J.: "CHARACTERIZATION AND DISTRIBUTION OF A MAIZE CDNA ENCODING A PEPTIDE SIMILAR TO THE CATALYTIC REGION OF SECOND MESSENGER DEPENDENT PROTEIN KINASES.", PLANT PHYSIOLOGY., AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD., US, vol. 94., 1 January 1990 (1990-01-01), US, pages 1609 - 1615., XP002922303, ISSN: 0032-0889 *
BLASINA A., ET AL.: "HUMAN HOMOLOGUE OF THE CHECKPOINT KINASE CDS1 DIRECTLY INHIBITS CDC25 PHOSPHATASE.", CURRENT BIOLOGY, CURRENT SCIENCE, GB, vol. 09., no. 01., 14 January 1999 (1999-01-14), GB, pages 01 - 10., XP002922302, ISSN: 0960-9822, DOI: 10.1016/S0960-9822(99)80041-4 *
BODDY M. N., ET AL.: "REPLICATION CHECKPOINT ENFORCED BY KINASES CDS1 AND CHK1.", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 280., 8 May 1998 (1998-05-08), US, pages 909 - 912., XP002922305, ISSN: 0036-8075, DOI: 10.1126/science.280.5365.909 *
DATABASE GENBANK, Accession No. AF096279, 2 February 1999, BROWN A. et al., "Homo Sapiens HuCds1 Kinase mRNA, complete cds". *
HAO LI, ET AL.: "MOLECULAR CHARACTERIZATION OF DROSOPHILA AND HUMAN CHECK POINT KINASE 1 (CHK1) GENE", DEVELOPMENTAL BIOLOGY, ACADEMIC PRESS, AMSTERDAM, NL, vol. 198, no. 01, 1 June 1998 (1998-06-01), AMSTERDAM, NL, pages 216, XP002922304, ISSN: 0012-1606 *
MATSUOKA S., HUANG M., ELLEDGE S. J.: "LINKAGE OF ATM TO CELL CYCLE REGULATION BY THE CHK2 PROTEIN KINASE.", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 282., 4 December 1998 (1998-12-04), US, pages 1893 - 1897., XP002922301, ISSN: 0036-8075, DOI: 10.1126/science.282.5395.1893 *
MURAKAMI H., OKAYAMA H.: "KINASE FROM FISSION YEAST RESPONSIBLE FOR BLOCKING MITOSIS IN S PHASE.", NATURE, NATURE PUBLISHING GROUP, UNITED KINGDOM, vol. 374., 27 April 1995 (1995-04-27), United Kingdom, pages 817 - 819., XP002922306, ISSN: 0028-0836, DOI: 10.1038/374817a0 *
See also references of EP1090987A4 *

Also Published As

Publication number Publication date
US20020012964A1 (en) 2002-01-31
AU4289599A (en) 2000-01-10
CA2331152A1 (en) 1999-12-29
EP1090987A4 (en) 2003-05-28
EP1090987A1 (en) 2001-04-11

Similar Documents

Publication Publication Date Title
JP6339415B2 (ja) ニューレグリンの下流タンパク質であるニューキナーゼ
AU736316B2 (en) Mitogen-activated protein kinase p38-2 and methods of use therefor
US7396920B2 (en) Tumour suppressor and uses thereof
JPH10510422A (ja) チロシンリン酸化タンパク質に結合する新規なタンパク質ドメイン
AU2001263952A1 (en) Tumour suppressor and uses thereof
US6444455B1 (en) Mitogen-activated protein kinase P38-2 and methods of use therefor
JP2002505842A (ja) 延長因子2キナーゼ(ef−2キナーゼ)およびその使用方法
EP1263939B1 (en) 18477, a human protein kinase and uses therefor
JP2001510684A (ja) アッセイ、治療法及び治療手段
JP2001501481A (ja) Mapキナーゼ:ポリペプチド、ポリヌクレオチドおよびその使用
US6576444B2 (en) IRAK3 polynucleotides
JP2009183291A (ja) 転写調節因子
JP2005520481A (ja) 単離ヒトキナーゼタンパク質、ヒトキナーゼタンパク質をコードする核酸分子、及びそれらの使用方法
JP2001517430A (ja) ヒトSte20様ストレス活性化セリン/スレオニンキナーゼ
JP4472179B2 (ja) 新規なリボゾームs6プロテインキナーゼの同定および機能的なキャラクタライゼーション
WO1999067369A1 (fr) Facteur de regulation du cycle cellulaire
US6297019B1 (en) Recombinant polynucleotides encoding CYP7 promoter-binding factors
US20060115816A1 (en) Splice variant cannabinoid receptor (cb1b)
JP2005503757A (ja) 単離ヒトキナーゼタンパク質、ヒトキナーゼタンパク質をコードする核酸分子、及びそれらの使用方法
JP2002503466A (ja) 網膜芽細胞腫タンパク質複合体および網膜芽細胞腫相互作用タンパク質
JP4232423B2 (ja) 新規ユビキチン特異プロテアーゼ
US20050037446A1 (en) Agents that recognize src when phosphorylated at serine 17
JPWO2002099110A1 (ja) 細胞周期調節因子
JP2002539833A (ja) カリンレギュレーターroc1およびroc2をコードする単離dna、それらによってコードされた単離タンパク質、ならびにそれらの利用法
US6677130B1 (en) Mitogen-activated protein kinase p38-2 and methods of use therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2331152

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09740627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 42895/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999957181

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999957181

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999957181

Country of ref document: EP